1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
109 #include <trace/events/sched.h>
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
115 * Minimum number of threads to boot the kernel
117 #define MIN_THREADS 20
120 * Maximum number of threads
122 #define MAX_THREADS FUTEX_TID_MASK
125 * Protected counters by write_lock_irq(&tasklist_lock)
127 unsigned long total_forks; /* Handle normal Linux uptimes. */
128 int nr_threads; /* The idle threads do not count.. */
130 static int max_threads; /* tunable limit on nr_threads */
132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
134 static const char * const resident_page_types[] = {
135 NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
145 #ifdef CONFIG_PROVE_RCU
146 int lockdep_tasklist_lock_is_held(void)
148 return lockdep_is_held(&tasklist_lock);
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
153 int nr_processes(void)
158 for_each_possible_cpu(cpu)
159 total += per_cpu(process_counts, cpu);
164 void __weak arch_release_task_struct(struct task_struct *tsk)
168 static struct kmem_cache *task_struct_cachep;
170 static inline struct task_struct *alloc_task_struct_node(int node)
172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 static inline void free_task_struct(struct task_struct *tsk)
177 kmem_cache_free(task_struct_cachep, tsk);
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186 # ifdef CONFIG_VMAP_STACK
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196 struct vm_struct *stack_vm_area;
199 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 for (i = 0; i < NR_CACHED_STACKS; i++) {
204 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
211 static void thread_stack_free_rcu(struct rcu_head *rh)
213 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
215 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
221 static void thread_stack_delayed_free(struct task_struct *tsk)
223 struct vm_stack *vm_stack = tsk->stack;
225 vm_stack->stack_vm_area = tsk->stack_vm_area;
226 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 static int free_vm_stack_cache(unsigned int cpu)
231 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 for (i = 0; i < NR_CACHED_STACKS; i++) {
235 struct vm_struct *vm_stack = cached_vm_stacks[i];
240 vfree(vm_stack->addr);
241 cached_vm_stacks[i] = NULL;
247 static int memcg_charge_kernel_stack(struct vm_struct *vm)
253 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
255 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
256 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
263 for (i = 0; i < nr_charged; i++)
264 memcg_kmem_uncharge_page(vm->pages[i], 0);
268 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
270 struct vm_struct *vm;
274 for (i = 0; i < NR_CACHED_STACKS; i++) {
277 s = this_cpu_xchg(cached_stacks[i], NULL);
282 /* Reset stack metadata. */
283 kasan_unpoison_range(s->addr, THREAD_SIZE);
285 stack = kasan_reset_tag(s->addr);
287 /* Clear stale pointers from reused stack. */
288 memset(stack, 0, THREAD_SIZE);
290 if (memcg_charge_kernel_stack(s)) {
295 tsk->stack_vm_area = s;
301 * Allocated stacks are cached and later reused by new threads,
302 * so memcg accounting is performed manually on assigning/releasing
303 * stacks to tasks. Drop __GFP_ACCOUNT.
305 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
306 VMALLOC_START, VMALLOC_END,
307 THREADINFO_GFP & ~__GFP_ACCOUNT,
309 0, node, __builtin_return_address(0));
313 vm = find_vm_area(stack);
314 if (memcg_charge_kernel_stack(vm)) {
319 * We can't call find_vm_area() in interrupt context, and
320 * free_thread_stack() can be called in interrupt context,
321 * so cache the vm_struct.
323 tsk->stack_vm_area = vm;
324 stack = kasan_reset_tag(stack);
329 static void free_thread_stack(struct task_struct *tsk)
331 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
332 thread_stack_delayed_free(tsk);
335 tsk->stack_vm_area = NULL;
338 # else /* !CONFIG_VMAP_STACK */
340 static void thread_stack_free_rcu(struct rcu_head *rh)
342 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
345 static void thread_stack_delayed_free(struct task_struct *tsk)
347 struct rcu_head *rh = tsk->stack;
349 call_rcu(rh, thread_stack_free_rcu);
352 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
354 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
358 tsk->stack = kasan_reset_tag(page_address(page));
364 static void free_thread_stack(struct task_struct *tsk)
366 thread_stack_delayed_free(tsk);
370 # endif /* CONFIG_VMAP_STACK */
371 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
373 static struct kmem_cache *thread_stack_cache;
375 static void thread_stack_free_rcu(struct rcu_head *rh)
377 kmem_cache_free(thread_stack_cache, rh);
380 static void thread_stack_delayed_free(struct task_struct *tsk)
382 struct rcu_head *rh = tsk->stack;
384 call_rcu(rh, thread_stack_free_rcu);
387 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
389 unsigned long *stack;
390 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
391 stack = kasan_reset_tag(stack);
393 return stack ? 0 : -ENOMEM;
396 static void free_thread_stack(struct task_struct *tsk)
398 thread_stack_delayed_free(tsk);
402 void thread_stack_cache_init(void)
404 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
405 THREAD_SIZE, THREAD_SIZE, 0, 0,
407 BUG_ON(thread_stack_cache == NULL);
410 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
412 /* SLAB cache for signal_struct structures (tsk->signal) */
413 static struct kmem_cache *signal_cachep;
415 /* SLAB cache for sighand_struct structures (tsk->sighand) */
416 struct kmem_cache *sighand_cachep;
418 /* SLAB cache for files_struct structures (tsk->files) */
419 struct kmem_cache *files_cachep;
421 /* SLAB cache for fs_struct structures (tsk->fs) */
422 struct kmem_cache *fs_cachep;
424 /* SLAB cache for vm_area_struct structures */
425 static struct kmem_cache *vm_area_cachep;
427 /* SLAB cache for mm_struct structures (tsk->mm) */
428 static struct kmem_cache *mm_cachep;
430 #ifdef CONFIG_PER_VMA_LOCK
432 /* SLAB cache for vm_area_struct.lock */
433 static struct kmem_cache *vma_lock_cachep;
435 static bool vma_lock_alloc(struct vm_area_struct *vma)
437 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
441 init_rwsem(&vma->vm_lock->lock);
442 vma->vm_lock_seq = -1;
447 static inline void vma_lock_free(struct vm_area_struct *vma)
449 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
452 #else /* CONFIG_PER_VMA_LOCK */
454 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
455 static inline void vma_lock_free(struct vm_area_struct *vma) {}
457 #endif /* CONFIG_PER_VMA_LOCK */
459 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
461 struct vm_area_struct *vma;
463 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468 if (!vma_lock_alloc(vma)) {
469 kmem_cache_free(vm_area_cachep, vma);
476 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
478 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
483 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
484 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
486 * orig->shared.rb may be modified concurrently, but the clone
487 * will be reinitialized.
489 data_race(memcpy(new, orig, sizeof(*new)));
490 if (!vma_lock_alloc(new)) {
491 kmem_cache_free(vm_area_cachep, new);
494 INIT_LIST_HEAD(&new->anon_vma_chain);
495 vma_numab_state_init(new);
496 dup_anon_vma_name(orig, new);
501 void __vm_area_free(struct vm_area_struct *vma)
503 vma_numab_state_free(vma);
504 free_anon_vma_name(vma);
506 kmem_cache_free(vm_area_cachep, vma);
509 #ifdef CONFIG_PER_VMA_LOCK
510 static void vm_area_free_rcu_cb(struct rcu_head *head)
512 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
515 /* The vma should not be locked while being destroyed. */
516 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
521 void vm_area_free(struct vm_area_struct *vma)
523 #ifdef CONFIG_PER_VMA_LOCK
524 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
530 static void account_kernel_stack(struct task_struct *tsk, int account)
532 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
533 struct vm_struct *vm = task_stack_vm_area(tsk);
536 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
537 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
538 account * (PAGE_SIZE / 1024));
540 void *stack = task_stack_page(tsk);
542 /* All stack pages are in the same node. */
543 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
544 account * (THREAD_SIZE / 1024));
548 void exit_task_stack_account(struct task_struct *tsk)
550 account_kernel_stack(tsk, -1);
552 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
553 struct vm_struct *vm;
556 vm = task_stack_vm_area(tsk);
557 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
558 memcg_kmem_uncharge_page(vm->pages[i], 0);
562 static void release_task_stack(struct task_struct *tsk)
564 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
565 return; /* Better to leak the stack than to free prematurely */
567 free_thread_stack(tsk);
570 #ifdef CONFIG_THREAD_INFO_IN_TASK
571 void put_task_stack(struct task_struct *tsk)
573 if (refcount_dec_and_test(&tsk->stack_refcount))
574 release_task_stack(tsk);
578 void free_task(struct task_struct *tsk)
580 #ifdef CONFIG_SECCOMP
581 WARN_ON_ONCE(tsk->seccomp.filter);
583 release_user_cpus_ptr(tsk);
586 #ifndef CONFIG_THREAD_INFO_IN_TASK
588 * The task is finally done with both the stack and thread_info,
591 release_task_stack(tsk);
594 * If the task had a separate stack allocation, it should be gone
597 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
599 rt_mutex_debug_task_free(tsk);
600 ftrace_graph_exit_task(tsk);
601 arch_release_task_struct(tsk);
602 if (tsk->flags & PF_KTHREAD)
603 free_kthread_struct(tsk);
604 bpf_task_storage_free(tsk);
605 free_task_struct(tsk);
607 EXPORT_SYMBOL(free_task);
609 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
611 struct file *exe_file;
613 exe_file = get_mm_exe_file(oldmm);
614 RCU_INIT_POINTER(mm->exe_file, exe_file);
616 * We depend on the oldmm having properly denied write access to the
619 if (exe_file && deny_write_access(exe_file))
620 pr_warn_once("deny_write_access() failed in %s\n", __func__);
624 static __latent_entropy int dup_mmap(struct mm_struct *mm,
625 struct mm_struct *oldmm)
627 struct vm_area_struct *mpnt, *tmp;
629 unsigned long charge = 0;
631 VMA_ITERATOR(vmi, mm, 0);
633 uprobe_start_dup_mmap();
634 if (mmap_write_lock_killable(oldmm)) {
636 goto fail_uprobe_end;
638 flush_cache_dup_mm(oldmm);
639 uprobe_dup_mmap(oldmm, mm);
641 * Not linked in yet - no deadlock potential:
643 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
645 /* No ordering required: file already has been exposed. */
646 dup_mm_exe_file(mm, oldmm);
648 mm->total_vm = oldmm->total_vm;
649 mm->data_vm = oldmm->data_vm;
650 mm->exec_vm = oldmm->exec_vm;
651 mm->stack_vm = oldmm->stack_vm;
653 retval = ksm_fork(mm, oldmm);
656 khugepaged_fork(mm, oldmm);
658 /* Use __mt_dup() to efficiently build an identical maple tree. */
659 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
660 if (unlikely(retval))
663 mt_clear_in_rcu(vmi.mas.tree);
664 for_each_vma(vmi, mpnt) {
667 vma_start_write(mpnt);
668 if (mpnt->vm_flags & VM_DONTCOPY) {
669 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
670 mpnt->vm_end, GFP_KERNEL);
674 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679 * Don't duplicate many vmas if we've been oom-killed (for
682 if (fatal_signal_pending(current)) {
686 if (mpnt->vm_flags & VM_ACCOUNT) {
687 unsigned long len = vma_pages(mpnt);
689 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
693 tmp = vm_area_dup(mpnt);
696 retval = vma_dup_policy(mpnt, tmp);
698 goto fail_nomem_policy;
700 retval = dup_userfaultfd(tmp, &uf);
702 goto fail_nomem_anon_vma_fork;
703 if (tmp->vm_flags & VM_WIPEONFORK) {
705 * VM_WIPEONFORK gets a clean slate in the child.
