1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 struct address_space *mapping;
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
73 if (unlikely(!get_page_unless_zero(page)))
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
81 if (unlikely(!__PageMovable(page)))
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
94 if (unlikely(!trylock_page(page)))
97 if (!PageMovable(page) || PageIsolated(page))
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
121 static void putback_movable_page(struct page *page)
123 struct address_space *mapping;
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
138 void putback_movable_pages(struct list_head *l)
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
148 list_del(&page->lru);
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 if (PageMovable(page))
158 putback_movable_page(page);
160 __ClearPageIsolated(page);
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
172 * Restore a potential migration pte to a working pte entry
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 unsigned long addr, void *old)
177 struct page_vma_mapped_walk pvmw = {
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
210 * Recheck VMA as permissions can change since migration started
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_write_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
218 if (unlikely(is_device_private_page(new))) {
219 entry = make_device_private_entry(new, pte_write(pte));
220 pte = swp_entry_to_pte(entry);
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_swp_mksoft_dirty(pte);
223 if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_swp_mkuffd_wp(pte);
227 #ifdef CONFIG_HUGETLB_PAGE
229 pte = pte_mkhuge(pte);
230 pte = arch_make_huge_pte(pte, vma, new, 0);
231 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
233 hugepage_add_anon_rmap(new, vma, pvmw.address);
235 page_dup_rmap(new, true);
239 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
242 page_add_anon_rmap(new, vma, pvmw.address, false);
244 page_add_file_rmap(new, false);
246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
249 if (PageTransHuge(page) && PageMlocked(page))
250 clear_page_mlock(page);
252 /* No need to invalidate - it was non-present before */
253 update_mmu_cache(vma, pvmw.address, pvmw.pte);
260 * Get rid of all migration entries and replace them by
261 * references to the indicated page.
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
265 struct rmap_walk_control rwc = {
266 .rmap_one = remove_migration_pte,
271 rmap_walk_locked(new, &rwc);
273 rmap_walk(new, &rwc);
277 * Something used the pte of a page under migration. We need to
278 * get to the page and wait until migration is finished.
279 * When we return from this function the fault will be retried.
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 if (!is_swap_pte(pte))
293 entry = pte_to_swp_entry(pte);
294 if (!is_migration_entry(entry))
297 page = migration_entry_to_page(entry);
298 page = compound_head(page);
301 * Once page cache replacement of page migration started, page_count
302 * is zero; but we must not call put_and_wait_on_page_locked() without
303 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
305 if (!get_page_unless_zero(page))
307 pte_unmap_unlock(ptep, ptl);
308 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
311 pte_unmap_unlock(ptep, ptl);
314 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
315 unsigned long address)
317 spinlock_t *ptl = pte_lockptr(mm, pmd);
318 pte_t *ptep = pte_offset_map(pmd, address);
319 __migration_entry_wait(mm, ptep, ptl);
322 void migration_entry_wait_huge(struct vm_area_struct *vma,
323 struct mm_struct *mm, pte_t *pte)
325 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
326 __migration_entry_wait(mm, pte, ptl);
329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
330 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
335 ptl = pmd_lock(mm, pmd);
336 if (!is_pmd_migration_entry(*pmd))
338 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
339 if (!get_page_unless_zero(page))
342 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
349 static int expected_page_refs(struct address_space *mapping, struct page *page)
351 int expected_count = 1;
354 * Device private pages have an extra refcount as they are
357 expected_count += is_device_private_page(page);
359 expected_count += thp_nr_pages(page) + page_has_private(page);
361 return expected_count;
365 * Replace the page in the mapping.
367 * The number of remaining references must be:
368 * 1 for anonymous pages without a mapping
369 * 2 for pages with a mapping
370 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
372 int migrate_page_move_mapping(struct address_space *mapping,
373 struct page *newpage, struct page *page, int extra_count)
375 XA_STATE(xas, &mapping->i_pages, page_index(page));
376 struct zone *oldzone, *newzone;
378 int expected_count = expected_page_refs(mapping, page) + extra_count;
379 int nr = thp_nr_pages(page);
382 /* Anonymous page without mapping */
383 if (page_count(page) != expected_count)
386 /* No turning back from here */
387 newpage->index = page->index;
388 newpage->mapping = page->mapping;
389 if (PageSwapBacked(page))
390 __SetPageSwapBacked(newpage);
392 return MIGRATEPAGE_SUCCESS;
395 oldzone = page_zone(page);
396 newzone = page_zone(newpage);
399 if (page_count(page) != expected_count || xas_load(&xas) != page) {
400 xas_unlock_irq(&xas);
404 if (!page_ref_freeze(page, expected_count)) {
405 xas_unlock_irq(&xas);
410 * Now we know that no one else is looking at the page:
411 * no turning back from here.
413 newpage->index = page->index;
414 newpage->mapping = page->mapping;
415 page_ref_add(newpage, nr); /* add cache reference */
416 if (PageSwapBacked(page)) {
417 __SetPageSwapBacked(newpage);
418 if (PageSwapCache(page)) {
419 SetPageSwapCache(newpage);
420 set_page_private(newpage, page_private(page));
423 VM_BUG_ON_PAGE(PageSwapCache(page), page);
426 /* Move dirty while page refs frozen and newpage not yet exposed */
427 dirty = PageDirty(page);
429 ClearPageDirty(page);
430 SetPageDirty(newpage);
433 xas_store(&xas, newpage);
434 if (PageTransHuge(page)) {
437 for (i = 1; i < nr; i++) {
439 xas_store(&xas, newpage);
444 * Drop cache reference from old page by unfreezing
445 * to one less reference.
446 * We know this isn't the last reference.
448 page_ref_unfreeze(page, expected_count - nr);
451 /* Leave irq disabled to prevent preemption while updating stats */
454 * If moved to a different zone then also account
455 * the page for that zone. Other VM counters will be
456 * taken care of when we establish references to the
457 * new page and drop references to the old page.
459 * Note that anonymous pages are accounted for
460 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
461 * are mapped to swap space.
463 if (newzone != oldzone) {
464 struct lruvec *old_lruvec, *new_lruvec;
465 struct mem_cgroup *memcg;
467 memcg = page_memcg(page);
468 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
469 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
471 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
472 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
473 if (PageSwapBacked(page) && !PageSwapCache(page)) {
474 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
475 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
478 if (PageSwapCache(page)) {
479 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
480 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
483 if (dirty && mapping_can_writeback(mapping)) {
484 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
485 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
486 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
487 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
492 return MIGRATEPAGE_SUCCESS;
494 EXPORT_SYMBOL(migrate_page_move_mapping);
497 * The expected number of remaining references is the same as that
498 * of migrate_page_move_mapping().
500 int migrate_huge_page_move_mapping(struct address_space *mapping,
501 struct page *newpage, struct page *page)
503 XA_STATE(xas, &mapping->i_pages, page_index(page));
507 expected_count = 2 + page_has_private(page);
508 if (page_count(page) != expected_count || xas_load(&xas) != page) {
509 xas_unlock_irq(&xas);
513 if (!page_ref_freeze(page, expected_count)) {
514 xas_unlock_irq(&xas);
518 newpage->index = page->index;
519 newpage->mapping = page->mapping;
523 xas_store(&xas, newpage);
525 page_ref_unfreeze(page, expected_count - 1);
527 xas_unlock_irq(&xas);
529 return MIGRATEPAGE_SUCCESS;
533 * Gigantic pages are so large that we do not guarantee that page++ pointer
534 * arithmetic will work across the entire page. We need something more
537 static void __copy_gigantic_page(struct page *dst, struct page *src,
541 struct page *dst_base = dst;
542 struct page *src_base = src;
544 for (i = 0; i < nr_pages; ) {
546 copy_highpage(dst, src);
549 dst = mem_map_next(dst, dst_base, i);
550 src = mem_map_next(src, src_base, i);
554 static void copy_huge_page(struct page *dst, struct page *src)
561 struct hstate *h = page_hstate(src);
562 nr_pages = pages_per_huge_page(h);
564 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
565 __copy_gigantic_page(dst, src, nr_pages);
570 BUG_ON(!PageTransHuge(src));
571 nr_pages = thp_nr_pages(src);
574 for (i = 0; i < nr_pages; i++) {
576 copy_highpage(dst + i, src + i);
581 * Copy the page to its new location
583 void migrate_page_states(struct page *newpage, struct page *page)
588 SetPageError(newpage);
589 if (PageReferenced(page))
590 SetPageReferenced(newpage);
591 if (PageUptodate(page))
592 SetPageUptodate(newpage);
593 if (TestClearPageActive(page)) {
594 VM_BUG_ON_PAGE(PageUnevictable(page), page);
595 SetPageActive(newpage);
596 } else if (TestClearPageUnevictable(page))
597 SetPageUnevictable(newpage);
598 if (PageWorkingset(page))
599 SetPageWorkingset(newpage);
600 if (PageChecked(page))
601 SetPageChecked(newpage);
602 if (PageMappedToDisk(page))
603 SetPageMappedToDisk(newpage);
605 /* Move dirty on pages not done by migrate_page_move_mapping() */
607 SetPageDirty(newpage);
609 if (page_is_young(page))
610 set_page_young(newpage);
611 if (page_is_idle(page))
612 set_page_idle(newpage);
615 * Copy NUMA information to the new page, to prevent over-eager
616 * future migrations of this same page.
