]> Git Repo - linux.git/blob - net/core/dev.c
Merge tag 'irq-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172                                            struct net_device *dev,
173                                            struct netlink_ext_ack *extack);
174
175 static DEFINE_MUTEX(ifalias_mutex);
176
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182
183 static DECLARE_RWSEM(devnet_rename_sem);
184
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187         unsigned int val = net->dev_base_seq + 1;
188
189         WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195
196         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203
204 #ifndef CONFIG_PREEMPT_RT
205
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210         static_branch_enable(&use_backlog_threads_key);
211         return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214
215 static bool use_backlog_threads(void)
216 {
217         return static_branch_unlikely(&use_backlog_threads_key);
218 }
219
220 #else
221
222 static bool use_backlog_threads(void)
223 {
224         return true;
225 }
226
227 #endif
228
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230                                          unsigned long *flags)
231 {
232         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234         else
235                 local_irq_save(*flags);
236 }
237
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241                 spin_lock_irq(&sd->input_pkt_queue.lock);
242         else
243                 local_irq_disable();
244 }
245
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247                                               unsigned long *flags)
248 {
249         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251         else
252                 local_irq_restore(*flags);
253 }
254
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258                 spin_unlock_irq(&sd->input_pkt_queue.lock);
259         else
260                 local_irq_enable();
261 }
262
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264                                                        const char *name)
265 {
266         struct netdev_name_node *name_node;
267
268         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269         if (!name_node)
270                 return NULL;
271         INIT_HLIST_NODE(&name_node->hlist);
272         name_node->dev = dev;
273         name_node->name = name;
274         return name_node;
275 }
276
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280         struct netdev_name_node *name_node;
281
282         name_node = netdev_name_node_alloc(dev, dev->name);
283         if (!name_node)
284                 return NULL;
285         INIT_LIST_HEAD(&name_node->list);
286         return name_node;
287 }
288
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291         kfree(name_node);
292 }
293
294 static void netdev_name_node_add(struct net *net,
295                                  struct netdev_name_node *name_node)
296 {
297         hlist_add_head_rcu(&name_node->hlist,
298                            dev_name_hash(net, name_node->name));
299 }
300
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303         hlist_del_rcu(&name_node->hlist);
304 }
305
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307                                                         const char *name)
308 {
309         struct hlist_head *head = dev_name_hash(net, name);
310         struct netdev_name_node *name_node;
311
312         hlist_for_each_entry(name_node, head, hlist)
313                 if (!strcmp(name_node->name, name))
314                         return name_node;
315         return NULL;
316 }
317
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319                                                             const char *name)
320 {
321         struct hlist_head *head = dev_name_hash(net, name);
322         struct netdev_name_node *name_node;
323
324         hlist_for_each_entry_rcu(name_node, head, hlist)
325                 if (!strcmp(name_node->name, name))
326                         return name_node;
327         return NULL;
328 }
329
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332         return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338         struct netdev_name_node *name_node;
339         struct net *net = dev_net(dev);
340
341         name_node = netdev_name_node_lookup(net, name);
342         if (name_node)
343                 return -EEXIST;
344         name_node = netdev_name_node_alloc(dev, name);
345         if (!name_node)
346                 return -ENOMEM;
347         netdev_name_node_add(net, name_node);
348         /* The node that holds dev->name acts as a head of per-device list. */
349         list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350
351         return 0;
352 }
353
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356         struct netdev_name_node *name_node =
357                 container_of(head, struct netdev_name_node, rcu);
358
359         kfree(name_node->name);
360         netdev_name_node_free(name_node);
361 }
362
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365         netdev_name_node_del(name_node);
366         list_del(&name_node->list);
367         call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372         struct netdev_name_node *name_node;
373         struct net *net = dev_net(dev);
374
375         name_node = netdev_name_node_lookup(net, name);
376         if (!name_node)
377                 return -ENOENT;
378         /* lookup might have found our primary name or a name belonging
379          * to another device.
380          */
381         if (name_node == dev->name_node || name_node->dev != dev)
382                 return -EINVAL;
383
384         __netdev_name_node_alt_destroy(name_node);
385         return 0;
386 }
387
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390         struct netdev_name_node *name_node, *tmp;
391
392         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393                 list_del(&name_node->list);
394                 netdev_name_node_alt_free(&name_node->rcu);
395         }
396 }
397
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401         struct netdev_name_node *name_node;
402         struct net *net = dev_net(dev);
403
404         ASSERT_RTNL();
405
406         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407         netdev_name_node_add(net, dev->name_node);
408         hlist_add_head_rcu(&dev->index_hlist,
409                            dev_index_hash(net, dev->ifindex));
410
411         netdev_for_each_altname(dev, name_node)
412                 netdev_name_node_add(net, name_node);
413
414         /* We reserved the ifindex, this can't fail */
415         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416
417         dev_base_seq_inc(net);
418 }
419
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425         struct netdev_name_node *name_node;
426         struct net *net = dev_net(dev);
427
428         ASSERT_RTNL();
429
430         xa_erase(&net->dev_by_index, dev->ifindex);
431
432         netdev_for_each_altname(dev, name_node)
433                 netdev_name_node_del(name_node);
434
435         /* Unlink dev from the device chain */
436         list_del_rcu(&dev->dev_list);
437         netdev_name_node_del(dev->name_node);
438         hlist_del_rcu(&dev->index_hlist);
439
440         dev_base_seq_inc(dev_net(dev));
441 }
442
443 /*
444  *      Our notifier list
445  */
446
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448
449 /*
450  *      Device drivers call our routines to queue packets here. We empty the
451  *      queue in the local softnet handler.
452  */
453
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455         .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486
487 static const char *const netdev_lock_name[] = {
488         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509         int i;
510
511         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512                 if (netdev_lock_type[i] == dev_type)
513                         return i;
514         /* the last key is used by default */
515         return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519                                                  unsigned short dev_type)
520 {
521         int i;
522
523         i = netdev_lock_pos(dev_type);
524         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525                                    netdev_lock_name[i]);
526 }
527
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530         int i;
531
532         i = netdev_lock_pos(dev->type);
533         lockdep_set_class_and_name(&dev->addr_list_lock,
534                                    &netdev_addr_lock_key[i],
535                                    netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539                                                  unsigned short dev_type)
540 {
541 }
542
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547
548 /*******************************************************************************
549  *
550  *              Protocol management and registration routines
551  *
552  *******************************************************************************/
553
554
555 /*
556  *      Add a protocol ID to the list. Now that the input handler is
557  *      smarter we can dispense with all the messy stuff that used to be
558  *      here.
559  *
560  *      BEWARE!!! Protocol handlers, mangling input packets,
561  *      MUST BE last in hash buckets and checking protocol handlers
562  *      MUST start from promiscuous ptype_all chain in net_bh.
563  *      It is true now, do not change it.
564  *      Explanation follows: if protocol handler, mangling packet, will
565  *      be the first on list, it is not able to sense, that packet
566  *      is cloned and should be copied-on-write, so that it will
567  *      change it and subsequent readers will get broken packet.
568  *                                                      --ANK (980803)
569  */
570
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573         if (pt->type == htons(ETH_P_ALL))
574                 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575         else
576                 return pt->dev ? &pt->dev->ptype_specific :
577                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579
580 /**
581  *      dev_add_pack - add packet handler
582  *      @pt: packet type declaration
583  *
584  *      Add a protocol handler to the networking stack. The passed &packet_type
585  *      is linked into kernel lists and may not be freed until it has been
586  *      removed from the kernel lists.
587  *
588  *      This call does not sleep therefore it can not
589  *      guarantee all CPU's that are in middle of receiving packets
590  *      will see the new packet type (until the next received packet).
591  */
592
593 void dev_add_pack(struct packet_type *pt)
594 {
595         struct list_head *head = ptype_head(pt);
596
597         spin_lock(&ptype_lock);
598         list_add_rcu(&pt->list, head);
599         spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602
603 /**
604  *      __dev_remove_pack        - remove packet handler
605  *      @pt: packet type declaration
606  *
607  *      Remove a protocol handler that was previously added to the kernel
608  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *      from the kernel lists and can be freed or reused once this function
610  *      returns.
611  *
612  *      The packet type might still be in use by receivers
613  *      and must not be freed until after all the CPU's have gone
614  *      through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618         struct list_head *head = ptype_head(pt);
619         struct packet_type *pt1;
620
621         spin_lock(&ptype_lock);
622
623         list_for_each_entry(pt1, head, list) {
624                 if (pt == pt1) {
625                         list_del_rcu(&pt->list);
626                         goto out;
627                 }
628         }
629
630         pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632         spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635
636 /**
637  *      dev_remove_pack  - remove packet handler
638  *      @pt: packet type declaration
639  *
640  *      Remove a protocol handler that was previously added to the kernel
641  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *      from the kernel lists and can be freed or reused once this function
643  *      returns.
644  *
645  *      This call sleeps to guarantee that no CPU is looking at the packet
646  *      type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650         __dev_remove_pack(pt);
651
652         synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655
656
657 /*******************************************************************************
658  *
659  *                          Device Interface Subroutines
660  *
661  *******************************************************************************/
662
663 /**
664  *      dev_get_iflink  - get 'iflink' value of a interface
665  *      @dev: targeted interface
666  *
667  *      Indicates the ifindex the interface is linked to.
668  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670
671 int dev_get_iflink(const struct net_device *dev)
672 {
673         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674                 return dev->netdev_ops->ndo_get_iflink(dev);
675
676         return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679
680 /**
681  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *      @dev: targeted interface
683  *      @skb: The packet.
684  *
685  *      For better visibility of tunnel traffic OVS needs to retrieve
686  *      egress tunnel information for a packet. Following API allows
687  *      user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691         struct ip_tunnel_info *info;
692
693         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694                 return -EINVAL;
695
696         info = skb_tunnel_info_unclone(skb);
697         if (!info)
698                 return -ENOMEM;
699         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700                 return -EINVAL;
701
702         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708         int k = stack->num_paths++;
709
710         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711                 return NULL;
712
713         return &stack->path[k];
714 }
715
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717                           struct net_device_path_stack *stack)
718 {
719         const struct net_device *last_dev;
720         struct net_device_path_ctx ctx = {
721                 .dev    = dev,
722         };
723         struct net_device_path *path;
724         int ret = 0;
725
726         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727         stack->num_paths = 0;
728         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729                 last_dev = ctx.dev;
730                 path = dev_fwd_path(stack);
731                 if (!path)
732                         return -1;
733
734                 memset(path, 0, sizeof(struct net_device_path));
735                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736                 if (ret < 0)
737                         return -1;
738
739                 if (WARN_ON_ONCE(last_dev == ctx.dev))
740                         return -1;
741         }
742
743         if (!ctx.dev)
744                 return ret;
745
746         path = dev_fwd_path(stack);
747         if (!path)
748                 return -1;
749         path->type = DEV_PATH_ETHERNET;
750         path->dev = ctx.dev;
751
752         return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755
756 /**
757  *      __dev_get_by_name       - find a device by its name
758  *      @net: the applicable net namespace
759  *      @name: name to find
760  *
761  *      Find an interface by name. Must be called under RTNL semaphore.
762  *      If the name is found a pointer to the device is returned.
763  *      If the name is not found then %NULL is returned. The
764  *      reference counters are not incremented so the caller must be
765  *      careful with locks.
766  */
767
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770         struct netdev_name_node *node_name;
771
772         node_name = netdev_name_node_lookup(net, name);
773         return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776
777 /**
778  * dev_get_by_name_rcu  - find a device by its name
779  * @net: the applicable net namespace
780  * @name: name to find
781  *
782  * Find an interface by name.
783  * If the name is found a pointer to the device is returned.
784  * If the name is not found then %NULL is returned.
785  * The reference counters are not incremented so the caller must be
786  * careful with locks. The caller must hold RCU lock.
787  */
788
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791         struct netdev_name_node *node_name;
792
793         node_name = netdev_name_node_lookup_rcu(net, name);
794         return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801         struct net_device *dev;
802
803         rcu_read_lock();
804         dev = dev_get_by_name_rcu(net, name);
805         dev_hold(dev);
806         rcu_read_unlock();
807         return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810
811 /**
812  *      netdev_get_by_name() - find a device by its name
813  *      @net: the applicable net namespace
814  *      @name: name to find
815  *      @tracker: tracking object for the acquired reference
816  *      @gfp: allocation flags for the tracker
817  *
818  *      Find an interface by name. This can be called from any
819  *      context and does its own locking. The returned handle has
820  *      the usage count incremented and the caller must use netdev_put() to
821  *      release it when it is no longer needed. %NULL is returned if no
822  *      matching device is found.