706 * Don't prepare anon_vma until fault since we don't
707 * copy page for current vma.
709 tmp->anon_vma = NULL;
710 } else if (anon_vma_fork(tmp, mpnt))
711 goto fail_nomem_anon_vma_fork;
712 vm_flags_clear(tmp, VM_LOCKED_MASK);
715 struct address_space *mapping = file->f_mapping;
718 i_mmap_lock_write(mapping);
719 if (vma_is_shared_maywrite(tmp))
720 mapping_allow_writable(mapping);
721 flush_dcache_mmap_lock(mapping);
722 /* insert tmp into the share list, just after mpnt */
723 vma_interval_tree_insert_after(tmp, mpnt,
725 flush_dcache_mmap_unlock(mapping);
726 i_mmap_unlock_write(mapping);
730 * Copy/update hugetlb private vma information.
732 if (is_vm_hugetlb_page(tmp))
733 hugetlb_dup_vma_private(tmp);
736 * Link the vma into the MT. After using __mt_dup(), memory
737 * allocation is not necessary here, so it cannot fail.
739 vma_iter_bulk_store(&vmi, tmp);
742 if (!(tmp->vm_flags & VM_WIPEONFORK))
743 retval = copy_page_range(tmp, mpnt);
745 if (tmp->vm_ops && tmp->vm_ops->open)
746 tmp->vm_ops->open(tmp);
749 mpnt = vma_next(&vmi);
753 /* a new mm has just been created */
754 retval = arch_dup_mmap(oldmm, mm);
758 mt_set_in_rcu(vmi.mas.tree);
761 * The entire maple tree has already been duplicated. If the
762 * mmap duplication fails, mark the failure point with
763 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
764 * stop releasing VMAs that have not been duplicated after this
767 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
768 mas_store(&vmi.mas, XA_ZERO_ENTRY);
771 mmap_write_unlock(mm);
773 mmap_write_unlock(oldmm);
774 dup_userfaultfd_complete(&uf);
776 uprobe_end_dup_mmap();
779 fail_nomem_anon_vma_fork:
780 mpol_put(vma_policy(tmp));
785 vm_unacct_memory(charge);
789 static inline int mm_alloc_pgd(struct mm_struct *mm)
791 mm->pgd = pgd_alloc(mm);
792 if (unlikely(!mm->pgd))
797 static inline void mm_free_pgd(struct mm_struct *mm)
799 pgd_free(mm, mm->pgd);
802 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
804 mmap_write_lock(oldmm);
805 dup_mm_exe_file(mm, oldmm);
806 mmap_write_unlock(oldmm);
809 #define mm_alloc_pgd(mm) (0)
810 #define mm_free_pgd(mm)
811 #endif /* CONFIG_MMU */
813 static void check_mm(struct mm_struct *mm)
817 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
818 "Please make sure 'struct resident_page_types[]' is updated as well");
820 for (i = 0; i < NR_MM_COUNTERS; i++) {
821 long x = percpu_counter_sum(&mm->rss_stat[i]);
824 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
825 mm, resident_page_types[i], x);
828 if (mm_pgtables_bytes(mm))
829 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
830 mm_pgtables_bytes(mm));
832 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
833 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
837 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
838 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
840 static void do_check_lazy_tlb(void *arg)
842 struct mm_struct *mm = arg;
844 WARN_ON_ONCE(current->active_mm == mm);
847 static void do_shoot_lazy_tlb(void *arg)
849 struct mm_struct *mm = arg;
851 if (current->active_mm == mm) {
852 WARN_ON_ONCE(current->mm);
853 current->active_mm = &init_mm;
854 switch_mm(mm, &init_mm, current);
858 static void cleanup_lazy_tlbs(struct mm_struct *mm)
860 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
862 * In this case, lazy tlb mms are refounted and would not reach
863 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
870 * requires lazy mm users to switch to another mm when the refcount
871 * drops to zero, before the mm is freed. This requires IPIs here to
872 * switch kernel threads to init_mm.
874 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
875 * switch with the final userspace teardown TLB flush which leaves the
876 * mm lazy on this CPU but no others, reducing the need for additional
877 * IPIs here. There are cases where a final IPI is still required here,
878 * such as the final mmdrop being performed on a different CPU than the
879 * one exiting, or kernel threads using the mm when userspace exits.
881 * IPI overheads have not found to be expensive, but they could be
882 * reduced in a number of possible ways, for example (roughly
883 * increasing order of complexity):
884 * - The last lazy reference created by exit_mm() could instead switch
885 * to init_mm, however it's probable this will run on the same CPU
886 * immediately afterwards, so this may not reduce IPIs much.
887 * - A batch of mms requiring IPIs could be gathered and freed at once.
888 * - CPUs store active_mm where it can be remotely checked without a
889 * lock, to filter out false-positives in the cpumask.
890 * - After mm_users or mm_count reaches zero, switching away from the
891 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
892 * with some batching or delaying of the final IPIs.
893 * - A delayed freeing and RCU-like quiescing sequence based on mm
894 * switching to avoid IPIs completely.
896 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
897 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
898 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
902 * Called when the last reference to the mm
903 * is dropped: either by a lazy thread or by
904 * mmput. Free the page directory and the mm.
906 void __mmdrop(struct mm_struct *mm)
908 BUG_ON(mm == &init_mm);
909 WARN_ON_ONCE(mm == current->mm);
911 /* Ensure no CPUs are using this as their lazy tlb mm */
912 cleanup_lazy_tlbs(mm);
914 WARN_ON_ONCE(mm == current->active_mm);
917 mmu_notifier_subscriptions_destroy(mm);
919 put_user_ns(mm->user_ns);
922 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
926 EXPORT_SYMBOL_GPL(__mmdrop);
928 static void mmdrop_async_fn(struct work_struct *work)
930 struct mm_struct *mm;
932 mm = container_of(work, struct mm_struct, async_put_work);
936 static void mmdrop_async(struct mm_struct *mm)
938 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
939 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
940 schedule_work(&mm->async_put_work);
944 static inline void free_signal_struct(struct signal_struct *sig)
946 taskstats_tgid_free(sig);
947 sched_autogroup_exit(sig);
949 * __mmdrop is not safe to call from softirq context on x86 due to
950 * pgd_dtor so postpone it to the async context
953 mmdrop_async(sig->oom_mm);
954 kmem_cache_free(signal_cachep, sig);
957 static inline void put_signal_struct(struct signal_struct *sig)
959 if (refcount_dec_and_test(&sig->sigcnt))
960 free_signal_struct(sig);
963 void __put_task_struct(struct task_struct *tsk)
965 WARN_ON(!tsk->exit_state);
966 WARN_ON(refcount_read(&tsk->usage));
967 WARN_ON(tsk == current);
971 task_numa_free(tsk, true);
972 security_task_free(tsk);
974 delayacct_tsk_free(tsk);
975 put_signal_struct(tsk->signal);
976 sched_core_free(tsk);
979 EXPORT_SYMBOL_GPL(__put_task_struct);
981 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
983 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
985 __put_task_struct(task);
987 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
989 void __init __weak arch_task_cache_init(void) { }
994 static void set_max_threads(unsigned int max_threads_suggested)
997 unsigned long nr_pages = totalram_pages();
1000 * The number of threads shall be limited such that the thread
1001 * structures may only consume a small part of the available memory.