618 cpupid = page_cpupid_xchg_last(page, -1);
619 page_cpupid_xchg_last(newpage, cpupid);
621 ksm_migrate_page(newpage, page);
623 * Please do not reorder this without considering how mm/ksm.c's
624 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
626 if (PageSwapCache(page))
627 ClearPageSwapCache(page);
628 ClearPagePrivate(page);
629 set_page_private(page, 0);
632 * If any waiters have accumulated on the new page then
635 if (PageWriteback(newpage))
636 end_page_writeback(newpage);
639 * PG_readahead shares the same bit with PG_reclaim. The above
640 * end_page_writeback() may clear PG_readahead mistakenly, so set the
643 if (PageReadahead(page))
644 SetPageReadahead(newpage);
646 copy_page_owner(page, newpage);
649 mem_cgroup_migrate(page, newpage);
651 EXPORT_SYMBOL(migrate_page_states);
653 void migrate_page_copy(struct page *newpage, struct page *page)
655 if (PageHuge(page) || PageTransHuge(page))
656 copy_huge_page(newpage, page);
658 copy_highpage(newpage, page);
660 migrate_page_states(newpage, page);
662 EXPORT_SYMBOL(migrate_page_copy);
664 /************************************************************
665 * Migration functions
666 ***********************************************************/
669 * Common logic to directly migrate a single LRU page suitable for
670 * pages that do not use PagePrivate/PagePrivate2.
672 * Pages are locked upon entry and exit.
674 int migrate_page(struct address_space *mapping,
675 struct page *newpage, struct page *page,
676 enum migrate_mode mode)
680 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
682 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
684 if (rc != MIGRATEPAGE_SUCCESS)
687 if (mode != MIGRATE_SYNC_NO_COPY)
688 migrate_page_copy(newpage, page);
690 migrate_page_states(newpage, page);
691 return MIGRATEPAGE_SUCCESS;
693 EXPORT_SYMBOL(migrate_page);
696 /* Returns true if all buffers are successfully locked */
697 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
698 enum migrate_mode mode)
700 struct buffer_head *bh = head;
702 /* Simple case, sync compaction */
703 if (mode != MIGRATE_ASYNC) {
706 bh = bh->b_this_page;
708 } while (bh != head);
713 /* async case, we cannot block on lock_buffer so use trylock_buffer */
715 if (!trylock_buffer(bh)) {
717 * We failed to lock the buffer and cannot stall in
718 * async migration. Release the taken locks
720 struct buffer_head *failed_bh = bh;
722 while (bh != failed_bh) {
724 bh = bh->b_this_page;
729 bh = bh->b_this_page;
730 } while (bh != head);
734 static int __buffer_migrate_page(struct address_space *mapping,
735 struct page *newpage, struct page *page, enum migrate_mode mode,
738 struct buffer_head *bh, *head;
742 if (!page_has_buffers(page))
743 return migrate_page(mapping, newpage, page, mode);
745 /* Check whether page does not have extra refs before we do more work */
746 expected_count = expected_page_refs(mapping, page);
747 if (page_count(page) != expected_count)
750 head = page_buffers(page);
751 if (!buffer_migrate_lock_buffers(head, mode))
756 bool invalidated = false;
760 spin_lock(&mapping->private_lock);
763 if (atomic_read(&bh->b_count)) {
767 bh = bh->b_this_page;
768 } while (bh != head);
774 spin_unlock(&mapping->private_lock);
775 invalidate_bh_lrus();
777 goto recheck_buffers;
781 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
782 if (rc != MIGRATEPAGE_SUCCESS)
785 attach_page_private(newpage, detach_page_private(page));
789 set_bh_page(bh, newpage, bh_offset(bh));
790 bh = bh->b_this_page;
792 } while (bh != head);
794 if (mode != MIGRATE_SYNC_NO_COPY)
795 migrate_page_copy(newpage, page);
797 migrate_page_states(newpage, page);
799 rc = MIGRATEPAGE_SUCCESS;
802 spin_unlock(&mapping->private_lock);
806 bh = bh->b_this_page;
808 } while (bh != head);
814 * Migration function for pages with buffers. This function can only be used
815 * if the underlying filesystem guarantees that no other references to "page"
816 * exist. For example attached buffer heads are accessed only under page lock.
818 int buffer_migrate_page(struct address_space *mapping,
819 struct page *newpage, struct page *page, enum migrate_mode mode)
821 return __buffer_migrate_page(mapping, newpage, page, mode, false);
823 EXPORT_SYMBOL(buffer_migrate_page);
826 * Same as above except that this variant is more careful and checks that there
827 * are also no buffer head references. This function is the right one for
828 * mappings where buffer heads are directly looked up and referenced (such as
829 * block device mappings).
831 int buffer_migrate_page_norefs(struct address_space *mapping,
832 struct page *newpage, struct page *page, enum migrate_mode mode)
834 return __buffer_migrate_page(mapping, newpage, page, mode, true);
839 * Writeback a page to clean the dirty state
841 static int writeout(struct address_space *mapping, struct page *page)
843 struct writeback_control wbc = {
844 .sync_mode = WB_SYNC_NONE,
847 .range_end = LLONG_MAX,
852 if (!mapping->a_ops->writepage)
853 /* No write method for the address space */
856 if (!clear_page_dirty_for_io(page))
857 /* Someone else already triggered a write */
861 * A dirty page may imply that the underlying filesystem has
862 * the page on some queue. So the page must be clean for
863 * migration. Writeout may mean we loose the lock and the
864 * page state is no longer what we checked for earlier.
865 * At this point we know that the migration attempt cannot
868 remove_migration_ptes(page, page, false);
870 rc = mapping->a_ops->writepage(page, &wbc);
872 if (rc != AOP_WRITEPAGE_ACTIVATE)
873 /* unlocked. Relock */
876 return (rc < 0) ? -EIO : -EAGAIN;
880 * Default handling if a filesystem does not provide a migration function.
882 static int fallback_migrate_page(struct address_space *mapping,
883 struct page *newpage, struct page *page, enum migrate_mode mode)
885 if (PageDirty(page)) {
886 /* Only writeback pages in full synchronous migration */
889 case MIGRATE_SYNC_NO_COPY:
894 return writeout(mapping, page);
898 * Buffers may be managed in a filesystem specific way.
899 * We must have no buffers or drop them.
901 if (page_has_private(page) &&
902 !try_to_release_page(page, GFP_KERNEL))
903 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
905 return migrate_page(mapping, newpage, page, mode);
909 * Move a page to a newly allocated page
910 * The page is locked and all ptes have been successfully removed.
912 * The new page will have replaced the old page if this function
917 * MIGRATEPAGE_SUCCESS - success
919 static int move_to_new_page(struct page *newpage, struct page *page,
920 enum migrate_mode mode)
922 struct address_space *mapping;
924 bool is_lru = !__PageMovable(page);
926 VM_BUG_ON_PAGE(!PageLocked(page), page);
927 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
929 mapping = page_mapping(page);
931 if (likely(is_lru)) {
933 rc = migrate_page(mapping, newpage, page, mode);
934 else if (mapping->a_ops->migratepage)
936 * Most pages have a mapping and most filesystems
937 * provide a migratepage callback. Anonymous pages
938 * are part of swap space which also has its own
939 * migratepage callback. This is the most common path
940 * for page migration.