823  */
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825                                       netdevice_tracker *tracker, gfp_t gfp)
826 {
827         struct net_device *dev;
828
829         dev = dev_get_by_name(net, name);
830         if (dev)
831                 netdev_tracker_alloc(dev, tracker, gfp);
832         return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835
836 /**
837  *      __dev_get_by_index - find a device by its ifindex
838  *      @net: the applicable net namespace
839  *      @ifindex: index of device
840  *
841  *      Search for an interface by index. Returns %NULL if the device
842  *      is not found or a pointer to the device. The device has not
843  *      had its reference counter increased so the caller must be careful
844  *      about locking. The caller must hold the RTNL semaphore.
845  */
846
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849         struct net_device *dev;
850         struct hlist_head *head = dev_index_hash(net, ifindex);
851
852         hlist_for_each_entry(dev, head, index_hlist)
853                 if (dev->ifindex == ifindex)
854                         return dev;
855
856         return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859
860 /**
861  *      dev_get_by_index_rcu - find a device by its ifindex
862  *      @net: the applicable net namespace
863  *      @ifindex: index of device
864  *
865  *      Search for an interface by index. Returns %NULL if the device
866  *      is not found or a pointer to the device. The device has not
867  *      had its reference counter increased so the caller must be careful
868  *      about locking. The caller must hold RCU lock.
869  */
870
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873         struct net_device *dev;
874         struct hlist_head *head = dev_index_hash(net, ifindex);
875
876         hlist_for_each_entry_rcu(dev, head, index_hlist)
877                 if (dev->ifindex == ifindex)
878                         return dev;
879
880         return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887         struct net_device *dev;
888
889         rcu_read_lock();
890         dev = dev_get_by_index_rcu(net, ifindex);
891         dev_hold(dev);
892         rcu_read_unlock();
893         return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896
897 /**
898  *      netdev_get_by_index() - find a device by its ifindex
899  *      @net: the applicable net namespace
900  *      @ifindex: index of device
901  *      @tracker: tracking object for the acquired reference
902  *      @gfp: allocation flags for the tracker
903  *
904  *      Search for an interface by index. Returns NULL if the device
905  *      is not found or a pointer to the device. The device returned has
906  *      had a reference added and the pointer is safe until the user calls
907  *      netdev_put() to indicate they have finished with it.
908  */
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910                                        netdevice_tracker *tracker, gfp_t gfp)
911 {
912         struct net_device *dev;
913
914         dev = dev_get_by_index(net, ifindex);
915         if (dev)
916                 netdev_tracker_alloc(dev, tracker, gfp);
917         return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920
921 /**
922  *      dev_get_by_napi_id - find a device by napi_id
923  *      @napi_id: ID of the NAPI struct
924  *
925  *      Search for an interface by NAPI ID. Returns %NULL if the device
926  *      is not found or a pointer to the device. The device has not had
927  *      its reference counter increased so the caller must be careful
928  *      about locking. The caller must hold RCU lock.
929  */
930
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933         struct napi_struct *napi;
934
935         WARN_ON_ONCE(!rcu_read_lock_held());
936
937         if (napi_id < MIN_NAPI_ID)
938                 return NULL;
939
940         napi = napi_by_id(napi_id);
941
942         return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947
948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950         unsigned int seq;
951
952         do {
953                 seq = read_seqbegin(&netdev_rename_lock);
954                 strscpy(name, dev->name, IFNAMSIZ);
955         } while (read_seqretry(&netdev_rename_lock, seq));
956 }
957
958 /**
959  *      netdev_get_name - get a netdevice name, knowing its ifindex.
960  *      @net: network namespace
961  *      @name: a pointer to the buffer where the name will be stored.
962  *      @ifindex: the ifindex of the interface to get the name from.
963  */
964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966         struct net_device *dev;
967         int ret;
968
969         rcu_read_lock();
970
971         dev = dev_get_by_index_rcu(net, ifindex);
972         if (!dev) {
973                 ret = -ENODEV;
974                 goto out;
975         }
976
977         netdev_copy_name(dev, name);
978
979         ret = 0;
980 out:
981         rcu_read_unlock();
982         return ret;
983 }
984
985 /**
986  *      dev_getbyhwaddr_rcu - find a device by its hardware address
987  *      @net: the applicable net namespace
988  *      @type: media type of device
989  *      @ha: hardware address
990  *
991  *      Search for an interface by MAC address. Returns NULL if the device
992  *      is not found or a pointer to the device.
993  *      The caller must hold RCU or RTNL.
994  *      The returned device has not had its ref count increased
995  *      and the caller must therefore be careful about locking
996  *
997  */
998
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000                                        const char *ha)
1001 {
1002         struct net_device *dev;
1003
1004         for_each_netdev_rcu(net, dev)
1005                 if (dev->type == type &&
1006                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1007                         return dev;
1008
1009         return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015         struct net_device *dev, *ret = NULL;
1016
1017         rcu_read_lock();
1018         for_each_netdev_rcu(net, dev)
1019                 if (dev->type == type) {
1020                         dev_hold(dev);
1021                         ret = dev;
1022                         break;
1023                 }
1024         rcu_read_unlock();
1025         return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028
1029 /**
1030  *      __dev_get_by_flags - find any device with given flags
1031  *      @net: the applicable net namespace
1032  *      @if_flags: IFF_* values
1033  *      @mask: bitmask of bits in if_flags to check
1034  *
1035  *      Search for any interface with the given flags. Returns NULL if a device
1036  *      is not found or a pointer to the device. Must be called inside
1037  *      rtnl_lock(), and result refcount is unchanged.
1038  */
1039
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041                                       unsigned short mask)
1042 {
1043         struct net_device *dev, *ret;
1044
1045         ASSERT_RTNL();
1046
1047         ret = NULL;
1048         for_each_netdev(net, dev) {
1049                 if (((dev->flags ^ if_flags) & mask) == 0) {
1050                         ret = dev;
1051                         break;
1052                 }
1053         }
1054         return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057
1058 /**
1059  *      dev_valid_name - check if name is okay for network device
1060  *      @name: name string
1061  *
1062  *      Network device names need to be valid file names to
1063  *      allow sysfs to work.  We also disallow any kind of
1064  *      whitespace.
1065  */
1066 bool dev_valid_name(const char *name)
1067 {
1068         if (*name == '\0')
1069                 return false;
1070         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071                 return false;
1072         if (!strcmp(name, ".") || !strcmp(name, ".."))
1073                 return false;
1074
1075         while (*name) {
1076                 if (*name == '/' || *name == ':' || isspace(*name))
1077                         return false;
1078                 name++;
1079         }
1080         return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083
1084 /**
1085  *      __dev_alloc_name - allocate a name for a device
1086  *      @net: network namespace to allocate the device name in
1087  *      @name: name format string
1088  *      @res: result name string
1089  *
1090  *      Passed a format string - eg "lt%d" it will try and find a suitable
1091  *      id. It scans list of devices to build up a free map, then chooses
1092  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1093  *      while allocating the name and adding the device in order to avoid
1094  *      duplicates.
1095  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096  *      Returns the number of the unit assigned or a negative errno code.
1097  */
1098
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101         int i = 0;
1102         const char *p;
1103         const int max_netdevices = 8*PAGE_SIZE;
1104         unsigned long *inuse;
1105         struct net_device *d;
1106         char buf[IFNAMSIZ];
1107
1108         /* Verify the string as this thing may have come from the user.
1109          * There must be one "%d" and no other "%" characters.
1110          */
1111         p = strchr(name, '%');
1112         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113                 return -EINVAL;
1114
1115         /* Use one page as a bit array of possible slots */
1116         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117         if (!inuse)
1118                 return -ENOMEM;
1119
1120         for_each_netdev(net, d) {
1121                 struct netdev_name_node *name_node;
1122
1123                 netdev_for_each_altname(d, name_node) {
1124                         if (!sscanf(name_node->name, name, &i))
1125                                 continue;
1126                         if (i < 0 || i >= max_netdevices)
1127                                 continue;
1128
1129                         /* avoid cases where sscanf is not exact inverse of printf */
1130                         snprintf(buf, IFNAMSIZ, name, i);
1131                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132                                 __set_bit(i, inuse);
1133                 }
1134                 if (!sscanf(d->name, name, &i))
1135                         continue;
1136                 if (i < 0 || i >= max_netdevices)
1137                         continue;
1138
1139                 /* avoid cases where sscanf is not exact inverse of printf */
1140                 snprintf(buf, IFNAMSIZ, name, i);
1141                 if (!strncmp(buf, d->name, IFNAMSIZ))
1142                         __set_bit(i, inuse);
1143         }
1144
1145         i = find_first_zero_bit(inuse, max_netdevices);
1146         bitmap_free(inuse);
1147         if (i == max_netdevices)
1148                 return -ENFILE;
1149
1150         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151         strscpy(buf, name, IFNAMSIZ);
1152         snprintf(res, IFNAMSIZ, buf, i);
1153         return i;
1154 }
1155
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158                                const char *want_name, char *out_name,
1159                                int dup_errno)
1160 {
1161         if (!dev_valid_name(want_name))
1162                 return -EINVAL;
1163
1164         if (strchr(want_name, '%'))
1165                 return __dev_alloc_name(net, want_name, out_name);
1166
1167         if (netdev_name_in_use(net, want_name))
1168                 return -dup_errno;
1169         if (out_name != want_name)
1170                 strscpy(out_name, want_name, IFNAMSIZ);
1171         return 0;
1172 }
1173
1174 /**
1175  *      dev_alloc_name - allocate a name for a device
1176  *      @dev: device
1177  *      @name: name format string
1178  *
1179  *      Passed a format string - eg "lt%d" it will try and find a suitable
1180  *      id. It scans list of devices to build up a free map, then chooses
1181  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1182  *      while allocating the name and adding the device in order to avoid
1183  *      duplicates.
1184  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185  *      Returns the number of the unit assigned or a negative errno code.
1186  */
1187
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195                               const char *name)
1196 {
1197         int ret;
1198
1199         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200         return ret < 0 ? ret : 0;
1201 }
1202
1203 /**
1204  *      dev_change_name - change name of a device
1205  *      @dev: device
1206  *      @newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *      Change name of a device, can pass format strings "eth%d".
1209  *      for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213         unsigned char old_assign_type;
1214         char oldname[IFNAMSIZ];
1215         int err = 0;
1216         int ret;
1217         struct net *net;
1218
1219         ASSERT_RTNL();
1220         BUG_ON(!dev_net(dev));
1221
1222         net = dev_net(dev);
1223
1224         down_write(&devnet_rename_sem);
1225
1226         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227                 up_write(&devnet_rename_sem);
1228                 return 0;
1229         }
1230
1231         memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233         write_seqlock_bh(&netdev_rename_lock);
1234         err = dev_get_valid_name(net, dev, newname);
1235         write_sequnlock_bh(&netdev_rename_lock);
1236
1237         if (err < 0) {
1238                 up_write(&devnet_rename_sem);
1239                 return err;
1240         }
1241
1242         if (oldname[0] && !strchr(oldname, '%'))
1243                 netdev_info(dev, "renamed from %s%s\n", oldname,
1244                             dev->flags & IFF_UP ? " (while UP)" : "");
1245
1246         old_assign_type = dev->name_assign_type;
1247         WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248
1249 rollback:
1250         ret = device_rename(&dev->dev, dev->name);
1251         if (ret) {
1252                 memcpy(dev->name, oldname, IFNAMSIZ);
1253                 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254                 up_write(&devnet_rename_sem);
1255                 return ret;
1256         }
1257
1258         up_write(&devnet_rename_sem);
1259
1260         netdev_adjacent_rename_links(dev, oldname);
1261
1262         netdev_name_node_del(dev->name_node);
1263
1264         synchronize_net();
1265
1266         netdev_name_node_add(net, dev->name_node);
1267
1268         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269         ret = notifier_to_errno(ret);
1270
1271         if (ret) {
1272                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1273                 if (err >= 0) {
1274                         err = ret;
1275                         down_write(&devnet_rename_sem);
1276                         write_seqlock_bh(&netdev_rename_lock);
1277                         memcpy(dev->name, oldname, IFNAMSIZ);
1278                         write_sequnlock_bh(&netdev_rename_lock);
1279                         memcpy(oldname, newname, IFNAMSIZ);
1280                         WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281                         old_assign_type = NET_NAME_RENAMED;
1282                         goto rollback;
1283                 } else {
1284                         netdev_err(dev, "name change rollback failed: %d\n",
1285                                    ret);
1286                 }
1287         }
1288
1289         return err;
1290 }
1291
1292 /**
1293  *      dev_set_alias - change ifalias of a device
1294  *      @dev: device
1295  *      @alias: name up to IFALIASZ
1296  *      @len: limit of bytes to copy from info
1297  *
1298  *      Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302         struct dev_ifalias *new_alias = NULL;
1303
1304         if (len >= IFALIASZ)
1305                 return -EINVAL;
1306
1307         if (len) {
1308                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309                 if (!new_alias)
1310                         return -ENOMEM;
1311
1312                 memcpy(new_alias->ifalias, alias, len);
1313                 new_alias->ifalias[len] = 0;
1314         }
1315
1316         mutex_lock(&ifalias_mutex);
1317         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318                                         mutex_is_locked(&ifalias_mutex));
1319         mutex_unlock(&ifalias_mutex);
1320
1321         if (new_alias)
1322                 kfree_rcu(new_alias, rcuhead);
1323
1324         return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327
1328 /**
1329  *      dev_get_alias - get ifalias of a device
1330  *      @dev: device
1331  *      @name: buffer to store name of ifalias
1332  *      @len: size of buffer
1333  *
1334  *      get ifalias for a device.  Caller must make sure dev cannot go
1335  *      away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339         const struct dev_ifalias *alias;
1340         int ret = 0;
1341
1342         rcu_read_lock();
1343         alias = rcu_dereference(dev->ifalias);
1344         if (alias)
1345                 ret = snprintf(name, len, "%s", alias->ifalias);
1346         rcu_read_unlock();
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      netdev_features_change - device changes features
1353  *      @dev: device to cause notification
1354  *
1355  *      Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362
1363 /**
1364  *      netdev_state_change - device changes state
1365  *      @dev: device to cause notification
1366  *
1367  *      Called to indicate a device has changed state. This function calls
1368  *      the notifier chains for netdev_chain and sends a NEWLINK message
1369  *      to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373         if (dev->flags & IFF_UP) {
1374                 struct netdev_notifier_change_info change_info = {
1375                         .info.dev = dev,
1376                 };
1377
1378                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379                                               &change_info.info);
1380                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381         }
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384
1385 /**
1386  * __netdev_notify_peers - notify network peers about existence of @dev,
1387  * to be called when rtnl lock is already held.
