1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
16 #define BPF_MAX_VAR_OFF (1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
20 #define BPF_MAX_VAR_SIZ (1 << 29)
21 /* size of type_str_buf in bpf_verifier. */
22 #define TYPE_STR_BUF_LEN 128
24 /* Liveness marks, used for registers and spilled-regs (in stack slots).
25 * Read marks propagate upwards until they find a write mark; they record that
26 * "one of this state's descendants read this reg" (and therefore the reg is
27 * relevant for states_equal() checks).
28 * Write marks collect downwards and do not propagate; they record that "the
29 * straight-line code that reached this state (from its parent) wrote this reg"
30 * (and therefore that reads propagated from this state or its descendants
31 * should not propagate to its parent).
32 * A state with a write mark can receive read marks; it just won't propagate
33 * them to its parent, since the write mark is a property, not of the state,
34 * but of the link between it and its parent. See mark_reg_read() and
35 * mark_stack_slot_read() in kernel/bpf/verifier.c.
37 enum bpf_reg_liveness {
38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
40 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
41 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
42 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
43 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
46 /* For every reg representing a map value or allocated object pointer,
47 * we consider the tuple of (ptr, id) for them to be unique in verifier
48 * context and conside them to not alias each other for the purposes of
49 * tracking lock state.
51 struct bpf_active_lock {
52 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL,
53 * there's no active lock held, and other fields have no
54 * meaning. If non-NULL, it indicates that a lock is held and
55 * id member has the reg->id of the register which can be >= 0.
58 /* This will be reg->id */
62 struct bpf_reg_state {
63 /* Ordering of fields matters. See states_equal() */
64 enum bpf_reg_type type;
65 /* Fixed part of pointer offset, pointer types only */
68 /* valid when type == PTR_TO_PACKET */
71 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
72 * PTR_TO_MAP_VALUE_OR_NULL
75 struct bpf_map *map_ptr;
76 /* To distinguish map lookups from outer map
77 * the map_uid is non-zero for registers
78 * pointing to inner maps.
83 /* for PTR_TO_BTF_ID */
89 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
91 u32 dynptr_id; /* for dynptr slices */
94 /* For dynptr stack slots */
96 enum bpf_dynptr_type type;
97 /* A dynptr is 16 bytes so it takes up 2 stack slots.
98 * We need to track which slot is the first slot
99 * to protect against cases where the user may try to
100 * pass in an address starting at the second slot of the
106 /* Max size from any of the above. */
112 u32 subprogno; /* for PTR_TO_FUNC */
114 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
116 * For pointer types, this represents the variable part of the offset
117 * from the pointed-to object, and is shared with all bpf_reg_states
118 * with the same id as us.
121 /* Used to determine if any memory access using this register will
122 * result in a bad access.
123 * These refer to the same value as var_off, not necessarily the actual
124 * contents of the register.
126 s64 smin_value; /* minimum possible (s64)value */
127 s64 smax_value; /* maximum possible (s64)value */
128 u64 umin_value; /* minimum possible (u64)value */
129 u64 umax_value; /* maximum possible (u64)value */
130 s32 s32_min_value; /* minimum possible (s32)value */
131 s32 s32_max_value; /* maximum possible (s32)value */
132 u32 u32_min_value; /* minimum possible (u32)value */
133 u32 u32_max_value; /* maximum possible (u32)value */
134 /* For PTR_TO_PACKET, used to find other pointers with the same variable
135 * offset, so they can share range knowledge.
136 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
137 * came from, when one is tested for != NULL.
138 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
139 * for the purpose of tracking that it's freed.
140 * For PTR_TO_SOCKET this is used to share which pointers retain the
141 * same reference to the socket, to determine proper reference freeing.
142 * For stack slots that are dynptrs, this is used to track references to
143 * the dynptr to determine proper reference freeing.
146 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
147 * from a pointer-cast helper, bpf_sk_fullsock() and
150 * Consider the following where "sk" is a reference counted
151 * pointer returned from "sk = bpf_sk_lookup_tcp();":
153 * 1: sk = bpf_sk_lookup_tcp();
154 * 2: if (!sk) { return 0; }
155 * 3: fullsock = bpf_sk_fullsock(sk);
156 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
157 * 5: tp = bpf_tcp_sock(fullsock);
158 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
159 * 7: bpf_sk_release(sk);
160 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
162 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
163 * "tp" ptr should be invalidated also. In order to do that,
164 * the reg holding "fullsock" and "sk" need to remember
165 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
166 * such that the verifier can reset all regs which have
167 * ref_obj_id matching the sk_reg->id.
