2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
39 * SLAB caches for signal bits.
42 static struct kmem_cache *sigqueue_cachep;
44 static void __user *sig_handler(struct task_struct *t, int sig)
46 return t->sighand->action[sig - 1].sa.sa_handler;
49 static int sig_handler_ignored(void __user *handler, int sig)
51 /* Is it explicitly or implicitly ignored? */
52 return handler == SIG_IGN ||
53 (handler == SIG_DFL && sig_kernel_ignore(sig));
56 static int sig_ignored(struct task_struct *t, int sig)
61 * Blocked signals are never ignored, since the
62 * signal handler may change by the time it is
65 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
68 handler = sig_handler(t, sig);
69 if (!sig_handler_ignored(handler, sig))
73 * Tracers may want to know about even ignored signals.
75 return !tracehook_consider_ignored_signal(t, sig, handler);
79 * Re-calculate pending state from the set of locally pending
80 * signals, globally pending signals, and blocked signals.
82 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
87 switch (_NSIG_WORDS) {
89 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
90 ready |= signal->sig[i] &~ blocked->sig[i];
93 case 4: ready = signal->sig[3] &~ blocked->sig[3];
94 ready |= signal->sig[2] &~ blocked->sig[2];
95 ready |= signal->sig[1] &~ blocked->sig[1];
96 ready |= signal->sig[0] &~ blocked->sig[0];
99 case 2: ready = signal->sig[1] &~ blocked->sig[1];
100 ready |= signal->sig[0] &~ blocked->sig[0];
103 case 1: ready = signal->sig[0] &~ blocked->sig[0];
108 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
110 static int recalc_sigpending_tsk(struct task_struct *t)
112 if (t->signal->group_stop_count > 0 ||
113 PENDING(&t->pending, &t->blocked) ||
114 PENDING(&t->signal->shared_pending, &t->blocked)) {
115 set_tsk_thread_flag(t, TIF_SIGPENDING);
119 * We must never clear the flag in another thread, or in current
120 * when it's possible the current syscall is returning -ERESTART*.
121 * So we don't clear it here, and only callers who know they should do.
127 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
128 * This is superfluous when called on current, the wakeup is a harmless no-op.
130 void recalc_sigpending_and_wake(struct task_struct *t)
132 if (recalc_sigpending_tsk(t))
133 signal_wake_up(t, 0);
136 void recalc_sigpending(void)
138 if (unlikely(tracehook_force_sigpending()))
139 set_thread_flag(TIF_SIGPENDING);
140 else if (!recalc_sigpending_tsk(current) && !freezing(current))
141 clear_thread_flag(TIF_SIGPENDING);
145 /* Given the mask, find the first available signal that should be serviced. */
147 int next_signal(struct sigpending *pending, sigset_t *mask)
149 unsigned long i, *s, *m, x;
152 s = pending->signal.sig;
154 switch (_NSIG_WORDS) {
156 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
157 if ((x = *s &~ *m) != 0) {
158 sig = ffz(~x) + i*_NSIG_BPW + 1;
163 case 2: if ((x = s[0] &~ m[0]) != 0)
165 else if ((x = s[1] &~ m[1]) != 0)
172 case 1: if ((x = *s &~ *m) != 0)
181 * allocate a new signal queue record
182 * - this may be called without locks if and only if t == current, otherwise an
183 * appopriate lock must be held to stop the target task from exiting
185 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
188 struct sigqueue *q = NULL;
189 struct user_struct *user;
192 * We won't get problems with the target's UID changing under us
193 * because changing it requires RCU be used, and if t != current, the
194 * caller must be holding the RCU readlock (by way of a spinlock) and
195 * we use RCU protection here
197 user = get_uid(__task_cred(t)->user);
198 atomic_inc(&user->sigpending);
199 if (override_rlimit ||
200 atomic_read(&user->sigpending) <=
201 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
202 q = kmem_cache_alloc(sigqueue_cachep, flags);
203 if (unlikely(q == NULL)) {
204 atomic_dec(&user->sigpending);
207 INIT_LIST_HEAD(&q->list);
215 static void __sigqueue_free(struct sigqueue *q)
217 if (q->flags & SIGQUEUE_PREALLOC)
219 atomic_dec(&q->user->sigpending);
221 kmem_cache_free(sigqueue_cachep, q);
224 void flush_sigqueue(struct sigpending *queue)
228 sigemptyset(&queue->signal);
229 while (!list_empty(&queue->list)) {
230 q = list_entry(queue->list.next, struct sigqueue , list);
231 list_del_init(&q->list);
237 * Flush all pending signals for a task.
239 void flush_signals(struct task_struct *t)
243 spin_lock_irqsave(&t->sighand->siglock, flags);
244 clear_tsk_thread_flag(t, TIF_SIGPENDING);
245 flush_sigqueue(&t->pending);
246 flush_sigqueue(&t->signal->shared_pending);
247 spin_unlock_irqrestore(&t->sighand->siglock, flags);
250 static void __flush_itimer_signals(struct sigpending *pending)
252 sigset_t signal, retain;
253 struct sigqueue *q, *n;
255 signal = pending->signal;
256 sigemptyset(&retain);
258 list_for_each_entry_safe(q, n, &pending->list, list) {
259 int sig = q->info.si_signo;
261 if (likely(q->info.si_code != SI_TIMER)) {
262 sigaddset(&retain, sig);
264 sigdelset(&signal, sig);
265 list_del_init(&q->list);
270 sigorsets(&pending->signal, &signal, &retain);
273 void flush_itimer_signals(void)
275 struct task_struct *tsk = current;
278 spin_lock_irqsave(&tsk->sighand->siglock, flags);
279 __flush_itimer_signals(&tsk->pending);
280 __flush_itimer_signals(&tsk->signal->shared_pending);
281 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
284 void ignore_signals(struct task_struct *t)
288 for (i = 0; i < _NSIG; ++i)
289 t->sighand->action[i].sa.sa_handler = SIG_IGN;
295 * Flush all handlers for a task.
299 flush_signal_handlers(struct task_struct *t, int force_default)
302 struct k_sigaction *ka = &t->sighand->action[0];
303 for (i = _NSIG ; i != 0 ; i--) {
304 if (force_default || ka->sa.sa_handler != SIG_IGN)
305 ka->sa.sa_handler = SIG_DFL;
307 sigemptyset(&ka->sa.sa_mask);
312 int unhandled_signal(struct task_struct *tsk, int sig)
314 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
315 if (is_global_init(tsk))
317 if (handler != SIG_IGN && handler != SIG_DFL)
319 return !tracehook_consider_fatal_signal(tsk, sig, handler);
323 /* Notify the system that a driver wants to block all signals for this
324 * process, and wants to be notified if any signals at all were to be
325 * sent/acted upon. If the notifier routine returns non-zero, then the
326 * signal will be acted upon after all. If the notifier routine returns 0,
327 * then then signal will be blocked. Only one block per process is
328 * allowed. priv is a pointer to private data that the notifier routine
329 * can use to determine if the signal should be blocked or not. */
332 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
336 spin_lock_irqsave(¤t->sighand->siglock, flags);
337 current->notifier_mask = mask;
338 current->notifier_data = priv;
339 current->notifier = notifier;
340 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
343 /* Notify the system that blocking has ended. */
346 unblock_all_signals(void)
350 spin_lock_irqsave(¤t->sighand->siglock, flags);
351 current->notifier = NULL;
352 current->notifier_data = NULL;
354 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
357 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
359 struct sigqueue *q, *first = NULL;
362 * Collect the siginfo appropriate to this signal. Check if
363 * there is another siginfo for the same signal.