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398         ASSERT_RTNL();
1399         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403
1404 /**
1405  * netdev_notify_peers - notify network peers about existence of @dev
1406  * @dev: network device
1407  *
1408  * Generate traffic such that interested network peers are aware of
1409  * @dev, such as by generating a gratuitous ARP. This may be used when
1410  * a device wants to inform the rest of the network about some sort of
1411  * reconfiguration such as a failover event or virtual machine
1412  * migration.
1413  */
1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416         rtnl_lock();
1417         __netdev_notify_peers(dev);
1418         rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421
1422 static int napi_threaded_poll(void *data);
1423
1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426         int err = 0;
1427
1428         /* Create and wake up the kthread once to put it in
1429          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430          * warning and work with loadavg.
1431          */
1432         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433                                 n->dev->name, n->napi_id);
1434         if (IS_ERR(n->thread)) {
1435                 err = PTR_ERR(n->thread);
1436                 pr_err("kthread_run failed with err %d\n", err);
1437                 n->thread = NULL;
1438         }
1439
1440         return err;
1441 }
1442
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445         const struct net_device_ops *ops = dev->netdev_ops;
1446         int ret;
1447
1448         ASSERT_RTNL();
1449         dev_addr_check(dev);
1450
1451         if (!netif_device_present(dev)) {
1452                 /* may be detached because parent is runtime-suspended */
1453                 if (dev->dev.parent)
1454                         pm_runtime_resume(dev->dev.parent);
1455                 if (!netif_device_present(dev))
1456                         return -ENODEV;
1457         }
1458
1459         /* Block netpoll from trying to do any rx path servicing.
1460          * If we don't do this there is a chance ndo_poll_controller
1461          * or ndo_poll may be running while we open the device
1462          */
1463         netpoll_poll_disable(dev);
1464
1465         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466         ret = notifier_to_errno(ret);
1467         if (ret)
1468                 return ret;
1469
1470         set_bit(__LINK_STATE_START, &dev->state);
1471
1472         if (ops->ndo_validate_addr)
1473                 ret = ops->ndo_validate_addr(dev);
1474
1475         if (!ret && ops->ndo_open)
1476                 ret = ops->ndo_open(dev);
1477
1478         netpoll_poll_enable(dev);
1479
1480         if (ret)
1481                 clear_bit(__LINK_STATE_START, &dev->state);
1482         else {
1483                 dev->flags |= IFF_UP;
1484                 dev_set_rx_mode(dev);
1485                 dev_activate(dev);
1486                 add_device_randomness(dev->dev_addr, dev->addr_len);
1487         }
1488
1489         return ret;
1490 }
1491
1492 /**
1493  *      dev_open        - prepare an interface for use.
1494  *      @dev: device to open
1495  *      @extack: netlink extended ack
1496  *
1497  *      Takes a device from down to up state. The device's private open
1498  *      function is invoked and then the multicast lists are loaded. Finally
1499  *      the device is moved into the up state and a %NETDEV_UP message is
1500  *      sent to the netdev notifier chain.
1501  *
1502  *      Calling this function on an active interface is a nop. On a failure
1503  *      a negative errno code is returned.
1504  */
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507         int ret;
1508
1509         if (dev->flags & IFF_UP)
1510                 return 0;
1511
1512         ret = __dev_open(dev, extack);
1513         if (ret < 0)
1514                 return ret;
1515
1516         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517         call_netdevice_notifiers(NETDEV_UP, dev);
1518
1519         return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522
1523 static void __dev_close_many(struct list_head *head)
1524 {
1525         struct net_device *dev;
1526
1527         ASSERT_RTNL();
1528         might_sleep();
1529
1530         list_for_each_entry(dev, head, close_list) {
1531                 /* Temporarily disable netpoll until the interface is down */
1532                 netpoll_poll_disable(dev);
1533
1534                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535
1536                 clear_bit(__LINK_STATE_START, &dev->state);
1537
1538                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1539                  * can be even on different cpu. So just clear netif_running().
1540                  *
1541                  * dev->stop() will invoke napi_disable() on all of it's
1542                  * napi_struct instances on this device.
1543                  */
1544                 smp_mb__after_atomic(); /* Commit netif_running(). */
1545         }
1546
1547         dev_deactivate_many(head);
1548
1549         list_for_each_entry(dev, head, close_list) {
1550                 const struct net_device_ops *ops = dev->netdev_ops;
1551
1552                 /*
1553                  *      Call the device specific close. This cannot fail.
1554                  *      Only if device is UP
1555                  *
1556                  *      We allow it to be called even after a DETACH hot-plug
1557                  *      event.
1558                  */
1559                 if (ops->ndo_stop)
1560                         ops->ndo_stop(dev);
1561
1562                 dev->flags &= ~IFF_UP;
1563                 netpoll_poll_enable(dev);
1564         }
1565 }
1566
1567 static void __dev_close(struct net_device *dev)
1568 {
1569         LIST_HEAD(single);
1570
1571         list_add(&dev->close_list, &single);
1572         __dev_close_many(&single);
1573         list_del(&single);
1574 }
1575
1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578         struct net_device *dev, *tmp;
1579
1580         /* Remove the devices that don't need to be closed */
1581         list_for_each_entry_safe(dev, tmp, head, close_list)
1582                 if (!(dev->flags & IFF_UP))
1583                         list_del_init(&dev->close_list);
1584
1585         __dev_close_many(head);
1586
1587         list_for_each_entry_safe(dev, tmp, head, close_list) {
1588                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1590                 if (unlink)
1591                         list_del_init(&dev->close_list);
1592         }
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595
1596 /**
1597  *      dev_close - shutdown an interface.
1598  *      @dev: device to shutdown
1599  *
1600  *      This function moves an active device into down state. A
1601  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603  *      chain.
1604  */
1605 void dev_close(struct net_device *dev)
1606 {
1607         if (dev->flags & IFF_UP) {
1608                 LIST_HEAD(single);
1609
1610                 list_add(&dev->close_list, &single);
1611                 dev_close_many(&single, true);
1612                 list_del(&single);
1613         }
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616
1617
1618 /**
1619  *      dev_disable_lro - disable Large Receive Offload on a device
1620  *      @dev: device
1621  *
1622  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1623  *      called under RTNL.  This is needed if received packets may be
1624  *      forwarded to another interface.
1625  */
1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628         struct net_device *lower_dev;
1629         struct list_head *iter;
1630
1631         dev->wanted_features &= ~NETIF_F_LRO;
1632         netdev_update_features(dev);
1633
1634         if (unlikely(dev->features & NETIF_F_LRO))
1635                 netdev_WARN(dev, "failed to disable LRO!\n");
1636
1637         netdev_for_each_lower_dev(dev, lower_dev, iter)
1638                 dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641
1642 /**
1643  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644  *      @dev: device
1645  *
1646  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647  *      called under RTNL.  This is needed if Generic XDP is installed on
1648  *      the device.
1649  */
1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652         dev->wanted_features &= ~NETIF_F_GRO_HW;
1653         netdev_update_features(dev);
1654
1655         if (unlikely(dev->features & NETIF_F_GRO_HW))
1656                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val)                                          \
1662         case NETDEV_##val:                              \
1663                 return "NETDEV_" __stringify(val);
1664         switch (cmd) {
1665         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676         N(XDP_FEAT_CHANGE)
1677         }
1678 #undef N
1679         return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684                                    struct net_device *dev)
1685 {
1686         struct netdev_notifier_info info = {
1687                 .dev = dev,
1688         };
1689
1690         return nb->notifier_call(nb, val, &info);
1691 }
1692
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694                                              struct net_device *dev)
1695 {
1696         int err;
1697
1698         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699         err = notifier_to_errno(err);
1700         if (err)
1701                 return err;
1702
1703         if (!(dev->flags & IFF_UP))
1704                 return 0;
1705
1706         call_netdevice_notifier(nb, NETDEV_UP, dev);
1707         return 0;
1708 }
1709
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711                                                 struct net_device *dev)
1712 {
1713         if (dev->flags & IFF_UP) {
1714                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715                                         dev);
1716                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717         }
1718         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722                                                  struct net *net)
1723 {
1724         struct net_device *dev;
1725         int err;
1726
1727         for_each_netdev(net, dev) {
1728                 err = call_netdevice_register_notifiers(nb, dev);
1729                 if (err)
1730                         goto rollback;
1731         }
1732         return 0;
1733
1734 rollback:
1735         for_each_netdev_continue_reverse(net, dev)
1736                 call_netdevice_unregister_notifiers(nb, dev);
1737         return err;
1738 }
1739
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741                                                     struct net *net)
1742 {
1743         struct net_device *dev;
1744
1745         for_each_netdev(net, dev)
1746                 call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748
1749 static int dev_boot_phase = 1;
1750
1751 /**
1752  * register_netdevice_notifier - register a network notifier block
1753  * @nb: notifier
1754  *
1755  * Register a notifier to be called when network device events occur.
1756  * The notifier passed is linked into the kernel structures and must
1757  * not be reused until it has been unregistered. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * When registered all registration and up events are replayed
1761  * to the new notifier to allow device to have a race free
1762  * view of the network device list.
1763  */
1764
1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767         struct net *net;
1768         int err;
1769
1770         /* Close race with setup_net() and cleanup_net() */
1771         down_write(&pernet_ops_rwsem);
1772         rtnl_lock();
1773         err = raw_notifier_chain_register(&netdev_chain, nb);
1774         if (err)
1775                 goto unlock;
1776         if (dev_boot_phase)
1777                 goto unlock;
1778         for_each_net(net) {
1779                 err = call_netdevice_register_net_notifiers(nb, net);
1780                 if (err)
1781                         goto rollback;
1782         }
1783
1784 unlock:
1785         rtnl_unlock();
1786         up_write(&pernet_ops_rwsem);
1787         return err;
1788
1789 rollback:
1790         for_each_net_continue_reverse(net)
1791                 call_netdevice_unregister_net_notifiers(nb, net);
1792
1793         raw_notifier_chain_unregister(&netdev_chain, nb);
1794         goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797
1798 /**
1799  * unregister_netdevice_notifier - unregister a network notifier block
1800  * @nb: notifier
1801  *
1802  * Unregister a notifier previously registered by
1803  * register_netdevice_notifier(). The notifier is unlinked into the
1804  * kernel structures and may then be reused. A negative errno code
1805  * is returned on a failure.
1806  *
1807  * After unregistering unregister and down device events are synthesized
1808  * for all devices on the device list to the removed notifier to remove
1809  * the need for special case cleanup code.