169 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
170 * sk_reg->id will stay as NULL-marking purpose only.
171 * After NULL-marking is done, sk_reg->id can be reset to 0.
173 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
174 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
176 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
177 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
178 * which is the same as sk_reg->ref_obj_id.
180 * From the verifier perspective, if sk, fullsock and tp
181 * are not NULL, they are the same ptr with different
182 * reg->type. In particular, bpf_sk_release(tp) is also
183 * allowed and has the same effect as bpf_sk_release(sk).
186 /* parentage chain for liveness checking */
187 struct bpf_reg_state *parent;
188 /* Inside the callee two registers can be both PTR_TO_STACK like
189 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
190 * while another to the caller's stack. To differentiate them 'frameno'
191 * is used which is an index in bpf_verifier_state->frame[] array
192 * pointing to bpf_func_state.
195 /* Tracks subreg definition. The stored value is the insn_idx of the
196 * writing insn. This is safe because subreg_def is used before any insn
197 * patching which only happens after main verification finished.
200 enum bpf_reg_liveness live;
201 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
205 enum bpf_stack_slot_type {
206 STACK_INVALID, /* nothing was stored in this stack slot */
207 STACK_SPILL, /* register spilled into stack */
208 STACK_MISC, /* BPF program wrote some data into this slot */
209 STACK_ZERO, /* BPF program wrote constant zero */
210 /* A dynptr is stored in this stack slot. The type of dynptr
211 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
216 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
217 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern)
218 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE)
220 struct bpf_stack_state {
221 struct bpf_reg_state spilled_ptr;
222 u8 slot_type[BPF_REG_SIZE];
225 struct bpf_reference_state {
226 /* Track each reference created with a unique id, even if the same
227 * instruction creates the reference multiple times (eg, via CALL).
230 /* Instruction where the allocation of this reference occurred. This
231 * is used purely to inform the user of a reference leak.
234 /* There can be a case like:
239 * Hence for frame 4, if callback_ref just stored boolean, it would be
240 * impossible to distinguish nested callback refs. Hence store the
241 * frameno and compare that to callback_ref in check_reference_leak when
242 * exiting a callback function.
247 /* state of the program:
248 * type of all registers and stack info
250 struct bpf_func_state {
251 struct bpf_reg_state regs[MAX_BPF_REG];
252 /* index of call instruction that called into this func */
254 /* stack frame number of this function state from pov of
255 * enclosing bpf_verifier_state.
256 * 0 = main function, 1 = first callee.
259 /* subprog number == index within subprog_info
260 * zero == main subprog
263 /* Every bpf_timer_start will increment async_entry_cnt.
264 * It's used to distinguish:
265 * void foo(void) { for(;;); }
266 * void foo(void) { bpf_timer_set_callback(,foo); }
270 struct tnum callback_ret_range;
271 bool in_async_callback_fn;
273 /* The following fields should be last. See copy_func_state() */
275 struct bpf_reference_state *refs;
277 struct bpf_stack_state *stack;
280 struct bpf_idx_pair {
290 #define MAX_CALL_FRAMES 8
291 /* Maximum number of register states that can exist at once */
292 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
293 struct bpf_verifier_state {
294 /* call stack tracking */
295 struct bpf_func_state *frame[MAX_CALL_FRAMES];
296 struct bpf_verifier_state *parent;
298 * 'branches' field is the number of branches left to explore:
299 * 0 - all possible paths from this state reached bpf_exit or
301 * 1 - at least one path is being explored.
302 * This state hasn't reached bpf_exit
303 * 2 - at least two paths are being explored.
304 * This state is an immediate parent of two children.
305 * One is fallthrough branch with branches==1 and another
306 * state is pushed into stack (to be explored later) also with
307 * branches==1. The parent of this state has branches==1.
308 * The verifier state tree connected via 'parent' pointer looks like:
311 * 2 -> 1 (first 'if' pushed into stack)
313 * 2 -> 1 (second 'if' pushed into stack)
318 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
319 * and the verifier state tree will look:
322 * 2 -> 1 (first 'if' pushed into stack)
324 * 1 -> 1 (second 'if' pushed into stack)
328 * After pop_stack() the do_check() will resume at second 'if'.
330 * If is_state_visited() sees a state with branches > 0 it means
331 * there is a loop. If such state is exactly equal to the current state
332 * it's an infinite loop. Note states_equal() checks for states
333 * equivalency, so two states being 'states_equal' does not mean
334 * infinite loop. The exact comparison is provided by
335 * states_maybe_looping() function. It's a stronger pre-check and
336 * much faster than states_equal().