942 rc = mapping->a_ops->migratepage(mapping, newpage,
945 rc = fallback_migrate_page(mapping, newpage,
949 * In case of non-lru page, it could be released after
950 * isolation step. In that case, we shouldn't try migration.
952 VM_BUG_ON_PAGE(!PageIsolated(page), page);
953 if (!PageMovable(page)) {
954 rc = MIGRATEPAGE_SUCCESS;
955 __ClearPageIsolated(page);
959 rc = mapping->a_ops->migratepage(mapping, newpage,
961 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
962 !PageIsolated(page));
966 * When successful, old pagecache page->mapping must be cleared before
967 * page is freed; but stats require that PageAnon be left as PageAnon.
969 if (rc == MIGRATEPAGE_SUCCESS) {
970 if (__PageMovable(page)) {
971 VM_BUG_ON_PAGE(!PageIsolated(page), page);
974 * We clear PG_movable under page_lock so any compactor
975 * cannot try to migrate this page.
977 __ClearPageIsolated(page);
981 * Anonymous and movable page->mapping will be cleared by
982 * free_pages_prepare so don't reset it here for keeping
983 * the type to work PageAnon, for example.
985 if (!PageMappingFlags(page))
986 page->mapping = NULL;
988 if (likely(!is_zone_device_page(newpage)))
989 flush_dcache_page(newpage);
996 static int __unmap_and_move(struct page *page, struct page *newpage,
997 int force, enum migrate_mode mode)
1000 int page_was_mapped = 0;
1001 struct anon_vma *anon_vma = NULL;
1002 bool is_lru = !__PageMovable(page);
1004 if (!trylock_page(page)) {
1005 if (!force || mode == MIGRATE_ASYNC)
1009 * It's not safe for direct compaction to call lock_page.
1010 * For example, during page readahead pages are added locked
1011 * to the LRU. Later, when the IO completes the pages are
1012 * marked uptodate and unlocked. However, the queueing
1013 * could be merging multiple pages for one bio (e.g.
1014 * mpage_readahead). If an allocation happens for the
1015 * second or third page, the process can end up locking
1016 * the same page twice and deadlocking. Rather than
1017 * trying to be clever about what pages can be locked,
1018 * avoid the use of lock_page for direct compaction
1021 if (current->flags & PF_MEMALLOC)
1027 if (PageWriteback(page)) {
1029 * Only in the case of a full synchronous migration is it
1030 * necessary to wait for PageWriteback. In the async case,
1031 * the retry loop is too short and in the sync-light case,
1032 * the overhead of stalling is too much
1036 case MIGRATE_SYNC_NO_COPY:
1044 wait_on_page_writeback(page);
1048 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1049 * we cannot notice that anon_vma is freed while we migrates a page.
1050 * This get_anon_vma() delays freeing anon_vma pointer until the end
1051 * of migration. File cache pages are no problem because of page_lock()
1052 * File Caches may use write_page() or lock_page() in migration, then,
1053 * just care Anon page here.
1055 * Only page_get_anon_vma() understands the subtleties of
1056 * getting a hold on an anon_vma from outside one of its mms.
1057 * But if we cannot get anon_vma, then we won't need it anyway,
1058 * because that implies that the anon page is no longer mapped
1059 * (and cannot be remapped so long as we hold the page lock).
1061 if (PageAnon(page) && !PageKsm(page))
1062 anon_vma = page_get_anon_vma(page);
1065 * Block others from accessing the new page when we get around to
1066 * establishing additional references. We are usually the only one
1067 * holding a reference to newpage at this point. We used to have a BUG
1068 * here if trylock_page(newpage) fails, but would like to allow for
1069 * cases where there might be a race with the previous use of newpage.
1070 * This is much like races on refcount of oldpage: just don't BUG().
1072 if (unlikely(!trylock_page(newpage)))
1075 if (unlikely(!is_lru)) {
1076 rc = move_to_new_page(newpage, page, mode);
1077 goto out_unlock_both;
1081 * Corner case handling:
1082 * 1. When a new swap-cache page is read into, it is added to the LRU
1083 * and treated as swapcache but it has no rmap yet.
1084 * Calling try_to_unmap() against a page->mapping==NULL page will
1085 * trigger a BUG. So handle it here.
1086 * 2. An orphaned page (see truncate_cleanup_page) might have
1087 * fs-private metadata. The page can be picked up due to memory
1088 * offlining. Everywhere else except page reclaim, the page is
1089 * invisible to the vm, so the page can not be migrated. So try to
1090 * free the metadata, so the page can be freed.
1092 if (!page->mapping) {
1093 VM_BUG_ON_PAGE(PageAnon(page), page);
1094 if (page_has_private(page)) {
1095 try_to_free_buffers(page);
1096 goto out_unlock_both;
1098 } else if (page_mapped(page)) {
1099 /* Establish migration ptes */
1100 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1102 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1103 page_was_mapped = 1;
1106 if (!page_mapped(page))
1107 rc = move_to_new_page(newpage, page, mode);
1109 if (page_was_mapped)
1110 remove_migration_ptes(page,
1111 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1114 unlock_page(newpage);
1116 /* Drop an anon_vma reference if we took one */
1118 put_anon_vma(anon_vma);
1122 * If migration is successful, decrease refcount of the newpage
1123 * which will not free the page because new page owner increased
1124 * refcounter. As well, if it is LRU page, add the page to LRU
1125 * list in here. Use the old state of the isolated source page to
1126 * determine if we migrated a LRU page. newpage was already unlocked
1127 * and possibly modified by its owner - don't rely on the page
1130 if (rc == MIGRATEPAGE_SUCCESS) {
1131 if (unlikely(!is_lru))
1134 putback_lru_page(newpage);
1141 * Obtain the lock on page, remove all ptes and migrate the page
1142 * to the newly allocated page in newpage.
1144 static int unmap_and_move(new_page_t get_new_page,
1145 free_page_t put_new_page,
1146 unsigned long private, struct page *page,
1147 int force, enum migrate_mode mode,
1148 enum migrate_reason reason,
1149 struct list_head *ret)
1151 int rc = MIGRATEPAGE_SUCCESS;
1152 struct page *newpage = NULL;
1154 if (!thp_migration_supported() && PageTransHuge(page))
1157 if (page_count(page) == 1) {
1158 /* page was freed from under us. So we are done. */
1159 ClearPageActive(page);
1160 ClearPageUnevictable(page);
1161 if (unlikely(__PageMovable(page))) {
1163 if (!PageMovable(page))
1164 __ClearPageIsolated(page);
1170 newpage = get_new_page(page, private);
1174 rc = __unmap_and_move(page, newpage, force, mode);
1175 if (rc == MIGRATEPAGE_SUCCESS)
1176 set_page_owner_migrate_reason(newpage, reason);
1179 if (rc != -EAGAIN) {
1181 * A page that has been migrated has all references
1182 * removed and will be freed. A page that has not been
1183 * migrated will have kept its references and be restored.
1185 list_del(&page->lru);
1189 * If migration is successful, releases reference grabbed during
1190 * isolation. Otherwise, restore the page to right list unless
1193 if (rc == MIGRATEPAGE_SUCCESS) {
1195 * Compaction can migrate also non-LRU pages which are
1196 * not accounted to NR_ISOLATED_*. They can be recognized
1199 if (likely(!__PageMovable(page)))
1200 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1201 page_is_file_lru(page), -thp_nr_pages(page));
1203 if (reason != MR_MEMORY_FAILURE)
1205 * We release the page in page_handle_poison.
1210 list_add_tail(&page->lru, ret);
1213 put_new_page(newpage, private);
1222 * Counterpart of unmap_and_move_page() for hugepage migration.
1224 * This function doesn't wait the completion of hugepage I/O
1225 * because there is no race between I/O and migration for hugepage.
1226 * Note that currently hugepage I/O occurs only in direct I/O
1227 * where no lock is held and PG_writeback is irrelevant,
1228 * and writeback status of all subpages are counted in the reference
1229 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1230 * under direct I/O, the reference of the head page is 512 and a bit more.)