1810  */
1811
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814         struct net *net;
1815         int err;
1816
1817         /* Close race with setup_net() and cleanup_net() */
1818         down_write(&pernet_ops_rwsem);
1819         rtnl_lock();
1820         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821         if (err)
1822                 goto unlock;
1823
1824         for_each_net(net)
1825                 call_netdevice_unregister_net_notifiers(nb, net);
1826
1827 unlock:
1828         rtnl_unlock();
1829         up_write(&pernet_ops_rwsem);
1830         return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833
1834 static int __register_netdevice_notifier_net(struct net *net,
1835                                              struct notifier_block *nb,
1836                                              bool ignore_call_fail)
1837 {
1838         int err;
1839
1840         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841         if (err)
1842                 return err;
1843         if (dev_boot_phase)
1844                 return 0;
1845
1846         err = call_netdevice_register_net_notifiers(nb, net);
1847         if (err && !ignore_call_fail)
1848                 goto chain_unregister;
1849
1850         return 0;
1851
1852 chain_unregister:
1853         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854         return err;
1855 }
1856
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858                                                struct notifier_block *nb)
1859 {
1860         int err;
1861
1862         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863         if (err)
1864                 return err;
1865
1866         call_netdevice_unregister_net_notifiers(nb, net);
1867         return 0;
1868 }
1869
1870 /**
1871  * register_netdevice_notifier_net - register a per-netns network notifier block
1872  * @net: network namespace
1873  * @nb: notifier
1874  *
1875  * Register a notifier to be called when network device events occur.
1876  * The notifier passed is linked into the kernel structures and must
1877  * not be reused until it has been unregistered. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * When registered all registration and up events are replayed
1881  * to the new notifier to allow device to have a race free
1882  * view of the network device list.
1883  */
1884
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887         int err;
1888
1889         rtnl_lock();
1890         err = __register_netdevice_notifier_net(net, nb, false);
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895
1896 /**
1897  * unregister_netdevice_notifier_net - unregister a per-netns
1898  *                                     network notifier block
1899  * @net: network namespace
1900  * @nb: notifier
1901  *
1902  * Unregister a notifier previously registered by
1903  * register_netdevice_notifier_net(). The notifier is unlinked from the
1904  * kernel structures and may then be reused. A negative errno code
1905  * is returned on a failure.
1906  *
1907  * After unregistering unregister and down device events are synthesized
1908  * for all devices on the device list to the removed notifier to remove
1909  * the need for special case cleanup code.
1910  */
1911
1912 int unregister_netdevice_notifier_net(struct net *net,
1913                                       struct notifier_block *nb)
1914 {
1915         int err;
1916
1917         rtnl_lock();
1918         err = __unregister_netdevice_notifier_net(net, nb);
1919         rtnl_unlock();
1920         return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925                                           struct net *dst_net,
1926                                           struct notifier_block *nb)
1927 {
1928         __unregister_netdevice_notifier_net(src_net, nb);
1929         __register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933                                         struct notifier_block *nb,
1934                                         struct netdev_net_notifier *nn)
1935 {
1936         int err;
1937
1938         rtnl_lock();
1939         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940         if (!err) {
1941                 nn->nb = nb;
1942                 list_add(&nn->list, &dev->net_notifier_list);
1943         }
1944         rtnl_unlock();
1945         return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950                                           struct notifier_block *nb,
1951                                           struct netdev_net_notifier *nn)
1952 {
1953         int err;
1954
1955         rtnl_lock();
1956         list_del(&nn->list);
1957         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958         rtnl_unlock();
1959         return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964                                              struct net *net)
1965 {
1966         struct netdev_net_notifier *nn;
1967
1968         list_for_each_entry(nn, &dev->net_notifier_list, list)
1969                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971
1972 /**
1973  *      call_netdevice_notifiers_info - call all network notifier blocks
1974  *      @val: value passed unmodified to notifier function
1975  *      @info: notifier information data
1976  *
1977  *      Call all network notifier blocks.  Parameters and return value
1978  *      are as for raw_notifier_call_chain().
1979  */
1980
1981 int call_netdevice_notifiers_info(unsigned long val,
1982                                   struct netdev_notifier_info *info)
1983 {
1984         struct net *net = dev_net(info->dev);
1985         int ret;
1986
1987         ASSERT_RTNL();
1988
1989         /* Run per-netns notifier block chain first, then run the global one.
1990          * Hopefully, one day, the global one is going to be removed after
1991          * all notifier block registrators get converted to be per-netns.
1992          */
1993         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994         if (ret & NOTIFY_STOP_MASK)
1995                 return ret;
1996         return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
1999 /**
2000  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001  *                                             for and rollback on error
2002  *      @val_up: value passed unmodified to notifier function
2003  *      @val_down: value passed unmodified to the notifier function when
2004  *                 recovering from an error on @val_up
2005  *      @info: notifier information data
2006  *
2007  *      Call all per-netns network notifier blocks, but not notifier blocks on
2008  *      the global notifier chain. Parameters and return value are as for
2009  *      raw_notifier_call_chain_robust().
2010  */
2011
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014                                      unsigned long val_down,
2015                                      struct netdev_notifier_info *info)
2016 {
2017         struct net *net = dev_net(info->dev);
2018
2019         ASSERT_RTNL();
2020
2021         return raw_notifier_call_chain_robust(&net->netdev_chain,
2022                                               val_up, val_down, info);
2023 }
2024
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026                                            struct net_device *dev,
2027                                            struct netlink_ext_ack *extack)
2028 {
2029         struct netdev_notifier_info info = {
2030                 .dev = dev,
2031                 .extack = extack,
2032         };
2033
2034         return call_netdevice_notifiers_info(val, &info);
2035 }
2036
2037 /**
2038  *      call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *      Call all network notifier blocks.  Parameters and return value
2043  *      are as for raw_notifier_call_chain().
2044  */
2045
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048         return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051
2052 /**
2053  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *      @val: value passed unmodified to notifier function
2055  *      @dev: net_device pointer passed unmodified to notifier function
2056  *      @arg: additional u32 argument passed to the notifier function
2057  *
2058  *      Call all network notifier blocks.  Parameters and return value
2059  *      are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062                                         struct net_device *dev, u32 arg)
2063 {
2064         struct netdev_notifier_info_ext info = {
2065                 .info.dev = dev,
2066                 .ext.mtu = arg,
2067         };
2068
2069         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070
2071         return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076
2077 void net_inc_ingress_queue(void)
2078 {
2079         static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082
2083 void net_dec_ingress_queue(void)
2084 {
2085         static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092
2093 void net_inc_egress_queue(void)
2094 {
2095         static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098
2099 void net_dec_egress_queue(void)
2100 {
2101         static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119         int wanted;
2120
2121         wanted = atomic_add_return(deferred, &netstamp_wanted);
2122         if (wanted > 0)
2123                 static_branch_enable(&netstamp_needed_key);
2124         else
2125                 static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129
2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133         int wanted = atomic_read(&netstamp_wanted);
2134
2135         while (wanted > 0) {
2136                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137                         return;
2138         }
2139         atomic_inc(&netstamp_needed_deferred);
2140         schedule_work(&netstamp_work);
2141 #else
2142         static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146
2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150         int wanted = atomic_read(&netstamp_wanted);
2151
2152         while (wanted > 1) {
2153                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154                         return;
2155         }
2156         atomic_dec(&netstamp_needed_deferred);
2157         schedule_work(&netstamp_work);
2158 #else
2159         static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166         skb->tstamp = 0;
2167         skb->tstamp_type = SKB_CLOCK_REALTIME;
2168         if (static_branch_unlikely(&netstamp_needed_key))
2169                 skb->tstamp = ktime_get_real();
2170 }
2171
2172 #define net_timestamp_check(COND, SKB)                          \
2173         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2174                 if ((COND) && !(SKB)->tstamp)                   \
2175                         (SKB)->tstamp = ktime_get_real();       \
2176         }                                                       \
2177
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180         return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185                               bool check_mtu)
2186 {
2187         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188
2189         if (likely(!ret)) {
2190                 skb->protocol = eth_type_trans(skb, dev);
2191                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192         }
2193
2194         return ret;
2195 }
2196
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199         return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202
2203 /**
2204  * dev_forward_skb - loopback an skb to another netif
2205  *
2206  * @dev: destination network device
2207  * @skb: buffer to forward
2208  *
2209  * return values:
2210  *      NET_RX_SUCCESS  (no congestion)
2211  *      NET_RX_DROP     (packet was dropped, but freed)
2212  *
2213  * dev_forward_skb can be used for injecting an skb from the
2214  * start_xmit function of one device into the receive queue
2215  * of another device.
2216  *
2217  * The receiving device may be in another namespace, so
2218  * we have to clear all information in the skb that could
2219  * impact namespace isolation.
2220  */
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231
2232 static inline int deliver_skb(struct sk_buff *skb,
2233                               struct packet_type *pt_prev,
2234                               struct net_device *orig_dev)
2235 {
2236         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237                 return -ENOMEM;
2238         refcount_inc(&skb->users);
2239         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243                                           struct packet_type **pt,
2244                                           struct net_device *orig_dev,
2245                                           __be16 type,
2246                                           struct list_head *ptype_list)
2247 {
2248         struct packet_type *ptype, *pt_prev = *pt;
2249
2250         list_for_each_entry_rcu(ptype, ptype_list, list) {
2251                 if (ptype->type != type)
2252                         continue;
2253                 if (pt_prev)
2254                         deliver_skb(skb, pt_prev, orig_dev);
2255                 pt_prev = ptype;
2256         }
2257         *pt = pt_prev;
2258 }
2259
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262         if (!ptype->af_packet_priv || !skb->sk)
2263                 return false;
2264
2265         if (ptype->id_match)
2266                 return ptype->id_match(ptype, skb->sk);
2267         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268                 return true;
2269
2270         return false;
2271 }
2272
2273 /**
2274  * dev_nit_active - return true if any network interface taps are in use
2275  *
2276  * @dev: network device to check for the presence of taps
2277  */
2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280         return !list_empty(&net_hotdata.ptype_all) ||
2281                !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284
2285 /*
2286  *      Support routine. Sends outgoing frames to any network
2287  *      taps currently in use.
2288  */
2289
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292         struct list_head *ptype_list = &net_hotdata.ptype_all;
2293         struct packet_type *ptype, *pt_prev = NULL;
2294         struct sk_buff *skb2 = NULL;
2295
2296         rcu_read_lock();
2297 again:
2298         list_for_each_entry_rcu(ptype, ptype_list, list) {
2299                 if (READ_ONCE(ptype->ignore_outgoing))
2300                         continue;
2301
2302                 /* Never send packets back to the socket
2303                  * they originated from - MvS ([email protected])
2304                  */
2305                 if (skb_loop_sk(ptype, skb))
2306                         continue;
2307
2308                 if (pt_prev) {
2309                         deliver_skb(skb2, pt_prev, skb->dev);
2310                         pt_prev = ptype;
2311                         continue;
2312                 }
2313
2314                 /* need to clone skb, done only once */
2315                 skb2 = skb_clone(skb, GFP_ATOMIC);
2316                 if (!skb2)
2317                         goto out_unlock;
2318
2319                 net_timestamp_set(skb2);
2320
2321                 /* skb->nh should be correctly
2322                  * set by sender, so that the second statement is
2323                  * just protection against buggy protocols.
2324                  */
2325                 skb_reset_mac_header(skb2);
2326
2327                 if (skb_network_header(skb2) < skb2->data ||
2328                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330                                              ntohs(skb2->protocol),
2331                                              dev->name);
2332                         skb_reset_network_header(skb2);
2333                 }
2334
2335                 skb2->transport_header = skb2->network_header;
2336                 skb2->pkt_type = PACKET_OUTGOING;
2337                 pt_prev = ptype;
2338         }
2339
2340         if (ptype_list == &net_hotdata.ptype_all) {
2341                 ptype_list = &dev->ptype_all;
2342                 goto again;
2343         }
2344 out_unlock:
2345         if (pt_prev) {
2346                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348                 else
2349                         kfree_skb(skb2);
2350         }
2351         rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354
2355 /**
2356  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357  * @dev: Network device
2358  * @txq: number of queues available
2359  *
2360  * If real_num_tx_queues is changed the tc mappings may no longer be
2361  * valid. To resolve this verify the tc mapping remains valid and if
2362  * not NULL the mapping. With no priorities mapping to this
2363  * offset/count pair it will no longer be used. In the worst case TC0
2364  * is invalid nothing can be done so disable priority mappings. If is
2365  * expected that drivers will fix this mapping if they can before
2366  * calling netif_set_real_num_tx_queues.
