2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
42 #include <asm/processor.h>
45 #include <asm/uaccess.h>
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
51 static DEFINE_SPINLOCK(kvm_lock);
52 static LIST_HEAD(vm_list);
54 static cpumask_t cpus_hardware_enabled;
56 struct kvm_x86_ops *kvm_x86_ops;
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
62 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
64 static struct kvm_stats_debugfs_item {
67 struct dentry *dentry;
68 } debugfs_entries[] = {
69 { "pf_fixed", STAT_OFFSET(pf_fixed) },
70 { "pf_guest", STAT_OFFSET(pf_guest) },
71 { "tlb_flush", STAT_OFFSET(tlb_flush) },
72 { "invlpg", STAT_OFFSET(invlpg) },
73 { "exits", STAT_OFFSET(exits) },
74 { "io_exits", STAT_OFFSET(io_exits) },
75 { "mmio_exits", STAT_OFFSET(mmio_exits) },
76 { "signal_exits", STAT_OFFSET(signal_exits) },
77 { "irq_window", STAT_OFFSET(irq_window_exits) },
78 { "halt_exits", STAT_OFFSET(halt_exits) },
79 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
80 { "request_irq", STAT_OFFSET(request_irq_exits) },
81 { "irq_exits", STAT_OFFSET(irq_exits) },
82 { "light_exits", STAT_OFFSET(light_exits) },
83 { "efer_reload", STAT_OFFSET(efer_reload) },
87 static struct dentry *debugfs_dir;
89 #define MAX_IO_MSRS 256
91 #define CR0_RESERVED_BITS \
92 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
93 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
94 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
95 #define CR4_RESERVED_BITS \
96 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
97 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
98 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
99 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
101 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
102 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
105 // LDT or TSS descriptor in the GDT. 16 bytes.
106 struct segment_descriptor_64 {
107 struct segment_descriptor s;
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
117 unsigned long segment_base(u16 selector)
119 struct descriptor_table gdt;
120 struct segment_descriptor *d;
121 unsigned long table_base;
122 typedef unsigned long ul;
128 asm ("sgdt %0" : "=m"(gdt));
129 table_base = gdt.base;
131 if (selector & 4) { /* from ldt */
134 asm ("sldt %0" : "=g"(ldt_selector));
135 table_base = segment_base(ldt_selector);
137 d = (struct segment_descriptor *)(table_base + (selector & ~7));
138 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
141 && (d->type == 2 || d->type == 9 || d->type == 11))
142 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
146 EXPORT_SYMBOL_GPL(segment_base);
148 static inline int valid_vcpu(int n)
150 return likely(n >= 0 && n < KVM_MAX_VCPUS);
153 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
155 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
158 vcpu->guest_fpu_loaded = 1;
159 fx_save(&vcpu->host_fx_image);
160 fx_restore(&vcpu->guest_fx_image);
162 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
164 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
166 if (!vcpu->guest_fpu_loaded)
169 vcpu->guest_fpu_loaded = 0;
170 fx_save(&vcpu->guest_fx_image);
171 fx_restore(&vcpu->host_fx_image);
173 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
176 * Switches to specified vcpu, until a matching vcpu_put()
178 static void vcpu_load(struct kvm_vcpu *vcpu)
182 mutex_lock(&vcpu->mutex);
184 preempt_notifier_register(&vcpu->preempt_notifier);
185 kvm_x86_ops->vcpu_load(vcpu, cpu);
189 static void vcpu_put(struct kvm_vcpu *vcpu)
192 kvm_x86_ops->vcpu_put(vcpu);
193 preempt_notifier_unregister(&vcpu->preempt_notifier);
195 mutex_unlock(&vcpu->mutex);
198 static void ack_flush(void *_completed)
200 atomic_t *completed = _completed;
202 atomic_inc(completed);
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
209 struct kvm_vcpu *vcpu;
212 atomic_set(&completed, 0);
215 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
216 vcpu = kvm->vcpus[i];
219 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
222 if (cpu != -1 && cpu != raw_smp_processor_id())
223 if (!cpu_isset(cpu, cpus)) {
230 * We really want smp_call_function_mask() here. But that's not
231 * available, so ipi all cpus in parallel and wait for them
234 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
235 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
236 while (atomic_read(&completed) != needed) {
242 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
247 mutex_init(&vcpu->mutex);
249 vcpu->mmu.root_hpa = INVALID_PAGE;
252 if (!irqchip_in_kernel(kvm) || id == 0)
253 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
255 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
256 init_waitqueue_head(&vcpu->wq);
258 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
263 vcpu->run = page_address(page);
265 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
270 vcpu->pio_data = page_address(page);
272 r = kvm_mmu_create(vcpu);
274 goto fail_free_pio_data;
279 free_page((unsigned long)vcpu->pio_data);
281 free_page((unsigned long)vcpu->run);
285 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
287 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
289 kvm_mmu_destroy(vcpu);
291 hrtimer_cancel(&vcpu->apic->timer.dev);
292 kvm_free_apic(vcpu->apic);
293 free_page((unsigned long)vcpu->pio_data);
294 free_page((unsigned long)vcpu->run);
296 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
298 static struct kvm *kvm_create_vm(void)
300 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
303 return ERR_PTR(-ENOMEM);
305 kvm_io_bus_init(&kvm->pio_bus);
306 mutex_init(&kvm->lock);
307 INIT_LIST_HEAD(&kvm->active_mmu_pages);
308 kvm_io_bus_init(&kvm->mmio_bus);
309 spin_lock(&kvm_lock);
310 list_add(&kvm->vm_list, &vm_list);
311 spin_unlock(&kvm_lock);
316 * Free any memory in @free but not in @dont.
318 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
319 struct kvm_memory_slot *dont)
323 if (!dont || free->phys_mem != dont->phys_mem)
324 if (free->phys_mem) {
325 for (i = 0; i < free->npages; ++i)
326 if (free->phys_mem[i])
327 __free_page(free->phys_mem[i]);
328 vfree(free->phys_mem);
331 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
332 vfree(free->dirty_bitmap);
334 free->phys_mem = NULL;
336 free->dirty_bitmap = NULL;
339 static void kvm_free_physmem(struct kvm *kvm)
343 for (i = 0; i < kvm->nmemslots; ++i)
344 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
347 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
351 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
352 if (vcpu->pio.guest_pages[i]) {
353 __free_page(vcpu->pio.guest_pages[i]);
354 vcpu->pio.guest_pages[i] = NULL;
358 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
361 kvm_mmu_unload(vcpu);
365 static void kvm_free_vcpus(struct kvm *kvm)
370 * Unpin any mmu pages first.
372 for (i = 0; i < KVM_MAX_VCPUS; ++i)
374 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
375 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
377 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
378 kvm->vcpus[i] = NULL;
384 static void kvm_destroy_vm(struct kvm *kvm)
386 spin_lock(&kvm_lock);
387 list_del(&kvm->vm_list);
388 spin_unlock(&kvm_lock);
389 kvm_io_bus_destroy(&kvm->pio_bus);
390 kvm_io_bus_destroy(&kvm->mmio_bus);
394 kvm_free_physmem(kvm);
398 static int kvm_vm_release(struct inode *inode, struct file *filp)
400 struct kvm *kvm = filp->private_data;
406 static void inject_gp(struct kvm_vcpu *vcpu)
408 kvm_x86_ops->inject_gp(vcpu, 0);
412 * Load the pae pdptrs. Return true is they are all valid.