1231 * This means that when we try to migrate hugepage whose subpages are
1232 * doing direct I/O, some references remain after try_to_unmap() and
1233 * hugepage migration fails without data corruption.
1235 * There is also no race when direct I/O is issued on the page under migration,
1236 * because then pte is replaced with migration swap entry and direct I/O code
1237 * will wait in the page fault for migration to complete.
1239 static int unmap_and_move_huge_page(new_page_t get_new_page,
1240 free_page_t put_new_page, unsigned long private,
1241 struct page *hpage, int force,
1242 enum migrate_mode mode, int reason,
1243 struct list_head *ret)
1246 int page_was_mapped = 0;
1247 struct page *new_hpage;
1248 struct anon_vma *anon_vma = NULL;
1249 struct address_space *mapping = NULL;
1252 * Migratability of hugepages depends on architectures and their size.
1253 * This check is necessary because some callers of hugepage migration
1254 * like soft offline and memory hotremove don't walk through page
1255 * tables or check whether the hugepage is pmd-based or not before
1256 * kicking migration.
1258 if (!hugepage_migration_supported(page_hstate(hpage))) {
1259 list_move_tail(&hpage->lru, ret);
1263 if (page_count(hpage) == 1) {
1264 /* page was freed from under us. So we are done. */
1265 putback_active_hugepage(hpage);
1266 return MIGRATEPAGE_SUCCESS;
1269 new_hpage = get_new_page(hpage, private);
1273 if (!trylock_page(hpage)) {
1278 case MIGRATE_SYNC_NO_COPY:
1287 * Check for pages which are in the process of being freed. Without
1288 * page_mapping() set, hugetlbfs specific move page routine will not
1289 * be called and we could leak usage counts for subpools.
1291 if (page_private(hpage) && !page_mapping(hpage)) {
1296 if (PageAnon(hpage))
1297 anon_vma = page_get_anon_vma(hpage);
1299 if (unlikely(!trylock_page(new_hpage)))
1302 if (page_mapped(hpage)) {
1303 bool mapping_locked = false;
1304 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1306 if (!PageAnon(hpage)) {
1308 * In shared mappings, try_to_unmap could potentially
1309 * call huge_pmd_unshare. Because of this, take
1310 * semaphore in write mode here and set TTU_RMAP_LOCKED
1311 * to let lower levels know we have taken the lock.
1313 mapping = hugetlb_page_mapping_lock_write(hpage);
1314 if (unlikely(!mapping))
1315 goto unlock_put_anon;
1317 mapping_locked = true;
1318 ttu |= TTU_RMAP_LOCKED;
1321 try_to_unmap(hpage, ttu);
1322 page_was_mapped = 1;
1325 i_mmap_unlock_write(mapping);
1328 if (!page_mapped(hpage))
1329 rc = move_to_new_page(new_hpage, hpage, mode);
1331 if (page_was_mapped)
1332 remove_migration_ptes(hpage,
1333 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1336 unlock_page(new_hpage);
1340 put_anon_vma(anon_vma);
1342 if (rc == MIGRATEPAGE_SUCCESS) {
1343 move_hugetlb_state(hpage, new_hpage, reason);
1344 put_new_page = NULL;
1350 if (rc == MIGRATEPAGE_SUCCESS)
1351 putback_active_hugepage(hpage);
1352 else if (rc != -EAGAIN)
1353 list_move_tail(&hpage->lru, ret);
1356 * If migration was not successful and there's a freeing callback, use
1357 * it. Otherwise, put_page() will drop the reference grabbed during
1361 put_new_page(new_hpage, private);
1363 putback_active_hugepage(new_hpage);
1368 static inline int try_split_thp(struct page *page, struct page **page2,
1369 struct list_head *from)
1374 rc = split_huge_page_to_list(page, from);
1377 list_safe_reset_next(page, *page2, lru);
1383 * migrate_pages - migrate the pages specified in a list, to the free pages
1384 * supplied as the target for the page migration
1386 * @from: The list of pages to be migrated.
1387 * @get_new_page: The function used to allocate free pages to be used
1388 * as the target of the page migration.
1389 * @put_new_page: The function used to free target pages if migration
1390 * fails, or NULL if no special handling is necessary.
1391 * @private: Private data to be passed on to get_new_page()
1392 * @mode: The migration mode that specifies the constraints for
1393 * page migration, if any.
1394 * @reason: The reason for page migration.
1396 * The function returns after 10 attempts or if no pages are movable any more
1397 * because the list has become empty or no retryable pages exist any more.
1398 * It is caller's responsibility to call putback_movable_pages() to return pages
1399 * to the LRU or free list only if ret != 0.
1401 * Returns the number of pages that were not migrated, or an error code.
1403 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1404 free_page_t put_new_page, unsigned long private,
1405 enum migrate_mode mode, int reason)
1410 int nr_succeeded = 0;
1411 int nr_thp_succeeded = 0;
1412 int nr_thp_failed = 0;
1413 int nr_thp_split = 0;
1415 bool is_thp = false;
1418 int swapwrite = current->flags & PF_SWAPWRITE;
1419 int rc, nr_subpages;
1420 LIST_HEAD(ret_pages);
1422 trace_mm_migrate_pages_start(mode, reason);
1425 current->flags |= PF_SWAPWRITE;
1427 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1431 list_for_each_entry_safe(page, page2, from, lru) {
1434 * THP statistics is based on the source huge page.
1435 * Capture required information that might get lost
1438 is_thp = PageTransHuge(page) && !PageHuge(page);
1439 nr_subpages = thp_nr_pages(page);
1443 rc = unmap_and_move_huge_page(get_new_page,
1444 put_new_page, private, page,
1445 pass > 2, mode, reason,
1448 rc = unmap_and_move(get_new_page, put_new_page,
1449 private, page, pass > 2, mode,
1450 reason, &ret_pages);
1453 * Success: non hugetlb page will be freed, hugetlb
1454 * page will be put back
1455 * -EAGAIN: stay on the from list
1456 * -ENOMEM: stay on the from list
1457 * Other errno: put on ret_pages list then splice to
1462 * THP migration might be unsupported or the
1463 * allocation could've failed so we should
1464 * retry on the same page with the THP split
1467 * Head page is retried immediately and tail
1468 * pages are added to the tail of the list so
1469 * we encounter them after the rest of the list
1473 /* THP migration is unsupported */
1475 if (!try_split_thp(page, &page2, from)) {
1481 nr_failed += nr_subpages;
1485 /* Hugetlb migration is unsupported */
1490 * When memory is low, don't bother to try to migrate
1491 * other pages, just exit.
1494 if (!try_split_thp(page, &page2, from)) {
1500 nr_failed += nr_subpages;
1512 case MIGRATEPAGE_SUCCESS:
1515 nr_succeeded += nr_subpages;
1522 * Permanent failure (-EBUSY, etc.):
1523 * unlike -EAGAIN case, the failed page is
1524 * removed from migration page list and not
1525 * retried in the next outer loop.
1529 nr_failed += nr_subpages;
1537 nr_failed += retry + thp_retry;
1538 nr_thp_failed += thp_retry;
1542 * Put the permanent failure page back to migration list, they
1543 * will be put back to the right list by the caller.
1545 list_splice(&ret_pages, from);
1547 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1548 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1549 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1550 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1551 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1552 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1553 nr_thp_failed, nr_thp_split, mode, reason);
1556 current->flags &= ~PF_SWAPWRITE;
1561 struct page *alloc_migration_target(struct page *page, unsigned long private)
1563 struct migration_target_control *mtc;
1565 unsigned int order = 0;
1566 struct page *new_page = NULL;
1570 mtc = (struct migration_target_control *)private;
1571 gfp_mask = mtc->gfp_mask;
1573 if (nid == NUMA_NO_NODE)
1574 nid = page_to_nid(page);
1576 if (PageHuge(page)) {
1577 struct hstate *h = page_hstate(compound_head(page));
1579 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1580 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1583 if (PageTransHuge(page)) {
1585 * clear __GFP_RECLAIM to make the migration callback
1586 * consistent with regular THP allocations.