2367  */
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370         int i;
2371         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372
2373         /* If TC0 is invalidated disable TC mapping */
2374         if (tc->offset + tc->count > txq) {
2375                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376                 dev->num_tc = 0;
2377                 return;
2378         }
2379
2380         /* Invalidated prio to tc mappings set to TC0 */
2381         for (i = 1; i < TC_BITMASK + 1; i++) {
2382                 int q = netdev_get_prio_tc_map(dev, i);
2383
2384                 tc = &dev->tc_to_txq[q];
2385                 if (tc->offset + tc->count > txq) {
2386                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387                                     i, q);
2388                         netdev_set_prio_tc_map(dev, i, 0);
2389                 }
2390         }
2391 }
2392
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395         if (dev->num_tc) {
2396                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397                 int i;
2398
2399                 /* walk through the TCs and see if it falls into any of them */
2400                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401                         if ((txq - tc->offset) < tc->count)
2402                                 return i;
2403                 }
2404
2405                 /* didn't find it, just return -1 to indicate no match */
2406                 return -1;
2407         }
2408
2409         return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P)             \
2418         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421                              struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423         struct xps_map *map = NULL;
2424         int pos;
2425
2426         map = xmap_dereference(dev_maps->attr_map[tci]);
2427         if (!map)
2428                 return false;
2429
2430         for (pos = map->len; pos--;) {
2431                 if (map->queues[pos] != index)
2432                         continue;
2433
2434                 if (map->len > 1) {
2435                         map->queues[pos] = map->queues[--map->len];
2436                         break;
2437                 }
2438
2439                 if (old_maps)
2440                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442                 kfree_rcu(map, rcu);
2443                 return false;
2444         }
2445
2446         return true;
2447 }
2448
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450                                  struct xps_dev_maps *dev_maps,
2451                                  int cpu, u16 offset, u16 count)
2452 {
2453         int num_tc = dev_maps->num_tc;
2454         bool active = false;
2455         int tci;
2456
2457         for (tci = cpu * num_tc; num_tc--; tci++) {
2458                 int i, j;
2459
2460                 for (i = count, j = offset; i--; j++) {
2461                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462                                 break;
2463                 }
2464
2465                 active |= i < 0;
2466         }
2467
2468         return active;
2469 }
2470
2471 static void reset_xps_maps(struct net_device *dev,
2472                            struct xps_dev_maps *dev_maps,
2473                            enum xps_map_type type)
2474 {
2475         static_key_slow_dec_cpuslocked(&xps_needed);
2476         if (type == XPS_RXQS)
2477                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478
2479         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480
2481         kfree_rcu(dev_maps, rcu);
2482 }
2483
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485                            u16 offset, u16 count)
2486 {
2487         struct xps_dev_maps *dev_maps;
2488         bool active = false;
2489         int i, j;
2490
2491         dev_maps = xmap_dereference(dev->xps_maps[type]);
2492         if (!dev_maps)
2493                 return;
2494
2495         for (j = 0; j < dev_maps->nr_ids; j++)
2496                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497         if (!active)
2498                 reset_xps_maps(dev, dev_maps, type);
2499
2500         if (type == XPS_CPUS) {
2501                 for (i = offset + (count - 1); count--; i--)
2502                         netdev_queue_numa_node_write(
2503                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504         }
2505 }
2506
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508                                    u16 count)
2509 {
2510         if (!static_key_false(&xps_needed))
2511                 return;
2512
2513         cpus_read_lock();
2514         mutex_lock(&xps_map_mutex);
2515
2516         if (static_key_false(&xps_rxqs_needed))
2517                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2518
2519         clean_xps_maps(dev, XPS_CPUS, offset, count);
2520
2521         mutex_unlock(&xps_map_mutex);
2522         cpus_read_unlock();
2523 }
2524
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531                                       u16 index, bool is_rxqs_map)
2532 {
2533         struct xps_map *new_map;
2534         int alloc_len = XPS_MIN_MAP_ALLOC;
2535         int i, pos;
2536
2537         for (pos = 0; map && pos < map->len; pos++) {
2538                 if (map->queues[pos] != index)
2539                         continue;
2540                 return map;
2541         }
2542
2543         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544         if (map) {
2545                 if (pos < map->alloc_len)
2546                         return map;
2547
2548                 alloc_len = map->alloc_len * 2;
2549         }
2550
2551         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552          *  map
2553          */
2554         if (is_rxqs_map)
2555                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556         else
2557                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558                                        cpu_to_node(attr_index));
2559         if (!new_map)
2560                 return NULL;
2561
2562         for (i = 0; i < pos; i++)
2563                 new_map->queues[i] = map->queues[i];
2564         new_map->alloc_len = alloc_len;
2565         new_map->len = pos;
2566
2567         return new_map;
2568 }
2569
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572                               struct xps_dev_maps *new_dev_maps, int index,
2573                               int tc, bool skip_tc)
2574 {
2575         int i, tci = index * dev_maps->num_tc;
2576         struct xps_map *map;
2577
2578         /* copy maps belonging to foreign traffic classes */
2579         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580                 if (i == tc && skip_tc)
2581                         continue;
2582
2583                 /* fill in the new device map from the old device map */
2584                 map = xmap_dereference(dev_maps->attr_map[tci]);
2585                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586         }
2587 }
2588
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591                           u16 index, enum xps_map_type type)
2592 {
2593         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594         const unsigned long *online_mask = NULL;
2595         bool active = false, copy = false;
2596         int i, j, tci, numa_node_id = -2;
2597         int maps_sz, num_tc = 1, tc = 0;
2598         struct xps_map *map, *new_map;
2599         unsigned int nr_ids;
2600
2601         WARN_ON_ONCE(index >= dev->num_tx_queues);
2602
2603         if (dev->num_tc) {
2604                 /* Do not allow XPS on subordinate device directly */
2605                 num_tc = dev->num_tc;
2606                 if (num_tc < 0)
2607                         return -EINVAL;
2608
2609                 /* If queue belongs to subordinate dev use its map */
2610                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611
2612                 tc = netdev_txq_to_tc(dev, index);
2613                 if (tc < 0)
2614                         return -EINVAL;
2615         }
2616
2617         mutex_lock(&xps_map_mutex);
2618
2619         dev_maps = xmap_dereference(dev->xps_maps[type]);
2620         if (type == XPS_RXQS) {
2621                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622                 nr_ids = dev->num_rx_queues;
2623         } else {
2624                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625                 if (num_possible_cpus() > 1)
2626                         online_mask = cpumask_bits(cpu_online_mask);
2627                 nr_ids = nr_cpu_ids;
2628         }
2629
2630         if (maps_sz < L1_CACHE_BYTES)
2631                 maps_sz = L1_CACHE_BYTES;
2632
2633         /* The old dev_maps could be larger or smaller than the one we're
2634          * setting up now, as dev->num_tc or nr_ids could have been updated in
2635          * between. We could try to be smart, but let's be safe instead and only
2636          * copy foreign traffic classes if the two map sizes match.
2637          */
2638         if (dev_maps &&
2639             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640                 copy = true;
2641
2642         /* allocate memory for queue storage */
2643         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644              j < nr_ids;) {
2645                 if (!new_dev_maps) {
2646                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647                         if (!new_dev_maps) {
2648                                 mutex_unlock(&xps_map_mutex);
2649                                 return -ENOMEM;
2650                         }
2651
2652                         new_dev_maps->nr_ids = nr_ids;
2653                         new_dev_maps->num_tc = num_tc;
2654                 }
2655
2656                 tci = j * num_tc + tc;
2657                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658
2659                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660                 if (!map)
2661                         goto error;
2662
2663                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664         }
2665
2666         if (!new_dev_maps)
2667                 goto out_no_new_maps;
2668
2669         if (!dev_maps) {
2670                 /* Increment static keys at most once per type */
2671                 static_key_slow_inc_cpuslocked(&xps_needed);
2672                 if (type == XPS_RXQS)
2673                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674         }
2675
2676         for (j = 0; j < nr_ids; j++) {
2677                 bool skip_tc = false;
2678
2679                 tci = j * num_tc + tc;
2680                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2681                     netif_attr_test_online(j, online_mask, nr_ids)) {
2682                         /* add tx-queue to CPU/rx-queue maps */
2683                         int pos = 0;
2684
2685                         skip_tc = true;
2686
2687                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688                         while ((pos < map->len) && (map->queues[pos] != index))
2689                                 pos++;
2690
2691                         if (pos == map->len)
2692                                 map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694                         if (type == XPS_CPUS) {
2695                                 if (numa_node_id == -2)
2696                                         numa_node_id = cpu_to_node(j);
2697                                 else if (numa_node_id != cpu_to_node(j))
2698                                         numa_node_id = -1;
2699                         }
2700 #endif
2701                 }
2702
2703                 if (copy)
2704                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705                                           skip_tc);
2706         }
2707
2708         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709
2710         /* Cleanup old maps */
2711         if (!dev_maps)
2712                 goto out_no_old_maps;
2713
2714         for (j = 0; j < dev_maps->nr_ids; j++) {
2715                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716                         map = xmap_dereference(dev_maps->attr_map[tci]);
2717                         if (!map)
2718                                 continue;
2719
2720                         if (copy) {
2721                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722                                 if (map == new_map)
2723                                         continue;
2724                         }
2725
2726                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727                         kfree_rcu(map, rcu);
2728                 }
2729         }
2730
2731         old_dev_maps = dev_maps;
2732
2733 out_no_old_maps:
2734         dev_maps = new_dev_maps;
2735         active = true;
2736
2737 out_no_new_maps:
2738         if (type == XPS_CPUS)
2739                 /* update Tx queue numa node */
2740                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741                                              (numa_node_id >= 0) ?
2742                                              numa_node_id : NUMA_NO_NODE);
2743
2744         if (!dev_maps)
2745                 goto out_no_maps;
2746
2747         /* removes tx-queue from unused CPUs/rx-queues */
2748         for (j = 0; j < dev_maps->nr_ids; j++) {
2749                 tci = j * dev_maps->num_tc;
2750
2751                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752                         if (i == tc &&
2753                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755                                 continue;
2756
2757                         active |= remove_xps_queue(dev_maps,
2758                                                    copy ? old_dev_maps : NULL,
2759                                                    tci, index);
2760                 }
2761         }
2762
2763         if (old_dev_maps)
2764                 kfree_rcu(old_dev_maps, rcu);
2765
2766         /* free map if not active */
2767         if (!active)
2768                 reset_xps_maps(dev, dev_maps, type);
2769
2770 out_no_maps:
2771         mutex_unlock(&xps_map_mutex);
2772
2773         return 0;
2774 error:
2775         /* remove any maps that we added */
2776         for (j = 0; j < nr_ids; j++) {
2777                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779                         map = copy ?
2780                               xmap_dereference(dev_maps->attr_map[tci]) :
2781                               NULL;
2782                         if (new_map && new_map != map)
2783                                 kfree(new_map);
2784                 }
2785         }
2786
2787         mutex_unlock(&xps_map_mutex);
2788
2789         kfree(new_dev_maps);
2790         return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795                         u16 index)
2796 {
2797         int ret;
2798
2799         cpus_read_lock();
2800         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801         cpus_read_unlock();
2802
2803         return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811
2812         /* Unbind any subordinate channels */
2813         while (txq-- != &dev->_tx[0]) {
2814                 if (txq->sb_dev)
2815                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2816         }
2817 }
2818
2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822         netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824         netdev_unbind_all_sb_channels(dev);
2825
2826         /* Reset TC configuration of device */
2827         dev->num_tc = 0;
2828         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835         if (tc >= dev->num_tc)
2836                 return -EINVAL;
2837
2838 #ifdef CONFIG_XPS
2839         netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841         dev->tc_to_txq[tc].count = count;
2842         dev->tc_to_txq[tc].offset = offset;
2843         return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849         if (num_tc > TC_MAX_QUEUE)
2850                 return -EINVAL;
2851
2852 #ifdef CONFIG_XPS
2853         netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855         netdev_unbind_all_sb_channels(dev);
2856
2857         dev->num_tc = num_tc;
2858         return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863                               struct net_device *sb_dev)
2864 {
2865         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866
2867 #ifdef CONFIG_XPS
2868         netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872
2873         while (txq-- != &dev->_tx[0]) {
2874                 if (txq->sb_dev == sb_dev)
2875                         txq->sb_dev = NULL;
2876         }
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881                                  struct net_device *sb_dev,
2882                                  u8 tc, u16 count, u16 offset)
2883 {
2884         /* Make certain the sb_dev and dev are already configured */
2885         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886                 return -EINVAL;
2887
2888         /* We cannot hand out queues we don't have */
2889         if ((offset + count) > dev->real_num_tx_queues)
2890                 return -EINVAL;
2891
2892         /* Record the mapping */
2893         sb_dev->tc_to_txq[tc].count = count;
2894         sb_dev->tc_to_txq[tc].offset = offset;
2895
2896         /* Provide a way for Tx queue to find the tc_to_txq map or
2897          * XPS map for itself.