414 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
416 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
417 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
422 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
424 mutex_lock(&vcpu->kvm->lock);
425 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
431 pdpt = kmap_atomic(page, KM_USER0);
432 memcpy(pdpte, pdpt+offset, sizeof(pdpte));
433 kunmap_atomic(pdpt, KM_USER0);
435 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
436 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
443 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
445 mutex_unlock(&vcpu->kvm->lock);
450 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
452 if (cr0 & CR0_RESERVED_BITS) {
453 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
459 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
460 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
465 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
466 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
467 "and a clear PE flag\n");
472 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
474 if ((vcpu->shadow_efer & EFER_LME)) {
478 printk(KERN_DEBUG "set_cr0: #GP, start paging "
479 "in long mode while PAE is disabled\n");
483 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
485 printk(KERN_DEBUG "set_cr0: #GP, start paging "
486 "in long mode while CS.L == 1\n");
493 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
494 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
502 kvm_x86_ops->set_cr0(vcpu, cr0);
505 mutex_lock(&vcpu->kvm->lock);
506 kvm_mmu_reset_context(vcpu);
507 mutex_unlock(&vcpu->kvm->lock);
510 EXPORT_SYMBOL_GPL(set_cr0);
512 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
514 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
516 EXPORT_SYMBOL_GPL(lmsw);
518 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
520 if (cr4 & CR4_RESERVED_BITS) {
521 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
526 if (is_long_mode(vcpu)) {
527 if (!(cr4 & X86_CR4_PAE)) {
528 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
533 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
534 && !load_pdptrs(vcpu, vcpu->cr3)) {
535 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
540 if (cr4 & X86_CR4_VMXE) {
541 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
545 kvm_x86_ops->set_cr4(vcpu, cr4);
547 mutex_lock(&vcpu->kvm->lock);
548 kvm_mmu_reset_context(vcpu);
549 mutex_unlock(&vcpu->kvm->lock);
551 EXPORT_SYMBOL_GPL(set_cr4);
553 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
555 if (is_long_mode(vcpu)) {
556 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
557 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
563 if (cr3 & CR3_PAE_RESERVED_BITS) {
565 "set_cr3: #GP, reserved bits\n");
569 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
570 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
576 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
578 "set_cr3: #GP, reserved bits\n");
585 mutex_lock(&vcpu->kvm->lock);
587 * Does the new cr3 value map to physical memory? (Note, we
588 * catch an invalid cr3 even in real-mode, because it would
589 * cause trouble later on when we turn on paging anyway.)
591 * A real CPU would silently accept an invalid cr3 and would
592 * attempt to use it - with largely undefined (and often hard
593 * to debug) behavior on the guest side.
595 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
599 vcpu->mmu.new_cr3(vcpu);
601 mutex_unlock(&vcpu->kvm->lock);
603 EXPORT_SYMBOL_GPL(set_cr3);
605 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
607 if (cr8 & CR8_RESERVED_BITS) {
608 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
612 if (irqchip_in_kernel(vcpu->kvm))
613 kvm_lapic_set_tpr(vcpu, cr8);
617 EXPORT_SYMBOL_GPL(set_cr8);
619 unsigned long get_cr8(struct kvm_vcpu *vcpu)
621 if (irqchip_in_kernel(vcpu->kvm))
622 return kvm_lapic_get_cr8(vcpu);
626 EXPORT_SYMBOL_GPL(get_cr8);
628 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
630 if (irqchip_in_kernel(vcpu->kvm))
631 return vcpu->apic_base;
633 return vcpu->apic_base;
635 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
637 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
639 /* TODO: reserve bits check */
640 if (irqchip_in_kernel(vcpu->kvm))
641 kvm_lapic_set_base(vcpu, data);
643 vcpu->apic_base = data;
645 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
647 void fx_init(struct kvm_vcpu *vcpu)
649 unsigned after_mxcsr_mask;
651 /* Initialize guest FPU by resetting ours and saving into guest's */
653 fx_save(&vcpu->host_fx_image);
655 fx_save(&vcpu->guest_fx_image);
656 fx_restore(&vcpu->host_fx_image);
659 vcpu->cr0 |= X86_CR0_ET;
660 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
661 vcpu->guest_fx_image.mxcsr = 0x1f80;
662 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
663 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
665 EXPORT_SYMBOL_GPL(fx_init);
668 * Allocate some memory and give it an address in the guest physical address
671 * Discontiguous memory is allowed, mostly for framebuffers.
673 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
674 struct kvm_memory_region *mem)
678 unsigned long npages;
680 struct kvm_memory_slot *memslot;
681 struct kvm_memory_slot old, new;
684 /* General sanity checks */
685 if (mem->memory_size & (PAGE_SIZE - 1))
687 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
689 if (mem->slot >= KVM_MEMORY_SLOTS)
691 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
694 memslot = &kvm->memslots[mem->slot];
695 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
696 npages = mem->memory_size >> PAGE_SHIFT;
699 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
701 mutex_lock(&kvm->lock);
703 new = old = *memslot;
705 new.base_gfn = base_gfn;
707 new.flags = mem->flags;
709 /* Disallow changing a memory slot's size. */
711 if (npages && old.npages && npages != old.npages)
714 /* Check for overlaps */
716 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
717 struct kvm_memory_slot *s = &kvm->memslots[i];
721 if (!((base_gfn + npages <= s->base_gfn) ||
722 (base_gfn >= s->base_gfn + s->npages)))
726 /* Deallocate if slot is being removed */
730 /* Free page dirty bitmap if unneeded */
731 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
732 new.dirty_bitmap = NULL;
736 /* Allocate if a slot is being created */
737 if (npages && !new.phys_mem) {
738 new.phys_mem = vmalloc(npages * sizeof(struct page *));
743 memset(new.phys_mem, 0, npages * sizeof(struct page *));
744 for (i = 0; i < npages; ++i) {
745 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
747 if (!new.phys_mem[i])
749 set_page_private(new.phys_mem[i],0);
753 /* Allocate page dirty bitmap if needed */
754 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
755 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
757 new.dirty_bitmap = vmalloc(dirty_bytes);
758 if (!new.dirty_bitmap)
760 memset(new.dirty_bitmap, 0, dirty_bytes);
763 if (mem->slot >= kvm->nmemslots)
764 kvm->nmemslots = mem->slot + 1;
768 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
769 kvm_flush_remote_tlbs(kvm);
771 mutex_unlock(&kvm->lock);
773 kvm_free_physmem_slot(&old, &new);
777 mutex_unlock(&kvm->lock);
778 kvm_free_physmem_slot(&new, &old);
784 * Get (and clear) the dirty memory log for a memory slot.