1588 gfp_mask &= ~__GFP_RECLAIM;
1589 gfp_mask |= GFP_TRANSHUGE;
1590 order = HPAGE_PMD_ORDER;
1592 zidx = zone_idx(page_zone(page));
1593 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1594 gfp_mask |= __GFP_HIGHMEM;
1596 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1598 if (new_page && PageTransHuge(new_page))
1599 prep_transhuge_page(new_page);
1606 static int store_status(int __user *status, int start, int value, int nr)
1609 if (put_user(value, status + start))
1617 static int do_move_pages_to_node(struct mm_struct *mm,
1618 struct list_head *pagelist, int node)
1621 struct migration_target_control mtc = {
1623 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1626 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1627 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1629 putback_movable_pages(pagelist);
1634 * Resolves the given address to a struct page, isolates it from the LRU and
1635 * puts it to the given pagelist.
1637 * errno - if the page cannot be found/isolated
1638 * 0 - when it doesn't have to be migrated because it is already on the
1640 * 1 - when it has been queued
1642 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1643 int node, struct list_head *pagelist, bool migrate_all)
1645 struct vm_area_struct *vma;
1647 unsigned int follflags;
1652 vma = find_vma(mm, addr);
1653 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1656 /* FOLL_DUMP to ignore special (like zero) pages */
1657 follflags = FOLL_GET | FOLL_DUMP;
1658 page = follow_page(vma, addr, follflags);
1660 err = PTR_ERR(page);
1669 if (page_to_nid(page) == node)
1673 if (page_mapcount(page) > 1 && !migrate_all)
1676 if (PageHuge(page)) {
1677 if (PageHead(page)) {
1678 isolate_huge_page(page, pagelist);
1684 head = compound_head(page);
1685 err = isolate_lru_page(head);
1690 list_add_tail(&head->lru, pagelist);
1691 mod_node_page_state(page_pgdat(head),
1692 NR_ISOLATED_ANON + page_is_file_lru(head),
1693 thp_nr_pages(head));
1697 * Either remove the duplicate refcount from
1698 * isolate_lru_page() or drop the page ref if it was
1703 mmap_read_unlock(mm);
1707 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1708 struct list_head *pagelist, int __user *status,
1709 int start, int i, unsigned long nr_pages)
1713 if (list_empty(pagelist))
1716 err = do_move_pages_to_node(mm, pagelist, node);
1719 * Positive err means the number of failed
1720 * pages to migrate. Since we are going to
1721 * abort and return the number of non-migrated
1722 * pages, so need to include the rest of the
1723 * nr_pages that have not been attempted as
1727 err += nr_pages - i - 1;
1730 return store_status(status, start, node, i - start);
1734 * Migrate an array of page address onto an array of nodes and fill
1735 * the corresponding array of status.
1737 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1738 unsigned long nr_pages,
1739 const void __user * __user *pages,
1740 const int __user *nodes,
1741 int __user *status, int flags)
1743 int current_node = NUMA_NO_NODE;
1744 LIST_HEAD(pagelist);
1748 lru_cache_disable();
1750 for (i = start = 0; i < nr_pages; i++) {
1751 const void __user *p;
1756 if (get_user(p, pages + i))
1758 if (get_user(node, nodes + i))
1760 addr = (unsigned long)untagged_addr(p);
1763 if (node < 0 || node >= MAX_NUMNODES)
1765 if (!node_state(node, N_MEMORY))
1769 if (!node_isset(node, task_nodes))
1772 if (current_node == NUMA_NO_NODE) {
1773 current_node = node;
1775 } else if (node != current_node) {
1776 err = move_pages_and_store_status(mm, current_node,
1777 &pagelist, status, start, i, nr_pages);
1781 current_node = node;
1785 * Errors in the page lookup or isolation are not fatal and we simply
1786 * report them via status
1788 err = add_page_for_migration(mm, addr, current_node,
1789 &pagelist, flags & MPOL_MF_MOVE_ALL);
1792 /* The page is successfully queued for migration */
1797 * If the page is already on the target node (!err), store the
1798 * node, otherwise, store the err.
1800 err = store_status(status, i, err ? : current_node, 1);
1804 err = move_pages_and_store_status(mm, current_node, &pagelist,
1805 status, start, i, nr_pages);
1808 current_node = NUMA_NO_NODE;
1811 /* Make sure we do not overwrite the existing error */
1812 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1813 status, start, i, nr_pages);
1822 * Determine the nodes of an array of pages and store it in an array of status.
1824 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1825 const void __user **pages, int *status)
1831 for (i = 0; i < nr_pages; i++) {
1832 unsigned long addr = (unsigned long)(*pages);
1833 struct vm_area_struct *vma;
1837 vma = vma_lookup(mm, addr);
1841 /* FOLL_DUMP to ignore special (like zero) pages */
1842 page = follow_page(vma, addr, FOLL_DUMP);
1844 err = PTR_ERR(page);
1848 err = page ? page_to_nid(page) : -ENOENT;
1856 mmap_read_unlock(mm);
1860 * Determine the nodes of a user array of pages and store it in
1861 * a user array of status.
1863 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1864 const void __user * __user *pages,
1867 #define DO_PAGES_STAT_CHUNK_NR 16
1868 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1869 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1872 unsigned long chunk_nr;
1874 chunk_nr = nr_pages;
1875 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1876 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1878 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1881 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1883 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1888 nr_pages -= chunk_nr;
1890 return nr_pages ? -EFAULT : 0;
1893 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1895 struct task_struct *task;
1896 struct mm_struct *mm;
1899 * There is no need to check if current process has the right to modify
1900 * the specified process when they are same.
1904 *mem_nodes = cpuset_mems_allowed(current);
1908 /* Find the mm_struct */
1910 task = find_task_by_vpid(pid);
1913 return ERR_PTR(-ESRCH);
1915 get_task_struct(task);
1918 * Check if this process has the right to modify the specified
1919 * process. Use the regular "ptrace_may_access()" checks.
1921 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1923 mm = ERR_PTR(-EPERM);
1928 mm = ERR_PTR(security_task_movememory(task));
1931 *mem_nodes = cpuset_mems_allowed(task);
1932 mm = get_task_mm(task);
1934 put_task_struct(task);
1936 mm = ERR_PTR(-EINVAL);
1941 * Move a list of pages in the address space of the currently executing
1944 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1945 const void __user * __user *pages,
1946 const int __user *nodes,
1947 int __user *status, int flags)
1949 struct mm_struct *mm;
1951 nodemask_t task_nodes;
1954 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1957 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1960 mm = find_mm_struct(pid, &task_nodes);
1965 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1966 nodes, status, flags);
1968 err = do_pages_stat(mm, nr_pages, pages, status);
1974 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1975 const void __user * __user *, pages,
1976 const int __user *, nodes,
1977 int __user *, status, int, flags)
1979 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1982 #ifdef CONFIG_COMPAT
1983 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1984 compat_uptr_t __user *, pages32,
1985 const int __user *, nodes,
1986 int __user *, status,
1989 const void __user * __user *pages;
1992 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1993 for (i = 0; i < nr_pages; i++) {
1996 if (get_user(p, pages32 + i) ||
1997 put_user(compat_ptr(p), pages + i))
2000 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2002 #endif /* CONFIG_COMPAT */
2004 #ifdef CONFIG_NUMA_BALANCING
2006 * Returns true if this is a safe migration target node for misplaced NUMA
2007 * pages. Currently it only checks the watermarks which crude
2009 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2010 unsigned long nr_migrate_pages)
2014 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2015 struct zone *zone = pgdat->node_zones + z;
2017 if (!populated_zone(zone))
2020 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2021 if (!zone_watermark_ok(zone, 0,
2022 high_wmark_pages(zone) +
2031 static struct page *alloc_misplaced_dst_page(struct page *page,
2034 int nid = (int) data;
2035 struct page *newpage;
2037 newpage = __alloc_pages_node(nid,
2038 (GFP_HIGHUSER_MOVABLE |
2039 __GFP_THISNODE | __GFP_NOMEMALLOC |
2040 __GFP_NORETRY | __GFP_NOWARN) &
2046 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2050 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2052 /* Avoid migrating to a node that is nearly full */
2053 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2056 if (isolate_lru_page(page))
2060 * migrate_misplaced_transhuge_page() skips page migration's usual
2061 * check on page_count(), so we must do it here, now that the page
2062 * has been isolated: a GUP pin, or any other pin, prevents migration.