1003 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1004 threads = MAX_THREADS;
1006 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1007 (u64) THREAD_SIZE * 8UL);
1009 if (threads > max_threads_suggested)
1010 threads = max_threads_suggested;
1012 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1015 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1016 /* Initialized by the architecture: */
1017 int arch_task_struct_size __read_mostly;
1020 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1022 /* Fetch thread_struct whitelist for the architecture. */
1023 arch_thread_struct_whitelist(offset, size);
1026 * Handle zero-sized whitelist or empty thread_struct, otherwise
1027 * adjust offset to position of thread_struct in task_struct.
1029 if (unlikely(*size == 0))
1032 *offset += offsetof(struct task_struct, thread);
1035 void __init fork_init(void)
1038 #ifndef ARCH_MIN_TASKALIGN
1039 #define ARCH_MIN_TASKALIGN 0
1041 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1042 unsigned long useroffset, usersize;
1044 /* create a slab on which task_structs can be allocated */
1045 task_struct_whitelist(&useroffset, &usersize);
1046 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1047 arch_task_struct_size, align,
1048 SLAB_PANIC|SLAB_ACCOUNT,
1049 useroffset, usersize, NULL);
1051 /* do the arch specific task caches init */
1052 arch_task_cache_init();
1054 set_max_threads(MAX_THREADS);
1056 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1057 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1058 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1059 init_task.signal->rlim[RLIMIT_NPROC];
1061 for (i = 0; i < UCOUNT_COUNTS; i++)
1062 init_user_ns.ucount_max[i] = max_threads/2;
1064 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1065 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1066 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1069 #ifdef CONFIG_VMAP_STACK
1070 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1071 NULL, free_vm_stack_cache);
1076 lockdep_init_task(&init_task);
1080 int __weak arch_dup_task_struct(struct task_struct *dst,
1081 struct task_struct *src)
1087 void set_task_stack_end_magic(struct task_struct *tsk)
1089 unsigned long *stackend;
1091 stackend = end_of_stack(tsk);
1092 *stackend = STACK_END_MAGIC; /* for overflow detection */
1095 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1097 struct task_struct *tsk;
1100 if (node == NUMA_NO_NODE)
1101 node = tsk_fork_get_node(orig);
1102 tsk = alloc_task_struct_node(node);
1106 err = arch_dup_task_struct(tsk, orig);
1110 err = alloc_thread_stack_node(tsk, node);
1114 #ifdef CONFIG_THREAD_INFO_IN_TASK
1115 refcount_set(&tsk->stack_refcount, 1);
1117 account_kernel_stack(tsk, 1);
1119 err = scs_prepare(tsk, node);
1123 #ifdef CONFIG_SECCOMP
1125 * We must handle setting up seccomp filters once we're under
1126 * the sighand lock in case orig has changed between now and
1127 * then. Until then, filter must be NULL to avoid messing up
1128 * the usage counts on the error path calling free_task.
1130 tsk->seccomp.filter = NULL;
1133 setup_thread_stack(tsk, orig);
1134 clear_user_return_notifier(tsk);
1135 clear_tsk_need_resched(tsk);
1136 set_task_stack_end_magic(tsk);
1137 clear_syscall_work_syscall_user_dispatch(tsk);
1139 #ifdef CONFIG_STACKPROTECTOR
1140 tsk->stack_canary = get_random_canary();
1142 if (orig->cpus_ptr == &orig->cpus_mask)
1143 tsk->cpus_ptr = &tsk->cpus_mask;
1144 dup_user_cpus_ptr(tsk, orig, node);
1147 * One for the user space visible state that goes away when reaped.
1148 * One for the scheduler.
1150 refcount_set(&tsk->rcu_users, 2);
1151 /* One for the rcu users */
1152 refcount_set(&tsk->usage, 1);
1153 #ifdef CONFIG_BLK_DEV_IO_TRACE
1154 tsk->btrace_seq = 0;
1156 tsk->splice_pipe = NULL;
1157 tsk->task_frag.page = NULL;
1158 tsk->wake_q.next = NULL;
1159 tsk->worker_private = NULL;
1161 kcov_task_init(tsk);
1162 kmsan_task_create(tsk);
1163 kmap_local_fork(tsk);
1165 #ifdef CONFIG_FAULT_INJECTION
1169 #ifdef CONFIG_BLK_CGROUP
1170 tsk->throttle_disk = NULL;
1171 tsk->use_memdelay = 0;
1174 #ifdef CONFIG_IOMMU_SVA
1175 tsk->pasid_activated = 0;
1179 tsk->active_memcg = NULL;
1182 #ifdef CONFIG_CPU_SUP_INTEL
1183 tsk->reported_split_lock = 0;
1186 #ifdef CONFIG_SCHED_MM_CID
1188 tsk->last_mm_cid = -1;
1189 tsk->mm_cid_active = 0;
1190 tsk->migrate_from_cpu = -1;
1195 exit_task_stack_account(tsk);
1196 free_thread_stack(tsk);
1198 free_task_struct(tsk);
1202 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1204 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1206 static int __init coredump_filter_setup(char *s)
1208 default_dump_filter =
1209 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1210 MMF_DUMP_FILTER_MASK;
1214 __setup("coredump_filter=", coredump_filter_setup);
1216 #include <linux/init_task.h>
1218 static void mm_init_aio(struct mm_struct *mm)
1221 spin_lock_init(&mm->ioctx_lock);
1222 mm->ioctx_table = NULL;
1226 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1227 struct task_struct *p)
1231 WRITE_ONCE(mm->owner, NULL);
1235 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1242 static void mm_init_uprobes_state(struct mm_struct *mm)
1244 #ifdef CONFIG_UPROBES
1245 mm->uprobes_state.xol_area = NULL;
1249 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1250 struct user_namespace *user_ns)
1252 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1253 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1254 atomic_set(&mm->mm_users, 1);
1255 atomic_set(&mm->mm_count, 1);
1256 seqcount_init(&mm->write_protect_seq);
1258 INIT_LIST_HEAD(&mm->mmlist);
1259 #ifdef CONFIG_PER_VMA_LOCK
1260 mm->mm_lock_seq = 0;
1262 mm_pgtables_bytes_init(mm);
1265 atomic64_set(&mm->pinned_vm, 0);
1266 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1267 spin_lock_init(&mm->page_table_lock);
1268 spin_lock_init(&mm->arg_lock);
1269 mm_init_cpumask(mm);
1271 mm_init_owner(mm, p);
1273 RCU_INIT_POINTER(mm->exe_file, NULL);
1274 mmu_notifier_subscriptions_init(mm);
1275 init_tlb_flush_pending(mm);
1276 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1277 mm->pmd_huge_pte = NULL;
1279 mm_init_uprobes_state(mm);
1280 hugetlb_count_init(mm);
1283 mm->flags = mmf_init_flags(current->mm->flags);
1284 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1286 mm->flags = default_dump_filter;
1290 if (mm_alloc_pgd(mm))
1293 if (init_new_context(p, mm))
1294 goto fail_nocontext;
1296 if (mm_alloc_cid(mm))
1299 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1303 mm->user_ns = get_user_ns(user_ns);
1304 lru_gen_init_mm(mm);
1310 destroy_context(mm);
1319 * Allocate and initialize an mm_struct.
1321 struct mm_struct *mm_alloc(void)
1323 struct mm_struct *mm;
1329 memset(mm, 0, sizeof(*mm));
1330 return mm_init(mm, current, current_user_ns());
1333 static inline void __mmput(struct mm_struct *mm)
1335 VM_BUG_ON(atomic_read(&mm->mm_users));
1337 uprobe_clear_state(mm);
1340 khugepaged_exit(mm); /* must run before exit_mmap */
1342 mm_put_huge_zero_page(mm);
1343 set_mm_exe_file(mm, NULL);
1344 if (!list_empty(&mm->mmlist)) {
1345 spin_lock(&mmlist_lock);
1346 list_del(&mm->mmlist);
1347 spin_unlock(&mmlist_lock);
1350 module_put(mm->binfmt->module);
1356 * Decrement the use count and release all resources for an mm.
1358 void mmput(struct mm_struct *mm)
1362 if (atomic_dec_and_test(&mm->mm_users))
1365 EXPORT_SYMBOL_GPL(mmput);
1368 static void mmput_async_fn(struct work_struct *work)
1370 struct mm_struct *mm = container_of(work, struct mm_struct,
1376 void mmput_async(struct mm_struct *mm)
1378 if (atomic_dec_and_test(&mm->mm_users)) {
1379 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1380 schedule_work(&mm->async_put_work);
1383 EXPORT_SYMBOL_GPL(mmput_async);
1387 * set_mm_exe_file - change a reference to the mm's executable file
1388 * @mm: The mm to change.
1389 * @new_exe_file: The new file to use.
1391 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1393 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1394 * invocations: in mmput() nobody alive left, in execve it happens before
1395 * the new mm is made visible to anyone.
1397 * Can only fail if new_exe_file != NULL.
1399 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1401 struct file *old_exe_file;
1404 * It is safe to dereference the exe_file without RCU as
1405 * this function is only called if nobody else can access
1406 * this mm -- see comment above for justification.
1408 old_exe_file = rcu_dereference_raw(mm->exe_file);
1412 * We expect the caller (i.e., sys_execve) to already denied
1413 * write access, so this is unlikely to fail.
1415 if (unlikely(deny_write_access(new_exe_file)))
1417 get_file(new_exe_file);
1419 rcu_assign_pointer(mm->exe_file, new_exe_file);
1421 allow_write_access(old_exe_file);
1428 * replace_mm_exe_file - replace a reference to the mm's executable file
1429 * @mm: The mm to change.
1430 * @new_exe_file: The new file to use.
