2 * PowerMac G5 SMU driver
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 * Released under the term of the GNU GPL v2.
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/poll.h>
36 #include <linux/mutex.h>
37 #include <linux/of_device.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_platform.h>
40 #include <linux/slab.h>
41 #include <linux/memblock.h>
42 #include <linux/sched/signal.h>
44 #include <asm/byteorder.h>
47 #include <asm/machdep.h>
48 #include <asm/pmac_feature.h>
50 #include <asm/sections.h>
51 #include <linux/uaccess.h>
54 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
59 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
61 #define DPRINTK(fmt, args...) do { } while (0)
65 * This is the command buffer passed to the SMU hardware
67 #define SMU_MAX_DATA 254
72 u8 data[SMU_MAX_DATA];
77 struct device_node *of_node;
78 struct platform_device *of_dev;
79 int doorbell; /* doorbell gpio */
80 u32 __iomem *db_buf; /* doorbell buffer */
81 struct device_node *db_node;
84 struct device_node *msg_node;
86 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
87 u32 cmd_buf_abs; /* command buffer absolute */
88 struct list_head cmd_list;
89 struct smu_cmd *cmd_cur; /* pending command */
91 struct list_head cmd_i2c_list;
92 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
93 struct timer_list i2c_timer;
97 * I don't think there will ever be more than one SMU, so
98 * for now, just hard code that
100 static DEFINE_MUTEX(smu_mutex);
101 static struct smu_device *smu;
102 static DEFINE_MUTEX(smu_part_access);
103 static int smu_irq_inited;
104 static unsigned long smu_cmdbuf_abs;
106 static void smu_i2c_retry(unsigned long data);
109 * SMU driver low level stuff
112 static void smu_start_cmd(void)
114 unsigned long faddr, fend;
117 if (list_empty(&smu->cmd_list))
120 /* Fetch first command in queue */
121 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
123 list_del(&cmd->link);
125 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
127 DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
129 /* Fill the SMU command buffer */
130 smu->cmd_buf->cmd = cmd->cmd;
131 smu->cmd_buf->length = cmd->data_len;
132 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
134 /* Flush command and data to RAM */
135 faddr = (unsigned long)smu->cmd_buf;
136 fend = faddr + smu->cmd_buf->length + 2;
137 flush_inval_dcache_range(faddr, fend);
140 /* We also disable NAP mode for the duration of the command
141 * on U3 based machines.
142 * This is slightly racy as it can be written back to 1 by a sysctl
143 * but that never happens in practice. There seem to be an issue with
144 * U3 based machines such as the iMac G5 where napping for the
145 * whole duration of the command prevents the SMU from fetching it
146 * from memory. This might be related to the strange i2c based
147 * mechanism the SMU uses to access memory.
152 /* This isn't exactly a DMA mapping here, I suspect
153 * the SMU is actually communicating with us via i2c to the
154 * northbridge or the CPU to access RAM.