365 list_for_each_entry(q, &list->list, list) {
366 if (q->info.si_signo == sig) {
373 sigdelset(&list->signal, sig);
377 list_del_init(&first->list);
378 copy_siginfo(info, &first->info);
379 __sigqueue_free(first);
381 /* Ok, it wasn't in the queue. This must be
382 a fast-pathed signal or we must have been
383 out of queue space. So zero out the info.
385 info->si_signo = sig;
393 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
396 int sig = next_signal(pending, mask);
399 if (current->notifier) {
400 if (sigismember(current->notifier_mask, sig)) {
401 if (!(current->notifier)(current->notifier_data)) {
402 clear_thread_flag(TIF_SIGPENDING);
408 collect_signal(sig, pending, info);
415 * Dequeue a signal and return the element to the caller, which is
416 * expected to free it.
418 * All callers have to hold the siglock.
420 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
424 /* We only dequeue private signals from ourselves, we don't let
425 * signalfd steal them
427 signr = __dequeue_signal(&tsk->pending, mask, info);
429 signr = __dequeue_signal(&tsk->signal->shared_pending,
434 * itimers are process shared and we restart periodic
435 * itimers in the signal delivery path to prevent DoS
436 * attacks in the high resolution timer case. This is
437 * compliant with the old way of self restarting
438 * itimers, as the SIGALRM is a legacy signal and only
439 * queued once. Changing the restart behaviour to
440 * restart the timer in the signal dequeue path is
441 * reducing the timer noise on heavy loaded !highres
444 if (unlikely(signr == SIGALRM)) {
445 struct hrtimer *tmr = &tsk->signal->real_timer;
447 if (!hrtimer_is_queued(tmr) &&
448 tsk->signal->it_real_incr.tv64 != 0) {
449 hrtimer_forward(tmr, tmr->base->get_time(),
450 tsk->signal->it_real_incr);
451 hrtimer_restart(tmr);
460 if (unlikely(sig_kernel_stop(signr))) {
462 * Set a marker that we have dequeued a stop signal. Our
463 * caller might release the siglock and then the pending
464 * stop signal it is about to process is no longer in the
465 * pending bitmasks, but must still be cleared by a SIGCONT
466 * (and overruled by a SIGKILL). So those cases clear this
467 * shared flag after we've set it. Note that this flag may
468 * remain set after the signal we return is ignored or
469 * handled. That doesn't matter because its only purpose
470 * is to alert stop-signal processing code when another
471 * processor has come along and cleared the flag.
473 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
475 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
477 * Release the siglock to ensure proper locking order
478 * of timer locks outside of siglocks. Note, we leave
479 * irqs disabled here, since the posix-timers code is
480 * about to disable them again anyway.
482 spin_unlock(&tsk->sighand->siglock);
483 do_schedule_next_timer(info);
484 spin_lock(&tsk->sighand->siglock);
490 * Tell a process that it has a new active signal..
492 * NOTE! we rely on the previous spin_lock to
493 * lock interrupts for us! We can only be called with
494 * "siglock" held, and the local interrupt must
495 * have been disabled when that got acquired!
497 * No need to set need_resched since signal event passing
498 * goes through ->blocked
500 void signal_wake_up(struct task_struct *t, int resume)
504 set_tsk_thread_flag(t, TIF_SIGPENDING);
507 * For SIGKILL, we want to wake it up in the stopped/traced/killable
508 * case. We don't check t->state here because there is a race with it
509 * executing another processor and just now entering stopped state.
510 * By using wake_up_state, we ensure the process will wake up and
511 * handle its death signal.
513 mask = TASK_INTERRUPTIBLE;
515 mask |= TASK_WAKEKILL;
516 if (!wake_up_state(t, mask))
521 * Remove signals in mask from the pending set and queue.
522 * Returns 1 if any signals were found.
524 * All callers must be holding the siglock.
526 * This version takes a sigset mask and looks at all signals,
527 * not just those in the first mask word.
529 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
531 struct sigqueue *q, *n;
534 sigandsets(&m, mask, &s->signal);
535 if (sigisemptyset(&m))
538 signandsets(&s->signal, &s->signal, mask);
539 list_for_each_entry_safe(q, n, &s->list, list) {
540 if (sigismember(mask, q->info.si_signo)) {
541 list_del_init(&q->list);
548 * Remove signals in mask from the pending set and queue.
549 * Returns 1 if any signals were found.
551 * All callers must be holding the siglock.
553 static int rm_from_queue(unsigned long mask, struct sigpending *s)
555 struct sigqueue *q, *n;
557 if (!sigtestsetmask(&s->signal, mask))
560 sigdelsetmask(&s->signal, mask);
561 list_for_each_entry_safe(q, n, &s->list, list) {
562 if (q->info.si_signo < SIGRTMIN &&
563 (mask & sigmask(q->info.si_signo))) {
564 list_del_init(&q->list);
572 * Bad permissions for sending the signal
573 * - the caller must hold at least the RCU read lock
575 static int check_kill_permission(int sig, struct siginfo *info,
576 struct task_struct *t)
578 const struct cred *cred = current_cred(), *tcred;
582 if (!valid_signal(sig))
585 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
588 error = audit_signal_info(sig, t); /* Let audit system see the signal */
592 tcred = __task_cred(t);
593 if ((cred->euid ^ tcred->suid) &&
594 (cred->euid ^ tcred->uid) &&
595 (cred->uid ^ tcred->suid) &&
596 (cred->uid ^ tcred->uid) &&
597 !capable(CAP_KILL)) {
600 sid = task_session(t);
602 * We don't return the error if sid == NULL. The
603 * task was unhashed, the caller must notice this.
605 if (!sid || sid == task_session(current))
612 return security_task_kill(t, info, sig, 0);
616 * Handle magic process-wide effects of stop/continue signals. Unlike
617 * the signal actions, these happen immediately at signal-generation
618 * time regardless of blocking, ignoring, or handling. This does the
619 * actual continuing for SIGCONT, but not the actual stopping for stop
620 * signals. The process stop is done as a signal action for SIG_DFL.
622 * Returns true if the signal should be actually delivered, otherwise
623 * it should be dropped.
625 static int prepare_signal(int sig, struct task_struct *p)
627 struct signal_struct *signal = p->signal;
628 struct task_struct *t;
630 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
632 * The process is in the middle of dying, nothing to do.
634 } else if (sig_kernel_stop(sig)) {
636 * This is a stop signal. Remove SIGCONT from all queues.
638 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
641 rm_from_queue(sigmask(SIGCONT), &t->pending);
642 } while_each_thread(p, t);
643 } else if (sig == SIGCONT) {
646 * Remove all stop signals from all queues,
647 * and wake all threads.
649 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
653 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
655 * If there is a handler for SIGCONT, we must make
656 * sure that no thread returns to user mode before
657 * we post the signal, in case it was the only
658 * thread eligible to run the signal handler--then
659 * it must not do anything between resuming and
660 * running the handler. With the TIF_SIGPENDING
661 * flag set, the thread will pause and acquire the
662 * siglock that we hold now and until we've queued
663 * the pending signal.
665 * Wake up the stopped thread _after_ setting
668 state = __TASK_STOPPED;
669 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
670 set_tsk_thread_flag(t, TIF_SIGPENDING);
671 state |= TASK_INTERRUPTIBLE;
673 wake_up_state(t, state);
674 } while_each_thread(p, t);
677 * Notify the parent with CLD_CONTINUED if we were stopped.