1432 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1434 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1436 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1438 struct vm_area_struct *vma;
1439 struct file *old_exe_file;
1442 /* Forbid mm->exe_file change if old file still mapped. */
1443 old_exe_file = get_mm_exe_file(mm);
1445 VMA_ITERATOR(vmi, mm, 0);
1447 for_each_vma(vmi, vma) {
1450 if (path_equal(&vma->vm_file->f_path,
1451 &old_exe_file->f_path)) {
1456 mmap_read_unlock(mm);
1462 ret = deny_write_access(new_exe_file);
1465 get_file(new_exe_file);
1467 /* set the new file */
1468 mmap_write_lock(mm);
1469 old_exe_file = rcu_dereference_raw(mm->exe_file);
1470 rcu_assign_pointer(mm->exe_file, new_exe_file);
1471 mmap_write_unlock(mm);
1474 allow_write_access(old_exe_file);
1481 * get_mm_exe_file - acquire a reference to the mm's executable file
1482 * @mm: The mm of interest.
1484 * Returns %NULL if mm has no associated executable file.
1485 * User must release file via fput().
1487 struct file *get_mm_exe_file(struct mm_struct *mm)
1489 struct file *exe_file;
1492 exe_file = get_file_rcu(&mm->exe_file);
1498 * get_task_exe_file - acquire a reference to the task's executable file
1501 * Returns %NULL if task's mm (if any) has no associated executable file or
1502 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1503 * User must release file via fput().
1505 struct file *get_task_exe_file(struct task_struct *task)
1507 struct file *exe_file = NULL;
1508 struct mm_struct *mm;
1513 if (!(task->flags & PF_KTHREAD))
1514 exe_file = get_mm_exe_file(mm);
1521 * get_task_mm - acquire a reference to the task's mm
1524 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1525 * this kernel workthread has transiently adopted a user mm with use_mm,
1526 * to do its AIO) is not set and if so returns a reference to it, after
1527 * bumping up the use count. User must release the mm via mmput()
1528 * after use. Typically used by /proc and ptrace.
1530 struct mm_struct *get_task_mm(struct task_struct *task)
1532 struct mm_struct *mm;
1537 if (task->flags & PF_KTHREAD)
1545 EXPORT_SYMBOL_GPL(get_task_mm);
1547 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1549 struct mm_struct *mm;
1552 err = down_read_killable(&task->signal->exec_update_lock);
1554 return ERR_PTR(err);
1556 mm = get_task_mm(task);
1557 if (mm && mm != current->mm &&
1558 !ptrace_may_access(task, mode)) {
1560 mm = ERR_PTR(-EACCES);
1562 up_read(&task->signal->exec_update_lock);
1567 static void complete_vfork_done(struct task_struct *tsk)
1569 struct completion *vfork;
1572 vfork = tsk->vfork_done;
1573 if (likely(vfork)) {
1574 tsk->vfork_done = NULL;
1580 static int wait_for_vfork_done(struct task_struct *child,
1581 struct completion *vfork)
1583 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1586 cgroup_enter_frozen();
1587 killed = wait_for_completion_state(vfork, state);
1588 cgroup_leave_frozen(false);
1592 child->vfork_done = NULL;
1596 put_task_struct(child);
1600 /* Please note the differences between mmput and mm_release.
1601 * mmput is called whenever we stop holding onto a mm_struct,
1602 * error success whatever.
1604 * mm_release is called after a mm_struct has been removed
1605 * from the current process.
1607 * This difference is important for error handling, when we
1608 * only half set up a mm_struct for a new process and need to restore
1609 * the old one. Because we mmput the new mm_struct before
1610 * restoring the old one. . .
1611 * Eric Biederman 10 January 1998
1613 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1615 uprobe_free_utask(tsk);
1617 /* Get rid of any cached register state */
1618 deactivate_mm(tsk, mm);
1621 * Signal userspace if we're not exiting with a core dump
1622 * because we want to leave the value intact for debugging
1625 if (tsk->clear_child_tid) {
1626 if (atomic_read(&mm->mm_users) > 1) {
1628 * We don't check the error code - if userspace has
1629 * not set up a proper pointer then tough luck.
1631 put_user(0, tsk->clear_child_tid);
1632 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1633 1, NULL, NULL, 0, 0);
1635 tsk->clear_child_tid = NULL;
1639 * All done, finally we can wake up parent and return this mm to him.
1640 * Also kthread_stop() uses this completion for synchronization.
1642 if (tsk->vfork_done)
1643 complete_vfork_done(tsk);
1646 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1648 futex_exit_release(tsk);
1649 mm_release(tsk, mm);
1652 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1654 futex_exec_release(tsk);
1655 mm_release(tsk, mm);
1659 * dup_mm() - duplicates an existing mm structure
1660 * @tsk: the task_struct with which the new mm will be associated.
1661 * @oldmm: the mm to duplicate.
1663 * Allocates a new mm structure and duplicates the provided @oldmm structure
1666 * Return: the duplicated mm or NULL on failure.
1668 static struct mm_struct *dup_mm(struct task_struct *tsk,
1669 struct mm_struct *oldmm)
1671 struct mm_struct *mm;
1678 memcpy(mm, oldmm, sizeof(*mm));
1680 if (!mm_init(mm, tsk, mm->user_ns))
1683 err = dup_mmap(mm, oldmm);
1687 mm->hiwater_rss = get_mm_rss(mm);
1688 mm->hiwater_vm = mm->total_vm;
1690 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1696 /* don't put binfmt in mmput, we haven't got module yet */
1698 mm_init_owner(mm, NULL);
1705 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1707 struct mm_struct *mm, *oldmm;
1709 tsk->min_flt = tsk->maj_flt = 0;
1710 tsk->nvcsw = tsk->nivcsw = 0;
1711 #ifdef CONFIG_DETECT_HUNG_TASK
1712 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1713 tsk->last_switch_time = 0;
1717 tsk->active_mm = NULL;
1720 * Are we cloning a kernel thread?
1722 * We need to steal a active VM for that..
1724 oldmm = current->mm;
1728 if (clone_flags & CLONE_VM) {
1732 mm = dup_mm(tsk, current->mm);
1738 tsk->active_mm = mm;
1739 sched_mm_cid_fork(tsk);
1743 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1745 struct fs_struct *fs = current->fs;
1746 if (clone_flags & CLONE_FS) {
1747 /* tsk->fs is already what we want */
1748 spin_lock(&fs->lock);
1750 spin_unlock(&fs->lock);
1754 spin_unlock(&fs->lock);
1757 tsk->fs = copy_fs_struct(fs);
1763 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1766 struct files_struct *oldf, *newf;
1770 * A background process may not have any files ...
1772 oldf = current->files;
1781 if (clone_flags & CLONE_FILES) {
1782 atomic_inc(&oldf->count);
1786 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1796 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1798 struct sighand_struct *sig;
1800 if (clone_flags & CLONE_SIGHAND) {
1801 refcount_inc(¤t->sighand->count);
1804 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1805 RCU_INIT_POINTER(tsk->sighand, sig);
1809 refcount_set(&sig->count, 1);
1810 spin_lock_irq(¤t->sighand->siglock);
1811 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1812 spin_unlock_irq(¤t->sighand->siglock);
1814 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1815 if (clone_flags & CLONE_CLEAR_SIGHAND)
1816 flush_signal_handlers(tsk, 0);
1821 void __cleanup_sighand(struct sighand_struct *sighand)
1823 if (refcount_dec_and_test(&sighand->count)) {
1824 signalfd_cleanup(sighand);
1826 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1827 * without an RCU grace period, see __lock_task_sighand().
1829 kmem_cache_free(sighand_cachep, sighand);
1834 * Initialize POSIX timer handling for a thread group.
1836 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1838 struct posix_cputimers *pct = &sig->posix_cputimers;
1839 unsigned long cpu_limit;
1841 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1842 posix_cputimers_group_init(pct, cpu_limit);
1845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1847 struct signal_struct *sig;
1849 if (clone_flags & CLONE_THREAD)
1852 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1857 sig->nr_threads = 1;
1858 sig->quick_threads = 1;
1859 atomic_set(&sig->live, 1);
1860 refcount_set(&sig->sigcnt, 1);
1862 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1863 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1864 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1866 init_waitqueue_head(&sig->wait_chldexit);
1867 sig->curr_target = tsk;
1868 init_sigpending(&sig->shared_pending);
1869 INIT_HLIST_HEAD(&sig->multiprocess);
1870 seqlock_init(&sig->stats_lock);
1871 prev_cputime_init(&sig->prev_cputime);
1873 #ifdef CONFIG_POSIX_TIMERS
1874 INIT_LIST_HEAD(&sig->posix_timers);
1875 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1876 sig->real_timer.function = it_real_fn;
1879 task_lock(current->group_leader);
1880 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1881 task_unlock(current->group_leader);
1883 posix_cpu_timers_init_group(sig);
1885 tty_audit_fork(sig);
1886 sched_autogroup_fork(sig);
1888 sig->oom_score_adj = current->signal->oom_score_adj;
1889 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1891 mutex_init(&sig->cred_guard_mutex);
1892 init_rwsem(&sig->exec_update_lock);
1897 static void copy_seccomp(struct task_struct *p)
1899 #ifdef CONFIG_SECCOMP
1901 * Must be called with sighand->lock held, which is common to
1902 * all threads in the group. Holding cred_guard_mutex is not
1903 * needed because this new task is not yet running and cannot
1906 assert_spin_locked(¤t->sighand->siglock);
1908 /* Ref-count the new filter user, and assign it. */
1909 get_seccomp_filter(current);
1910 p->seccomp = current->seccomp;
1913 * Explicitly enable no_new_privs here in case it got set
1914 * between the task_struct being duplicated and holding the
1915 * sighand lock. The seccomp state and nnp must be in sync.