786 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
787 struct kvm_dirty_log *log)
789 struct kvm_memory_slot *memslot;
792 unsigned long any = 0;
794 mutex_lock(&kvm->lock);
797 if (log->slot >= KVM_MEMORY_SLOTS)
800 memslot = &kvm->memslots[log->slot];
802 if (!memslot->dirty_bitmap)
805 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
807 for (i = 0; !any && i < n/sizeof(long); ++i)
808 any = memslot->dirty_bitmap[i];
811 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
814 /* If nothing is dirty, don't bother messing with page tables. */
816 kvm_mmu_slot_remove_write_access(kvm, log->slot);
817 kvm_flush_remote_tlbs(kvm);
818 memset(memslot->dirty_bitmap, 0, n);
824 mutex_unlock(&kvm->lock);
829 * Set a new alias region. Aliases map a portion of physical memory into
830 * another portion. This is useful for memory windows, for example the PC
833 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
834 struct kvm_memory_alias *alias)
837 struct kvm_mem_alias *p;
840 /* General sanity checks */
841 if (alias->memory_size & (PAGE_SIZE - 1))
843 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
845 if (alias->slot >= KVM_ALIAS_SLOTS)
847 if (alias->guest_phys_addr + alias->memory_size
848 < alias->guest_phys_addr)
850 if (alias->target_phys_addr + alias->memory_size
851 < alias->target_phys_addr)
854 mutex_lock(&kvm->lock);
856 p = &kvm->aliases[alias->slot];
857 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
858 p->npages = alias->memory_size >> PAGE_SHIFT;
859 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
861 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
862 if (kvm->aliases[n - 1].npages)
866 kvm_mmu_zap_all(kvm);
868 mutex_unlock(&kvm->lock);
876 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
881 switch (chip->chip_id) {
882 case KVM_IRQCHIP_PIC_MASTER:
883 memcpy (&chip->chip.pic,
884 &pic_irqchip(kvm)->pics[0],
885 sizeof(struct kvm_pic_state));
887 case KVM_IRQCHIP_PIC_SLAVE:
888 memcpy (&chip->chip.pic,
889 &pic_irqchip(kvm)->pics[1],
890 sizeof(struct kvm_pic_state));
892 case KVM_IRQCHIP_IOAPIC:
893 memcpy (&chip->chip.ioapic,
895 sizeof(struct kvm_ioapic_state));
904 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
909 switch (chip->chip_id) {
910 case KVM_IRQCHIP_PIC_MASTER:
911 memcpy (&pic_irqchip(kvm)->pics[0],
913 sizeof(struct kvm_pic_state));
915 case KVM_IRQCHIP_PIC_SLAVE:
916 memcpy (&pic_irqchip(kvm)->pics[1],
918 sizeof(struct kvm_pic_state));
920 case KVM_IRQCHIP_IOAPIC:
921 memcpy (ioapic_irqchip(kvm),
923 sizeof(struct kvm_ioapic_state));
929 kvm_pic_update_irq(pic_irqchip(kvm));
933 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
936 struct kvm_mem_alias *alias;
938 for (i = 0; i < kvm->naliases; ++i) {
939 alias = &kvm->aliases[i];
940 if (gfn >= alias->base_gfn
941 && gfn < alias->base_gfn + alias->npages)
942 return alias->target_gfn + gfn - alias->base_gfn;
947 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
951 for (i = 0; i < kvm->nmemslots; ++i) {
952 struct kvm_memory_slot *memslot = &kvm->memslots[i];
954 if (gfn >= memslot->base_gfn
955 && gfn < memslot->base_gfn + memslot->npages)
961 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
963 gfn = unalias_gfn(kvm, gfn);
964 return __gfn_to_memslot(kvm, gfn);
967 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
969 struct kvm_memory_slot *slot;
971 gfn = unalias_gfn(kvm, gfn);
972 slot = __gfn_to_memslot(kvm, gfn);
975 return slot->phys_mem[gfn - slot->base_gfn];
977 EXPORT_SYMBOL_GPL(gfn_to_page);
979 /* WARNING: Does not work on aliased pages. */
980 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
982 struct kvm_memory_slot *memslot;
984 memslot = __gfn_to_memslot(kvm, gfn);
985 if (memslot && memslot->dirty_bitmap) {
986 unsigned long rel_gfn = gfn - memslot->base_gfn;
989 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
990 set_bit(rel_gfn, memslot->dirty_bitmap);
994 int emulator_read_std(unsigned long addr,
997 struct kvm_vcpu *vcpu)
1002 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1003 unsigned offset = addr & (PAGE_SIZE-1);
1004 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1009 if (gpa == UNMAPPED_GVA)
1010 return X86EMUL_PROPAGATE_FAULT;
1011 pfn = gpa >> PAGE_SHIFT;
1012 page = gfn_to_page(vcpu->kvm, pfn);
1014 return X86EMUL_UNHANDLEABLE;
1015 page_virt = kmap_atomic(page, KM_USER0);
1017 memcpy(data, page_virt + offset, tocopy);
1019 kunmap_atomic(page_virt, KM_USER0);
1026 return X86EMUL_CONTINUE;
1028 EXPORT_SYMBOL_GPL(emulator_read_std);
1030 static int emulator_write_std(unsigned long addr,
1033 struct kvm_vcpu *vcpu)
1035 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1036 return X86EMUL_UNHANDLEABLE;
1040 * Only apic need an MMIO device hook, so shortcut now..
1042 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1045 struct kvm_io_device *dev;
1048 dev = &vcpu->apic->dev;
1049 if (dev->in_range(dev, addr))
1055 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1058 struct kvm_io_device *dev;
1060 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1062 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1066 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1069 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1072 static int emulator_read_emulated(unsigned long addr,
1075 struct kvm_vcpu *vcpu)
1077 struct kvm_io_device *mmio_dev;
1080 if (vcpu->mmio_read_completed) {
1081 memcpy(val, vcpu->mmio_data, bytes);
1082 vcpu->mmio_read_completed = 0;
1083 return X86EMUL_CONTINUE;
1084 } else if (emulator_read_std(addr, val, bytes, vcpu)
1085 == X86EMUL_CONTINUE)
1086 return X86EMUL_CONTINUE;
1088 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1089 if (gpa == UNMAPPED_GVA)
1090 return X86EMUL_PROPAGATE_FAULT;
1093 * Is this MMIO handled locally?
1095 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1097 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1098 return X86EMUL_CONTINUE;
1101 vcpu->mmio_needed = 1;
1102 vcpu->mmio_phys_addr = gpa;
1103 vcpu->mmio_size = bytes;
1104 vcpu->mmio_is_write = 0;
1106 return X86EMUL_UNHANDLEABLE;
1109 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1110 const void *val, int bytes)
1115 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1117 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1120 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1121 virt = kmap_atomic(page, KM_USER0);
1122 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1123 memcpy(virt + offset_in_page(gpa), val, bytes);
1124 kunmap_atomic(virt, KM_USER0);
1128 static int emulator_write_emulated_onepage(unsigned long addr,
1131 struct kvm_vcpu *vcpu)
1133 struct kvm_io_device *mmio_dev;
1134 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1136 if (gpa == UNMAPPED_GVA) {
1137 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1138 return X86EMUL_PROPAGATE_FAULT;
1141 if (emulator_write_phys(vcpu, gpa, val, bytes))
1142 return X86EMUL_CONTINUE;
1145 * Is this MMIO handled locally?
1147 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1149 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1150 return X86EMUL_CONTINUE;
1153 vcpu->mmio_needed = 1;
1154 vcpu->mmio_phys_addr = gpa;
1155 vcpu->mmio_size = bytes;
1156 vcpu->mmio_is_write = 1;
1157 memcpy(vcpu->mmio_data, val, bytes);
1159 return X86EMUL_CONTINUE;
1162 int emulator_write_emulated(unsigned long addr,
1165 struct kvm_vcpu *vcpu)
1167 /* Crossing a page boundary? */
1168 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1171 now = -addr & ~PAGE_MASK;
1172 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1173 if (rc != X86EMUL_CONTINUE)
1179 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1181 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1183 static int emulator_cmpxchg_emulated(unsigned long addr,
1187 struct kvm_vcpu *vcpu)
1189 static int reported;
1193 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1195 return emulator_write_emulated(addr, new, bytes, vcpu);
1198 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1200 return kvm_x86_ops->get_segment_base(vcpu, seg);
1203 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1205 return X86EMUL_CONTINUE;
1208 int emulate_clts(struct kvm_vcpu *vcpu)
1210 vcpu->cr0 &= ~X86_CR0_TS;
1211 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0);
1212 return X86EMUL_CONTINUE;
1215 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1217 struct kvm_vcpu *vcpu = ctxt->vcpu;
1221 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1222 return X86EMUL_CONTINUE;
1224 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1225 return X86EMUL_UNHANDLEABLE;
1229 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1231 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1234 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1236 /* FIXME: better handling */
1237 return X86EMUL_UNHANDLEABLE;
1239 return X86EMUL_CONTINUE;
1242 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1244 static int reported;
1246 unsigned long rip = ctxt->vcpu->rip;
1247 unsigned long rip_linear;
1249 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1254 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
1256 printk(KERN_ERR "emulation failed but !mmio_needed?"