338 * This algorithm may not find all possible infinite loops or
339 * loop iteration count may be too high.
340 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
346 struct bpf_active_lock active_lock;
348 bool active_rcu_lock;
350 /* first and last insn idx of this verifier state */
353 /* jmp history recorded from first to last.
354 * backtracking is using it to go from last to first.
355 * For most states jmp_history_cnt is [0-3].
356 * For loops can go up to ~40.
358 struct bpf_idx_pair *jmp_history;
362 #define bpf_get_spilled_reg(slot, frame) \
363 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
364 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \
365 ? &frame->stack[slot].spilled_ptr : NULL)
367 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
368 #define bpf_for_each_spilled_reg(iter, frame, reg) \
369 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
370 iter < frame->allocated_stack / BPF_REG_SIZE; \
371 iter++, reg = bpf_get_spilled_reg(iter, frame))
373 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
374 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
376 struct bpf_verifier_state *___vstate = __vst; \
378 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \
379 struct bpf_reg_state *___regs; \
380 __state = ___vstate->frame[___i]; \
381 ___regs = __state->regs; \
382 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \
383 __reg = &___regs[___j]; \
386 bpf_for_each_spilled_reg(___j, __state, __reg) { \
394 /* linked list of verifier states used to prune search */
395 struct bpf_verifier_state_list {
396 struct bpf_verifier_state state;
397 struct bpf_verifier_state_list *next;
398 int miss_cnt, hit_cnt;
401 struct bpf_loop_inline_state {
402 unsigned int initialized:1; /* set to true upon first entry */
403 unsigned int fit_for_inline:1; /* true if callback function is the same
404 * at each call and flags are always zero
406 u32 callback_subprogno; /* valid when fit_for_inline is true */
409 /* Possible states for alu_state member. */
410 #define BPF_ALU_SANITIZE_SRC (1U << 0)
411 #define BPF_ALU_SANITIZE_DST (1U << 1)
412 #define BPF_ALU_NEG_VALUE (1U << 2)
413 #define BPF_ALU_NON_POINTER (1U << 3)
414 #define BPF_ALU_IMMEDIATE (1U << 4)
415 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
416 BPF_ALU_SANITIZE_DST)
418 struct bpf_insn_aux_data {
420 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
421 unsigned long map_ptr_state; /* pointer/poison value for maps */
422 s32 call_imm; /* saved imm field of call insn */
423 u32 alu_limit; /* limit for add/sub register with pointer */
425 u32 map_index; /* index into used_maps[] */
426 u32 map_off; /* offset from value base address */
429 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
433 u32 btf_id; /* btf_id for struct typed var */
435 u32 mem_size; /* mem_size for non-struct typed var */
438 /* if instruction is a call to bpf_loop this field tracks
439 * the state of the relevant registers to make decision about inlining
441 struct bpf_loop_inline_state loop_inline_state;
443 u64 obj_new_size; /* remember the size of type passed to bpf_obj_new to rewrite R1 */
444 struct btf_struct_meta *kptr_struct_meta;
445 u64 map_key_state; /* constant (32 bit) key tracking for maps */
446 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
447 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
448 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
449 bool zext_dst; /* this insn zero extends dst reg */
450 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
451 u8 alu_state; /* used in combination with alu_limit */
453 /* below fields are initialized once */
454 unsigned int orig_idx; /* original instruction index */
459 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
460 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
462 #define BPF_VERIFIER_TMP_LOG_SIZE 1024
464 struct bpf_verifier_log {
466 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
472 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
474 return log->len_used >= log->len_total - 1;
477 #define BPF_LOG_LEVEL1 1
478 #define BPF_LOG_LEVEL2 2
479 #define BPF_LOG_STATS 4
480 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
481 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS)
482 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
483 #define BPF_LOG_MIN_ALIGNMENT 8U
484 #define BPF_LOG_ALIGNMENT 40U
486 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
489 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
490 log->level == BPF_LOG_KERNEL);
494 bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
496 return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 &&
497 log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK);
500 #define BPF_MAX_SUBPROGS 256
502 struct bpf_subprog_info {
503 /* 'start' has to be the first field otherwise find_subprog() won't work */
504 u32 start; /* insn idx of function entry point */
505 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
506 u16 stack_depth; /* max. stack depth used by this function */
508 bool tail_call_reachable;
513 /* single container for all structs
514 * one verifier_env per bpf_check() call
516 struct bpf_verifier_env {
519 struct bpf_prog *prog; /* eBPF program being verified */
520 const struct bpf_verifier_ops *ops;