1917 if (task_no_new_privs(current))
1918 task_set_no_new_privs(p);
1921 * If the parent gained a seccomp mode after copying thread
1922 * flags and between before we held the sighand lock, we have
1923 * to manually enable the seccomp thread flag here.
1925 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1926 set_task_syscall_work(p, SECCOMP);
1930 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1932 current->clear_child_tid = tidptr;
1934 return task_pid_vnr(current);
1937 static void rt_mutex_init_task(struct task_struct *p)
1939 raw_spin_lock_init(&p->pi_lock);
1940 #ifdef CONFIG_RT_MUTEXES
1941 p->pi_waiters = RB_ROOT_CACHED;
1942 p->pi_top_task = NULL;
1943 p->pi_blocked_on = NULL;
1947 static inline void init_task_pid_links(struct task_struct *task)
1951 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1952 INIT_HLIST_NODE(&task->pid_links[type]);
1956 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1958 if (type == PIDTYPE_PID)
1959 task->thread_pid = pid;
1961 task->signal->pids[type] = pid;
1964 static inline void rcu_copy_process(struct task_struct *p)
1966 #ifdef CONFIG_PREEMPT_RCU
1967 p->rcu_read_lock_nesting = 0;
1968 p->rcu_read_unlock_special.s = 0;
1969 p->rcu_blocked_node = NULL;
1970 INIT_LIST_HEAD(&p->rcu_node_entry);
1971 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1972 #ifdef CONFIG_TASKS_RCU
1973 p->rcu_tasks_holdout = false;
1974 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1975 p->rcu_tasks_idle_cpu = -1;
1976 #endif /* #ifdef CONFIG_TASKS_RCU */
1977 #ifdef CONFIG_TASKS_TRACE_RCU
1978 p->trc_reader_nesting = 0;
1979 p->trc_reader_special.s = 0;
1980 INIT_LIST_HEAD(&p->trc_holdout_list);
1981 INIT_LIST_HEAD(&p->trc_blkd_node);
1982 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1985 struct pid *pidfd_pid(const struct file *file)
1987 if (file->f_op == &pidfd_fops)
1988 return file->private_data;
1990 return ERR_PTR(-EBADF);
1993 static int pidfd_release(struct inode *inode, struct file *file)
1995 struct pid *pid = file->private_data;
1997 file->private_data = NULL;
2002 #ifdef CONFIG_PROC_FS
2004 * pidfd_show_fdinfo - print information about a pidfd
2005 * @m: proc fdinfo file
2006 * @f: file referencing a pidfd
2009 * This function will print the pid that a given pidfd refers to in the
2010 * pid namespace of the procfs instance.
2011 * If the pid namespace of the process is not a descendant of the pid
2012 * namespace of the procfs instance 0 will be shown as its pid. This is
2013 * similar to calling getppid() on a process whose parent is outside of
2014 * its pid namespace.
2017 * If pid namespaces are supported then this function will also print
2018 * the pid of a given pidfd refers to for all descendant pid namespaces
2019 * starting from the current pid namespace of the instance, i.e. the
2020 * Pid field and the first entry in the NSpid field will be identical.
2021 * If the pid namespace of the process is not a descendant of the pid
2022 * namespace of the procfs instance 0 will be shown as its first NSpid
2023 * entry and no others will be shown.
2024 * Note that this differs from the Pid and NSpid fields in
2025 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2026 * the pid namespace of the procfs instance. The difference becomes
2027 * obvious when sending around a pidfd between pid namespaces from a
2028 * different branch of the tree, i.e. where no ancestral relation is
2029 * present between the pid namespaces:
2030 * - create two new pid namespaces ns1 and ns2 in the initial pid
2031 * namespace (also take care to create new mount namespaces in the
2032 * new pid namespace and mount procfs)
2033 * - create a process with a pidfd in ns1
2034 * - send pidfd from ns1 to ns2
2035 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2036 * have exactly one entry, which is 0
2038 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2040 struct pid *pid = f->private_data;
2041 struct pid_namespace *ns;
2044 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2045 ns = proc_pid_ns(file_inode(m->file)->i_sb);
2046 nr = pid_nr_ns(pid, ns);
2049 seq_put_decimal_ll(m, "Pid:\t", nr);
2051 #ifdef CONFIG_PID_NS
2052 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2056 /* If nr is non-zero it means that 'pid' is valid and that
2057 * ns, i.e. the pid namespace associated with the procfs
2058 * instance, is in the pid namespace hierarchy of pid.
2059 * Start at one below the already printed level.
2061 for (i = ns->level + 1; i <= pid->level; i++)
2062 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2070 * Poll support for process exit notification.
2072 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2074 struct pid *pid = file->private_data;
2075 __poll_t poll_flags = 0;
2077 poll_wait(file, &pid->wait_pidfd, pts);
2080 * Inform pollers only when the whole thread group exits.
2081 * If the thread group leader exits before all other threads in the
2082 * group, then poll(2) should block, similar to the wait(2) family.
2084 if (thread_group_exited(pid))
2085 poll_flags = EPOLLIN | EPOLLRDNORM;
2090 const struct file_operations pidfd_fops = {
2091 .release = pidfd_release,
2093 #ifdef CONFIG_PROC_FS
2094 .show_fdinfo = pidfd_show_fdinfo,
2099 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2100 * @pid: the struct pid for which to create a pidfd
2101 * @flags: flags of the new @pidfd
2102 * @ret: Where to return the file for the pidfd.
2104 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2105 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2107 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2108 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2109 * pidfd file are prepared.
2111 * If this function returns successfully the caller is responsible to either
2112 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2113 * order to install the pidfd into its file descriptor table or they must use
2114 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2117 * This function is useful when a pidfd must already be reserved but there
2118 * might still be points of failure afterwards and the caller wants to ensure
2119 * that no pidfd is leaked into its file descriptor table.
2121 * Return: On success, a reserved pidfd is returned from the function and a new
2122 * pidfd file is returned in the last argument to the function. On
2123 * error, a negative error code is returned from the function and the
2124 * last argument remains unchanged.
2126 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2129 struct file *pidfd_file;
2131 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2134 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2138 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2139 flags | O_RDWR | O_CLOEXEC);
2140 if (IS_ERR(pidfd_file)) {
2141 put_unused_fd(pidfd);
2142 return PTR_ERR(pidfd_file);
2144 get_pid(pid); /* held by pidfd_file now */
2150 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2151 * @pid: the struct pid for which to create a pidfd
2152 * @flags: flags of the new @pidfd
2153 * @ret: Where to return the pidfd.
2155 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2156 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2158 * The helper verifies that @pid is used as a thread group leader.
2160 * If this function returns successfully the caller is responsible to either
2161 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2162 * order to install the pidfd into its file descriptor table or they must use
2163 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2166 * This function is useful when a pidfd must already be reserved but there
2167 * might still be points of failure afterwards and the caller wants to ensure
2168 * that no pidfd is leaked into its file descriptor table.
2170 * Return: On success, a reserved pidfd is returned from the function and a new
2171 * pidfd file is returned in the last argument to the function. On
2172 * error, a negative error code is returned from the function and the
2173 * last argument remains unchanged.
2175 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2177 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2180 return __pidfd_prepare(pid, flags, ret);
2183 static void __delayed_free_task(struct rcu_head *rhp)
2185 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2190 static __always_inline void delayed_free_task(struct task_struct *tsk)
2192 if (IS_ENABLED(CONFIG_MEMCG))
2193 call_rcu(&tsk->rcu, __delayed_free_task);
2198 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2200 /* Skip if kernel thread */
2204 /* Skip if spawning a thread or using vfork */
2205 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2208 /* We need to synchronize with __set_oom_adj */
2209 mutex_lock(&oom_adj_mutex);
2210 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2211 /* Update the values in case they were changed after copy_signal */
2212 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2213 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2214 mutex_unlock(&oom_adj_mutex);
2218 static void rv_task_fork(struct task_struct *p)
2222 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2223 p->rv[i].da_mon.monitoring = false;
2226 #define rv_task_fork(p) do {} while (0)
2230 * This creates a new process as a copy of the old one,
2231 * but does not actually start it yet.
2233 * It copies the registers, and all the appropriate
2234 * parts of the process environment (as per the clone
2235 * flags). The actual kick-off is left to the caller.
2237 __latent_entropy struct task_struct *copy_process(
2241 struct kernel_clone_args *args)
2243 int pidfd = -1, retval;
2244 struct task_struct *p;
2245 struct multiprocess_signals delayed;
2246 struct file *pidfile = NULL;
2247 const u64 clone_flags = args->flags;
2248 struct nsproxy *nsp = current->nsproxy;
2251 * Don't allow sharing the root directory with processes in a different
2254 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2255 return ERR_PTR(-EINVAL);
2257 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2258 return ERR_PTR(-EINVAL);
2261 * Thread groups must share signals as well, and detached threads
2262 * can only be started up within the thread group.
2264 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2265 return ERR_PTR(-EINVAL);
2268 * Shared signal handlers imply shared VM. By way of the above,
2269 * thread groups also imply shared VM. Blocking this case allows
2270 * for various simplifications in other code.
2272 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2273 return ERR_PTR(-EINVAL);
2276 * Siblings of global init remain as zombies on exit since they are
2277 * not reaped by their parent (swapper). To solve this and to avoid
2278 * multi-rooted process trees, prevent global and container-inits
2279 * from creating siblings.