1257 " rip %lx %02x %02x %02x %02x\n",
1258 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1262 struct x86_emulate_ops emulate_ops = {
1263 .read_std = emulator_read_std,
1264 .write_std = emulator_write_std,
1265 .read_emulated = emulator_read_emulated,
1266 .write_emulated = emulator_write_emulated,
1267 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1270 int emulate_instruction(struct kvm_vcpu *vcpu,
1271 struct kvm_run *run,
1275 struct x86_emulate_ctxt emulate_ctxt;
1279 vcpu->mmio_fault_cr2 = cr2;
1280 kvm_x86_ops->cache_regs(vcpu);
1282 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1284 emulate_ctxt.vcpu = vcpu;
1285 emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1286 emulate_ctxt.cr2 = cr2;
1287 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1288 ? X86EMUL_MODE_REAL : cs_l
1289 ? X86EMUL_MODE_PROT64 : cs_db
1290 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1292 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1293 emulate_ctxt.cs_base = 0;
1294 emulate_ctxt.ds_base = 0;
1295 emulate_ctxt.es_base = 0;
1296 emulate_ctxt.ss_base = 0;
1298 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1299 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1300 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1301 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1304 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1305 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1307 vcpu->mmio_is_write = 0;
1308 vcpu->pio.string = 0;
1309 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1310 if (vcpu->pio.string)
1311 return EMULATE_DO_MMIO;
1313 if ((r || vcpu->mmio_is_write) && run) {
1314 run->exit_reason = KVM_EXIT_MMIO;
1315 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1316 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1317 run->mmio.len = vcpu->mmio_size;
1318 run->mmio.is_write = vcpu->mmio_is_write;
1322 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1323 return EMULATE_DONE;
1324 if (!vcpu->mmio_needed) {
1325 report_emulation_failure(&emulate_ctxt);
1326 return EMULATE_FAIL;
1328 return EMULATE_DO_MMIO;
1331 kvm_x86_ops->decache_regs(vcpu);
1332 kvm_x86_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1334 if (vcpu->mmio_is_write) {
1335 vcpu->mmio_needed = 0;
1336 return EMULATE_DO_MMIO;
1339 return EMULATE_DONE;
1341 EXPORT_SYMBOL_GPL(emulate_instruction);
1344 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1346 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1348 DECLARE_WAITQUEUE(wait, current);
1350 add_wait_queue(&vcpu->wq, &wait);
1353 * We will block until either an interrupt or a signal wakes us up
1355 while (!kvm_cpu_has_interrupt(vcpu)
1356 && !signal_pending(current)
1357 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1358 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1359 set_current_state(TASK_INTERRUPTIBLE);
1365 __set_current_state(TASK_RUNNING);
1366 remove_wait_queue(&vcpu->wq, &wait);
1369 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1371 ++vcpu->stat.halt_exits;
1372 if (irqchip_in_kernel(vcpu->kvm)) {
1373 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1374 kvm_vcpu_block(vcpu);
1375 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1379 vcpu->run->exit_reason = KVM_EXIT_HLT;
1383 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1385 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1387 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1389 kvm_x86_ops->cache_regs(vcpu);
1391 #ifdef CONFIG_X86_64
1392 if (is_long_mode(vcpu)) {
1393 nr = vcpu->regs[VCPU_REGS_RAX];
1394 a0 = vcpu->regs[VCPU_REGS_RDI];
1395 a1 = vcpu->regs[VCPU_REGS_RSI];
1396 a2 = vcpu->regs[VCPU_REGS_RDX];
1397 a3 = vcpu->regs[VCPU_REGS_RCX];
1398 a4 = vcpu->regs[VCPU_REGS_R8];
1399 a5 = vcpu->regs[VCPU_REGS_R9];
1403 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1404 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1405 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1406 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1407 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1408 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1409 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1413 run->hypercall.nr = nr;
1414 run->hypercall.args[0] = a0;
1415 run->hypercall.args[1] = a1;
1416 run->hypercall.args[2] = a2;
1417 run->hypercall.args[3] = a3;
1418 run->hypercall.args[4] = a4;
1419 run->hypercall.args[5] = a5;
1420 run->hypercall.ret = ret;
1421 run->hypercall.longmode = is_long_mode(vcpu);
1422 kvm_x86_ops->decache_regs(vcpu);
1425 vcpu->regs[VCPU_REGS_RAX] = ret;
1426 kvm_x86_ops->decache_regs(vcpu);
1429 EXPORT_SYMBOL_GPL(kvm_hypercall);
1431 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1433 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1436 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1438 struct descriptor_table dt = { limit, base };
1440 kvm_x86_ops->set_gdt(vcpu, &dt);
1443 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1445 struct descriptor_table dt = { limit, base };
1447 kvm_x86_ops->set_idt(vcpu, &dt);
1450 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1451 unsigned long *rflags)
1454 *rflags = kvm_x86_ops->get_rflags(vcpu);
1457 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1459 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1470 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1475 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1476 unsigned long *rflags)
1480 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1481 *rflags = kvm_x86_ops->get_rflags(vcpu);
1490 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1493 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1498 * Register the para guest with the host:
1500 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1502 struct kvm_vcpu_para_state *para_state;
1503 hpa_t para_state_hpa, hypercall_hpa;
1504 struct page *para_state_page;
1505 unsigned char *hypercall;
1506 gpa_t hypercall_gpa;
1508 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1509 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1512 * Needs to be page aligned:
1514 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1517 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1518 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1519 if (is_error_hpa(para_state_hpa))
1522 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1523 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1524 para_state = kmap(para_state_page);
1526 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1527 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1529 para_state->host_version = KVM_PARA_API_VERSION;
1531 * We cannot support guests that try to register themselves
1532 * with a newer API version than the host supports:
1534 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1535 para_state->ret = -KVM_EINVAL;
1536 goto err_kunmap_skip;
1539 hypercall_gpa = para_state->hypercall_gpa;
1540 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1541 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1542 if (is_error_hpa(hypercall_hpa)) {
1543 para_state->ret = -KVM_EINVAL;
1544 goto err_kunmap_skip;
1547 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1548 vcpu->para_state_page = para_state_page;
1549 vcpu->para_state_gpa = para_state_gpa;
1550 vcpu->hypercall_gpa = hypercall_gpa;
1552 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1553 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1554 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1555 kvm_x86_ops->patch_hypercall(vcpu, hypercall);
1556 kunmap_atomic(hypercall, KM_USER1);
1558 para_state->ret = 0;
1560 kunmap(para_state_page);
1566 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1571 case 0xc0010010: /* SYSCFG */
1572 case 0xc0010015: /* HWCR */
1573 case MSR_IA32_PLATFORM_ID:
1574 case MSR_IA32_P5_MC_ADDR:
1575 case MSR_IA32_P5_MC_TYPE:
1576 case MSR_IA32_MC0_CTL:
1577 case MSR_IA32_MCG_STATUS:
1578 case MSR_IA32_MCG_CAP:
1579 case MSR_IA32_MC0_MISC:
1580 case MSR_IA32_MC0_MISC+4:
1581 case MSR_IA32_MC0_MISC+8:
1582 case MSR_IA32_MC0_MISC+12:
1583 case MSR_IA32_MC0_MISC+16:
1584 case MSR_IA32_UCODE_REV:
1585 case MSR_IA32_PERF_STATUS:
1586 case MSR_IA32_EBL_CR_POWERON:
1587 /* MTRR registers */
1589 case 0x200 ... 0x2ff:
1592 case 0xcd: /* fsb frequency */
1595 case MSR_IA32_APICBASE:
1596 data = kvm_get_apic_base(vcpu);
1598 case MSR_IA32_MISC_ENABLE:
1599 data = vcpu->ia32_misc_enable_msr;
1601 #ifdef CONFIG_X86_64
1603 data = vcpu->shadow_efer;
1607 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1613 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1616 * Reads an msr value (of 'msr_index') into 'pdata'.
1617 * Returns 0 on success, non-0 otherwise.
1618 * Assumes vcpu_load() was already called.
1620 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1622 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1625 #ifdef CONFIG_X86_64
1627 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1629 if (efer & EFER_RESERVED_BITS) {
1630 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1637 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1638 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1643 kvm_x86_ops->set_efer(vcpu, efer);
1646 efer |= vcpu->shadow_efer & EFER_LMA;
1648 vcpu->shadow_efer = efer;
1653 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1656 #ifdef CONFIG_X86_64
1658 set_efer(vcpu, data);
1661 case MSR_IA32_MC0_STATUS:
1662 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1663 __FUNCTION__, data);
1665 case MSR_IA32_MCG_STATUS:
1666 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1667 __FUNCTION__, data);
1669 case MSR_IA32_UCODE_REV:
1670 case MSR_IA32_UCODE_WRITE:
1671 case 0x200 ... 0x2ff: /* MTRRs */
1673 case MSR_IA32_APICBASE:
1674 kvm_set_apic_base(vcpu, data);
1676 case MSR_IA32_MISC_ENABLE:
1677 vcpu->ia32_misc_enable_msr = data;
1680 * This is the 'probe whether the host is KVM' logic:
1682 case MSR_KVM_API_MAGIC:
1683 return vcpu_register_para(vcpu, data);
1686 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1691 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1694 * Writes msr value into into the appropriate "register".