156 writel(smu->cmd_buf_abs, smu->db_buf);
158 /* Ring the SMU doorbell */
159 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
163 static irqreturn_t smu_db_intr(int irq, void *arg)
167 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
172 /* SMU completed the command, well, we hope, let's make sure
175 spin_lock_irqsave(&smu->lock, flags);
177 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
178 if ((gpio & 7) != 7) {
179 spin_unlock_irqrestore(&smu->lock, flags);
193 /* CPU might have brought back the cache line, so we need
194 * to flush again before peeking at the SMU response. We
195 * flush the entire buffer for now as we haven't read the
196 * reply length (it's only 2 cache lines anyway)
198 faddr = (unsigned long)smu->cmd_buf;
199 flush_inval_dcache_range(faddr, faddr + 256);
202 ack = (~cmd->cmd) & 0xff;
203 if (ack != smu->cmd_buf->cmd) {
204 DPRINTK("SMU: incorrect ack, want %x got %x\n",
205 ack, smu->cmd_buf->cmd);
208 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
209 DPRINTK("SMU: reply len: %d\n", reply_len);
210 if (reply_len > cmd->reply_len) {
211 printk(KERN_WARNING "SMU: reply buffer too small,"
212 "got %d bytes for a %d bytes buffer\n",
213 reply_len, cmd->reply_len);
214 reply_len = cmd->reply_len;
216 cmd->reply_len = reply_len;
217 if (cmd->reply_buf && reply_len)
218 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
221 /* Now complete the command. Write status last in order as we lost
222 * ownership of the command structure as soon as it's no longer -1
229 /* Re-enable NAP mode */
233 /* Start next command if any */
235 spin_unlock_irqrestore(&smu->lock, flags);
237 /* Call command completion handler if any */
241 /* It's an edge interrupt, nothing to do */
246 static irqreturn_t smu_msg_intr(int irq, void *arg)
248 /* I don't quite know what to do with this one, we seem to never
249 * receive it, so I suspect we have to arm it someway in the SMU
250 * to start getting events that way.
253 printk(KERN_INFO "SMU: message interrupt !\n");
255 /* It's an edge interrupt, nothing to do */
261 * Queued command management.
265 int smu_queue_cmd(struct smu_cmd *cmd)
271 if (cmd->data_len > SMU_MAX_DATA ||
272 cmd->reply_len > SMU_MAX_DATA)
276 spin_lock_irqsave(&smu->lock, flags);
277 list_add_tail(&cmd->link, &smu->cmd_list);
278 if (smu->cmd_cur == NULL)
280 spin_unlock_irqrestore(&smu->lock, flags);
282 /* Workaround for early calls when irq isn't available */
283 if (!smu_irq_inited || !smu->db_irq)
284 smu_spinwait_cmd(cmd);
288 EXPORT_SYMBOL(smu_queue_cmd);
291 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
292 unsigned int data_len,
293 void (*done)(struct smu_cmd *cmd, void *misc),
296 struct smu_cmd *cmd = &scmd->cmd;
300 if (data_len > sizeof(scmd->buffer))
303 memset(scmd, 0, sizeof(*scmd));
305 cmd->data_len = data_len;
306 cmd->data_buf = scmd->buffer;
307 cmd->reply_len = sizeof(scmd->buffer);
308 cmd->reply_buf = scmd->buffer;
312 va_start(list, misc);
313 for (i = 0; i < data_len; ++i)
314 scmd->buffer[i] = (u8)va_arg(list, int);
317 return smu_queue_cmd(cmd);
319 EXPORT_SYMBOL(smu_queue_simple);
329 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
331 smu_db_intr(smu->db_irq, smu);
333 EXPORT_SYMBOL(smu_poll);
336 void smu_done_complete(struct smu_cmd *cmd, void *misc)
338 struct completion *comp = misc;
342 EXPORT_SYMBOL(smu_done_complete);
345 void smu_spinwait_cmd(struct smu_cmd *cmd)
347 while(cmd->status == 1)
350 EXPORT_SYMBOL(smu_spinwait_cmd);
353 /* RTC low level commands */
354 static inline int bcd2hex (int n)
356 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
360 static inline int hex2bcd (int n)
362 return ((n / 10) << 4) + (n % 10);