2063 * The expected page count is 3: 1 for page's mapcount and 1 for the
2064 * caller's pin and 1 for the reference taken by isolate_lru_page().
2066 if (PageTransHuge(page) && page_count(page) != 3) {
2067 putback_lru_page(page);
2071 page_lru = page_is_file_lru(page);
2072 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2073 thp_nr_pages(page));
2076 * Isolating the page has taken another reference, so the
2077 * caller's reference can be safely dropped without the page
2078 * disappearing underneath us during migration.
2084 bool pmd_trans_migrating(pmd_t pmd)
2086 struct page *page = pmd_page(pmd);
2087 return PageLocked(page);
2091 * Attempt to migrate a misplaced page to the specified destination
2092 * node. Caller is expected to have an elevated reference count on
2093 * the page that will be dropped by this function before returning.
2095 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2098 pg_data_t *pgdat = NODE_DATA(node);
2101 LIST_HEAD(migratepages);
2104 * Don't migrate file pages that are mapped in multiple processes
2105 * with execute permissions as they are probably shared libraries.
2107 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2108 (vma->vm_flags & VM_EXEC))
2112 * Also do not migrate dirty pages as not all filesystems can move
2113 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2115 if (page_is_file_lru(page) && PageDirty(page))
2118 isolated = numamigrate_isolate_page(pgdat, page);
2122 list_add(&page->lru, &migratepages);
2123 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2124 NULL, node, MIGRATE_ASYNC,
2127 if (!list_empty(&migratepages)) {
2128 list_del(&page->lru);
2129 dec_node_page_state(page, NR_ISOLATED_ANON +
2130 page_is_file_lru(page));
2131 putback_lru_page(page);
2135 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2136 BUG_ON(!list_empty(&migratepages));
2143 #endif /* CONFIG_NUMA_BALANCING */
2145 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2147 * Migrates a THP to a given target node. page must be locked and is unlocked
2150 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2151 struct vm_area_struct *vma,
2152 pmd_t *pmd, pmd_t entry,
2153 unsigned long address,
2154 struct page *page, int node)
2157 pg_data_t *pgdat = NODE_DATA(node);
2159 struct page *new_page = NULL;
2160 int page_lru = page_is_file_lru(page);
2161 unsigned long start = address & HPAGE_PMD_MASK;
2163 new_page = alloc_pages_node(node,
2164 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2168 prep_transhuge_page(new_page);
2170 isolated = numamigrate_isolate_page(pgdat, page);
2176 /* Prepare a page as a migration target */
2177 __SetPageLocked(new_page);
2178 if (PageSwapBacked(page))
2179 __SetPageSwapBacked(new_page);
2181 /* anon mapping, we can simply copy page->mapping to the new page: */
2182 new_page->mapping = page->mapping;
2183 new_page->index = page->index;
2184 /* flush the cache before copying using the kernel virtual address */
2185 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2186 migrate_page_copy(new_page, page);
2187 WARN_ON(PageLRU(new_page));
2189 /* Recheck the target PMD */
2190 ptl = pmd_lock(mm, pmd);
2191 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2194 /* Reverse changes made by migrate_page_copy() */
2195 if (TestClearPageActive(new_page))
2196 SetPageActive(page);
2197 if (TestClearPageUnevictable(new_page))
2198 SetPageUnevictable(page);
2200 unlock_page(new_page);
2201 put_page(new_page); /* Free it */
2203 /* Retake the callers reference and putback on LRU */
2205 putback_lru_page(page);
2206 mod_node_page_state(page_pgdat(page),
2207 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2212 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2213 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2216 * Overwrite the old entry under pagetable lock and establish
2217 * the new PTE. Any parallel GUP will either observe the old
2218 * page blocking on the page lock, block on the page table
2219 * lock or observe the new page. The SetPageUptodate on the
2220 * new page and page_add_new_anon_rmap guarantee the copy is
2221 * visible before the pagetable update.
2223 page_add_anon_rmap(new_page, vma, start, true);
2225 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2226 * has already been flushed globally. So no TLB can be currently
2227 * caching this non present pmd mapping. There's no need to clear the
2228 * pmd before doing set_pmd_at(), nor to flush the TLB after
2229 * set_pmd_at(). Clearing the pmd here would introduce a race
2230 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2231 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2232 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2235 set_pmd_at(mm, start, pmd, entry);
2236 update_mmu_cache_pmd(vma, address, &entry);
2238 page_ref_unfreeze(page, 2);
2239 mlock_migrate_page(new_page, page);
2240 page_remove_rmap(page, true);
2241 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2245 /* Take an "isolate" reference and put new page on the LRU. */
2247 putback_lru_page(new_page);
2249 unlock_page(new_page);
2251 put_page(page); /* Drop the rmap reference */
2252 put_page(page); /* Drop the LRU isolation reference */
2254 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2255 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2257 mod_node_page_state(page_pgdat(page),
2258 NR_ISOLATED_ANON + page_lru,
2263 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2264 ptl = pmd_lock(mm, pmd);
2265 if (pmd_same(*pmd, entry)) {
2266 entry = pmd_modify(entry, vma->vm_page_prot);
2267 set_pmd_at(mm, start, pmd, entry);
2268 update_mmu_cache_pmd(vma, address, &entry);
2277 #endif /* CONFIG_NUMA_BALANCING */
2279 #endif /* CONFIG_NUMA */
2281 #ifdef CONFIG_DEVICE_PRIVATE
2282 static int migrate_vma_collect_skip(unsigned long start,
2284 struct mm_walk *walk)
2286 struct migrate_vma *migrate = walk->private;
2289 for (addr = start; addr < end; addr += PAGE_SIZE) {
2290 migrate->dst[migrate->npages] = 0;
2291 migrate->src[migrate->npages++] = 0;
2297 static int migrate_vma_collect_hole(unsigned long start,
2299 __always_unused int depth,
2300 struct mm_walk *walk)
2302 struct migrate_vma *migrate = walk->private;
2305 /* Only allow populating anonymous memory. */
2306 if (!vma_is_anonymous(walk->vma))
2307 return migrate_vma_collect_skip(start, end, walk);
2309 for (addr = start; addr < end; addr += PAGE_SIZE) {
2310 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2311 migrate->dst[migrate->npages] = 0;
2319 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2320 unsigned long start,
2322 struct mm_walk *walk)
2324 struct migrate_vma *migrate = walk->private;
2325 struct vm_area_struct *vma = walk->vma;
2326 struct mm_struct *mm = vma->vm_mm;
2327 unsigned long addr = start, unmapped = 0;
2332 if (pmd_none(*pmdp))
2333 return migrate_vma_collect_hole(start, end, -1, walk);
2335 if (pmd_trans_huge(*pmdp)) {
2338 ptl = pmd_lock(mm, pmdp);
2339 if (unlikely(!pmd_trans_huge(*pmdp))) {
2344 page = pmd_page(*pmdp);
2345 if (is_huge_zero_page(page)) {
2347 split_huge_pmd(vma, pmdp, addr);
2348 if (pmd_trans_unstable(pmdp))
2349 return migrate_vma_collect_skip(start, end,
2356 if (unlikely(!trylock_page(page)))
2357 return migrate_vma_collect_skip(start, end,
2359 ret = split_huge_page(page);
2363 return migrate_vma_collect_skip(start, end,
2365 if (pmd_none(*pmdp))
2366 return migrate_vma_collect_hole(start, end, -1,
2371 if (unlikely(pmd_bad(*pmdp)))
2372 return migrate_vma_collect_skip(start, end, walk);
2374 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2375 arch_enter_lazy_mmu_mode();
2377 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2378 unsigned long mpfn = 0, pfn;
2385 if (pte_none(pte)) {
2386 if (vma_is_anonymous(vma)) {
2387 mpfn = MIGRATE_PFN_MIGRATE;
2393 if (!pte_present(pte)) {
2395 * Only care about unaddressable device page special
2396 * page table entry. Other special swap entries are not
2397 * migratable, and we ignore regular swapped page.