1695 * Returns 0 on success, non-0 otherwise.
1696 * Assumes vcpu_load() was already called.
1698 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1700 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1703 void kvm_resched(struct kvm_vcpu *vcpu)
1705 if (!need_resched())
1709 EXPORT_SYMBOL_GPL(kvm_resched);
1711 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1715 struct kvm_cpuid_entry *e, *best;
1717 kvm_x86_ops->cache_regs(vcpu);
1718 function = vcpu->regs[VCPU_REGS_RAX];
1719 vcpu->regs[VCPU_REGS_RAX] = 0;
1720 vcpu->regs[VCPU_REGS_RBX] = 0;
1721 vcpu->regs[VCPU_REGS_RCX] = 0;
1722 vcpu->regs[VCPU_REGS_RDX] = 0;
1724 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1725 e = &vcpu->cpuid_entries[i];
1726 if (e->function == function) {
1731 * Both basic or both extended?
1733 if (((e->function ^ function) & 0x80000000) == 0)
1734 if (!best || e->function > best->function)
1738 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1739 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1740 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1741 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1743 kvm_x86_ops->decache_regs(vcpu);
1744 kvm_x86_ops->skip_emulated_instruction(vcpu);
1746 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1748 static int pio_copy_data(struct kvm_vcpu *vcpu)
1750 void *p = vcpu->pio_data;
1753 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1755 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1758 free_pio_guest_pages(vcpu);
1761 q += vcpu->pio.guest_page_offset;
1762 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1764 memcpy(q, p, bytes);
1766 memcpy(p, q, bytes);
1767 q -= vcpu->pio.guest_page_offset;
1769 free_pio_guest_pages(vcpu);
1773 static int complete_pio(struct kvm_vcpu *vcpu)
1775 struct kvm_pio_request *io = &vcpu->pio;
1779 kvm_x86_ops->cache_regs(vcpu);
1783 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1787 r = pio_copy_data(vcpu);
1789 kvm_x86_ops->cache_regs(vcpu);
1796 delta *= io->cur_count;
1798 * The size of the register should really depend on
1799 * current address size.
1801 vcpu->regs[VCPU_REGS_RCX] -= delta;
1807 vcpu->regs[VCPU_REGS_RDI] += delta;
1809 vcpu->regs[VCPU_REGS_RSI] += delta;
1812 kvm_x86_ops->decache_regs(vcpu);
1814 io->count -= io->cur_count;
1818 kvm_x86_ops->skip_emulated_instruction(vcpu);
1822 static void kernel_pio(struct kvm_io_device *pio_dev,
1823 struct kvm_vcpu *vcpu,
1826 /* TODO: String I/O for in kernel device */
1828 mutex_lock(&vcpu->kvm->lock);
1830 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1834 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1837 mutex_unlock(&vcpu->kvm->lock);
1840 static void pio_string_write(struct kvm_io_device *pio_dev,
1841 struct kvm_vcpu *vcpu)
1843 struct kvm_pio_request *io = &vcpu->pio;
1844 void *pd = vcpu->pio_data;
1847 mutex_lock(&vcpu->kvm->lock);
1848 for (i = 0; i < io->cur_count; i++) {
1849 kvm_iodevice_write(pio_dev, io->port,
1854 mutex_unlock(&vcpu->kvm->lock);
1857 int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1858 int size, unsigned port)
1860 struct kvm_io_device *pio_dev;
1862 vcpu->run->exit_reason = KVM_EXIT_IO;
1863 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1864 vcpu->run->io.size = vcpu->pio.size = size;
1865 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1866 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1867 vcpu->run->io.port = vcpu->pio.port = port;
1869 vcpu->pio.string = 0;
1871 vcpu->pio.guest_page_offset = 0;
1874 kvm_x86_ops->cache_regs(vcpu);
1875 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1876 kvm_x86_ops->decache_regs(vcpu);
1878 pio_dev = vcpu_find_pio_dev(vcpu, port);
1880 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1886 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1888 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1889 int size, unsigned long count, int down,
1890 gva_t address, int rep, unsigned port)
1892 unsigned now, in_page;
1896 struct kvm_io_device *pio_dev;
1898 vcpu->run->exit_reason = KVM_EXIT_IO;
1899 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1900 vcpu->run->io.size = vcpu->pio.size = size;
1901 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1902 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1903 vcpu->run->io.port = vcpu->pio.port = port;
1905 vcpu->pio.string = 1;
1906 vcpu->pio.down = down;
1907 vcpu->pio.guest_page_offset = offset_in_page(address);
1908 vcpu->pio.rep = rep;
1911 kvm_x86_ops->skip_emulated_instruction(vcpu);
1916 in_page = PAGE_SIZE - offset_in_page(address);
1918 in_page = offset_in_page(address) + size;
1919 now = min(count, (unsigned long)in_page / size);
1922 * String I/O straddles page boundary. Pin two guest pages
1923 * so that we satisfy atomicity constraints. Do just one
1924 * transaction to avoid complexity.
1931 * String I/O in reverse. Yuck. Kill the guest, fix later.
1933 pr_unimpl(vcpu, "guest string pio down\n");
1937 vcpu->run->io.count = now;
1938 vcpu->pio.cur_count = now;
1940 for (i = 0; i < nr_pages; ++i) {
1941 mutex_lock(&vcpu->kvm->lock);
1942 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1945 vcpu->pio.guest_pages[i] = page;
1946 mutex_unlock(&vcpu->kvm->lock);
1949 free_pio_guest_pages(vcpu);
1954 pio_dev = vcpu_find_pio_dev(vcpu, port);
1955 if (!vcpu->pio.in) {
1956 /* string PIO write */
1957 ret = pio_copy_data(vcpu);
1958 if (ret >= 0 && pio_dev) {
1959 pio_string_write(pio_dev, vcpu);
1961 if (vcpu->pio.count == 0)
1965 pr_unimpl(vcpu, "no string pio read support yet, "
1966 "port %x size %d count %ld\n",
1971 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1973 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1980 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
1981 kvm_vcpu_block(vcpu);
1986 if (vcpu->sigset_active)
1987 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1989 /* re-sync apic's tpr */
1990 if (!irqchip_in_kernel(vcpu->kvm))
1991 set_cr8(vcpu, kvm_run->cr8);
1993 if (vcpu->pio.cur_count) {
1994 r = complete_pio(vcpu);
1999 if (vcpu->mmio_needed) {
2000 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2001 vcpu->mmio_read_completed = 1;
2002 vcpu->mmio_needed = 0;
2003 r = emulate_instruction(vcpu, kvm_run,
2004 vcpu->mmio_fault_cr2, 0);
2005 if (r == EMULATE_DO_MMIO) {
2007 * Read-modify-write. Back to userspace.