366 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
367 struct rtc_time *time)
371 cmd_buf->data[0] = 0x80;
372 cmd_buf->data[1] = hex2bcd(time->tm_sec);
373 cmd_buf->data[2] = hex2bcd(time->tm_min);
374 cmd_buf->data[3] = hex2bcd(time->tm_hour);
375 cmd_buf->data[4] = time->tm_wday;
376 cmd_buf->data[5] = hex2bcd(time->tm_mday);
377 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
378 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
382 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
384 struct smu_simple_cmd cmd;
390 memset(time, 0, sizeof(struct rtc_time));
391 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
392 SMU_CMD_RTC_GET_DATETIME);
395 smu_spinwait_simple(&cmd);
397 time->tm_sec = bcd2hex(cmd.buffer[0]);
398 time->tm_min = bcd2hex(cmd.buffer[1]);
399 time->tm_hour = bcd2hex(cmd.buffer[2]);
400 time->tm_wday = bcd2hex(cmd.buffer[3]);
401 time->tm_mday = bcd2hex(cmd.buffer[4]);
402 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
403 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
409 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
411 struct smu_simple_cmd cmd;
417 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
418 SMU_CMD_RTC_SET_DATETIME,
419 hex2bcd(time->tm_sec),
420 hex2bcd(time->tm_min),
421 hex2bcd(time->tm_hour),
423 hex2bcd(time->tm_mday),
424 hex2bcd(time->tm_mon) + 1,
425 hex2bcd(time->tm_year - 100));
428 smu_spinwait_simple(&cmd);
434 void smu_shutdown(void)
436 struct smu_simple_cmd cmd;
441 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
442 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
444 smu_spinwait_simple(&cmd);
450 void smu_restart(void)
452 struct smu_simple_cmd cmd;
457 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
458 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
460 smu_spinwait_simple(&cmd);
466 int smu_present(void)
470 EXPORT_SYMBOL(smu_present);
473 int __init smu_init (void)
475 struct device_node *np;
479 np = of_find_node_by_type(NULL, "smu");
483 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
486 * SMU based G5s need some memory below 2Gb. Thankfully this is
487 * called at a time where memblock is still available.
489 smu_cmdbuf_abs = memblock_alloc_base(4096, 4096, 0x80000000UL);
490 if (smu_cmdbuf_abs == 0) {
491 printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
496 smu = alloc_bootmem(sizeof(struct smu_device));
498 spin_lock_init(&smu->lock);
499 INIT_LIST_HEAD(&smu->cmd_list);
500 INIT_LIST_HEAD(&smu->cmd_i2c_list);
505 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
506 * 32 bits value safely
508 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
509 smu->cmd_buf = __va(smu_cmdbuf_abs);
511 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
512 if (smu->db_node == NULL) {
513 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
517 data = of_get_property(smu->db_node, "reg", NULL);
519 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
524 /* Current setup has one doorbell GPIO that does both doorbell
525 * and ack. GPIOs are at 0x50, best would be to find that out
526 * in the device-tree though.
528 smu->doorbell = *data;
529 if (smu->doorbell < 0x50)
530 smu->doorbell += 0x50;
532 /* Now look for the smu-interrupt GPIO */
534 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
535 if (smu->msg_node == NULL)
537 data = of_get_property(smu->msg_node, "reg", NULL);
539 of_node_put(smu->msg_node);
540 smu->msg_node = NULL;
548 /* Doorbell buffer is currently hard-coded, I didn't find a proper
549 * device-tree entry giving the address. Best would probably to use
550 * an offset for K2 base though, but let's do it that way for now.