679 * If we were in the middle of a group stop, we pretend it
680 * was already finished, and then continued. Since SIGCHLD
681 * doesn't queue we report only CLD_STOPPED, as if the next
682 * CLD_CONTINUED was dropped.
685 if (signal->flags & SIGNAL_STOP_STOPPED)
686 why |= SIGNAL_CLD_CONTINUED;
687 else if (signal->group_stop_count)
688 why |= SIGNAL_CLD_STOPPED;
692 * The first thread which returns from finish_stop()
693 * will take ->siglock, notice SIGNAL_CLD_MASK, and
694 * notify its parent. See get_signal_to_deliver().
696 signal->flags = why | SIGNAL_STOP_CONTINUED;
697 signal->group_stop_count = 0;
698 signal->group_exit_code = 0;
701 * We are not stopped, but there could be a stop
702 * signal in the middle of being processed after
703 * being removed from the queue. Clear that too.
705 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
709 return !sig_ignored(p, sig);
713 * Test if P wants to take SIG. After we've checked all threads with this,
714 * it's equivalent to finding no threads not blocking SIG. Any threads not
715 * blocking SIG were ruled out because they are not running and already
716 * have pending signals. Such threads will dequeue from the shared queue
717 * as soon as they're available, so putting the signal on the shared queue
718 * will be equivalent to sending it to one such thread.
720 static inline int wants_signal(int sig, struct task_struct *p)
722 if (sigismember(&p->blocked, sig))
724 if (p->flags & PF_EXITING)
728 if (task_is_stopped_or_traced(p))
730 return task_curr(p) || !signal_pending(p);
733 static void complete_signal(int sig, struct task_struct *p, int group)
735 struct signal_struct *signal = p->signal;
736 struct task_struct *t;
739 * Now find a thread we can wake up to take the signal off the queue.
741 * If the main thread wants the signal, it gets first crack.
742 * Probably the least surprising to the average bear.
744 if (wants_signal(sig, p))
746 else if (!group || thread_group_empty(p))
748 * There is just one thread and it does not need to be woken.
749 * It will dequeue unblocked signals before it runs again.
754 * Otherwise try to find a suitable thread.
756 t = signal->curr_target;
757 while (!wants_signal(sig, t)) {
759 if (t == signal->curr_target)
761 * No thread needs to be woken.
762 * Any eligible threads will see
763 * the signal in the queue soon.
767 signal->curr_target = t;
771 * Found a killable thread. If the signal will be fatal,
772 * then start taking the whole group down immediately.
774 if (sig_fatal(p, sig) &&
775 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
776 !sigismember(&t->real_blocked, sig) &&
778 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
780 * This signal will be fatal to the whole group.
782 if (!sig_kernel_coredump(sig)) {
784 * Start a group exit and wake everybody up.
785 * This way we don't have other threads
786 * running and doing things after a slower
787 * thread has the fatal signal pending.
789 signal->flags = SIGNAL_GROUP_EXIT;
790 signal->group_exit_code = sig;
791 signal->group_stop_count = 0;
794 sigaddset(&t->pending.signal, SIGKILL);
795 signal_wake_up(t, 1);
796 } while_each_thread(p, t);
802 * The signal is already in the shared-pending queue.
803 * Tell the chosen thread to wake up and dequeue it.
805 signal_wake_up(t, sig == SIGKILL);
809 static inline int legacy_queue(struct sigpending *signals, int sig)
811 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
814 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
817 struct sigpending *pending;
820 trace_sched_signal_send(sig, t);
822 assert_spin_locked(&t->sighand->siglock);
823 if (!prepare_signal(sig, t))
826 pending = group ? &t->signal->shared_pending : &t->pending;
828 * Short-circuit ignored signals and support queuing
829 * exactly one non-rt signal, so that we can get more
830 * detailed information about the cause of the signal.
832 if (legacy_queue(pending, sig))
835 * fast-pathed signals for kernel-internal things like SIGSTOP
838 if (info == SEND_SIG_FORCED)
841 /* Real-time signals must be queued if sent by sigqueue, or
842 some other real-time mechanism. It is implementation
843 defined whether kill() does so. We attempt to do so, on
844 the principle of least surprise, but since kill is not
845 allowed to fail with EAGAIN when low on memory we just
846 make sure at least one signal gets delivered and don't
847 pass on the info struct. */
849 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
850 (is_si_special(info) ||
851 info->si_code >= 0)));
853 list_add_tail(&q->list, &pending->list);
854 switch ((unsigned long) info) {
855 case (unsigned long) SEND_SIG_NOINFO:
856 q->info.si_signo = sig;
857 q->info.si_errno = 0;
858 q->info.si_code = SI_USER;
859 q->info.si_pid = task_pid_vnr(current);
860 q->info.si_uid = current_uid();
862 case (unsigned long) SEND_SIG_PRIV:
863 q->info.si_signo = sig;
864 q->info.si_errno = 0;
865 q->info.si_code = SI_KERNEL;
870 copy_siginfo(&q->info, info);
873 } else if (!is_si_special(info)) {
874 if (sig >= SIGRTMIN && info->si_code != SI_USER)
876 * Queue overflow, abort. We may abort if the signal was rt
877 * and sent by user using something other than kill().
883 signalfd_notify(t, sig);
884 sigaddset(&pending->signal, sig);
885 complete_signal(sig, t, group);
889 int print_fatal_signals;
891 static void print_fatal_signal(struct pt_regs *regs, int signr)
893 printk("%s/%d: potentially unexpected fatal signal %d.\n",
894 current->comm, task_pid_nr(current), signr);
896 #if defined(__i386__) && !defined(__arch_um__)
897 printk("code at %08lx: ", regs->ip);
900 for (i = 0; i < 16; i++) {
903 __get_user(insn, (unsigned char *)(regs->ip + i));
904 printk("%02x ", insn);
912 static int __init setup_print_fatal_signals(char *str)
914 get_option (&str, &print_fatal_signals);
919 __setup("print-fatal-signals=", setup_print_fatal_signals);
922 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
924 return send_signal(sig, info, p, 1);
928 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
930 return send_signal(sig, info, t, 0);
934 * Force a signal that the process can't ignore: if necessary
935 * we unblock the signal and change any SIG_IGN to SIG_DFL.
937 * Note: If we unblock the signal, we always reset it to SIG_DFL,
938 * since we do not want to have a signal handler that was blocked
939 * be invoked when user space had explicitly blocked it.
941 * We don't want to have recursive SIGSEGV's etc, for example,
942 * that is why we also clear SIGNAL_UNKILLABLE.
945 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
947 unsigned long int flags;
948 int ret, blocked, ignored;
949 struct k_sigaction *action;
951 spin_lock_irqsave(&t->sighand->siglock, flags);
952 action = &t->sighand->action[sig-1];
953 ignored = action->sa.sa_handler == SIG_IGN;
954 blocked = sigismember(&t->blocked, sig);
955 if (blocked || ignored) {
956 action->sa.sa_handler = SIG_DFL;
958 sigdelset(&t->blocked, sig);
959 recalc_sigpending_and_wake(t);
962 if (action->sa.sa_handler == SIG_DFL)
963 t->signal->flags &= ~SIGNAL_UNKILLABLE;
964 ret = specific_send_sig_info(sig, info, t);
965 spin_unlock_irqrestore(&t->sighand->siglock, flags);
971 force_sig_specific(int sig, struct task_struct *t)
973 force_sig_info(sig, SEND_SIG_FORCED, t);
977 * Nuke all other threads in the group.