2399 entry = pte_to_swp_entry(pte);
2400 if (!is_device_private_entry(entry))
2403 page = device_private_entry_to_page(entry);
2404 if (!(migrate->flags &
2405 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2406 page->pgmap->owner != migrate->pgmap_owner)
2409 mpfn = migrate_pfn(page_to_pfn(page)) |
2410 MIGRATE_PFN_MIGRATE;
2411 if (is_write_device_private_entry(entry))
2412 mpfn |= MIGRATE_PFN_WRITE;
2414 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2417 if (is_zero_pfn(pfn)) {
2418 mpfn = MIGRATE_PFN_MIGRATE;
2422 page = vm_normal_page(migrate->vma, addr, pte);
2423 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2424 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2427 /* FIXME support THP */
2428 if (!page || !page->mapping || PageTransCompound(page)) {
2434 * By getting a reference on the page we pin it and that blocks
2435 * any kind of migration. Side effect is that it "freezes" the
2438 * We drop this reference after isolating the page from the lru
2439 * for non device page (device page are not on the lru and thus
2440 * can't be dropped from it).
2446 * Optimize for the common case where page is only mapped once
2447 * in one process. If we can lock the page, then we can safely
2448 * set up a special migration page table entry now.
2450 if (trylock_page(page)) {
2453 mpfn |= MIGRATE_PFN_LOCKED;
2454 ptep_get_and_clear(mm, addr, ptep);
2456 /* Setup special migration page table entry */
2457 entry = make_migration_entry(page, mpfn &
2459 swp_pte = swp_entry_to_pte(entry);
2460 if (pte_present(pte)) {
2461 if (pte_soft_dirty(pte))
2462 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2463 if (pte_uffd_wp(pte))
2464 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2466 if (pte_swp_soft_dirty(pte))
2467 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2468 if (pte_swp_uffd_wp(pte))
2469 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2471 set_pte_at(mm, addr, ptep, swp_pte);
2474 * This is like regular unmap: we remove the rmap and
2475 * drop page refcount. Page won't be freed, as we took
2476 * a reference just above.
2478 page_remove_rmap(page, false);
2481 if (pte_present(pte))
2486 migrate->dst[migrate->npages] = 0;
2487 migrate->src[migrate->npages++] = mpfn;
2489 arch_leave_lazy_mmu_mode();
2490 pte_unmap_unlock(ptep - 1, ptl);
2492 /* Only flush the TLB if we actually modified any entries */
2494 flush_tlb_range(walk->vma, start, end);
2499 static const struct mm_walk_ops migrate_vma_walk_ops = {
2500 .pmd_entry = migrate_vma_collect_pmd,
2501 .pte_hole = migrate_vma_collect_hole,
2505 * migrate_vma_collect() - collect pages over a range of virtual addresses
2506 * @migrate: migrate struct containing all migration information
2508 * This will walk the CPU page table. For each virtual address backed by a
2509 * valid page, it updates the src array and takes a reference on the page, in
2510 * order to pin the page until we lock it and unmap it.
2512 static void migrate_vma_collect(struct migrate_vma *migrate)
2514 struct mmu_notifier_range range;
2517 * Note that the pgmap_owner is passed to the mmu notifier callback so
2518 * that the registered device driver can skip invalidating device
2519 * private page mappings that won't be migrated.
2521 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2522 migrate->vma->vm_mm, migrate->start, migrate->end,
2523 migrate->pgmap_owner);
2524 mmu_notifier_invalidate_range_start(&range);
2526 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2527 &migrate_vma_walk_ops, migrate);
2529 mmu_notifier_invalidate_range_end(&range);
2530 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2534 * migrate_vma_check_page() - check if page is pinned or not
2535 * @page: struct page to check
2537 * Pinned pages cannot be migrated. This is the same test as in
2538 * migrate_page_move_mapping(), except that here we allow migration of a
2541 static bool migrate_vma_check_page(struct page *page)
2544 * One extra ref because caller holds an extra reference, either from
2545 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2551 * FIXME support THP (transparent huge page), it is bit more complex to
2552 * check them than regular pages, because they can be mapped with a pmd
2553 * or with a pte (split pte mapping).
2555 if (PageCompound(page))
2558 /* Page from ZONE_DEVICE have one extra reference */
2559 if (is_zone_device_page(page)) {
2561 * Private page can never be pin as they have no valid pte and
2562 * GUP will fail for those. Yet if there is a pending migration
2563 * a thread might try to wait on the pte migration entry and
2564 * will bump the page reference count. Sadly there is no way to
2565 * differentiate a regular pin from migration wait. Hence to
2566 * avoid 2 racing thread trying to migrate back to CPU to enter
2567 * infinite loop (one stopping migration because the other is
2568 * waiting on pte migration entry). We always return true here.
2570 * FIXME proper solution is to rework migration_entry_wait() so
2571 * it does not need to take a reference on page.
2573 return is_device_private_page(page);
2576 /* For file back page */
2577 if (page_mapping(page))
2578 extra += 1 + page_has_private(page);
2580 if ((page_count(page) - extra) > page_mapcount(page))
2587 * migrate_vma_prepare() - lock pages and isolate them from the lru
2588 * @migrate: migrate struct containing all migration information
2590 * This locks pages that have been collected by migrate_vma_collect(). Once each
2591 * page is locked it is isolated from the lru (for non-device pages). Finally,
2592 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2593 * migrated by concurrent kernel threads.
2595 static void migrate_vma_prepare(struct migrate_vma *migrate)
2597 const unsigned long npages = migrate->npages;
2598 const unsigned long start = migrate->start;
2599 unsigned long addr, i, restore = 0;
2600 bool allow_drain = true;
2604 for (i = 0; (i < npages) && migrate->cpages; i++) {
2605 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2611 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2613 * Because we are migrating several pages there can be
2614 * a deadlock between 2 concurrent migration where each
2615 * are waiting on each other page lock.
2617 * Make migrate_vma() a best effort thing and backoff
2618 * for any page we can not lock right away.
2620 if (!trylock_page(page)) {
2621 migrate->src[i] = 0;
2627 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2630 /* ZONE_DEVICE pages are not on LRU */
2631 if (!is_zone_device_page(page)) {
2632 if (!PageLRU(page) && allow_drain) {
2633 /* Drain CPU's pagevec */
2634 lru_add_drain_all();
2635 allow_drain = false;
2638 if (isolate_lru_page(page)) {
2640 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2644 migrate->src[i] = 0;
2652 /* Drop the reference we took in collect */
2656 if (!migrate_vma_check_page(page)) {
2658 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2662 if (!is_zone_device_page(page)) {
2664 putback_lru_page(page);
2667 migrate->src[i] = 0;
2671 if (!is_zone_device_page(page))
2672 putback_lru_page(page);
2679 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2680 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2682 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2685 remove_migration_pte(page, migrate->vma, addr, page);
2687 migrate->src[i] = 0;
2695 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2696 * @migrate: migrate struct containing all migration information
2698 * Replace page mapping (CPU page table pte) with a special migration pte entry
2699 * and check again if it has been pinned. Pinned pages are restored because we
2700 * cannot migrate them.
2702 * This is the last step before we call the device driver callback to allocate
2703 * destination memory and copy contents of original page over to new page.
2705 static void migrate_vma_unmap(struct migrate_vma *migrate)
2707 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2708 const unsigned long npages = migrate->npages;
2709 const unsigned long start = migrate->start;
2710 unsigned long addr, i, restore = 0;
2712 for (i = 0; i < npages; i++) {
2713 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2715 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2718 if (page_mapped(page)) {
2719 try_to_unmap(page, flags);
2720 if (page_mapped(page))
2724 if (migrate_vma_check_page(page))
2728 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2733 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2734 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2736 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2739 remove_migration_ptes(page, page, false);
2741 migrate->src[i] = 0;
2745 if (is_zone_device_page(page))
2748 putback_lru_page(page);
2753 * migrate_vma_setup() - prepare to migrate a range of memory
2754 * @args: contains the vma, start, and pfns arrays for the migration
2756 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2759 * Prepare to migrate a range of memory virtual address range by collecting all
2760 * the pages backing each virtual address in the range, saving them inside the
2761 * src array. Then lock those pages and unmap them. Once the pages are locked
2762 * and unmapped, check whether each page is pinned or not. Pages that aren't
2763 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2764 * corresponding src array entry. Then restores any pages that are pinned, by
2765 * remapping and unlocking those pages.