2281 if ((clone_flags & CLONE_PARENT) &&
2282 current->signal->flags & SIGNAL_UNKILLABLE)
2283 return ERR_PTR(-EINVAL);
2286 * If the new process will be in a different pid or user namespace
2287 * do not allow it to share a thread group with the forking task.
2289 if (clone_flags & CLONE_THREAD) {
2290 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2291 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2292 return ERR_PTR(-EINVAL);
2295 if (clone_flags & CLONE_PIDFD) {
2297 * - CLONE_DETACHED is blocked so that we can potentially
2298 * reuse it later for CLONE_PIDFD.
2299 * - CLONE_THREAD is blocked until someone really needs it.
2301 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2302 return ERR_PTR(-EINVAL);
2306 * Force any signals received before this point to be delivered
2307 * before the fork happens. Collect up signals sent to multiple
2308 * processes that happen during the fork and delay them so that
2309 * they appear to happen after the fork.
2311 sigemptyset(&delayed.signal);
2312 INIT_HLIST_NODE(&delayed.node);
2314 spin_lock_irq(¤t->sighand->siglock);
2315 if (!(clone_flags & CLONE_THREAD))
2316 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2317 recalc_sigpending();
2318 spin_unlock_irq(¤t->sighand->siglock);
2319 retval = -ERESTARTNOINTR;
2320 if (task_sigpending(current))
2324 p = dup_task_struct(current, node);
2327 p->flags &= ~PF_KTHREAD;
2329 p->flags |= PF_KTHREAD;
2330 if (args->user_worker) {
2332 * Mark us a user worker, and block any signal that isn't
2335 p->flags |= PF_USER_WORKER;
2336 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2338 if (args->io_thread)
2339 p->flags |= PF_IO_WORKER;
2342 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2344 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2346 * Clear TID on mm_release()?
2348 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2350 ftrace_graph_init_task(p);
2352 rt_mutex_init_task(p);
2354 lockdep_assert_irqs_enabled();
2355 #ifdef CONFIG_PROVE_LOCKING
2356 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2358 retval = copy_creds(p, clone_flags);
2363 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2364 if (p->real_cred->user != INIT_USER &&
2365 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2366 goto bad_fork_cleanup_count;
2368 current->flags &= ~PF_NPROC_EXCEEDED;
2371 * If multiple threads are within copy_process(), then this check
2372 * triggers too late. This doesn't hurt, the check is only there
2373 * to stop root fork bombs.
2376 if (data_race(nr_threads >= max_threads))
2377 goto bad_fork_cleanup_count;
2379 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2380 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2381 p->flags |= PF_FORKNOEXEC;
2382 INIT_LIST_HEAD(&p->children);
2383 INIT_LIST_HEAD(&p->sibling);
2384 rcu_copy_process(p);
2385 p->vfork_done = NULL;
2386 spin_lock_init(&p->alloc_lock);
2388 init_sigpending(&p->pending);
2390 p->utime = p->stime = p->gtime = 0;
2391 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2392 p->utimescaled = p->stimescaled = 0;
2394 prev_cputime_init(&p->prev_cputime);
2396 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2397 seqcount_init(&p->vtime.seqcount);
2398 p->vtime.starttime = 0;
2399 p->vtime.state = VTIME_INACTIVE;
2402 #ifdef CONFIG_IO_URING
2406 p->default_timer_slack_ns = current->timer_slack_ns;
2412 task_io_accounting_init(&p->ioac);
2413 acct_clear_integrals(p);
2415 posix_cputimers_init(&p->posix_cputimers);
2417 p->io_context = NULL;
2418 audit_set_context(p, NULL);
2420 if (args->kthread) {
2421 if (!set_kthread_struct(p))
2422 goto bad_fork_cleanup_delayacct;
2425 p->mempolicy = mpol_dup(p->mempolicy);
2426 if (IS_ERR(p->mempolicy)) {
2427 retval = PTR_ERR(p->mempolicy);
2428 p->mempolicy = NULL;
2429 goto bad_fork_cleanup_delayacct;
2432 #ifdef CONFIG_CPUSETS
2433 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2434 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2435 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2437 #ifdef CONFIG_TRACE_IRQFLAGS
2438 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2439 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2440 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2441 p->softirqs_enabled = 1;
2442 p->softirq_context = 0;
2445 p->pagefault_disabled = 0;
2447 #ifdef CONFIG_LOCKDEP
2448 lockdep_init_task(p);
2451 #ifdef CONFIG_DEBUG_MUTEXES
2452 p->blocked_on = NULL; /* not blocked yet */
2454 #ifdef CONFIG_BCACHE
2455 p->sequential_io = 0;
2456 p->sequential_io_avg = 0;
2458 #ifdef CONFIG_BPF_SYSCALL
2459 RCU_INIT_POINTER(p->bpf_storage, NULL);
2463 /* Perform scheduler related setup. Assign this task to a CPU. */
2464 retval = sched_fork(clone_flags, p);
2466 goto bad_fork_cleanup_policy;
2468 retval = perf_event_init_task(p, clone_flags);
2470 goto bad_fork_cleanup_policy;
2471 retval = audit_alloc(p);
2473 goto bad_fork_cleanup_perf;
2474 /* copy all the process information */
2476 retval = security_task_alloc(p, clone_flags);
2478 goto bad_fork_cleanup_audit;
2479 retval = copy_semundo(clone_flags, p);
2481 goto bad_fork_cleanup_security;
2482 retval = copy_files(clone_flags, p, args->no_files);
2484 goto bad_fork_cleanup_semundo;
2485 retval = copy_fs(clone_flags, p);
2487 goto bad_fork_cleanup_files;
2488 retval = copy_sighand(clone_flags, p);
2490 goto bad_fork_cleanup_fs;
2491 retval = copy_signal(clone_flags, p);
2493 goto bad_fork_cleanup_sighand;
2494 retval = copy_mm(clone_flags, p);
2496 goto bad_fork_cleanup_signal;
2497 retval = copy_namespaces(clone_flags, p);
2499 goto bad_fork_cleanup_mm;
2500 retval = copy_io(clone_flags, p);
2502 goto bad_fork_cleanup_namespaces;
2503 retval = copy_thread(p, args);
2505 goto bad_fork_cleanup_io;
2507 stackleak_task_init(p);
2509 if (pid != &init_struct_pid) {
2510 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2511 args->set_tid_size);
2513 retval = PTR_ERR(pid);
2514 goto bad_fork_cleanup_thread;
2519 * This has to happen after we've potentially unshared the file
2520 * descriptor table (so that the pidfd doesn't leak into the child
2521 * if the fd table isn't shared).
2523 if (clone_flags & CLONE_PIDFD) {
2524 /* Note that no task has been attached to @pid yet. */
2525 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2527 goto bad_fork_free_pid;
2530 retval = put_user(pidfd, args->pidfd);
2532 goto bad_fork_put_pidfd;
2541 * sigaltstack should be cleared when sharing the same VM
2543 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2547 * Syscall tracing and stepping should be turned off in the
2548 * child regardless of CLONE_PTRACE.
2550 user_disable_single_step(p);
2551 clear_task_syscall_work(p, SYSCALL_TRACE);
2552 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2553 clear_task_syscall_work(p, SYSCALL_EMU);
2555 clear_tsk_latency_tracing(p);
2557 /* ok, now we should be set up.. */
2558 p->pid = pid_nr(pid);
2559 if (clone_flags & CLONE_THREAD) {
2560 p->group_leader = current->group_leader;
2561 p->tgid = current->tgid;
2563 p->group_leader = p;
2568 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2569 p->dirty_paused_when = 0;
2571 p->pdeath_signal = 0;
2572 p->task_works = NULL;
2573 clear_posix_cputimers_work(p);
2575 #ifdef CONFIG_KRETPROBES
2576 p->kretprobe_instances.first = NULL;
2578 #ifdef CONFIG_RETHOOK
2579 p->rethooks.first = NULL;
2583 * Ensure that the cgroup subsystem policies allow the new process to be
2584 * forked. It should be noted that the new process's css_set can be changed
2585 * between here and cgroup_post_fork() if an organisation operation is in
2588 retval = cgroup_can_fork(p, args);
2590 goto bad_fork_put_pidfd;
2593 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2594 * the new task on the correct runqueue. All this *before* the task
2597 * This isn't part of ->can_fork() because while the re-cloning is
2598 * cgroup specific, it unconditionally needs to place the task on a
2601 sched_cgroup_fork(p, args);
2604 * From this point on we must avoid any synchronous user-space
2605 * communication until we take the tasklist-lock. In particular, we do
2606 * not want user-space to be able to predict the process start-time by
2607 * stalling fork(2) after we recorded the start_time but before it is
2608 * visible to the system.
2611 p->start_time = ktime_get_ns();
2612 p->start_boottime = ktime_get_boottime_ns();
2615 * Make it visible to the rest of the system, but dont wake it up yet.
2616 * Need tasklist lock for parent etc handling!
2618 write_lock_irq(&tasklist_lock);
2620 /* CLONE_PARENT re-uses the old parent */
2621 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2622 p->real_parent = current->real_parent;
2623 p->parent_exec_id = current->parent_exec_id;
2624 if (clone_flags & CLONE_THREAD)
2625 p->exit_signal = -1;
2627 p->exit_signal = current->group_leader->exit_signal;
2629 p->real_parent = current;
2630 p->parent_exec_id = current->self_exec_id;
2631 p->exit_signal = args->exit_signal;
2634 klp_copy_process(p);
2638 spin_lock(¤t->sighand->siglock);
2642 rseq_fork(p, clone_flags);
2644 /* Don't start children in a dying pid namespace */
2645 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2647 goto bad_fork_cancel_cgroup;
2650 /* Let kill terminate clone/fork in the middle */
2651 if (fatal_signal_pending(current)) {
2653 goto bad_fork_cancel_cgroup;
2656 /* No more failure paths after this point. */
2659 * Copy seccomp details explicitly here, in case they were changed
2660 * before holding sighand lock.