979 void zap_other_threads(struct task_struct *p)
981 struct task_struct *t;
983 p->signal->group_stop_count = 0;
985 for (t = next_thread(p); t != p; t = next_thread(t)) {
987 * Don't bother with already dead threads
992 /* SIGKILL will be handled before any pending SIGSTOP */
993 sigaddset(&t->pending.signal, SIGKILL);
994 signal_wake_up(t, 1);
998 int __fatal_signal_pending(struct task_struct *tsk)
1000 return sigismember(&tsk->pending.signal, SIGKILL);
1002 EXPORT_SYMBOL(__fatal_signal_pending);
1004 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1006 struct sighand_struct *sighand;
1010 sighand = rcu_dereference(tsk->sighand);
1011 if (unlikely(sighand == NULL))
1014 spin_lock_irqsave(&sighand->siglock, *flags);
1015 if (likely(sighand == tsk->sighand))
1017 spin_unlock_irqrestore(&sighand->siglock, *flags);
1025 * send signal info to all the members of a group
1026 * - the caller must hold the RCU read lock at least
1028 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1030 unsigned long flags;
1033 ret = check_kill_permission(sig, info, p);
1037 if (lock_task_sighand(p, &flags)) {
1038 ret = __group_send_sig_info(sig, info, p);
1039 unlock_task_sighand(p, &flags);
1047 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1048 * control characters do (^C, ^Z etc)
1049 * - the caller must hold at least a readlock on tasklist_lock
1051 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1053 struct task_struct *p = NULL;
1054 int retval, success;
1058 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1059 int err = group_send_sig_info(sig, info, p);
1062 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1063 return success ? 0 : retval;
1066 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1069 struct task_struct *p;
1073 p = pid_task(pid, PIDTYPE_PID);
1075 error = group_send_sig_info(sig, info, p);
1076 if (unlikely(error == -ESRCH))
1078 * The task was unhashed in between, try again.
1079 * If it is dead, pid_task() will return NULL,
1080 * if we race with de_thread() it will find the
1091 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1095 error = kill_pid_info(sig, info, find_vpid(pid));
1100 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1101 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1102 uid_t uid, uid_t euid, u32 secid)
1105 struct task_struct *p;
1106 const struct cred *pcred;
1108 if (!valid_signal(sig))
1111 read_lock(&tasklist_lock);
1112 p = pid_task(pid, PIDTYPE_PID);
1117 pcred = __task_cred(p);
1118 if ((info == SEND_SIG_NOINFO ||
1119 (!is_si_special(info) && SI_FROMUSER(info))) &&
1120 euid != pcred->suid && euid != pcred->uid &&
1121 uid != pcred->suid && uid != pcred->uid) {
1125 ret = security_task_kill(p, info, sig, secid);
1128 if (sig && p->sighand) {
1129 unsigned long flags;
1130 spin_lock_irqsave(&p->sighand->siglock, flags);
1131 ret = __group_send_sig_info(sig, info, p);
1132 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1135 read_unlock(&tasklist_lock);
1138 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1141 * kill_something_info() interprets pid in interesting ways just like kill(2).
1143 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1144 * is probably wrong. Should make it like BSD or SYSV.
1147 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1153 ret = kill_pid_info(sig, info, find_vpid(pid));
1158 read_lock(&tasklist_lock);
1160 ret = __kill_pgrp_info(sig, info,
1161 pid ? find_vpid(-pid) : task_pgrp(current));
1163 int retval = 0, count = 0;
1164 struct task_struct * p;
1166 for_each_process(p) {
1167 if (task_pid_vnr(p) > 1 &&
1168 !same_thread_group(p, current)) {
1169 int err = group_send_sig_info(sig, info, p);
1175 ret = count ? retval : -ESRCH;
1177 read_unlock(&tasklist_lock);
1183 * These are for backward compatibility with the rest of the kernel source.
1187 * The caller must ensure the task can't exit.
1190 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 unsigned long flags;
1196 * Make sure legacy kernel users don't send in bad values
1197 * (normal paths check this in check_kill_permission).
1199 if (!valid_signal(sig))
1202 spin_lock_irqsave(&p->sighand->siglock, flags);
1203 ret = specific_send_sig_info(sig, info, p);
1204 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 #define __si_special(priv) \
1209 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1212 send_sig(int sig, struct task_struct *p, int priv)
1214 return send_sig_info(sig, __si_special(priv), p);
1218 force_sig(int sig, struct task_struct *p)
1220 force_sig_info(sig, SEND_SIG_PRIV, p);
1224 * When things go south during signal handling, we
1225 * will force a SIGSEGV. And if the signal that caused
1226 * the problem was already a SIGSEGV, we'll want to
1227 * make sure we don't even try to deliver the signal..
1230 force_sigsegv(int sig, struct task_struct *p)
1232 if (sig == SIGSEGV) {
1233 unsigned long flags;
1234 spin_lock_irqsave(&p->sighand->siglock, flags);
1235 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1236 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1238 force_sig(SIGSEGV, p);
1242 int kill_pgrp(struct pid *pid, int sig, int priv)
1246 read_lock(&tasklist_lock);
1247 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1248 read_unlock(&tasklist_lock);
1252 EXPORT_SYMBOL(kill_pgrp);
1254 int kill_pid(struct pid *pid, int sig, int priv)
1256 return kill_pid_info(sig, __si_special(priv), pid);
1258 EXPORT_SYMBOL(kill_pid);
1261 * These functions support sending signals using preallocated sigqueue
1262 * structures. This is needed "because realtime applications cannot
1263 * afford to lose notifications of asynchronous events, like timer
1264 * expirations or I/O completions". In the case of Posix Timers
1265 * we allocate the sigqueue structure from the timer_create. If this
1266 * allocation fails we are able to report the failure to the application
1267 * with an EAGAIN error.
1270 struct sigqueue *sigqueue_alloc(void)
1274 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1275 q->flags |= SIGQUEUE_PREALLOC;
1279 void sigqueue_free(struct sigqueue *q)
1281 unsigned long flags;
1282 spinlock_t *lock = ¤t->sighand->siglock;
1284 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1286 * We must hold ->siglock while testing q->list
1287 * to serialize with collect_signal() or with
1288 * __exit_signal()->flush_sigqueue().
1290 spin_lock_irqsave(lock, flags);
1291 q->flags &= ~SIGQUEUE_PREALLOC;
1293 * If it is queued it will be freed when dequeued,
1294 * like the "regular" sigqueue.
1296 if (!list_empty(&q->list))
1298 spin_unlock_irqrestore(lock, flags);
1304 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1306 int sig = q->info.si_signo;
1307 struct sigpending *pending;
1308 unsigned long flags;
1311 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1314 if (!likely(lock_task_sighand(t, &flags)))
1317 ret = 1; /* the signal is ignored */
1318 if (!prepare_signal(sig, t))
1322 if (unlikely(!list_empty(&q->list))) {
1324 * If an SI_TIMER entry is already queue just increment
1325 * the overrun count.
1327 BUG_ON(q->info.si_code != SI_TIMER);
1328 q->info.si_overrun++;
1331 q->info.si_overrun = 0;
1333 signalfd_notify(t, sig);
1334 pending = group ? &t->signal->shared_pending : &t->pending;
1335 list_add_tail(&q->list, &pending->list);
1336 sigaddset(&pending->signal, sig);
1337 complete_signal(sig, t, group);
1339 unlock_task_sighand(t, &flags);
1345 * Wake up any threads in the parent blocked in wait* syscalls.