2767 * The caller should then allocate destination memory and copy source memory to
2768 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2769 * flag set). Once these are allocated and copied, the caller must update each
2770 * corresponding entry in the dst array with the pfn value of the destination
2771 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2772 * (destination pages must have their struct pages locked, via lock_page()).
2774 * Note that the caller does not have to migrate all the pages that are marked
2775 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2776 * device memory to system memory. If the caller cannot migrate a device page
2777 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2778 * consequences for the userspace process, so it must be avoided if at all
2781 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2782 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2783 * allowing the caller to allocate device memory for those unbacked virtual
2784 * addresses. For this the caller simply has to allocate device memory and
2785 * properly set the destination entry like for regular migration. Note that
2786 * this can still fail, and thus inside the device driver you must check if the
2787 * migration was successful for those entries after calling migrate_vma_pages(),
2788 * just like for regular migration.
2790 * After that, the callers must call migrate_vma_pages() to go over each entry
2791 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2792 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2793 * then migrate_vma_pages() to migrate struct page information from the source
2794 * struct page to the destination struct page. If it fails to migrate the
2795 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2798 * At this point all successfully migrated pages have an entry in the src
2799 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2800 * array entry with MIGRATE_PFN_VALID flag set.
2802 * Once migrate_vma_pages() returns the caller may inspect which pages were
2803 * successfully migrated, and which were not. Successfully migrated pages will
2804 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2806 * It is safe to update device page table after migrate_vma_pages() because
2807 * both destination and source page are still locked, and the mmap_lock is held
2808 * in read mode (hence no one can unmap the range being migrated).
2810 * Once the caller is done cleaning up things and updating its page table (if it
2811 * chose to do so, this is not an obligation) it finally calls
2812 * migrate_vma_finalize() to update the CPU page table to point to new pages
2813 * for successfully migrated pages or otherwise restore the CPU page table to
2814 * point to the original source pages.
2816 int migrate_vma_setup(struct migrate_vma *args)
2818 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2820 args->start &= PAGE_MASK;
2821 args->end &= PAGE_MASK;
2822 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2823 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2827 if (args->start < args->vma->vm_start ||
2828 args->start >= args->vma->vm_end)
2830 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2832 if (!args->src || !args->dst)
2835 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2839 migrate_vma_collect(args);
2842 migrate_vma_prepare(args);
2844 migrate_vma_unmap(args);
2847 * At this point pages are locked and unmapped, and thus they have
2848 * stable content and can safely be copied to destination memory that
2849 * is allocated by the drivers.
2854 EXPORT_SYMBOL(migrate_vma_setup);
2857 * This code closely matches the code in:
2858 * __handle_mm_fault()
2859 * handle_pte_fault()
2860 * do_anonymous_page()
2861 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2864 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2869 struct vm_area_struct *vma = migrate->vma;
2870 struct mm_struct *mm = vma->vm_mm;
2880 /* Only allow populating anonymous memory */
2881 if (!vma_is_anonymous(vma))
2884 pgdp = pgd_offset(mm, addr);
2885 p4dp = p4d_alloc(mm, pgdp, addr);
2888 pudp = pud_alloc(mm, p4dp, addr);
2891 pmdp = pmd_alloc(mm, pudp, addr);
2895 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2899 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2900 * pte_offset_map() on pmds where a huge pmd might be created
2901 * from a different thread.
2903 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2904 * parallel threads are excluded by other means.
2906 * Here we only have mmap_read_lock(mm).
2908 if (pte_alloc(mm, pmdp))
2911 /* See the comment in pte_alloc_one_map() */
2912 if (unlikely(pmd_trans_unstable(pmdp)))
2915 if (unlikely(anon_vma_prepare(vma)))
2917 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2921 * The memory barrier inside __SetPageUptodate makes sure that
2922 * preceding stores to the page contents become visible before
2923 * the set_pte_at() write.
2925 __SetPageUptodate(page);
2927 if (is_zone_device_page(page)) {
2928 if (is_device_private_page(page)) {
2929 swp_entry_t swp_entry;
2931 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2932 entry = swp_entry_to_pte(swp_entry);
2935 * For now we only support migrating to un-addressable
2938 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2942 entry = mk_pte(page, vma->vm_page_prot);
2943 if (vma->vm_flags & VM_WRITE)
2944 entry = pte_mkwrite(pte_mkdirty(entry));
2947 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2949 if (check_stable_address_space(mm))
2952 if (pte_present(*ptep)) {
2953 unsigned long pfn = pte_pfn(*ptep);
2955 if (!is_zero_pfn(pfn))
2958 } else if (!pte_none(*ptep))
2962 * Check for userfaultfd but do not deliver the fault. Instead,
2965 if (userfaultfd_missing(vma))
2968 inc_mm_counter(mm, MM_ANONPAGES);
2969 page_add_new_anon_rmap(page, vma, addr, false);
2970 if (!is_zone_device_page(page))
2971 lru_cache_add_inactive_or_unevictable(page, vma);
2975 flush_cache_page(vma, addr, pte_pfn(*ptep));
2976 ptep_clear_flush_notify(vma, addr, ptep);
2977 set_pte_at_notify(mm, addr, ptep, entry);
2978 update_mmu_cache(vma, addr, ptep);
2980 /* No need to invalidate - it was non-present before */
2981 set_pte_at(mm, addr, ptep, entry);
2982 update_mmu_cache(vma, addr, ptep);
2985 pte_unmap_unlock(ptep, ptl);
2986 *src = MIGRATE_PFN_MIGRATE;
2990 pte_unmap_unlock(ptep, ptl);
2992 *src &= ~MIGRATE_PFN_MIGRATE;
2996 * migrate_vma_pages() - migrate meta-data from src page to dst page
2997 * @migrate: migrate struct containing all migration information
2999 * This migrates struct page meta-data from source struct page to destination
3000 * struct page. This effectively finishes the migration from source page to the
3003 void migrate_vma_pages(struct migrate_vma *migrate)
3005 const unsigned long npages = migrate->npages;
3006 const unsigned long start = migrate->start;
3007 struct mmu_notifier_range range;
3008 unsigned long addr, i;
3009 bool notified = false;
3011 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3012 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3013 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3014 struct address_space *mapping;
3018 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3023 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3028 mmu_notifier_range_init_migrate(&range, 0,
3029 migrate->vma, migrate->vma->vm_mm,
3031 migrate->pgmap_owner);
3032 mmu_notifier_invalidate_range_start(&range);
3034 migrate_vma_insert_page(migrate, addr, newpage,
3039 mapping = page_mapping(page);
3041 if (is_zone_device_page(newpage)) {
3042 if (is_device_private_page(newpage)) {
3044 * For now only support private anonymous when
3045 * migrating to un-addressable device memory.
3048 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3053 * Other types of ZONE_DEVICE page are not
3056 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3061 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3062 if (r != MIGRATEPAGE_SUCCESS)
3063 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3067 * No need to double call mmu_notifier->invalidate_range() callback as
3068 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3069 * did already call it.
3072 mmu_notifier_invalidate_range_only_end(&range);
3074 EXPORT_SYMBOL(migrate_vma_pages);
3077 * migrate_vma_finalize() - restore CPU page table entry
3078 * @migrate: migrate struct containing all migration information
3080 * This replaces the special migration pte entry with either a mapping to the
3081 * new page if migration was successful for that page, or to the original page
3084 * This also unlocks the pages and puts them back on the lru, or drops the extra
3085 * refcount, for device pages.
3087 void migrate_vma_finalize(struct migrate_vma *migrate)
3089 const unsigned long npages = migrate->npages;
3092 for (i = 0; i < npages; i++) {
3093 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3094 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3098 unlock_page(newpage);
3104 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3106 unlock_page(newpage);
3112 remove_migration_ptes(page, newpage, false);
3115 if (is_zone_device_page(page))
3118 putback_lru_page(page);
3120 if (newpage != page) {
3121 unlock_page(newpage);
3122 if (is_zone_device_page(newpage))
3125 putback_lru_page(newpage);
3129 EXPORT_SYMBOL(migrate_vma_finalize);
3130 #endif /* CONFIG_DEVICE_PRIVATE */