2014 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2015 kvm_x86_ops->cache_regs(vcpu);
2016 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2017 kvm_x86_ops->decache_regs(vcpu);
2020 r = kvm_x86_ops->run(vcpu, kvm_run);
2023 if (vcpu->sigset_active)
2024 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2030 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2031 struct kvm_regs *regs)
2035 kvm_x86_ops->cache_regs(vcpu);
2037 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2038 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2039 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2040 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2041 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2042 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2043 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2044 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2045 #ifdef CONFIG_X86_64
2046 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2047 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2048 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2049 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2050 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2051 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2052 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2053 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2056 regs->rip = vcpu->rip;
2057 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2060 * Don't leak debug flags in case they were set for guest debugging
2062 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2063 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2070 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2071 struct kvm_regs *regs)
2075 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2076 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2077 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2078 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2079 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2080 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2081 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2082 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2083 #ifdef CONFIG_X86_64
2084 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2085 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2086 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2087 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2088 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2089 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2090 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2091 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2094 vcpu->rip = regs->rip;
2095 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2097 kvm_x86_ops->decache_regs(vcpu);
2104 static void get_segment(struct kvm_vcpu *vcpu,
2105 struct kvm_segment *var, int seg)
2107 return kvm_x86_ops->get_segment(vcpu, var, seg);
2110 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2111 struct kvm_sregs *sregs)
2113 struct descriptor_table dt;
2118 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2119 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2120 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2121 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2122 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2123 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2125 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2126 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2128 kvm_x86_ops->get_idt(vcpu, &dt);
2129 sregs->idt.limit = dt.limit;
2130 sregs->idt.base = dt.base;
2131 kvm_x86_ops->get_gdt(vcpu, &dt);
2132 sregs->gdt.limit = dt.limit;
2133 sregs->gdt.base = dt.base;
2135 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2136 sregs->cr0 = vcpu->cr0;
2137 sregs->cr2 = vcpu->cr2;
2138 sregs->cr3 = vcpu->cr3;
2139 sregs->cr4 = vcpu->cr4;
2140 sregs->cr8 = get_cr8(vcpu);
2141 sregs->efer = vcpu->shadow_efer;
2142 sregs->apic_base = kvm_get_apic_base(vcpu);
2144 if (irqchip_in_kernel(vcpu->kvm)) {
2145 memset(sregs->interrupt_bitmap, 0,
2146 sizeof sregs->interrupt_bitmap);
2147 pending_vec = kvm_x86_ops->get_irq(vcpu);
2148 if (pending_vec >= 0)
2149 set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
2151 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2152 sizeof sregs->interrupt_bitmap);
2159 static void set_segment(struct kvm_vcpu *vcpu,
2160 struct kvm_segment *var, int seg)
2162 return kvm_x86_ops->set_segment(vcpu, var, seg);
2165 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2166 struct kvm_sregs *sregs)
2168 int mmu_reset_needed = 0;
2169 int i, pending_vec, max_bits;
2170 struct descriptor_table dt;
2174 dt.limit = sregs->idt.limit;
2175 dt.base = sregs->idt.base;
2176 kvm_x86_ops->set_idt(vcpu, &dt);
2177 dt.limit = sregs->gdt.limit;
2178 dt.base = sregs->gdt.base;
2179 kvm_x86_ops->set_gdt(vcpu, &dt);
2181 vcpu->cr2 = sregs->cr2;
2182 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2183 vcpu->cr3 = sregs->cr3;
2185 set_cr8(vcpu, sregs->cr8);
2187 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2188 #ifdef CONFIG_X86_64
2189 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2191 kvm_set_apic_base(vcpu, sregs->apic_base);
2193 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2195 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2196 vcpu->cr0 = sregs->cr0;
2197 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2199 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2200 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2201 if (!is_long_mode(vcpu) && is_pae(vcpu))
2202 load_pdptrs(vcpu, vcpu->cr3);
2204 if (mmu_reset_needed)
2205 kvm_mmu_reset_context(vcpu);
2207 if (!irqchip_in_kernel(vcpu->kvm)) {
2208 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2209 sizeof vcpu->irq_pending);
2210 vcpu->irq_summary = 0;
2211 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2212 if (vcpu->irq_pending[i])
2213 __set_bit(i, &vcpu->irq_summary);
2215 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2216 pending_vec = find_first_bit(
2217 (const unsigned long *)sregs->interrupt_bitmap,
2219 /* Only pending external irq is handled here */
2220 if (pending_vec < max_bits) {
2221 kvm_x86_ops->set_irq(vcpu, pending_vec);
2222 printk("Set back pending irq %d\n", pending_vec);
2226 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2227 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2228 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2229 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2230 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2231 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2233 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2234 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2241 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2243 struct kvm_segment cs;
2245 get_segment(vcpu, &cs, VCPU_SREG_CS);
2249 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2252 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2253 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2255 * This list is modified at module load time to reflect the
2256 * capabilities of the host cpu.
2258 static u32 msrs_to_save[] = {
2259 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2261 #ifdef CONFIG_X86_64
2262 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2264 MSR_IA32_TIME_STAMP_COUNTER,
2267 static unsigned num_msrs_to_save;
2269 static u32 emulated_msrs[] = {
2270 MSR_IA32_MISC_ENABLE,
2273 static __init void kvm_init_msr_list(void)
2278 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2279 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2282 msrs_to_save[j] = msrs_to_save[i];
2285 num_msrs_to_save = j;
2289 * Adapt set_msr() to msr_io()'s calling convention
2291 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2293 return kvm_set_msr(vcpu, index, *data);
2297 * Read or write a bunch of msrs. All parameters are kernel addresses.
2299 * @return number of msrs set successfully.
2301 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2302 struct kvm_msr_entry *entries,
2303 int (*do_msr)(struct kvm_vcpu *vcpu,
2304 unsigned index, u64 *data))
2310 for (i = 0; i < msrs->nmsrs; ++i)
2311 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2320 * Read or write a bunch of msrs. Parameters are user addresses.
2322 * @return number of msrs set successfully.
2324 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2325 int (*do_msr)(struct kvm_vcpu *vcpu,
2326 unsigned index, u64 *data),
2329 struct kvm_msrs msrs;
2330 struct kvm_msr_entry *entries;
2335 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2339 if (msrs.nmsrs >= MAX_IO_MSRS)
2343 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2344 entries = vmalloc(size);
2349 if (copy_from_user(entries, user_msrs->entries, size))
2352 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2357 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2369 * Translate a guest virtual address to a guest physical address.
2371 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2372 struct kvm_translation *tr)
2374 unsigned long vaddr = tr->linear_address;
2378 mutex_lock(&vcpu->kvm->lock);
2379 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2380 tr->physical_address = gpa;
2381 tr->valid = gpa != UNMAPPED_GVA;
2384 mutex_unlock(&vcpu->kvm->lock);
2390 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2391 struct kvm_interrupt *irq)
2393 if (irq->irq < 0 || irq->irq >= 256)
2395 if (irqchip_in_kernel(vcpu->kvm))
2399 set_bit(irq->irq, vcpu->irq_pending);
2400 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2407 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2408 struct kvm_debug_guest *dbg)
2414 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2421 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2422 unsigned long address,
2425 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2426 unsigned long pgoff;
2429 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2431 page = virt_to_page(vcpu->run);
2432 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2433 page = virt_to_page(vcpu->pio_data);
2435 return NOPAGE_SIGBUS;
2438 *type = VM_FAULT_MINOR;
2443 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2444 .nopage = kvm_vcpu_nopage,
2447 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2449 vma->vm_ops = &kvm_vcpu_vm_ops;
2453 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2455 struct kvm_vcpu *vcpu = filp->private_data;
2457 fput(vcpu->kvm->filp);
2461 static struct file_operations kvm_vcpu_fops = {
2462 .release = kvm_vcpu_release,
2463 .unlocked_ioctl = kvm_vcpu_ioctl,
2464 .compat_ioctl = kvm_vcpu_ioctl,
2465 .mmap = kvm_vcpu_mmap,
2469 * Allocates an inode for the vcpu.
2471 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2474 struct inode *inode;
2477 r = anon_inode_getfd(&fd, &inode, &file,
2478 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2481 atomic_inc(&vcpu->kvm->filp->f_count);
2486 * Creates some virtual cpus. Good luck creating more than one.