1347 static inline void __wake_up_parent(struct task_struct *p,
1348 struct task_struct *parent)
1350 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1354 * Let a parent know about the death of a child.
1355 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1357 * Returns -1 if our parent ignored us and so we've switched to
1358 * self-reaping, or else @sig.
1360 int do_notify_parent(struct task_struct *tsk, int sig)
1362 struct siginfo info;
1363 unsigned long flags;
1364 struct sighand_struct *psig;
1365 struct task_cputime cputime;
1370 /* do_notify_parent_cldstop should have been called instead. */
1371 BUG_ON(task_is_stopped_or_traced(tsk));
1373 BUG_ON(!tsk->ptrace &&
1374 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1376 info.si_signo = sig;
1379 * we are under tasklist_lock here so our parent is tied to
1380 * us and cannot exit and release its namespace.
1382 * the only it can is to switch its nsproxy with sys_unshare,
1383 * bu uncharing pid namespaces is not allowed, so we'll always
1384 * see relevant namespace
1386 * write_lock() currently calls preempt_disable() which is the
1387 * same as rcu_read_lock(), but according to Oleg, this is not
1388 * correct to rely on this
1391 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1392 info.si_uid = __task_cred(tsk)->uid;
1395 thread_group_cputime(tsk, &cputime);
1396 info.si_utime = cputime_to_jiffies(cputime.utime);
1397 info.si_stime = cputime_to_jiffies(cputime.stime);
1399 info.si_status = tsk->exit_code & 0x7f;
1400 if (tsk->exit_code & 0x80)
1401 info.si_code = CLD_DUMPED;
1402 else if (tsk->exit_code & 0x7f)
1403 info.si_code = CLD_KILLED;
1405 info.si_code = CLD_EXITED;
1406 info.si_status = tsk->exit_code >> 8;
1409 psig = tsk->parent->sighand;
1410 spin_lock_irqsave(&psig->siglock, flags);
1411 if (!tsk->ptrace && sig == SIGCHLD &&
1412 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1413 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1415 * We are exiting and our parent doesn't care. POSIX.1
1416 * defines special semantics for setting SIGCHLD to SIG_IGN
1417 * or setting the SA_NOCLDWAIT flag: we should be reaped
1418 * automatically and not left for our parent's wait4 call.
1419 * Rather than having the parent do it as a magic kind of
1420 * signal handler, we just set this to tell do_exit that we
1421 * can be cleaned up without becoming a zombie. Note that
1422 * we still call __wake_up_parent in this case, because a
1423 * blocked sys_wait4 might now return -ECHILD.
1425 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1426 * is implementation-defined: we do (if you don't want
1427 * it, just use SIG_IGN instead).
1429 ret = tsk->exit_signal = -1;
1430 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1433 if (valid_signal(sig) && sig > 0)
1434 __group_send_sig_info(sig, &info, tsk->parent);
1435 __wake_up_parent(tsk, tsk->parent);
1436 spin_unlock_irqrestore(&psig->siglock, flags);
1441 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1443 struct siginfo info;
1444 unsigned long flags;
1445 struct task_struct *parent;
1446 struct sighand_struct *sighand;
1448 if (tsk->ptrace & PT_PTRACED)
1449 parent = tsk->parent;
1451 tsk = tsk->group_leader;
1452 parent = tsk->real_parent;
1455 info.si_signo = SIGCHLD;
1458 * see comment in do_notify_parent() abot the following 3 lines
1461 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1462 info.si_uid = __task_cred(tsk)->uid;
1465 info.si_utime = cputime_to_clock_t(tsk->utime);
1466 info.si_stime = cputime_to_clock_t(tsk->stime);
1471 info.si_status = SIGCONT;
1474 info.si_status = tsk->signal->group_exit_code & 0x7f;
1477 info.si_status = tsk->exit_code & 0x7f;
1483 sighand = parent->sighand;
1484 spin_lock_irqsave(&sighand->siglock, flags);
1485 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1486 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1487 __group_send_sig_info(SIGCHLD, &info, parent);
1489 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1491 __wake_up_parent(tsk, parent);
1492 spin_unlock_irqrestore(&sighand->siglock, flags);
1495 static inline int may_ptrace_stop(void)
1497 if (!likely(current->ptrace & PT_PTRACED))
1500 * Are we in the middle of do_coredump?
1501 * If so and our tracer is also part of the coredump stopping
1502 * is a deadlock situation, and pointless because our tracer
1503 * is dead so don't allow us to stop.
1504 * If SIGKILL was already sent before the caller unlocked
1505 * ->siglock we must see ->core_state != NULL. Otherwise it
1506 * is safe to enter schedule().
1508 if (unlikely(current->mm->core_state) &&
1509 unlikely(current->mm == current->parent->mm))
1516 * Return nonzero if there is a SIGKILL that should be waking us up.
1517 * Called with the siglock held.
1519 static int sigkill_pending(struct task_struct *tsk)
1521 return sigismember(&tsk->pending.signal, SIGKILL) ||
1522 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1526 * This must be called with current->sighand->siglock held.
1528 * This should be the path for all ptrace stops.
1529 * We always set current->last_siginfo while stopped here.
1530 * That makes it a way to test a stopped process for
1531 * being ptrace-stopped vs being job-control-stopped.
1533 * If we actually decide not to stop at all because the tracer
1534 * is gone, we keep current->exit_code unless clear_code.
1536 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1538 if (arch_ptrace_stop_needed(exit_code, info)) {
1540 * The arch code has something special to do before a
1541 * ptrace stop. This is allowed to block, e.g. for faults
1542 * on user stack pages. We can't keep the siglock while
1543 * calling arch_ptrace_stop, so we must release it now.
1544 * To preserve proper semantics, we must do this before
1545 * any signal bookkeeping like checking group_stop_count.
1546 * Meanwhile, a SIGKILL could come in before we retake the
1547 * siglock. That must prevent us from sleeping in TASK_TRACED.
1548 * So after regaining the lock, we must check for SIGKILL.
1550 spin_unlock_irq(¤t->sighand->siglock);
1551 arch_ptrace_stop(exit_code, info);
1552 spin_lock_irq(¤t->sighand->siglock);
1553 if (sigkill_pending(current))
1558 * If there is a group stop in progress,
1559 * we must participate in the bookkeeping.
1561 if (current->signal->group_stop_count > 0)
1562 --current->signal->group_stop_count;
1564 current->last_siginfo = info;
1565 current->exit_code = exit_code;
1567 /* Let the debugger run. */
1568 __set_current_state(TASK_TRACED);
1569 spin_unlock_irq(¤t->sighand->siglock);
1570 read_lock(&tasklist_lock);
1571 if (may_ptrace_stop()) {
1572 do_notify_parent_cldstop(current, CLD_TRAPPED);
1573 read_unlock(&tasklist_lock);
1577 * By the time we got the lock, our tracer went away.
1578 * Don't drop the lock yet, another tracer may come.
1580 __set_current_state(TASK_RUNNING);
1582 current->exit_code = 0;
1583 read_unlock(&tasklist_lock);
1587 * While in TASK_TRACED, we were considered "frozen enough".
1588 * Now that we woke up, it's crucial if we're supposed to be
1589 * frozen that we freeze now before running anything substantial.
1594 * We are back. Now reacquire the siglock before touching
1595 * last_siginfo, so that we are sure to have synchronized with
1596 * any signal-sending on another CPU that wants to examine it.