552 smu->db_buf = ioremap(0x8000860c, 0x1000);
553 if (smu->db_buf == NULL) {
554 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
559 /* U3 has an issue with NAP mode when issuing SMU commands */
560 smu->broken_nap = pmac_get_uninorth_variant() < 4;
562 printk(KERN_INFO "SMU: using NAP mode workaround\n");
564 sys_ctrler = SYS_CTRLER_SMU;
568 of_node_put(smu->msg_node);
570 of_node_put(smu->db_node);
572 free_bootmem(__pa(smu), sizeof(struct smu_device));
580 static int smu_late_init(void)
585 init_timer(&smu->i2c_timer);
586 smu->i2c_timer.function = smu_i2c_retry;
587 smu->i2c_timer.data = (unsigned long)smu;
590 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
592 printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
596 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
598 printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
603 * Try to request the interrupts
607 if (request_irq(smu->db_irq, smu_db_intr,
608 IRQF_SHARED, "SMU doorbell", smu) < 0) {
609 printk(KERN_WARNING "SMU: can't "
610 "request interrupt %d\n",
617 if (request_irq(smu->msg_irq, smu_msg_intr,
618 IRQF_SHARED, "SMU message", smu) < 0) {
619 printk(KERN_WARNING "SMU: can't "
620 "request interrupt %d\n",
629 /* This has to be before arch_initcall as the low i2c stuff relies on the
630 * above having been done before we reach arch_initcalls
632 core_initcall(smu_late_init);
638 static void smu_expose_childs(struct work_struct *unused)
640 struct device_node *np;
642 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
643 if (of_device_is_compatible(np, "smu-sensors"))
644 of_platform_device_create(np, "smu-sensors",
648 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
650 static int smu_platform_probe(struct platform_device* dev)
657 * Ok, we are matched, now expose all i2c busses. We have to defer
658 * that unfortunately or it would deadlock inside the device model
660 schedule_work(&smu_expose_childs_work);
665 static const struct of_device_id smu_platform_match[] =
673 static struct platform_driver smu_of_platform_driver =
677 .of_match_table = smu_platform_match,
679 .probe = smu_platform_probe,
682 static int __init smu_init_sysfs(void)
685 * For now, we don't power manage machines with an SMU chip,
686 * I'm a bit too far from figuring out how that works with those
687 * new chipsets, but that will come back and bite us
689 platform_driver_register(&smu_of_platform_driver);
693 device_initcall(smu_init_sysfs);
695 struct platform_device *smu_get_ofdev(void)
702 EXPORT_SYMBOL_GPL(smu_get_ofdev);
708 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
710 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
711 void *misc = cmd->misc;
714 /* Check for read case */
715 if (!fail && cmd->read) {
716 if (cmd->pdata[0] < 1)
719 memcpy(cmd->info.data, &cmd->pdata[1],
723 DPRINTK("SMU: completing, success: %d\n", !fail);
725 /* Update status and mark no pending i2c command with lock
726 * held so nobody comes in while we dequeue an eventual
727 * pending next i2c command
729 spin_lock_irqsave(&smu->lock, flags);
730 smu->cmd_i2c_cur = NULL;
732 cmd->status = fail ? -EIO : 0;
734 /* Is there another i2c command waiting ? */
735 if (!list_empty(&smu->cmd_i2c_list)) {
736 struct smu_i2c_cmd *newcmd;
738 /* Fetch it, new current, remove from list */
739 newcmd = list_entry(smu->cmd_i2c_list.next,
740 struct smu_i2c_cmd, link);
741 smu->cmd_i2c_cur = newcmd;
742 list_del(&cmd->link);
744 /* Queue with low level smu */
745 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
746 if (smu->cmd_cur == NULL)
749 spin_unlock_irqrestore(&smu->lock, flags);
751 /* Call command completion handler if any */
758 static void smu_i2c_retry(unsigned long data)
760 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
762 DPRINTK("SMU: i2c failure, requeuing...\n");