2664 init_task_pid_links(p);
2665 if (likely(p->pid)) {
2666 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2668 init_task_pid(p, PIDTYPE_PID, pid);
2669 if (thread_group_leader(p)) {
2670 init_task_pid(p, PIDTYPE_TGID, pid);
2671 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2672 init_task_pid(p, PIDTYPE_SID, task_session(current));
2674 if (is_child_reaper(pid)) {
2675 ns_of_pid(pid)->child_reaper = p;
2676 p->signal->flags |= SIGNAL_UNKILLABLE;
2678 p->signal->shared_pending.signal = delayed.signal;
2679 p->signal->tty = tty_kref_get(current->signal->tty);
2681 * Inherit has_child_subreaper flag under the same
2682 * tasklist_lock with adding child to the process tree
2683 * for propagate_has_child_subreaper optimization.
2685 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2686 p->real_parent->signal->is_child_subreaper;
2687 list_add_tail(&p->sibling, &p->real_parent->children);
2688 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2689 attach_pid(p, PIDTYPE_TGID);
2690 attach_pid(p, PIDTYPE_PGID);
2691 attach_pid(p, PIDTYPE_SID);
2692 __this_cpu_inc(process_counts);
2694 current->signal->nr_threads++;
2695 current->signal->quick_threads++;
2696 atomic_inc(¤t->signal->live);
2697 refcount_inc(¤t->signal->sigcnt);
2698 task_join_group_stop(p);
2699 list_add_tail_rcu(&p->thread_node,
2700 &p->signal->thread_head);
2702 attach_pid(p, PIDTYPE_PID);
2706 hlist_del_init(&delayed.node);
2707 spin_unlock(¤t->sighand->siglock);
2708 syscall_tracepoint_update(p);
2709 write_unlock_irq(&tasklist_lock);
2712 fd_install(pidfd, pidfile);
2714 proc_fork_connector(p);
2716 cgroup_post_fork(p, args);
2719 trace_task_newtask(p, clone_flags);
2720 uprobe_copy_process(p, clone_flags);
2721 user_events_fork(p, clone_flags);
2723 copy_oom_score_adj(clone_flags, p);
2727 bad_fork_cancel_cgroup:
2729 spin_unlock(¤t->sighand->siglock);
2730 write_unlock_irq(&tasklist_lock);
2731 cgroup_cancel_fork(p, args);
2733 if (clone_flags & CLONE_PIDFD) {
2735 put_unused_fd(pidfd);
2738 if (pid != &init_struct_pid)
2740 bad_fork_cleanup_thread:
2742 bad_fork_cleanup_io:
2745 bad_fork_cleanup_namespaces:
2746 exit_task_namespaces(p);
2747 bad_fork_cleanup_mm:
2749 mm_clear_owner(p->mm, p);
2752 bad_fork_cleanup_signal:
2753 if (!(clone_flags & CLONE_THREAD))
2754 free_signal_struct(p->signal);
2755 bad_fork_cleanup_sighand:
2756 __cleanup_sighand(p->sighand);
2757 bad_fork_cleanup_fs:
2758 exit_fs(p); /* blocking */
2759 bad_fork_cleanup_files:
2760 exit_files(p); /* blocking */
2761 bad_fork_cleanup_semundo:
2763 bad_fork_cleanup_security:
2764 security_task_free(p);
2765 bad_fork_cleanup_audit:
2767 bad_fork_cleanup_perf:
2768 perf_event_free_task(p);
2769 bad_fork_cleanup_policy:
2770 lockdep_free_task(p);
2772 mpol_put(p->mempolicy);
2774 bad_fork_cleanup_delayacct:
2775 delayacct_tsk_free(p);
2776 bad_fork_cleanup_count:
2777 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2780 WRITE_ONCE(p->__state, TASK_DEAD);
2781 exit_task_stack_account(p);
2783 delayed_free_task(p);
2785 spin_lock_irq(¤t->sighand->siglock);
2786 hlist_del_init(&delayed.node);
2787 spin_unlock_irq(¤t->sighand->siglock);
2788 return ERR_PTR(retval);
2791 static inline void init_idle_pids(struct task_struct *idle)
2795 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2796 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2797 init_task_pid(idle, type, &init_struct_pid);
2801 static int idle_dummy(void *dummy)
2803 /* This function is never called */
2807 struct task_struct * __init fork_idle(int cpu)
2809 struct task_struct *task;
2810 struct kernel_clone_args args = {
2818 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2819 if (!IS_ERR(task)) {
2820 init_idle_pids(task);
2821 init_idle(task, cpu);
2828 * This is like kernel_clone(), but shaved down and tailored to just
2829 * creating io_uring workers. It returns a created task, or an error pointer.
2830 * The returned task is inactive, and the caller must fire it up through
2831 * wake_up_new_task(p). All signals are blocked in the created task.
2833 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2835 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2837 struct kernel_clone_args args = {
2838 .flags = ((lower_32_bits(flags) | CLONE_VM |
2839 CLONE_UNTRACED) & ~CSIGNAL),
2840 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2847 return copy_process(NULL, 0, node, &args);
2851 * Ok, this is the main fork-routine.
2853 * It copies the process, and if successful kick-starts
2854 * it and waits for it to finish using the VM if required.
2856 * args->exit_signal is expected to be checked for sanity by the caller.
2858 pid_t kernel_clone(struct kernel_clone_args *args)
2860 u64 clone_flags = args->flags;
2861 struct completion vfork;
2863 struct task_struct *p;
2868 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2869 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2870 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2871 * field in struct clone_args and it still doesn't make sense to have
2872 * them both point at the same memory location. Performing this check
2873 * here has the advantage that we don't need to have a separate helper
2874 * to check for legacy clone().
2876 if ((args->flags & CLONE_PIDFD) &&
2877 (args->flags & CLONE_PARENT_SETTID) &&
2878 (args->pidfd == args->parent_tid))
2882 * Determine whether and which event to report to ptracer. When
2883 * called from kernel_thread or CLONE_UNTRACED is explicitly
2884 * requested, no event is reported; otherwise, report if the event
2885 * for the type of forking is enabled.
2887 if (!(clone_flags & CLONE_UNTRACED)) {
2888 if (clone_flags & CLONE_VFORK)
2889 trace = PTRACE_EVENT_VFORK;
2890 else if (args->exit_signal != SIGCHLD)
2891 trace = PTRACE_EVENT_CLONE;
2893 trace = PTRACE_EVENT_FORK;
2895 if (likely(!ptrace_event_enabled(current, trace)))
2899 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2900 add_latent_entropy();
2906 * Do this prior waking up the new thread - the thread pointer
2907 * might get invalid after that point, if the thread exits quickly.
2909 trace_sched_process_fork(current, p);
2911 pid = get_task_pid(p, PIDTYPE_PID);
2914 if (clone_flags & CLONE_PARENT_SETTID)
2915 put_user(nr, args->parent_tid);
2917 if (clone_flags & CLONE_VFORK) {
2918 p->vfork_done = &vfork;
2919 init_completion(&vfork);
2923 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2924 /* lock the task to synchronize with memcg migration */
2926 lru_gen_add_mm(p->mm);
2930 wake_up_new_task(p);
2932 /* forking complete and child started to run, tell ptracer */
2933 if (unlikely(trace))
2934 ptrace_event_pid(trace, pid);
2936 if (clone_flags & CLONE_VFORK) {
2937 if (!wait_for_vfork_done(p, &vfork))
2938 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2946 * Create a kernel thread.
2948 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2949 unsigned long flags)
2951 struct kernel_clone_args args = {
2952 .flags = ((lower_32_bits(flags) | CLONE_VM |
2953 CLONE_UNTRACED) & ~CSIGNAL),
2954 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2961 return kernel_clone(&args);
2965 * Create a user mode thread.