2488 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2491 struct kvm_vcpu *vcpu;
2496 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2498 return PTR_ERR(vcpu);
2500 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2502 /* We do fxsave: this must be aligned. */
2503 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2506 r = kvm_mmu_setup(vcpu);
2511 mutex_lock(&kvm->lock);
2512 if (kvm->vcpus[n]) {
2514 mutex_unlock(&kvm->lock);
2517 kvm->vcpus[n] = vcpu;
2518 mutex_unlock(&kvm->lock);
2520 /* Now it's all set up, let userspace reach it */
2521 r = create_vcpu_fd(vcpu);
2527 mutex_lock(&kvm->lock);
2528 kvm->vcpus[n] = NULL;
2529 mutex_unlock(&kvm->lock);
2533 kvm_mmu_unload(vcpu);
2537 kvm_x86_ops->vcpu_free(vcpu);
2541 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2545 struct kvm_cpuid_entry *e, *entry;
2547 rdmsrl(MSR_EFER, efer);
2549 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2550 e = &vcpu->cpuid_entries[i];
2551 if (e->function == 0x80000001) {
2556 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2557 entry->edx &= ~(1 << 20);
2558 printk(KERN_INFO "kvm: guest NX capability removed\n");
2562 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2563 struct kvm_cpuid *cpuid,
2564 struct kvm_cpuid_entry __user *entries)
2569 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2572 if (copy_from_user(&vcpu->cpuid_entries, entries,
2573 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2575 vcpu->cpuid_nent = cpuid->nent;
2576 cpuid_fix_nx_cap(vcpu);
2583 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2586 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2587 vcpu->sigset_active = 1;
2588 vcpu->sigset = *sigset;
2590 vcpu->sigset_active = 0;
2595 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2596 * we have asm/x86/processor.h
2607 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2608 #ifdef CONFIG_X86_64
2609 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2611 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2615 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2617 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2621 memcpy(fpu->fpr, fxsave->st_space, 128);
2622 fpu->fcw = fxsave->cwd;
2623 fpu->fsw = fxsave->swd;
2624 fpu->ftwx = fxsave->twd;
2625 fpu->last_opcode = fxsave->fop;
2626 fpu->last_ip = fxsave->rip;
2627 fpu->last_dp = fxsave->rdp;
2628 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2635 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2637 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2641 memcpy(fxsave->st_space, fpu->fpr, 128);
2642 fxsave->cwd = fpu->fcw;
2643 fxsave->swd = fpu->fsw;
2644 fxsave->twd = fpu->ftwx;
2645 fxsave->fop = fpu->last_opcode;
2646 fxsave->rip = fpu->last_ip;
2647 fxsave->rdp = fpu->last_dp;
2648 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2655 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2656 struct kvm_lapic_state *s)
2659 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2665 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2666 struct kvm_lapic_state *s)
2669 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2670 kvm_apic_post_state_restore(vcpu);
2676 static long kvm_vcpu_ioctl(struct file *filp,
2677 unsigned int ioctl, unsigned long arg)
2679 struct kvm_vcpu *vcpu = filp->private_data;
2680 void __user *argp = (void __user *)arg;
2688 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2690 case KVM_GET_REGS: {
2691 struct kvm_regs kvm_regs;
2693 memset(&kvm_regs, 0, sizeof kvm_regs);
2694 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2698 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2703 case KVM_SET_REGS: {
2704 struct kvm_regs kvm_regs;
2707 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2709 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2715 case KVM_GET_SREGS: {
2716 struct kvm_sregs kvm_sregs;
2718 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2719 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2723 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2728 case KVM_SET_SREGS: {
2729 struct kvm_sregs kvm_sregs;
2732 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2734 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2740 case KVM_TRANSLATE: {
2741 struct kvm_translation tr;
2744 if (copy_from_user(&tr, argp, sizeof tr))
2746 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2750 if (copy_to_user(argp, &tr, sizeof tr))
2755 case KVM_INTERRUPT: {
2756 struct kvm_interrupt irq;
2759 if (copy_from_user(&irq, argp, sizeof irq))
2761 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2767 case KVM_DEBUG_GUEST: {
2768 struct kvm_debug_guest dbg;
2771 if (copy_from_user(&dbg, argp, sizeof dbg))
2773 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2780 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2783 r = msr_io(vcpu, argp, do_set_msr, 0);
2785 case KVM_SET_CPUID: {
2786 struct kvm_cpuid __user *cpuid_arg = argp;
2787 struct kvm_cpuid cpuid;
2790 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2792 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2797 case KVM_SET_SIGNAL_MASK: {
2798 struct kvm_signal_mask __user *sigmask_arg = argp;
2799 struct kvm_signal_mask kvm_sigmask;
2800 sigset_t sigset, *p;
2805 if (copy_from_user(&kvm_sigmask, argp,
2806 sizeof kvm_sigmask))
2809 if (kvm_sigmask.len != sizeof sigset)
2812 if (copy_from_user(&sigset, sigmask_arg->sigset,
2817 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2823 memset(&fpu, 0, sizeof fpu);
2824 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2828 if (copy_to_user(argp, &fpu, sizeof fpu))
2837 if (copy_from_user(&fpu, argp, sizeof fpu))
2839 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2845 case KVM_GET_LAPIC: {
2846 struct kvm_lapic_state lapic;
2848 memset(&lapic, 0, sizeof lapic);
2849 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
2853 if (copy_to_user(argp, &lapic, sizeof lapic))
2858 case KVM_SET_LAPIC: {
2859 struct kvm_lapic_state lapic;
2862 if (copy_from_user(&lapic, argp, sizeof lapic))
2864 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
2877 static long kvm_vm_ioctl(struct file *filp,
2878 unsigned int ioctl, unsigned long arg)
2880 struct kvm *kvm = filp->private_data;
2881 void __user *argp = (void __user *)arg;
2885 case KVM_CREATE_VCPU:
2886 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2890 case KVM_SET_MEMORY_REGION: {
2891 struct kvm_memory_region kvm_mem;
2894 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2896 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2901 case KVM_GET_DIRTY_LOG: {
2902 struct kvm_dirty_log log;
2905 if (copy_from_user(&log, argp, sizeof log))
2907 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2912 case KVM_SET_MEMORY_ALIAS: {
2913 struct kvm_memory_alias alias;
2916 if (copy_from_user(&alias, argp, sizeof alias))
2918 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2923 case KVM_CREATE_IRQCHIP:
2925 kvm->vpic = kvm_create_pic(kvm);
2927 r = kvm_ioapic_init(kvm);
2937 case KVM_IRQ_LINE: {
2938 struct kvm_irq_level irq_event;
2941 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2943 if (irqchip_in_kernel(kvm)) {
2944 mutex_lock(&kvm->lock);
2945 if (irq_event.irq < 16)
2946 kvm_pic_set_irq(pic_irqchip(kvm),
2949 kvm_ioapic_set_irq(kvm->vioapic,
2952 mutex_unlock(&kvm->lock);
2957 case KVM_GET_IRQCHIP: {
2958 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2959 struct kvm_irqchip chip;
2962 if (copy_from_user(&chip, argp, sizeof chip))
2965 if (!irqchip_in_kernel(kvm))
2967 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
2971 if (copy_to_user(argp, &chip, sizeof chip))
2976 case KVM_SET_IRQCHIP: {
2977 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
2978 struct kvm_irqchip chip;
2981 if (copy_from_user(&chip, argp, sizeof chip))
2984 if (!irqchip_in_kernel(kvm))
2986 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
2999 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3000 unsigned long address,
3003 struct kvm *kvm = vma->vm_file->private_data;
3004 unsigned long pgoff;
3007 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3008 page = gfn_to_page(kvm, pgoff);
3010 return NOPAGE_SIGBUS;
3013 *type = VM_FAULT_MINOR;
3018 static struct vm_operations_struct kvm_vm_vm_ops = {
3019 .nopage = kvm_vm_nopage,
3022 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3024 vma->vm_ops = &kvm_vm_vm_ops;