764 /* requeue command simply by resetting reply_len */
765 cmd->pdata[0] = 0xff;
766 cmd->scmd.reply_len = sizeof(cmd->pdata);
767 smu_queue_cmd(&cmd->scmd);
771 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
773 struct smu_i2c_cmd *cmd = misc;
776 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
777 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
779 /* Check for possible status */
780 if (scmd->status < 0)
782 else if (cmd->read) {
784 fail = cmd->pdata[0] != 0;
786 fail = cmd->pdata[0] >= 0x80;
788 fail = cmd->pdata[0] != 0;
791 /* Handle failures by requeuing command, after 5ms interval
793 if (fail && --cmd->retries > 0) {
794 DPRINTK("SMU: i2c failure, starting timer...\n");
795 BUG_ON(cmd != smu->cmd_i2c_cur);
796 if (!smu_irq_inited) {
801 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
805 /* If failure or stage 1, command is complete */
806 if (fail || cmd->stage != 0) {
807 smu_i2c_complete_command(cmd, fail);
811 DPRINTK("SMU: going to stage 1\n");
813 /* Ok, initial command complete, now poll status */
814 scmd->reply_buf = cmd->pdata;
815 scmd->reply_len = sizeof(cmd->pdata);
816 scmd->data_buf = cmd->pdata;
825 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
832 /* Fill most fields of scmd */
833 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
834 cmd->scmd.done = smu_i2c_low_completion;
835 cmd->scmd.misc = cmd;
836 cmd->scmd.reply_buf = cmd->pdata;
837 cmd->scmd.reply_len = sizeof(cmd->pdata);
838 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
839 cmd->scmd.status = 1;
841 cmd->pdata[0] = 0xff;
845 /* Check transfer type, sanitize some "info" fields
846 * based on transfer type and do more checking
848 cmd->info.caddr = cmd->info.devaddr;
849 cmd->read = cmd->info.devaddr & 0x01;
850 switch(cmd->info.type) {
851 case SMU_I2C_TRANSFER_SIMPLE:
852 memset(&cmd->info.sublen, 0, 4);
854 case SMU_I2C_TRANSFER_COMBINED:
855 cmd->info.devaddr &= 0xfe;
856 case SMU_I2C_TRANSFER_STDSUB:
857 if (cmd->info.sublen > 3)
864 /* Finish setting up command based on transfer direction
867 if (cmd->info.datalen > SMU_I2C_READ_MAX)
869 memset(cmd->info.data, 0xff, cmd->info.datalen);
870 cmd->scmd.data_len = 9;
872 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
874 cmd->scmd.data_len = 9 + cmd->info.datalen;
877 DPRINTK("SMU: i2c enqueuing command\n");
878 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
879 cmd->read ? "read" : "write", cmd->info.datalen,
880 cmd->info.bus, cmd->info.caddr,
881 cmd->info.subaddr[0], cmd->info.type);
884 /* Enqueue command in i2c list, and if empty, enqueue also in
887 spin_lock_irqsave(&smu->lock, flags);
888 if (smu->cmd_i2c_cur == NULL) {
889 smu->cmd_i2c_cur = cmd;
890 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
891 if (smu->cmd_cur == NULL)
894 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
895 spin_unlock_irqrestore(&smu->lock, flags);
901 * Handling of "partitions"
904 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
906 DECLARE_COMPLETION_ONSTACK(comp);
912 /* We currently use a chunk size of 0xe. We could check the
913 * SMU firmware version and use bigger sizes though
918 unsigned int clen = min(len, chunk);
920 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
922 cmd.data_buf = params;
923 cmd.reply_len = chunk;
924 cmd.reply_buf = dest;
925 cmd.done = smu_done_complete;
927 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
929 *((u32 *)¶ms[2]) = addr;
932 rc = smu_queue_cmd(&cmd);
935 wait_for_completion(&comp);
938 if (cmd.reply_len != clen) {
939 printk(KERN_DEBUG "SMU: short read in "
940 "smu_read_datablock, got: %d, want: %d\n",
941 cmd.reply_len, clen);
951 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
953 DECLARE_COMPLETION_ONSTACK(comp);
954 struct smu_simple_cmd cmd;
955 unsigned int addr, len, tlen;
956 struct smu_sdbp_header *hdr;