2967 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2969 struct kernel_clone_args args = {
2970 .flags = ((lower_32_bits(flags) | CLONE_VM |
2971 CLONE_UNTRACED) & ~CSIGNAL),
2972 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2977 return kernel_clone(&args);
2980 #ifdef __ARCH_WANT_SYS_FORK
2981 SYSCALL_DEFINE0(fork)
2984 struct kernel_clone_args args = {
2985 .exit_signal = SIGCHLD,
2988 return kernel_clone(&args);
2990 /* can not support in nommu mode */
2996 #ifdef __ARCH_WANT_SYS_VFORK
2997 SYSCALL_DEFINE0(vfork)
2999 struct kernel_clone_args args = {
3000 .flags = CLONE_VFORK | CLONE_VM,
3001 .exit_signal = SIGCHLD,
3004 return kernel_clone(&args);
3008 #ifdef __ARCH_WANT_SYS_CLONE
3009 #ifdef CONFIG_CLONE_BACKWARDS
3010 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3011 int __user *, parent_tidptr,
3013 int __user *, child_tidptr)
3014 #elif defined(CONFIG_CLONE_BACKWARDS2)
3015 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3016 int __user *, parent_tidptr,
3017 int __user *, child_tidptr,
3019 #elif defined(CONFIG_CLONE_BACKWARDS3)
3020 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3022 int __user *, parent_tidptr,
3023 int __user *, child_tidptr,
3026 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3027 int __user *, parent_tidptr,
3028 int __user *, child_tidptr,
3032 struct kernel_clone_args args = {
3033 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
3034 .pidfd = parent_tidptr,
3035 .child_tid = child_tidptr,
3036 .parent_tid = parent_tidptr,
3037 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
3042 return kernel_clone(&args);
3046 #ifdef __ARCH_WANT_SYS_CLONE3
3048 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3049 struct clone_args __user *uargs,
3053 struct clone_args args;
3054 pid_t *kset_tid = kargs->set_tid;
3056 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3057 CLONE_ARGS_SIZE_VER0);
3058 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3059 CLONE_ARGS_SIZE_VER1);
3060 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3061 CLONE_ARGS_SIZE_VER2);
3062 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3064 if (unlikely(usize > PAGE_SIZE))
3066 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3069 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3073 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3076 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3079 if (unlikely(args.set_tid && args.set_tid_size == 0))
3083 * Verify that higher 32bits of exit_signal are unset and that
3084 * it is a valid signal
3086 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3087 !valid_signal(args.exit_signal)))
3090 if ((args.flags & CLONE_INTO_CGROUP) &&
3091 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3094 *kargs = (struct kernel_clone_args){
3095 .flags = args.flags,
3096 .pidfd = u64_to_user_ptr(args.pidfd),
3097 .child_tid = u64_to_user_ptr(args.child_tid),
3098 .parent_tid = u64_to_user_ptr(args.parent_tid),
3099 .exit_signal = args.exit_signal,
3100 .stack = args.stack,
3101 .stack_size = args.stack_size,
3103 .set_tid_size = args.set_tid_size,
3104 .cgroup = args.cgroup,
3108 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3109 (kargs->set_tid_size * sizeof(pid_t))))
3112 kargs->set_tid = kset_tid;
3118 * clone3_stack_valid - check and prepare stack
3119 * @kargs: kernel clone args
3121 * Verify that the stack arguments userspace gave us are sane.
3122 * In addition, set the stack direction for userspace since it's easy for us to
3125 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3127 if (kargs->stack == 0) {
3128 if (kargs->stack_size > 0)
3131 if (kargs->stack_size == 0)
3134 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3137 #if !defined(CONFIG_STACK_GROWSUP)
3138 kargs->stack += kargs->stack_size;
3145 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3147 /* Verify that no unknown flags are passed along. */
3149 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3153 * - make the CLONE_DETACHED bit reusable for clone3
3154 * - make the CSIGNAL bits reusable for clone3
3156 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3159 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3160 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3163 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3167 if (!clone3_stack_valid(kargs))
3174 * sys_clone3 - create a new process with specific properties
3175 * @uargs: argument structure
3176 * @size: size of @uargs
3178 * clone3() is the extensible successor to clone()/clone2().
3179 * It takes a struct as argument that is versioned by its size.
3181 * Return: On success, a positive PID for the child process.
3182 * On error, a negative errno number.
3184 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3188 struct kernel_clone_args kargs;
3189 pid_t set_tid[MAX_PID_NS_LEVEL];
3191 kargs.set_tid = set_tid;
3193 err = copy_clone_args_from_user(&kargs, uargs, size);
3197 if (!clone3_args_valid(&kargs))
3200 return kernel_clone(&kargs);
3204 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3206 struct task_struct *leader, *parent, *child;
3209 read_lock(&tasklist_lock);
3210 leader = top = top->group_leader;
3212 for_each_thread(leader, parent) {
3213 list_for_each_entry(child, &parent->children, sibling) {
3214 res = visitor(child, data);
3226 if (leader != top) {
3228 parent = child->real_parent;
3229 leader = parent->group_leader;
3233 read_unlock(&tasklist_lock);
3236 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3237 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3240 static void sighand_ctor(void *data)
3242 struct sighand_struct *sighand = data;
3244 spin_lock_init(&sighand->siglock);
3245 init_waitqueue_head(&sighand->signalfd_wqh);
3248 void __init mm_cache_init(void)
3250 unsigned int mm_size;
3253 * The mm_cpumask is located at the end of mm_struct, and is
3254 * dynamically sized based on the maximum CPU number this system
3255 * can have, taking hotplug into account (nr_cpu_ids).
3257 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3259 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3260 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3261 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3262 offsetof(struct mm_struct, saved_auxv),
3263 sizeof_field(struct mm_struct, saved_auxv),
3267 void __init proc_caches_init(void)
3269 sighand_cachep = kmem_cache_create("sighand_cache",
3270 sizeof(struct sighand_struct), 0,
3271 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3272 SLAB_ACCOUNT, sighand_ctor);
3273 signal_cachep = kmem_cache_create("signal_cache",
3274 sizeof(struct signal_struct), 0,
3275 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3277 files_cachep = kmem_cache_create("files_cache",
3278 sizeof(struct files_struct), 0,
3279 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3281 fs_cachep = kmem_cache_create("fs_cache",
3282 sizeof(struct fs_struct), 0,
3283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3286 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3287 #ifdef CONFIG_PER_VMA_LOCK
3288 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3291 nsproxy_cache_init();
3295 * Check constraints on flags passed to the unshare system call.
3297 static int check_unshare_flags(unsigned long unshare_flags)
3299 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3300 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3301 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3302 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3306 * Not implemented, but pretend it works if there is nothing
3307 * to unshare. Note that unsharing the address space or the
3308 * signal handlers also need to unshare the signal queues (aka
3311 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3312 if (!thread_group_empty(current))
3315 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3316 if (refcount_read(¤t->sighand->count) > 1)
3319 if (unshare_flags & CLONE_VM) {
3320 if (!current_is_single_threaded())
3328 * Unshare the filesystem structure if it is being shared
3330 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3332 struct fs_struct *fs = current->fs;
3334 if (!(unshare_flags & CLONE_FS) || !fs)
3337 /* don't need lock here; in the worst case we'll do useless copy */
3341 *new_fsp = copy_fs_struct(fs);
3349 * Unshare file descriptor table if it is being shared
3351 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3352 struct files_struct **new_fdp)
3354 struct files_struct *fd = current->files;
3357 if ((unshare_flags & CLONE_FILES) &&
3358 (fd && atomic_read(&fd->count) > 1)) {
3359 *new_fdp = dup_fd(fd, max_fds, &error);
3368 * unshare allows a process to 'unshare' part of the process
3369 * context which was originally shared using clone. copy_*
3370 * functions used by kernel_clone() cannot be used here directly
3371 * because they modify an inactive task_struct that is being
3372 * constructed. Here we are modifying the current, active,
3375 int ksys_unshare(unsigned long unshare_flags)
3377 struct fs_struct *fs, *new_fs = NULL;
3378 struct files_struct *new_fd = NULL;
3379 struct cred *new_cred = NULL;
3380 struct nsproxy *new_nsproxy = NULL;
3385 * If unsharing a user namespace must also unshare the thread group
3386 * and unshare the filesystem root and working directories.
3388 if (unshare_flags & CLONE_NEWUSER)
3389 unshare_flags |= CLONE_THREAD | CLONE_FS;
3391 * If unsharing vm, must also unshare signal handlers.
3393 if (unshare_flags & CLONE_VM)
3394 unshare_flags |= CLONE_SIGHAND;
3396 * If unsharing a signal handlers, must also unshare the signal queues.
3398 if (unshare_flags & CLONE_SIGHAND)
3399 unshare_flags |= CLONE_THREAD;
3401 * If unsharing namespace, must also unshare filesystem information.
3403 if (unshare_flags & CLONE_NEWNS)
3404 unshare_flags |= CLONE_FS;
3406 err = check_unshare_flags(unshare_flags);
3408 goto bad_unshare_out;
3410 * CLONE_NEWIPC must also detach from the undolist: after switching
3411 * to a new ipc namespace, the semaphore arrays from the old
3412 * namespace are unreachable.
3414 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3416 err = unshare_fs(unshare_flags, &new_fs);
3418 goto bad_unshare_out;
3419 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3421 goto bad_unshare_cleanup_fs;
3422 err = unshare_userns(unshare_flags, &new_cred);
3424 goto bad_unshare_cleanup_fd;
3425 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3428 goto bad_unshare_cleanup_cred;
3431 err = set_cred_ucounts(new_cred);
3433 goto bad_unshare_cleanup_cred;
3436 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3439 * CLONE_SYSVSEM is equivalent to sys_exit().
3443 if (unshare_flags & CLONE_NEWIPC) {
3444 /* Orphan segments in old ns (see sem above). */
3446 shm_init_task(current);
3450 switch_task_namespaces(current, new_nsproxy);
3456 spin_lock(&fs->lock);
3457 current->fs = new_fs;
3462 spin_unlock(&fs->lock);
3466 swap(current->files, new_fd);
3468 task_unlock(current);
3471 /* Install the new user namespace */
3472 commit_creds(new_cred);
3477 perf_event_namespaces(current);
3479 bad_unshare_cleanup_cred:
3482 bad_unshare_cleanup_fd:
3484 put_files_struct(new_fd);
3486 bad_unshare_cleanup_fs:
3488 free_fs_struct(new_fs);
3494 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3496 return ksys_unshare(unshare_flags);
3500 * Helper to unshare the files of the current task.
3501 * We don't want to expose copy_files internals to
3502 * the exec layer of the kernel.
3505 int unshare_files(void)
3507 struct task_struct *task = current;
3508 struct files_struct *old, *copy = NULL;
3511 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3519 put_files_struct(old);
3523 int sysctl_max_threads(struct ctl_table *table, int write,
3524 void *buffer, size_t *lenp, loff_t *ppos)
3528 int threads = max_threads;
3530 int max = MAX_THREADS;
3537 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3541 max_threads = threads;