3028 static struct file_operations kvm_vm_fops = {
3029 .release = kvm_vm_release,
3030 .unlocked_ioctl = kvm_vm_ioctl,
3031 .compat_ioctl = kvm_vm_ioctl,
3032 .mmap = kvm_vm_mmap,
3035 static int kvm_dev_ioctl_create_vm(void)
3038 struct inode *inode;
3042 kvm = kvm_create_vm();
3044 return PTR_ERR(kvm);
3045 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3047 kvm_destroy_vm(kvm);
3056 static long kvm_dev_ioctl(struct file *filp,
3057 unsigned int ioctl, unsigned long arg)
3059 void __user *argp = (void __user *)arg;
3063 case KVM_GET_API_VERSION:
3067 r = KVM_API_VERSION;
3073 r = kvm_dev_ioctl_create_vm();
3075 case KVM_GET_MSR_INDEX_LIST: {
3076 struct kvm_msr_list __user *user_msr_list = argp;
3077 struct kvm_msr_list msr_list;
3081 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3084 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3085 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3088 if (n < num_msrs_to_save)
3091 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3092 num_msrs_to_save * sizeof(u32)))
3094 if (copy_to_user(user_msr_list->indices
3095 + num_msrs_to_save * sizeof(u32),
3097 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3102 case KVM_CHECK_EXTENSION: {
3103 int ext = (long)argp;
3106 case KVM_CAP_IRQCHIP:
3116 case KVM_GET_VCPU_MMAP_SIZE:
3129 static struct file_operations kvm_chardev_ops = {
3130 .unlocked_ioctl = kvm_dev_ioctl,
3131 .compat_ioctl = kvm_dev_ioctl,
3134 static struct miscdevice kvm_dev = {
3141 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3144 static void decache_vcpus_on_cpu(int cpu)
3147 struct kvm_vcpu *vcpu;
3150 spin_lock(&kvm_lock);
3151 list_for_each_entry(vm, &vm_list, vm_list)
3152 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3153 vcpu = vm->vcpus[i];
3157 * If the vcpu is locked, then it is running on some
3158 * other cpu and therefore it is not cached on the
3161 * If it's not locked, check the last cpu it executed
3164 if (mutex_trylock(&vcpu->mutex)) {
3165 if (vcpu->cpu == cpu) {
3166 kvm_x86_ops->vcpu_decache(vcpu);
3169 mutex_unlock(&vcpu->mutex);
3172 spin_unlock(&kvm_lock);
3175 static void hardware_enable(void *junk)
3177 int cpu = raw_smp_processor_id();
3179 if (cpu_isset(cpu, cpus_hardware_enabled))
3181 cpu_set(cpu, cpus_hardware_enabled);
3182 kvm_x86_ops->hardware_enable(NULL);
3185 static void hardware_disable(void *junk)
3187 int cpu = raw_smp_processor_id();
3189 if (!cpu_isset(cpu, cpus_hardware_enabled))
3191 cpu_clear(cpu, cpus_hardware_enabled);
3192 decache_vcpus_on_cpu(cpu);
3193 kvm_x86_ops->hardware_disable(NULL);
3196 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3203 case CPU_DYING_FROZEN:
3204 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3206 hardware_disable(NULL);
3208 case CPU_UP_CANCELED:
3209 case CPU_UP_CANCELED_FROZEN:
3210 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3212 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3215 case CPU_ONLINE_FROZEN:
3216 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3218 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3224 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3227 if (val == SYS_RESTART) {
3229 * Some (well, at least mine) BIOSes hang on reboot if
3232 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3233 on_each_cpu(hardware_disable, NULL, 0, 1);
3238 static struct notifier_block kvm_reboot_notifier = {
3239 .notifier_call = kvm_reboot,
3243 void kvm_io_bus_init(struct kvm_io_bus *bus)
3245 memset(bus, 0, sizeof(*bus));
3248 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3252 for (i = 0; i < bus->dev_count; i++) {
3253 struct kvm_io_device *pos = bus->devs[i];
3255 kvm_iodevice_destructor(pos);
3259 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3263 for (i = 0; i < bus->dev_count; i++) {
3264 struct kvm_io_device *pos = bus->devs[i];
3266 if (pos->in_range(pos, addr))
3273 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3275 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3277 bus->devs[bus->dev_count++] = dev;
3280 static struct notifier_block kvm_cpu_notifier = {
3281 .notifier_call = kvm_cpu_hotplug,
3282 .priority = 20, /* must be > scheduler priority */
3285 static u64 stat_get(void *_offset)
3287 unsigned offset = (long)_offset;
3290 struct kvm_vcpu *vcpu;
3293 spin_lock(&kvm_lock);
3294 list_for_each_entry(kvm, &vm_list, vm_list)
3295 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3296 vcpu = kvm->vcpus[i];
3298 total += *(u32 *)((void *)vcpu + offset);
3300 spin_unlock(&kvm_lock);
3304 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3306 static __init void kvm_init_debug(void)
3308 struct kvm_stats_debugfs_item *p;
3310 debugfs_dir = debugfs_create_dir("kvm", NULL);
3311 for (p = debugfs_entries; p->name; ++p)
3312 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3313 (void *)(long)p->offset,
3317 static void kvm_exit_debug(void)
3319 struct kvm_stats_debugfs_item *p;
3321 for (p = debugfs_entries; p->name; ++p)
3322 debugfs_remove(p->dentry);
3323 debugfs_remove(debugfs_dir);
3326 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3328 hardware_disable(NULL);
3332 static int kvm_resume(struct sys_device *dev)
3334 hardware_enable(NULL);
3338 static struct sysdev_class kvm_sysdev_class = {
3339 set_kset_name("kvm"),
3340 .suspend = kvm_suspend,
3341 .resume = kvm_resume,
3344 static struct sys_device kvm_sysdev = {
3346 .cls = &kvm_sysdev_class,
3349 hpa_t bad_page_address;
3352 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3354 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3357 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3359 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3361 kvm_x86_ops->vcpu_load(vcpu, cpu);
3364 static void kvm_sched_out(struct preempt_notifier *pn,
3365 struct task_struct *next)
3367 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3369 kvm_x86_ops->vcpu_put(vcpu);
3372 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3373 struct module *module)
3379 printk(KERN_ERR "kvm: already loaded the other module\n");
3383 if (!ops->cpu_has_kvm_support()) {
3384 printk(KERN_ERR "kvm: no hardware support\n");
3387 if (ops->disabled_by_bios()) {
3388 printk(KERN_ERR "kvm: disabled by bios\n");
3394 r = kvm_x86_ops->hardware_setup();
3398 for_each_online_cpu(cpu) {
3399 smp_call_function_single(cpu,
3400 kvm_x86_ops->check_processor_compatibility,
3406 on_each_cpu(hardware_enable, NULL, 0, 1);
3407 r = register_cpu_notifier(&kvm_cpu_notifier);
3410 register_reboot_notifier(&kvm_reboot_notifier);
3412 r = sysdev_class_register(&kvm_sysdev_class);
3416 r = sysdev_register(&kvm_sysdev);
3420 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3421 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3422 __alignof__(struct kvm_vcpu), 0, 0);
3423 if (!kvm_vcpu_cache) {
3428 kvm_chardev_ops.owner = module;
3430 r = misc_register(&kvm_dev);
3432 printk (KERN_ERR "kvm: misc device register failed\n");
3436 kvm_preempt_ops.sched_in = kvm_sched_in;
3437 kvm_preempt_ops.sched_out = kvm_sched_out;
3442 kmem_cache_destroy(kvm_vcpu_cache);
3444 sysdev_unregister(&kvm_sysdev);
3446 sysdev_class_unregister(&kvm_sysdev_class);
3448 unregister_reboot_notifier(&kvm_reboot_notifier);
3449 unregister_cpu_notifier(&kvm_cpu_notifier);
3451 on_each_cpu(hardware_disable, NULL, 0, 1);
3453 kvm_x86_ops->hardware_unsetup();
3459 void kvm_exit_x86(void)
3461 misc_deregister(&kvm_dev);
3462 kmem_cache_destroy(kvm_vcpu_cache);
3463 sysdev_unregister(&kvm_sysdev);
3464 sysdev_class_unregister(&kvm_sysdev_class);
3465 unregister_reboot_notifier(&kvm_reboot_notifier);
3466 unregister_cpu_notifier(&kvm_cpu_notifier);
3467 on_each_cpu(hardware_disable, NULL, 0, 1);
3468 kvm_x86_ops->hardware_unsetup();
3472 static __init int kvm_init(void)
3474 static struct page *bad_page;
3477 r = kvm_mmu_module_init();
3483 kvm_init_msr_list();
3485 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3490 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3491 memset(__va(bad_page_address), 0, PAGE_SIZE);
3497 kvm_mmu_module_exit();
3502 static __exit void kvm_exit(void)
3505 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3506 kvm_mmu_module_exit();
3509 module_init(kvm_init)
3510 module_exit(kvm_exit)
3512 EXPORT_SYMBOL_GPL(kvm_init_x86);
3513 EXPORT_SYMBOL_GPL(kvm_exit_x86);