1598 spin_lock_irq(¤t->sighand->siglock);
1599 current->last_siginfo = NULL;
1602 * Queued signals ignored us while we were stopped for tracing.
1603 * So check for any that we should take before resuming user mode.
1604 * This sets TIF_SIGPENDING, but never clears it.
1606 recalc_sigpending_tsk(current);
1609 void ptrace_notify(int exit_code)
1613 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1615 memset(&info, 0, sizeof info);
1616 info.si_signo = SIGTRAP;
1617 info.si_code = exit_code;
1618 info.si_pid = task_pid_vnr(current);
1619 info.si_uid = current_uid();
1621 /* Let the debugger run. */
1622 spin_lock_irq(¤t->sighand->siglock);
1623 ptrace_stop(exit_code, 1, &info);
1624 spin_unlock_irq(¤t->sighand->siglock);
1628 finish_stop(int stop_count)
1631 * If there are no other threads in the group, or if there is
1632 * a group stop in progress and we are the last to stop,
1633 * report to the parent. When ptraced, every thread reports itself.
1635 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1636 read_lock(&tasklist_lock);
1637 do_notify_parent_cldstop(current, CLD_STOPPED);
1638 read_unlock(&tasklist_lock);
1643 } while (try_to_freeze());
1645 * Now we don't run again until continued.
1647 current->exit_code = 0;
1651 * This performs the stopping for SIGSTOP and other stop signals.
1652 * We have to stop all threads in the thread group.
1653 * Returns nonzero if we've actually stopped and released the siglock.
1654 * Returns zero if we didn't stop and still hold the siglock.
1656 static int do_signal_stop(int signr)
1658 struct signal_struct *sig = current->signal;
1661 if (sig->group_stop_count > 0) {
1663 * There is a group stop in progress. We don't need to
1664 * start another one.
1666 stop_count = --sig->group_stop_count;
1668 struct task_struct *t;
1670 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1671 unlikely(signal_group_exit(sig)))
1674 * There is no group stop already in progress.
1675 * We must initiate one now.
1677 sig->group_exit_code = signr;
1680 for (t = next_thread(current); t != current; t = next_thread(t))
1682 * Setting state to TASK_STOPPED for a group
1683 * stop is always done with the siglock held,
1684 * so this check has no races.
1686 if (!(t->flags & PF_EXITING) &&
1687 !task_is_stopped_or_traced(t)) {
1689 signal_wake_up(t, 0);
1691 sig->group_stop_count = stop_count;
1694 if (stop_count == 0)
1695 sig->flags = SIGNAL_STOP_STOPPED;
1696 current->exit_code = sig->group_exit_code;
1697 __set_current_state(TASK_STOPPED);
1699 spin_unlock_irq(¤t->sighand->siglock);
1700 finish_stop(stop_count);
1704 static int ptrace_signal(int signr, siginfo_t *info,
1705 struct pt_regs *regs, void *cookie)
1707 if (!(current->ptrace & PT_PTRACED))
1710 ptrace_signal_deliver(regs, cookie);
1712 /* Let the debugger run. */
1713 ptrace_stop(signr, 0, info);
1715 /* We're back. Did the debugger cancel the sig? */
1716 signr = current->exit_code;
1720 current->exit_code = 0;
1722 /* Update the siginfo structure if the signal has
1723 changed. If the debugger wanted something
1724 specific in the siginfo structure then it should
1725 have updated *info via PTRACE_SETSIGINFO. */
1726 if (signr != info->si_signo) {
1727 info->si_signo = signr;
1729 info->si_code = SI_USER;
1730 info->si_pid = task_pid_vnr(current->parent);
1731 info->si_uid = task_uid(current->parent);
1734 /* If the (new) signal is now blocked, requeue it. */
1735 if (sigismember(¤t->blocked, signr)) {
1736 specific_send_sig_info(signr, info, current);
1743 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1744 struct pt_regs *regs, void *cookie)
1746 struct sighand_struct *sighand = current->sighand;
1747 struct signal_struct *signal = current->signal;
1752 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1753 * While in TASK_STOPPED, we were considered "frozen enough".
1754 * Now that we woke up, it's crucial if we're supposed to be
1755 * frozen that we freeze now before running anything substantial.
1759 spin_lock_irq(&sighand->siglock);
1761 * Every stopped thread goes here after wakeup. Check to see if
1762 * we should notify the parent, prepare_signal(SIGCONT) encodes
1763 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1765 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1766 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1767 ? CLD_CONTINUED : CLD_STOPPED;
1768 signal->flags &= ~SIGNAL_CLD_MASK;
1769 spin_unlock_irq(&sighand->siglock);
1771 if (unlikely(!tracehook_notify_jctl(1, why)))
1774 read_lock(&tasklist_lock);
1775 do_notify_parent_cldstop(current->group_leader, why);
1776 read_unlock(&tasklist_lock);
1781 struct k_sigaction *ka;
1783 if (unlikely(signal->group_stop_count > 0) &&
1788 * Tracing can induce an artifical signal and choose sigaction.
1789 * The return value in @signr determines the default action,
1790 * but @info->si_signo is the signal number we will report.
1792 signr = tracehook_get_signal(current, regs, info, return_ka);
1793 if (unlikely(signr < 0))
1795 if (unlikely(signr != 0))
1798 signr = dequeue_signal(current, ¤t->blocked,
1802 break; /* will return 0 */
1804 if (signr != SIGKILL) {
1805 signr = ptrace_signal(signr, info,
1811 ka = &sighand->action[signr-1];
1814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1816 if (ka->sa.sa_handler != SIG_DFL) {
1817 /* Run the handler. */
1820 if (ka->sa.sa_flags & SA_ONESHOT)
1821 ka->sa.sa_handler = SIG_DFL;
1823 break; /* will return non-zero "signr" value */
1827 * Now we are doing the default action for this signal.
1829 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1833 * Global init gets no signals it doesn't want.
1835 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1836 !signal_group_exit(signal))
1839 if (sig_kernel_stop(signr)) {
1841 * The default action is to stop all threads in
1842 * the thread group. The job control signals
1843 * do nothing in an orphaned pgrp, but SIGSTOP
1844 * always works. Note that siglock needs to be
1845 * dropped during the call to is_orphaned_pgrp()
1846 * because of lock ordering with tasklist_lock.
1847 * This allows an intervening SIGCONT to be posted.
1848 * We need to check for that and bail out if necessary.
1850 if (signr != SIGSTOP) {
1851 spin_unlock_irq(&sighand->siglock);
1853 /* signals can be posted during this window */
1855 if (is_current_pgrp_orphaned())
1858 spin_lock_irq(&sighand->siglock);
1861 if (likely(do_signal_stop(info->si_signo))) {
1862 /* It released the siglock. */
1867 * We didn't actually stop, due to a race
1868 * with SIGCONT or something like that.
1873 spin_unlock_irq(&sighand->siglock);
1876 * Anything else is fatal, maybe with a core dump.
1878 current->flags |= PF_SIGNALED;
1880 if (sig_kernel_coredump(signr)) {
1881 if (print_fatal_signals)
1882 print_fatal_signal(regs, info->si_signo);
1884 * If it was able to dump core, this kills all
1885 * other threads in the group and synchronizes with
1886 * their demise. If we lost the race with another
1887 * thread getting here, it set group_exit_code
1888 * first and our do_group_exit call below will use
1889 * that value and ignore the one we pass it.