2898          */
2899         while (count--)
2900                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901
2902         return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908         /* Do not use a multiqueue device to represent a subordinate channel */
2909         if (netif_is_multiqueue(dev))
2910                 return -ENODEV;
2911
2912         /* We allow channels 1 - 32767 to be used for subordinate channels.
2913          * Channel 0 is meant to be "native" mode and used only to represent
2914          * the main root device. We allow writing 0 to reset the device back
2915          * to normal mode after being used as a subordinate channel.
2916          */
2917         if (channel > S16_MAX)
2918                 return -EINVAL;
2919
2920         dev->num_tc = -channel;
2921
2922         return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925
2926 /*
2927  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929  */
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932         bool disabling;
2933         int rc;
2934
2935         disabling = txq < dev->real_num_tx_queues;
2936
2937         if (txq < 1 || txq > dev->num_tx_queues)
2938                 return -EINVAL;
2939
2940         if (dev->reg_state == NETREG_REGISTERED ||
2941             dev->reg_state == NETREG_UNREGISTERING) {
2942                 ASSERT_RTNL();
2943
2944                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945                                                   txq);
2946                 if (rc)
2947                         return rc;
2948
2949                 if (dev->num_tc)
2950                         netif_setup_tc(dev, txq);
2951
2952                 dev_qdisc_change_real_num_tx(dev, txq);
2953
2954                 dev->real_num_tx_queues = txq;
2955
2956                 if (disabling) {
2957                         synchronize_net();
2958                         qdisc_reset_all_tx_gt(dev, txq);
2959 #ifdef CONFIG_XPS
2960                         netif_reset_xps_queues_gt(dev, txq);
2961 #endif
2962                 }
2963         } else {
2964                 dev->real_num_tx_queues = txq;
2965         }
2966
2967         return 0;
2968 }
2969 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2970
2971 #ifdef CONFIG_SYSFS
2972 /**
2973  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2974  *      @dev: Network device
2975  *      @rxq: Actual number of RX queues
2976  *
2977  *      This must be called either with the rtnl_lock held or before
2978  *      registration of the net device.  Returns 0 on success, or a
2979  *      negative error code.  If called before registration, it always
2980  *      succeeds.
2981  */
2982 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2983 {
2984         int rc;
2985
2986         if (rxq < 1 || rxq > dev->num_rx_queues)
2987                 return -EINVAL;
2988
2989         if (dev->reg_state == NETREG_REGISTERED) {
2990                 ASSERT_RTNL();
2991
2992                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2993                                                   rxq);
2994                 if (rc)
2995                         return rc;
2996         }
2997
2998         dev->real_num_rx_queues = rxq;
2999         return 0;
3000 }
3001 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3002 #endif
3003
3004 /**
3005  *      netif_set_real_num_queues - set actual number of RX and TX queues used
3006  *      @dev: Network device
3007  *      @txq: Actual number of TX queues
3008  *      @rxq: Actual number of RX queues
3009  *
3010  *      Set the real number of both TX and RX queues.
3011  *      Does nothing if the number of queues is already correct.
3012  */
3013 int netif_set_real_num_queues(struct net_device *dev,
3014                               unsigned int txq, unsigned int rxq)
3015 {
3016         unsigned int old_rxq = dev->real_num_rx_queues;
3017         int err;
3018
3019         if (txq < 1 || txq > dev->num_tx_queues ||
3020             rxq < 1 || rxq > dev->num_rx_queues)
3021                 return -EINVAL;
3022
3023         /* Start from increases, so the error path only does decreases -
3024          * decreases can't fail.
3025          */
3026         if (rxq > dev->real_num_rx_queues) {
3027                 err = netif_set_real_num_rx_queues(dev, rxq);
3028                 if (err)
3029                         return err;
3030         }
3031         if (txq > dev->real_num_tx_queues) {
3032                 err = netif_set_real_num_tx_queues(dev, txq);
3033                 if (err)
3034                         goto undo_rx;
3035         }
3036         if (rxq < dev->real_num_rx_queues)
3037                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3038         if (txq < dev->real_num_tx_queues)
3039                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3040
3041         return 0;
3042 undo_rx:
3043         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3044         return err;
3045 }
3046 EXPORT_SYMBOL(netif_set_real_num_queues);
3047
3048 /**
3049  * netif_set_tso_max_size() - set the max size of TSO frames supported
3050  * @dev:        netdev to update
3051  * @size:       max skb->len of a TSO frame
3052  *
3053  * Set the limit on the size of TSO super-frames the device can handle.
3054  * Unless explicitly set the stack will assume the value of
3055  * %GSO_LEGACY_MAX_SIZE.
3056  */
3057 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3058 {
3059         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3060         if (size < READ_ONCE(dev->gso_max_size))
3061                 netif_set_gso_max_size(dev, size);
3062         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3063                 netif_set_gso_ipv4_max_size(dev, size);
3064 }
3065 EXPORT_SYMBOL(netif_set_tso_max_size);
3066
3067 /**
3068  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3069  * @dev:        netdev to update
3070  * @segs:       max number of TCP segments
3071  *
3072  * Set the limit on the number of TCP segments the device can generate from
3073  * a single TSO super-frame.
3074  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3075  */
3076 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3077 {
3078         dev->tso_max_segs = segs;
3079         if (segs < READ_ONCE(dev->gso_max_segs))
3080                 netif_set_gso_max_segs(dev, segs);
3081 }
3082 EXPORT_SYMBOL(netif_set_tso_max_segs);
3083
3084 /**
3085  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3086  * @to:         netdev to update
3087  * @from:       netdev from which to copy the limits
3088  */
3089 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3090 {
3091         netif_set_tso_max_size(to, from->tso_max_size);
3092         netif_set_tso_max_segs(to, from->tso_max_segs);
3093 }
3094 EXPORT_SYMBOL(netif_inherit_tso_max);
3095
3096 /**
3097  * netif_get_num_default_rss_queues - default number of RSS queues
3098  *
3099  * Default value is the number of physical cores if there are only 1 or 2, or
3100  * divided by 2 if there are more.
3101  */
3102 int netif_get_num_default_rss_queues(void)
3103 {
3104         cpumask_var_t cpus;
3105         int cpu, count = 0;
3106
3107         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3108                 return 1;
3109
3110         cpumask_copy(cpus, cpu_online_mask);
3111         for_each_cpu(cpu, cpus) {
3112                 ++count;
3113                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3114         }
3115         free_cpumask_var(cpus);
3116
3117         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3118 }
3119 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3120
3121 static void __netif_reschedule(struct Qdisc *q)
3122 {
3123         struct softnet_data *sd;
3124         unsigned long flags;
3125
3126         local_irq_save(flags);
3127         sd = this_cpu_ptr(&softnet_data);
3128         q->next_sched = NULL;
3129         *sd->output_queue_tailp = q;
3130         sd->output_queue_tailp = &q->next_sched;
3131         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3132         local_irq_restore(flags);
3133 }
3134
3135 void __netif_schedule(struct Qdisc *q)
3136 {
3137         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3138                 __netif_reschedule(q);
3139 }
3140 EXPORT_SYMBOL(__netif_schedule);
3141
3142 struct dev_kfree_skb_cb {
3143         enum skb_drop_reason reason;
3144 };
3145
3146 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3147 {
3148         return (struct dev_kfree_skb_cb *)skb->cb;
3149 }
3150
3151 void netif_schedule_queue(struct netdev_queue *txq)
3152 {
3153         rcu_read_lock();
3154         if (!netif_xmit_stopped(txq)) {
3155                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3156
3157                 __netif_schedule(q);
3158         }
3159         rcu_read_unlock();
3160 }
3161 EXPORT_SYMBOL(netif_schedule_queue);
3162
3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3164 {
3165         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3166                 struct Qdisc *q;
3167
3168                 rcu_read_lock();
3169                 q = rcu_dereference(dev_queue->qdisc);
3170                 __netif_schedule(q);
3171                 rcu_read_unlock();
3172         }
3173 }
3174 EXPORT_SYMBOL(netif_tx_wake_queue);
3175
3176 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3177 {
3178         unsigned long flags;
3179
3180         if (unlikely(!skb))
3181                 return;
3182
3183         if (likely(refcount_read(&skb->users) == 1)) {
3184                 smp_rmb();
3185                 refcount_set(&skb->users, 0);
3186         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3187                 return;
3188         }
3189         get_kfree_skb_cb(skb)->reason = reason;
3190         local_irq_save(flags);
3191         skb->next = __this_cpu_read(softnet_data.completion_queue);
3192         __this_cpu_write(softnet_data.completion_queue, skb);
3193         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3194         local_irq_restore(flags);
3195 }
3196 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3197
3198 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3199 {
3200         if (in_hardirq() || irqs_disabled())
3201                 dev_kfree_skb_irq_reason(skb, reason);
3202         else
3203                 kfree_skb_reason(skb, reason);
3204 }
3205 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3206
3207
3208 /**
3209  * netif_device_detach - mark device as removed
3210  * @dev: network device
3211  *
3212  * Mark device as removed from system and therefore no longer available.
3213  */
3214 void netif_device_detach(struct net_device *dev)
3215 {
3216         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3217             netif_running(dev)) {
3218                 netif_tx_stop_all_queues(dev);
3219         }
3220 }
3221 EXPORT_SYMBOL(netif_device_detach);
3222
3223 /**
3224  * netif_device_attach - mark device as attached
3225  * @dev: network device
3226  *
3227  * Mark device as attached from system and restart if needed.
3228  */
3229 void netif_device_attach(struct net_device *dev)
3230 {
3231         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3232             netif_running(dev)) {
3233                 netif_tx_wake_all_queues(dev);
3234                 __netdev_watchdog_up(dev);
3235         }
3236 }
3237 EXPORT_SYMBOL(netif_device_attach);
3238
3239 /*
3240  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3241  * to be used as a distribution range.
3242  */
3243 static u16 skb_tx_hash(const struct net_device *dev,
3244                        const struct net_device *sb_dev,
3245                        struct sk_buff *skb)
3246 {
3247         u32 hash;
3248         u16 qoffset = 0;
3249         u16 qcount = dev->real_num_tx_queues;
3250
3251         if (dev->num_tc) {
3252                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3253
3254                 qoffset = sb_dev->tc_to_txq[tc].offset;
3255                 qcount = sb_dev->tc_to_txq[tc].count;
3256                 if (unlikely(!qcount)) {
3257                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3258                                              sb_dev->name, qoffset, tc);
3259                         qoffset = 0;
3260                         qcount = dev->real_num_tx_queues;
3261                 }
3262         }
3263
3264         if (skb_rx_queue_recorded(skb)) {
3265                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3266                 hash = skb_get_rx_queue(skb);
3267                 if (hash >= qoffset)
3268                         hash -= qoffset;
3269                 while (unlikely(hash >= qcount))
3270                         hash -= qcount;
3271                 return hash + qoffset;
3272         }
3273
3274         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3275 }
3276
3277 void skb_warn_bad_offload(const struct sk_buff *skb)
3278 {
3279         static const netdev_features_t null_features;
3280         struct net_device *dev = skb->dev;
3281         const char *name = "";
3282
3283         if (!net_ratelimit())
3284                 return;
3285
3286         if (dev) {
3287                 if (dev->dev.parent)
3288                         name = dev_driver_string(dev->dev.parent);
3289                 else
3290                         name = netdev_name(dev);
3291         }
3292         skb_dump(KERN_WARNING, skb, false);
3293         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3294              name, dev ? &dev->features : &null_features,
3295              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3296 }
3297
3298 /*
3299  * Invalidate hardware checksum when packet is to be mangled, and
3300  * complete checksum manually on outgoing path.
3301  */
3302 int skb_checksum_help(struct sk_buff *skb)
3303 {
3304         __wsum csum;
3305         int ret = 0, offset;
3306
3307         if (skb->ip_summed == CHECKSUM_COMPLETE)
3308                 goto out_set_summed;
3309
3310         if (unlikely(skb_is_gso(skb))) {
3311                 skb_warn_bad_offload(skb);
3312                 return -EINVAL;
3313         }
3314
3315         if (!skb_frags_readable(skb)) {
3316                 return -EFAULT;
3317         }
3318
3319         /* Before computing a checksum, we should make sure no frag could
3320          * be modified by an external entity : checksum could be wrong.