957 struct property *prop;
959 /* First query the partition info */
960 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
961 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
962 smu_done_complete, &comp,
963 SMU_CMD_PARTITION_LATEST, id);
964 wait_for_completion(&comp);
965 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
966 cmd.cmd.status, cmd.cmd.reply_len);
968 /* Partition doesn't exist (or other error) */
969 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
972 /* Fetch address and length from reply */
973 addr = *((u16 *)cmd.buffer);
974 len = cmd.buffer[3] << 2;
975 /* Calucluate total length to allocate, including the 17 bytes
976 * for "sdb-partition-XX" that we append at the end of the buffer
978 tlen = sizeof(struct property) + len + 18;
980 prop = kzalloc(tlen, GFP_KERNEL);
983 hdr = (struct smu_sdbp_header *)(prop + 1);
984 prop->name = ((char *)prop) + tlen - 18;
985 sprintf(prop->name, "sdb-partition-%02x", id);
990 /* Read the datablock */
991 if (smu_read_datablock((u8 *)hdr, addr, len)) {
992 printk(KERN_DEBUG "SMU: datablock read failed while reading "
993 "partition %02x !\n", id);
997 /* Got it, check a few things and create the property */
999 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1000 "%02x !\n", id, hdr->id);
1003 if (of_add_property(smu->of_node, prop)) {
1004 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1005 "property !\n", id);
1015 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1016 * when interruptible is 1
1018 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1019 unsigned int *size, int interruptible)
1022 const struct smu_sdbp_header *part;
1027 sprintf(pname, "sdb-partition-%02x", id);
1029 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1031 if (interruptible) {
1033 rc = mutex_lock_interruptible(&smu_part_access);
1037 mutex_lock(&smu_part_access);
1039 part = of_get_property(smu->of_node, pname, size);
1041 DPRINTK("trying to extract from SMU ...\n");
1042 part = smu_create_sdb_partition(id);
1043 if (part != NULL && size)
1044 *size = part->len << 2;
1046 mutex_unlock(&smu_part_access);
1050 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1052 return __smu_get_sdb_partition(id, size, 0);
1054 EXPORT_SYMBOL(smu_get_sdb_partition);
1058 * Userland driver interface
1062 static LIST_HEAD(smu_clist);
1063 static DEFINE_SPINLOCK(smu_clist_lock);
1065 enum smu_file_mode {
1073 struct list_head list;
1074 enum smu_file_mode mode;
1078 wait_queue_head_t wait;
1079 u8 buffer[SMU_MAX_DATA];
1083 static int smu_open(struct inode *inode, struct file *file)
1085 struct smu_private *pp;
1086 unsigned long flags;
1088 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1091 spin_lock_init(&pp->lock);
1092 pp->mode = smu_file_commands;
1093 init_waitqueue_head(&pp->wait);
1095 mutex_lock(&smu_mutex);
1096 spin_lock_irqsave(&smu_clist_lock, flags);
1097 list_add(&pp->list, &smu_clist);
1098 spin_unlock_irqrestore(&smu_clist_lock, flags);
1099 file->private_data = pp;
1100 mutex_unlock(&smu_mutex);
1106 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1108 struct smu_private *pp = misc;
1110 wake_up_all(&pp->wait);
1114 static ssize_t smu_write(struct file *file, const char __user *buf,
1115 size_t count, loff_t *ppos)
1117 struct smu_private *pp = file->private_data;
1118 unsigned long flags;
1119 struct smu_user_cmd_hdr hdr;
1124 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1126 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1127 pp->mode = smu_file_events;
1129 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1130 const struct smu_sdbp_header *part;
1131 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1134 else if (IS_ERR(part))
1135 return PTR_ERR(part);
1137 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1139 else if (pp->mode != smu_file_commands)