1891 do_coredump(info->si_signo, info->si_signo, regs);
1895 * Death signals, no core dump.
1897 do_group_exit(info->si_signo);
1900 spin_unlock_irq(&sighand->siglock);
1904 void exit_signals(struct task_struct *tsk)
1907 struct task_struct *t;
1909 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1910 tsk->flags |= PF_EXITING;
1914 spin_lock_irq(&tsk->sighand->siglock);
1916 * From now this task is not visible for group-wide signals,
1917 * see wants_signal(), do_signal_stop().
1919 tsk->flags |= PF_EXITING;
1920 if (!signal_pending(tsk))
1923 /* It could be that __group_complete_signal() choose us to
1924 * notify about group-wide signal. Another thread should be
1925 * woken now to take the signal since we will not.
1927 for (t = tsk; (t = next_thread(t)) != tsk; )
1928 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1929 recalc_sigpending_and_wake(t);
1931 if (unlikely(tsk->signal->group_stop_count) &&
1932 !--tsk->signal->group_stop_count) {
1933 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1937 spin_unlock_irq(&tsk->sighand->siglock);
1939 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1940 read_lock(&tasklist_lock);
1941 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1942 read_unlock(&tasklist_lock);
1946 EXPORT_SYMBOL(recalc_sigpending);
1947 EXPORT_SYMBOL_GPL(dequeue_signal);
1948 EXPORT_SYMBOL(flush_signals);
1949 EXPORT_SYMBOL(force_sig);
1950 EXPORT_SYMBOL(send_sig);
1951 EXPORT_SYMBOL(send_sig_info);
1952 EXPORT_SYMBOL(sigprocmask);
1953 EXPORT_SYMBOL(block_all_signals);
1954 EXPORT_SYMBOL(unblock_all_signals);
1958 * System call entry points.
1961 asmlinkage long sys_restart_syscall(void)
1963 struct restart_block *restart = ¤t_thread_info()->restart_block;
1964 return restart->fn(restart);
1967 long do_no_restart_syscall(struct restart_block *param)
1973 * We don't need to get the kernel lock - this is all local to this
1974 * particular thread.. (and that's good, because this is _heavily_
1975 * used by various programs)
1979 * This is also useful for kernel threads that want to temporarily
1980 * (or permanently) block certain signals.
1982 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1983 * interface happily blocks "unblockable" signals like SIGKILL
1986 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1990 spin_lock_irq(¤t->sighand->siglock);
1992 *oldset = current->blocked;
1997 sigorsets(¤t->blocked, ¤t->blocked, set);
2000 signandsets(¤t->blocked, ¤t->blocked, set);
2003 current->blocked = *set;
2008 recalc_sigpending();
2009 spin_unlock_irq(¤t->sighand->siglock);
2015 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2017 int error = -EINVAL;
2018 sigset_t old_set, new_set;
2020 /* XXX: Don't preclude handling different sized sigset_t's. */
2021 if (sigsetsize != sizeof(sigset_t))
2026 if (copy_from_user(&new_set, set, sizeof(*set)))
2028 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2030 error = sigprocmask(how, &new_set, &old_set);
2036 spin_lock_irq(¤t->sighand->siglock);
2037 old_set = current->blocked;
2038 spin_unlock_irq(¤t->sighand->siglock);
2042 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2050 long do_sigpending(void __user *set, unsigned long sigsetsize)
2052 long error = -EINVAL;
2055 if (sigsetsize > sizeof(sigset_t))
2058 spin_lock_irq(¤t->sighand->siglock);
2059 sigorsets(&pending, ¤t->pending.signal,
2060 ¤t->signal->shared_pending.signal);
2061 spin_unlock_irq(¤t->sighand->siglock);
2063 /* Outside the lock because only this thread touches it. */
2064 sigandsets(&pending, ¤t->blocked, &pending);
2067 if (!copy_to_user(set, &pending, sigsetsize))
2075 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2077 return do_sigpending(set, sigsetsize);
2080 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2082 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2086 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2088 if (from->si_code < 0)
2089 return __copy_to_user(to, from, sizeof(siginfo_t))
2092 * If you change siginfo_t structure, please be sure
2093 * this code is fixed accordingly.
2094 * Please remember to update the signalfd_copyinfo() function
2095 * inside fs/signalfd.c too, in case siginfo_t changes.
2096 * It should never copy any pad contained in the structure
2097 * to avoid security leaks, but must copy the generic
2098 * 3 ints plus the relevant union member.
2100 err = __put_user(from->si_signo, &to->si_signo);
2101 err |= __put_user(from->si_errno, &to->si_errno);
2102 err |= __put_user((short)from->si_code, &to->si_code);
2103 switch (from->si_code & __SI_MASK) {
2105 err |= __put_user(from->si_pid, &to->si_pid);
2106 err |= __put_user(from->si_uid, &to->si_uid);
2109 err |= __put_user(from->si_tid, &to->si_tid);
2110 err |= __put_user(from->si_overrun, &to->si_overrun);
2111 err |= __put_user(from->si_ptr, &to->si_ptr);
2114 err |= __put_user(from->si_band, &to->si_band);
2115 err |= __put_user(from->si_fd, &to->si_fd);
2118 err |= __put_user(from->si_addr, &to->si_addr);
2119 #ifdef __ARCH_SI_TRAPNO
2120 err |= __put_user(from->si_trapno, &to->si_trapno);
2124 err |= __put_user(from->si_pid, &to->si_pid);
2125 err |= __put_user(from->si_uid, &to->si_uid);
2126 err |= __put_user(from->si_status, &to->si_status);
2127 err |= __put_user(from->si_utime, &to->si_utime);
2128 err |= __put_user(from->si_stime, &to->si_stime);
2130 case __SI_RT: /* This is not generated by the kernel as of now. */
2131 case __SI_MESGQ: /* But this is */
2132 err |= __put_user(from->si_pid, &to->si_pid);
2133 err |= __put_user(from->si_uid, &to->si_uid);
2134 err |= __put_user(from->si_ptr, &to->si_ptr);
2136 default: /* this is just in case for now ... */
2137 err |= __put_user(from->si_pid, &to->si_pid);
2138 err |= __put_user(from->si_uid, &to->si_uid);
2147 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2148 siginfo_t __user *uinfo,
2149 const struct timespec __user *uts,
2158 /* XXX: Don't preclude handling different sized sigset_t's. */
2159 if (sigsetsize != sizeof(sigset_t))
2162 if (copy_from_user(&these, uthese, sizeof(these)))
2166 * Invert the set of allowed signals to get those we
2169 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2173 if (copy_from_user(&ts, uts, sizeof(ts)))
2175 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2180 spin_lock_irq(¤t->sighand->siglock);
2181 sig = dequeue_signal(current, &these, &info);
2183 timeout = MAX_SCHEDULE_TIMEOUT;
2185 timeout = (timespec_to_jiffies(&ts)
2186 + (ts.tv_sec || ts.tv_nsec));
2189 /* None ready -- temporarily unblock those we're
2190 * interested while we are sleeping in so that we'll
2191 * be awakened when they arrive. */
2192 current->real_blocked = current->blocked;
2193 sigandsets(¤t->blocked, ¤t->blocked, &these);
2194 recalc_sigpending();
2195 spin_unlock_irq(¤t->sighand->siglock);
2197 timeout = schedule_timeout_interruptible(timeout);
2199 spin_lock_irq(¤t->sighand->siglock);
2200 sig = dequeue_signal(current, &these, &info);
2201 current->blocked = current->real_blocked;
2202 siginitset(¤t->real_blocked, 0);
2203 recalc_sigpending();
2206 spin_unlock_irq(¤t->sighand->siglock);
2211 if (copy_siginfo_to_user(uinfo, &info))
2224 sys_kill(pid_t pid, int sig)
2226 struct siginfo info;
2228 info.si_signo = sig;
2230 info.si_code = SI_USER;
2231 info.si_pid = task_tgid_vnr(current);
2232 info.si_uid = current_uid();
2234 return kill_something_info(sig, &info, pid);
2237 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2240 struct siginfo info;
2241 struct task_struct *p;
2242 unsigned long flags;
2245 info.si_signo = sig;
2247 info.si_code = SI_TKILL;
2248 info.si_pid = task_tgid_vnr(current);
2249 info.si_uid = current_uid();
2252 p = find_task_by_vpid(pid);
2253 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2254 error = check_kill_permission(sig, &info, p);
2256 * The null signal is a permissions and process existence
2257 * probe. No signal is actually delivered.