3321          */
3322         if (skb_has_shared_frag(skb)) {
3323                 ret = __skb_linearize(skb);
3324                 if (ret)
3325                         goto out;
3326         }
3327
3328         offset = skb_checksum_start_offset(skb);
3329         ret = -EINVAL;
3330         if (unlikely(offset >= skb_headlen(skb))) {
3331                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3332                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3333                           offset, skb_headlen(skb));
3334                 goto out;
3335         }
3336         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3337
3338         offset += skb->csum_offset;
3339         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3340                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3341                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3342                           offset + sizeof(__sum16), skb_headlen(skb));
3343                 goto out;
3344         }
3345         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3346         if (ret)
3347                 goto out;
3348
3349         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3350 out_set_summed:
3351         skb->ip_summed = CHECKSUM_NONE;
3352 out:
3353         return ret;
3354 }
3355 EXPORT_SYMBOL(skb_checksum_help);
3356
3357 int skb_crc32c_csum_help(struct sk_buff *skb)
3358 {
3359         __le32 crc32c_csum;
3360         int ret = 0, offset, start;
3361
3362         if (skb->ip_summed != CHECKSUM_PARTIAL)
3363                 goto out;
3364
3365         if (unlikely(skb_is_gso(skb)))
3366                 goto out;
3367
3368         /* Before computing a checksum, we should make sure no frag could
3369          * be modified by an external entity : checksum could be wrong.
3370          */
3371         if (unlikely(skb_has_shared_frag(skb))) {
3372                 ret = __skb_linearize(skb);
3373                 if (ret)
3374                         goto out;
3375         }
3376         start = skb_checksum_start_offset(skb);
3377         offset = start + offsetof(struct sctphdr, checksum);
3378         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3379                 ret = -EINVAL;
3380                 goto out;
3381         }
3382
3383         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3384         if (ret)
3385                 goto out;
3386
3387         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3388                                                   skb->len - start, ~(__u32)0,
3389                                                   crc32c_csum_stub));
3390         *(__le32 *)(skb->data + offset) = crc32c_csum;
3391         skb_reset_csum_not_inet(skb);
3392 out:
3393         return ret;
3394 }
3395 EXPORT_SYMBOL(skb_crc32c_csum_help);
3396
3397 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3398 {
3399         __be16 type = skb->protocol;
3400
3401         /* Tunnel gso handlers can set protocol to ethernet. */
3402         if (type == htons(ETH_P_TEB)) {
3403                 struct ethhdr *eth;
3404
3405                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3406                         return 0;
3407
3408                 eth = (struct ethhdr *)skb->data;
3409                 type = eth->h_proto;
3410         }
3411
3412         return vlan_get_protocol_and_depth(skb, type, depth);
3413 }
3414
3415
3416 /* Take action when hardware reception checksum errors are detected. */
3417 #ifdef CONFIG_BUG
3418 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419 {
3420         netdev_err(dev, "hw csum failure\n");
3421         skb_dump(KERN_ERR, skb, true);
3422         dump_stack();
3423 }
3424
3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426 {
3427         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3428 }
3429 EXPORT_SYMBOL(netdev_rx_csum_fault);
3430 #endif
3431
3432 /* XXX: check that highmem exists at all on the given machine. */
3433 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 #ifdef CONFIG_HIGHMEM
3436         int i;
3437
3438         if (!(dev->features & NETIF_F_HIGHDMA)) {
3439                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3440                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3441                         struct page *page = skb_frag_page(frag);
3442
3443                         if (page && PageHighMem(page))
3444                                 return 1;
3445                 }
3446         }
3447 #endif
3448         return 0;
3449 }
3450
3451 /* If MPLS offload request, verify we are testing hardware MPLS features
3452  * instead of standard features for the netdev.
3453  */
3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456                                            netdev_features_t features,
3457                                            __be16 type)
3458 {
3459         if (eth_p_mpls(type))
3460                 features &= skb->dev->mpls_features;
3461
3462         return features;
3463 }
3464 #else
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466                                            netdev_features_t features,
3467                                            __be16 type)
3468 {
3469         return features;
3470 }
3471 #endif
3472
3473 static netdev_features_t harmonize_features(struct sk_buff *skb,
3474         netdev_features_t features)
3475 {
3476         __be16 type;
3477
3478         type = skb_network_protocol(skb, NULL);
3479         features = net_mpls_features(skb, features, type);
3480
3481         if (skb->ip_summed != CHECKSUM_NONE &&
3482             !can_checksum_protocol(features, type)) {
3483                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3484         }
3485         if (illegal_highdma(skb->dev, skb))
3486                 features &= ~NETIF_F_SG;
3487
3488         return features;
3489 }
3490
3491 netdev_features_t passthru_features_check(struct sk_buff *skb,
3492                                           struct net_device *dev,
3493                                           netdev_features_t features)
3494 {
3495         return features;
3496 }
3497 EXPORT_SYMBOL(passthru_features_check);
3498
3499 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500                                              struct net_device *dev,
3501                                              netdev_features_t features)
3502 {
3503         return vlan_features_check(skb, features);
3504 }
3505
3506 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507                                             struct net_device *dev,
3508                                             netdev_features_t features)
3509 {
3510         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3511
3512         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513                 return features & ~NETIF_F_GSO_MASK;
3514
3515         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3516                 return features & ~NETIF_F_GSO_MASK;
3517
3518         if (!skb_shinfo(skb)->gso_type) {
3519                 skb_warn_bad_offload(skb);
3520                 return features & ~NETIF_F_GSO_MASK;
3521         }
3522
3523         /* Support for GSO partial features requires software
3524          * intervention before we can actually process the packets
3525          * so we need to strip support for any partial features now
3526          * and we can pull them back in after we have partially
3527          * segmented the frame.
3528          */
3529         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530                 features &= ~dev->gso_partial_features;
3531
3532         /* Make sure to clear the IPv4 ID mangling feature if the
3533          * IPv4 header has the potential to be fragmented.
3534          */
3535         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536                 struct iphdr *iph = skb->encapsulation ?
3537                                     inner_ip_hdr(skb) : ip_hdr(skb);
3538
3539                 if (!(iph->frag_off & htons(IP_DF)))
3540                         features &= ~NETIF_F_TSO_MANGLEID;
3541         }
3542
3543         return features;
3544 }
3545
3546 netdev_features_t netif_skb_features(struct sk_buff *skb)
3547 {
3548         struct net_device *dev = skb->dev;
3549         netdev_features_t features = dev->features;
3550
3551         if (skb_is_gso(skb))
3552                 features = gso_features_check(skb, dev, features);
3553
3554         /* If encapsulation offload request, verify we are testing
3555          * hardware encapsulation features instead of standard
3556          * features for the netdev
3557          */
3558         if (skb->encapsulation)
3559                 features &= dev->hw_enc_features;
3560
3561         if (skb_vlan_tagged(skb))
3562                 features = netdev_intersect_features(features,
3563                                                      dev->vlan_features |
3564                                                      NETIF_F_HW_VLAN_CTAG_TX |
3565                                                      NETIF_F_HW_VLAN_STAG_TX);
3566
3567         if (dev->netdev_ops->ndo_features_check)
3568                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569                                                                 features);
3570         else
3571                 features &= dflt_features_check(skb, dev, features);
3572
3573         return harmonize_features(skb, features);
3574 }
3575 EXPORT_SYMBOL(netif_skb_features);
3576
3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578                     struct netdev_queue *txq, bool more)
3579 {
3580         unsigned int len;
3581         int rc;
3582
3583         if (dev_nit_active(dev))
3584                 dev_queue_xmit_nit(skb, dev);
3585
3586         len = skb->len;
3587         trace_net_dev_start_xmit(skb, dev);
3588         rc = netdev_start_xmit(skb, dev, txq, more);
3589         trace_net_dev_xmit(skb, rc, dev, len);
3590
3591         return rc;
3592 }
3593
3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595                                     struct netdev_queue *txq, int *ret)
3596 {
3597         struct sk_buff *skb = first;
3598         int rc = NETDEV_TX_OK;
3599
3600         while (skb) {
3601                 struct sk_buff *next = skb->next;
3602
3603                 skb_mark_not_on_list(skb);
3604                 rc = xmit_one(skb, dev, txq, next != NULL);
3605                 if (unlikely(!dev_xmit_complete(rc))) {
3606                         skb->next = next;
3607                         goto out;
3608                 }
3609
3610                 skb = next;
3611                 if (netif_tx_queue_stopped(txq) && skb) {
3612                         rc = NETDEV_TX_BUSY;
3613                         break;
3614                 }
3615         }
3616
3617 out:
3618         *ret = rc;
3619         return skb;
3620 }
3621
3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623                                           netdev_features_t features)
3624 {
3625         if (skb_vlan_tag_present(skb) &&
3626             !vlan_hw_offload_capable(features, skb->vlan_proto))
3627                 skb = __vlan_hwaccel_push_inside(skb);
3628         return skb;
3629 }
3630
3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632                             const netdev_features_t features)
3633 {
3634         if (unlikely(skb_csum_is_sctp(skb)))
3635                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636                         skb_crc32c_csum_help(skb);
3637
3638         if (features & NETIF_F_HW_CSUM)
3639                 return 0;
3640
3641         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642                 switch (skb->csum_offset) {
3643                 case offsetof(struct tcphdr, check):
3644                 case offsetof(struct udphdr, check):
3645                         return 0;
3646                 }
3647         }
3648
3649         return skb_checksum_help(skb);
3650 }
3651 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3652
3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3654 {
3655         netdev_features_t features;
3656
3657         features = netif_skb_features(skb);
3658         skb = validate_xmit_vlan(skb, features);
3659         if (unlikely(!skb))
3660                 goto out_null;
3661
3662         skb = sk_validate_xmit_skb(skb, dev);
3663         if (unlikely(!skb))
3664                 goto out_null;
3665
3666         if (netif_needs_gso(skb, features)) {
3667                 struct sk_buff *segs;
3668
3669                 segs = skb_gso_segment(skb, features);
3670                 if (IS_ERR(segs)) {
3671                         goto out_kfree_skb;
3672                 } else if (segs) {
3673                         consume_skb(skb);
3674                         skb = segs;
3675                 }
3676         } else {
3677                 if (skb_needs_linearize(skb, features) &&
3678                     __skb_linearize(skb))
3679                         goto out_kfree_skb;
3680
3681                 /* If packet is not checksummed and device does not
3682                  * support checksumming for this protocol, complete
3683                  * checksumming here.
3684                  */
3685                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3686                         if (skb->encapsulation)
3687                                 skb_set_inner_transport_header(skb,
3688                                                                skb_checksum_start_offset(skb));
3689                         else
3690                                 skb_set_transport_header(skb,
3691                                                          skb_checksum_start_offset(skb));
3692                         if (skb_csum_hwoffload_help(skb, features))
3693                                 goto out_kfree_skb;
3694                 }
3695         }
3696
3697         skb = validate_xmit_xfrm(skb, features, again);
3698
3699         return skb;
3700
3701 out_kfree_skb:
3702         kfree_skb(skb);
3703 out_null:
3704         dev_core_stats_tx_dropped_inc(dev);
3705         return NULL;
3706 }
3707
3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3709 {
3710         struct sk_buff *next, *head = NULL, *tail;
3711
3712         for (; skb != NULL; skb = next) {
3713                 next = skb->next;
3714                 skb_mark_not_on_list(skb);
3715
3716                 /* in case skb won't be segmented, point to itself */
3717                 skb->prev = skb;
3718
3719                 skb = validate_xmit_skb(skb, dev, again);
3720                 if (!skb)
3721                         continue;
3722
3723                 if (!head)
3724                         head = skb;
3725                 else
3726                         tail->next = skb;
3727                 /* If skb was segmented, skb->prev points to
3728                  * the last segment. If not, it still contains skb.
3729                  */
3730                 tail = skb->prev;
3731         }
3732         return head;
3733 }
3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3735
3736 static void qdisc_pkt_len_init(struct sk_buff *skb)
3737 {
3738         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3739
3740         qdisc_skb_cb(skb)->pkt_len = skb->len;
3741
3742         /* To get more precise estimation of bytes sent on wire,
3743          * we add to pkt_len the headers size of all segments
3744          */
3745         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3746                 u16 gso_segs = shinfo->gso_segs;
3747                 unsigned int hdr_len;
3748
3749                 /* mac layer + network layer */
3750                 hdr_len = skb_transport_offset(skb);
3751
3752                 /* + transport layer */
3753                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3754                         const struct tcphdr *th;
3755                         struct tcphdr _tcphdr;
3756
3757                         th = skb_header_pointer(skb, hdr_len,
3758                                                 sizeof(_tcphdr), &_tcphdr);
3759                         if (likely(th))
3760                                 hdr_len += __tcp_hdrlen(th);
3761                 } else {
3762                         struct udphdr _udphdr;
3763
3764                         if (skb_header_pointer(skb, hdr_len,
3765                                                sizeof(_udphdr), &_udphdr))
3766                                 hdr_len += sizeof(struct udphdr);
3767                 }
3768
3769                 if (shinfo->gso_type & SKB_GSO_DODGY)
3770                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3771                                                 shinfo->gso_size);
3772
3773                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3774         }
3775 }
3776
3777 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3778                              struct sk_buff **to_free,
3779                              struct netdev_queue *txq)
3780 {
3781         int rc;
3782
3783         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3784         if (rc == NET_XMIT_SUCCESS)
3785                 trace_qdisc_enqueue(q, txq, skb);
3786         return rc;
3787 }
3788
3789 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3790                                  struct net_device *dev,
3791                                  struct netdev_queue *txq)
3792 {
3793         spinlock_t *root_lock = qdisc_lock(q);
3794         struct sk_buff *to_free = NULL;
3795         bool contended;
3796         int rc;
3797
3798         qdisc_calculate_pkt_len(skb, q);
3799
3800         tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list_reason(to_free,
3831                                               tcf_get_drop_reason(to_free));
3832                 return rc;
3833         }
3834
3835         if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3836                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3837                 return NET_XMIT_DROP;
3838         }
3839         /*
3840          * Heuristic to force contended enqueues to serialize on a
3841          * separate lock before trying to get qdisc main lock.