521 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
522 int stack_size; /* number of states to be processed */
523 bool strict_alignment; /* perform strict pointer alignment checks */
524 bool test_state_freq; /* test verifier with different pruning frequency */
525 struct bpf_verifier_state *cur_state; /* current verifier state */
526 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
527 struct bpf_verifier_state_list *free_list;
528 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
529 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
530 u32 used_map_cnt; /* number of used maps */
531 u32 used_btf_cnt; /* number of used BTF objects */
532 u32 id_gen; /* used to generate unique reg IDs */
533 bool explore_alu_limits;
534 bool allow_ptr_leaks;
535 bool allow_uninit_stack;
539 bool seen_direct_write;
540 bool rcu_tag_supported;
541 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
542 const struct bpf_line_info *prev_linfo;
543 struct bpf_verifier_log log;
544 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
545 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
551 u32 pass_cnt; /* number of times do_check() was called */
553 /* number of instructions analyzed by the verifier */
554 u32 prev_insn_processed, insn_processed;
555 /* number of jmps, calls, exits analyzed so far */
556 u32 prev_jmps_processed, jmps_processed;
557 /* total verification time */
558 u64 verification_time;
559 /* maximum number of verifier states kept in 'branching' instructions */
560 u32 max_states_per_insn;
561 /* total number of allocated verifier states */
563 /* some states are freed during program analysis.
564 * this is peak number of states. this number dominates kernel
565 * memory consumption during verification
568 /* longest register parentage chain walked for liveness marking */
569 u32 longest_mark_read_walk;
572 /* bit mask to keep track of whether a register has been accessed
573 * since the last time the function state was printed
576 /* Same as scratched_regs but for stack slots */
577 u64 scratched_stack_slots;
578 u32 prev_log_len, prev_insn_print_len;
579 /* buffer used in reg_type_str() to generate reg_type string */
580 char type_str_buf[TYPE_STR_BUF_LEN];
583 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
584 const char *fmt, va_list args);
585 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
586 const char *fmt, ...);
587 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
588 const char *fmt, ...);
590 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
592 struct bpf_verifier_state *cur = env->cur_state;
594 return cur->frame[cur->curframe];
597 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
599 return cur_func(env)->regs;
602 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
603 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
604 int insn_idx, int prev_insn_idx);
605 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
607 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
608 struct bpf_insn *insn);
610 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
612 int check_ptr_off_reg(struct bpf_verifier_env *env,
613 const struct bpf_reg_state *reg, int regno);
614 int check_func_arg_reg_off(struct bpf_verifier_env *env,
615 const struct bpf_reg_state *reg, int regno,
616 enum bpf_arg_type arg_type);
617 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
618 u32 regno, u32 mem_size);
619 struct bpf_call_arg_meta;
620 int process_dynptr_func(struct bpf_verifier_env *env, int regno,
621 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta);
623 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
624 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
625 struct btf *btf, u32 btf_id)
628 return ((u64)tgt_prog->aux->id << 32) | btf_id;
630 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
633 /* unpack the IDs from the key as constructed above */
634 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
639 *btf_id = key & 0x7FFFFFFF;
642 int bpf_check_attach_target(struct bpf_verifier_log *log,
643 const struct bpf_prog *prog,
644 const struct bpf_prog *tgt_prog,
646 struct bpf_attach_target_info *tgt_info);
647 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
649 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
651 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
653 /* extract base type from bpf_{arg, return, reg}_type. */
654 static inline u32 base_type(u32 type)
656 return type & BPF_BASE_TYPE_MASK;
659 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
660 static inline u32 type_flag(u32 type)
662 return type & ~BPF_BASE_TYPE_MASK;
665 /* only use after check_attach_btf_id() */
666 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
668 return prog->type == BPF_PROG_TYPE_EXT ?
669 prog->aux->dst_prog->type : prog->type;
672 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
674 switch (resolve_prog_type(prog)) {
675 case BPF_PROG_TYPE_TRACING:
676 return prog->expected_attach_type != BPF_TRACE_ITER;
677 case BPF_PROG_TYPE_STRUCT_OPS:
678 case BPF_PROG_TYPE_LSM:
685 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED)
687 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
689 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
692 #endif /* _LINUX_BPF_VERIFIER_H */