2259 * If lock_task_sighand() fails we pretend the task dies
2260 * after receiving the signal. The window is tiny, and the
2261 * signal is private anyway.
2263 if (!error && sig && lock_task_sighand(p, &flags)) {
2264 error = specific_send_sig_info(sig, &info, p);
2265 unlock_task_sighand(p, &flags);
2274 * sys_tgkill - send signal to one specific thread
2275 * @tgid: the thread group ID of the thread
2276 * @pid: the PID of the thread
2277 * @sig: signal to be sent
2279 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2280 * exists but it's not belonging to the target process anymore. This
2281 * method solves the problem of threads exiting and PIDs getting reused.
2283 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2285 /* This is only valid for single tasks */
2286 if (pid <= 0 || tgid <= 0)
2289 return do_tkill(tgid, pid, sig);
2293 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2296 sys_tkill(pid_t pid, int sig)
2298 /* This is only valid for single tasks */
2302 return do_tkill(0, pid, sig);
2306 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2310 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2313 /* Not even root can pretend to send signals from the kernel.
2314 Nor can they impersonate a kill(), which adds source info. */
2315 if (info.si_code >= 0)
2317 info.si_signo = sig;
2319 /* POSIX.1b doesn't mention process groups. */
2320 return kill_proc_info(sig, &info, pid);
2323 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2325 struct task_struct *t = current;
2326 struct k_sigaction *k;
2329 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2332 k = &t->sighand->action[sig-1];
2334 spin_lock_irq(¤t->sighand->siglock);
2339 sigdelsetmask(&act->sa.sa_mask,
2340 sigmask(SIGKILL) | sigmask(SIGSTOP));
2344 * "Setting a signal action to SIG_IGN for a signal that is
2345 * pending shall cause the pending signal to be discarded,
2346 * whether or not it is blocked."
2348 * "Setting a signal action to SIG_DFL for a signal that is
2349 * pending and whose default action is to ignore the signal
2350 * (for example, SIGCHLD), shall cause the pending signal to
2351 * be discarded, whether or not it is blocked"
2353 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2355 sigaddset(&mask, sig);
2356 rm_from_queue_full(&mask, &t->signal->shared_pending);
2358 rm_from_queue_full(&mask, &t->pending);
2360 } while (t != current);
2364 spin_unlock_irq(¤t->sighand->siglock);
2369 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2375 oss.ss_sp = (void __user *) current->sas_ss_sp;
2376 oss.ss_size = current->sas_ss_size;
2377 oss.ss_flags = sas_ss_flags(sp);
2386 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2387 || __get_user(ss_sp, &uss->ss_sp)
2388 || __get_user(ss_flags, &uss->ss_flags)
2389 || __get_user(ss_size, &uss->ss_size))
2393 if (on_sig_stack(sp))
2399 * Note - this code used to test ss_flags incorrectly
2400 * old code may have been written using ss_flags==0
2401 * to mean ss_flags==SS_ONSTACK (as this was the only
2402 * way that worked) - this fix preserves that older
2405 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2408 if (ss_flags == SS_DISABLE) {
2413 if (ss_size < MINSIGSTKSZ)
2417 current->sas_ss_sp = (unsigned long) ss_sp;
2418 current->sas_ss_size = ss_size;
2423 if (copy_to_user(uoss, &oss, sizeof(oss)))
2432 #ifdef __ARCH_WANT_SYS_SIGPENDING
2435 sys_sigpending(old_sigset_t __user *set)
2437 return do_sigpending(set, sizeof(*set));
2442 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2443 /* Some platforms have their own version with special arguments others
2444 support only sys_rt_sigprocmask. */
2447 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2450 old_sigset_t old_set, new_set;
2454 if (copy_from_user(&new_set, set, sizeof(*set)))
2456 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2458 spin_lock_irq(¤t->sighand->siglock);
2459 old_set = current->blocked.sig[0];
2467 sigaddsetmask(¤t->blocked, new_set);
2470 sigdelsetmask(¤t->blocked, new_set);
2473 current->blocked.sig[0] = new_set;
2477 recalc_sigpending();
2478 spin_unlock_irq(¤t->sighand->siglock);
2484 old_set = current->blocked.sig[0];
2487 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2494 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2496 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2498 sys_rt_sigaction(int sig,
2499 const struct sigaction __user *act,
2500 struct sigaction __user *oact,
2503 struct k_sigaction new_sa, old_sa;
2506 /* XXX: Don't preclude handling different sized sigset_t's. */
2507 if (sigsetsize != sizeof(sigset_t))
2511 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2515 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2518 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2524 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2526 #ifdef __ARCH_WANT_SYS_SGETMASK
2529 * For backwards compatibility. Functionality superseded by sigprocmask.
2535 return current->blocked.sig[0];
2539 sys_ssetmask(int newmask)
2543 spin_lock_irq(¤t->sighand->siglock);
2544 old = current->blocked.sig[0];
2546 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2548 recalc_sigpending();
2549 spin_unlock_irq(¤t->sighand->siglock);
2553 #endif /* __ARCH_WANT_SGETMASK */
2555 #ifdef __ARCH_WANT_SYS_SIGNAL
2557 * For backwards compatibility. Functionality superseded by sigaction.
2559 asmlinkage unsigned long
2560 sys_signal(int sig, __sighandler_t handler)
2562 struct k_sigaction new_sa, old_sa;
2565 new_sa.sa.sa_handler = handler;
2566 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2567 sigemptyset(&new_sa.sa.sa_mask);
2569 ret = do_sigaction(sig, &new_sa, &old_sa);
2571 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2573 #endif /* __ARCH_WANT_SYS_SIGNAL */
2575 #ifdef __ARCH_WANT_SYS_PAUSE
2580 current->state = TASK_INTERRUPTIBLE;
2582 return -ERESTARTNOHAND;
2587 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2588 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2592 /* XXX: Don't preclude handling different sized sigset_t's. */
2593 if (sigsetsize != sizeof(sigset_t))
2596 if (copy_from_user(&newset, unewset, sizeof(newset)))
2598 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2600 spin_lock_irq(¤t->sighand->siglock);
2601 current->saved_sigmask = current->blocked;
2602 current->blocked = newset;
2603 recalc_sigpending();
2604 spin_unlock_irq(¤t->sighand->siglock);
2606 current->state = TASK_INTERRUPTIBLE;
2608 set_restore_sigmask();
2609 return -ERESTARTNOHAND;
2611 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2613 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2618 void __init signals_init(void)
2620 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);