1141 else if (hdr.data_len > SMU_MAX_DATA)
1144 spin_lock_irqsave(&pp->lock, flags);
1146 spin_unlock_irqrestore(&pp->lock, flags);
1151 spin_unlock_irqrestore(&pp->lock, flags);
1153 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1158 pp->cmd.cmd = hdr.cmd;
1159 pp->cmd.data_len = hdr.data_len;
1160 pp->cmd.reply_len = SMU_MAX_DATA;
1161 pp->cmd.data_buf = pp->buffer;
1162 pp->cmd.reply_buf = pp->buffer;
1163 pp->cmd.done = smu_user_cmd_done;
1165 rc = smu_queue_cmd(&pp->cmd);
1172 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1173 char __user *buf, size_t count)
1175 DECLARE_WAITQUEUE(wait, current);
1176 struct smu_user_reply_hdr hdr;
1177 unsigned long flags;
1182 if (count < sizeof(struct smu_user_reply_hdr))
1184 spin_lock_irqsave(&pp->lock, flags);
1185 if (pp->cmd.status == 1) {
1186 if (file->f_flags & O_NONBLOCK) {
1187 spin_unlock_irqrestore(&pp->lock, flags);
1190 add_wait_queue(&pp->wait, &wait);
1192 set_current_state(TASK_INTERRUPTIBLE);
1194 if (pp->cmd.status != 1)
1197 if (signal_pending(current))
1199 spin_unlock_irqrestore(&pp->lock, flags);
1201 spin_lock_irqsave(&pp->lock, flags);
1203 set_current_state(TASK_RUNNING);
1204 remove_wait_queue(&pp->wait, &wait);
1206 spin_unlock_irqrestore(&pp->lock, flags);
1209 if (pp->cmd.status != 0)
1210 pp->cmd.reply_len = 0;
1211 size = sizeof(hdr) + pp->cmd.reply_len;
1215 hdr.status = pp->cmd.status;
1216 hdr.reply_len = pp->cmd.reply_len;
1217 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1219 size -= sizeof(hdr);
1220 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1228 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1229 char __user *buf, size_t count)
1231 /* Not implemented */
1232 msleep_interruptible(1000);
1237 static ssize_t smu_read(struct file *file, char __user *buf,
1238 size_t count, loff_t *ppos)
1240 struct smu_private *pp = file->private_data;
1242 if (pp->mode == smu_file_commands)
1243 return smu_read_command(file, pp, buf, count);
1244 if (pp->mode == smu_file_events)
1245 return smu_read_events(file, pp, buf, count);
1250 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1252 struct smu_private *pp = file->private_data;
1253 unsigned int mask = 0;
1254 unsigned long flags;
1259 if (pp->mode == smu_file_commands) {
1260 poll_wait(file, &pp->wait, wait);
1262 spin_lock_irqsave(&pp->lock, flags);
1263 if (pp->busy && pp->cmd.status != 1)
1265 spin_unlock_irqrestore(&pp->lock, flags);
1267 if (pp->mode == smu_file_events) {
1268 /* Not yet implemented */
1273 static int smu_release(struct inode *inode, struct file *file)
1275 struct smu_private *pp = file->private_data;
1276 unsigned long flags;
1282 file->private_data = NULL;
1284 /* Mark file as closing to avoid races with new request */
1285 spin_lock_irqsave(&pp->lock, flags);
1286 pp->mode = smu_file_closing;
1289 /* Wait for any pending request to complete */
1290 if (busy && pp->cmd.status == 1) {
1291 DECLARE_WAITQUEUE(wait, current);
1293 add_wait_queue(&pp->wait, &wait);
1295 set_current_state(TASK_UNINTERRUPTIBLE);
1296 if (pp->cmd.status != 1)
1298 spin_unlock_irqrestore(&pp->lock, flags);
1300 spin_lock_irqsave(&pp->lock, flags);
1302 set_current_state(TASK_RUNNING);
1303 remove_wait_queue(&pp->wait, &wait);
1305 spin_unlock_irqrestore(&pp->lock, flags);
1307 spin_lock_irqsave(&smu_clist_lock, flags);
1308 list_del(&pp->list);
1309 spin_unlock_irqrestore(&smu_clist_lock, flags);
1316 static const struct file_operations smu_device_fops = {
1317 .llseek = no_llseek,
1322 .release = smu_release,
1325 static struct miscdevice pmu_device = {
1326 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1329 static int smu_device_init(void)
1333 if (misc_register(&pmu_device) < 0)
1334 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1337 device_initcall(smu_device_init);