3842          * This permits qdisc->running owner to get the lock more
3843          * often and dequeue packets faster.
3844          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3845          * and then other tasks will only enqueue packets. The packets will be
3846          * sent after the qdisc owner is scheduled again. To prevent this
3847          * scenario the task always serialize on the lock.
3848          */
3849         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3850         if (unlikely(contended))
3851                 spin_lock(&q->busylock);
3852
3853         spin_lock(root_lock);
3854         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3855                 __qdisc_drop(skb, &to_free);
3856                 rc = NET_XMIT_DROP;
3857         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3858                    qdisc_run_begin(q)) {
3859                 /*
3860                  * This is a work-conserving queue; there are no old skbs
3861                  * waiting to be sent out; and the qdisc is not running -
3862                  * xmit the skb directly.
3863                  */
3864
3865                 qdisc_bstats_update(q, skb);
3866
3867                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3868                         if (unlikely(contended)) {
3869                                 spin_unlock(&q->busylock);
3870                                 contended = false;
3871                         }
3872                         __qdisc_run(q);
3873                 }
3874
3875                 qdisc_run_end(q);
3876                 rc = NET_XMIT_SUCCESS;
3877         } else {
3878                 WRITE_ONCE(q->owner, smp_processor_id());
3879                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3880                 WRITE_ONCE(q->owner, -1);
3881                 if (qdisc_run_begin(q)) {
3882                         if (unlikely(contended)) {
3883                                 spin_unlock(&q->busylock);
3884                                 contended = false;
3885                         }
3886                         __qdisc_run(q);
3887                         qdisc_run_end(q);
3888                 }
3889         }
3890         spin_unlock(root_lock);
3891         if (unlikely(to_free))
3892                 kfree_skb_list_reason(to_free,
3893                                       tcf_get_drop_reason(to_free));
3894         if (unlikely(contended))
3895                 spin_unlock(&q->busylock);
3896         return rc;
3897 }
3898
3899 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3900 static void skb_update_prio(struct sk_buff *skb)
3901 {
3902         const struct netprio_map *map;
3903         const struct sock *sk;
3904         unsigned int prioidx;
3905
3906         if (skb->priority)
3907                 return;
3908         map = rcu_dereference_bh(skb->dev->priomap);
3909         if (!map)
3910                 return;
3911         sk = skb_to_full_sk(skb);
3912         if (!sk)
3913                 return;
3914
3915         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3916
3917         if (prioidx < map->priomap_len)
3918                 skb->priority = map->priomap[prioidx];
3919 }
3920 #else
3921 #define skb_update_prio(skb)
3922 #endif
3923
3924 /**
3925  *      dev_loopback_xmit - loop back @skb
3926  *      @net: network namespace this loopback is happening in
3927  *      @sk:  sk needed to be a netfilter okfn
3928  *      @skb: buffer to transmit
3929  */
3930 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3931 {
3932         skb_reset_mac_header(skb);
3933         __skb_pull(skb, skb_network_offset(skb));
3934         skb->pkt_type = PACKET_LOOPBACK;
3935         if (skb->ip_summed == CHECKSUM_NONE)
3936                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3937         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3938         skb_dst_force(skb);
3939         netif_rx(skb);
3940         return 0;
3941 }
3942 EXPORT_SYMBOL(dev_loopback_xmit);
3943
3944 #ifdef CONFIG_NET_EGRESS
3945 static struct netdev_queue *
3946 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3947 {
3948         int qm = skb_get_queue_mapping(skb);
3949
3950         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3951 }
3952
3953 #ifndef CONFIG_PREEMPT_RT
3954 static bool netdev_xmit_txqueue_skipped(void)
3955 {
3956         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3957 }
3958
3959 void netdev_xmit_skip_txqueue(bool skip)
3960 {
3961         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3962 }
3963 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3964
3965 #else
3966 static bool netdev_xmit_txqueue_skipped(void)
3967 {
3968         return current->net_xmit.skip_txqueue;
3969 }
3970
3971 void netdev_xmit_skip_txqueue(bool skip)
3972 {
3973         current->net_xmit.skip_txqueue = skip;
3974 }
3975 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3976 #endif
3977 #endif /* CONFIG_NET_EGRESS */
3978
3979 #ifdef CONFIG_NET_XGRESS
3980 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3981                   enum skb_drop_reason *drop_reason)
3982 {
3983         int ret = TC_ACT_UNSPEC;
3984 #ifdef CONFIG_NET_CLS_ACT
3985         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3986         struct tcf_result res;
3987
3988         if (!miniq)
3989                 return ret;
3990
3991         if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3992                 if (tcf_block_bypass_sw(miniq->block))
3993                         return ret;
3994         }
3995
3996         tc_skb_cb(skb)->mru = 0;
3997         tc_skb_cb(skb)->post_ct = false;
3998         tcf_set_drop_reason(skb, *drop_reason);
3999
4000         mini_qdisc_bstats_cpu_update(miniq, skb);
4001         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4002         /* Only tcf related quirks below. */
4003         switch (ret) {
4004         case TC_ACT_SHOT:
4005                 *drop_reason = tcf_get_drop_reason(skb);
4006                 mini_qdisc_qstats_cpu_drop(miniq);
4007                 break;
4008         case TC_ACT_OK:
4009         case TC_ACT_RECLASSIFY:
4010                 skb->tc_index = TC_H_MIN(res.classid);
4011                 break;
4012         }
4013 #endif /* CONFIG_NET_CLS_ACT */
4014         return ret;
4015 }
4016
4017 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4018
4019 void tcx_inc(void)
4020 {
4021         static_branch_inc(&tcx_needed_key);
4022 }
4023
4024 void tcx_dec(void)
4025 {
4026         static_branch_dec(&tcx_needed_key);
4027 }
4028
4029 static __always_inline enum tcx_action_base
4030 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4031         const bool needs_mac)
4032 {
4033         const struct bpf_mprog_fp *fp;
4034         const struct bpf_prog *prog;
4035         int ret = TCX_NEXT;
4036
4037         if (needs_mac)
4038                 __skb_push(skb, skb->mac_len);
4039         bpf_mprog_foreach_prog(entry, fp, prog) {
4040                 bpf_compute_data_pointers(skb);
4041                 ret = bpf_prog_run(prog, skb);
4042                 if (ret != TCX_NEXT)
4043                         break;
4044         }
4045         if (needs_mac)
4046                 __skb_pull(skb, skb->mac_len);
4047         return tcx_action_code(skb, ret);
4048 }
4049
4050 static __always_inline struct sk_buff *
4051 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4052                    struct net_device *orig_dev, bool *another)
4053 {
4054         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4055         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4056         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4057         int sch_ret;
4058
4059         if (!entry)
4060                 return skb;
4061
4062         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4063         if (*pt_prev) {
4064                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4065                 *pt_prev = NULL;
4066         }
4067
4068         qdisc_skb_cb(skb)->pkt_len = skb->len;
4069         tcx_set_ingress(skb, true);
4070
4071         if (static_branch_unlikely(&tcx_needed_key)) {
4072                 sch_ret = tcx_run(entry, skb, true);
4073                 if (sch_ret != TC_ACT_UNSPEC)
4074                         goto ingress_verdict;
4075         }
4076         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4077 ingress_verdict:
4078         switch (sch_ret) {
4079         case TC_ACT_REDIRECT:
4080                 /* skb_mac_header check was done by BPF, so we can safely
4081                  * push the L2 header back before redirecting to another
4082                  * netdev.
4083                  */
4084                 __skb_push(skb, skb->mac_len);
4085                 if (skb_do_redirect(skb) == -EAGAIN) {
4086                         __skb_pull(skb, skb->mac_len);
4087                         *another = true;
4088                         break;
4089                 }
4090                 *ret = NET_RX_SUCCESS;
4091                 bpf_net_ctx_clear(bpf_net_ctx);
4092                 return NULL;
4093         case TC_ACT_SHOT:
4094                 kfree_skb_reason(skb, drop_reason);
4095                 *ret = NET_RX_DROP;
4096                 bpf_net_ctx_clear(bpf_net_ctx);
4097                 return NULL;
4098         /* used by tc_run */
4099         case TC_ACT_STOLEN:
4100         case TC_ACT_QUEUED:
4101         case TC_ACT_TRAP:
4102                 consume_skb(skb);
4103                 fallthrough;
4104         case TC_ACT_CONSUMED:
4105                 *ret = NET_RX_SUCCESS;
4106                 bpf_net_ctx_clear(bpf_net_ctx);
4107                 return NULL;
4108         }
4109         bpf_net_ctx_clear(bpf_net_ctx);
4110
4111         return skb;
4112 }
4113
4114 static __always_inline struct sk_buff *
4115 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4116 {
4117         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4118         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4119         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4120         int sch_ret;
4121
4122         if (!entry)
4123                 return skb;
4124
4125         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4126
4127         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4128          * already set by the caller.
4129          */
4130         if (static_branch_unlikely(&tcx_needed_key)) {
4131                 sch_ret = tcx_run(entry, skb, false);
4132                 if (sch_ret != TC_ACT_UNSPEC)
4133                         goto egress_verdict;
4134         }
4135         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4136 egress_verdict:
4137         switch (sch_ret) {
4138         case TC_ACT_REDIRECT:
4139                 /* No need to push/pop skb's mac_header here on egress! */
4140                 skb_do_redirect(skb);
4141                 *ret = NET_XMIT_SUCCESS;
4142                 bpf_net_ctx_clear(bpf_net_ctx);
4143                 return NULL;
4144         case TC_ACT_SHOT:
4145                 kfree_skb_reason(skb, drop_reason);
4146                 *ret = NET_XMIT_DROP;
4147                 bpf_net_ctx_clear(bpf_net_ctx);
4148                 return NULL;
4149         /* used by tc_run */
4150         case TC_ACT_STOLEN:
4151         case TC_ACT_QUEUED:
4152         case TC_ACT_TRAP:
4153                 consume_skb(skb);
4154                 fallthrough;
4155         case TC_ACT_CONSUMED:
4156                 *ret = NET_XMIT_SUCCESS;
4157                 bpf_net_ctx_clear(bpf_net_ctx);
4158                 return NULL;
4159         }
4160         bpf_net_ctx_clear(bpf_net_ctx);
4161
4162         return skb;
4163 }
4164 #else
4165 static __always_inline struct sk_buff *
4166 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4167                    struct net_device *orig_dev, bool *another)
4168 {
4169         return skb;
4170 }
4171
4172 static __always_inline struct sk_buff *
4173 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4174 {
4175         return skb;
4176 }
4177 #endif /* CONFIG_NET_XGRESS */
4178
4179 #ifdef CONFIG_XPS
4180 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4181                                struct xps_dev_maps *dev_maps, unsigned int tci)
4182 {
4183         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4184         struct xps_map *map;
4185         int queue_index = -1;
4186
4187         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4188                 return queue_index;
4189
4190         tci *= dev_maps->num_tc;
4191         tci += tc;
4192
4193         map = rcu_dereference(dev_maps->attr_map[tci]);
4194         if (map) {
4195                 if (map->len == 1)
4196                         queue_index = map->queues[0];
4197                 else
4198                         queue_index = map->queues[reciprocal_scale(
4199                                                 skb_get_hash(skb), map->len)];
4200                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4201                         queue_index = -1;
4202         }
4203         return queue_index;
4204 }
4205 #endif
4206
4207 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4208                          struct sk_buff *skb)
4209 {
4210 #ifdef CONFIG_XPS
4211         struct xps_dev_maps *dev_maps;
4212         struct sock *sk = skb->sk;
4213         int queue_index = -1;
4214
4215         if (!static_key_false(&xps_needed))
4216                 return -1;
4217
4218         rcu_read_lock();
4219         if (!static_key_false(&xps_rxqs_needed))
4220                 goto get_cpus_map;
4221
4222         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4223         if (dev_maps) {
4224                 int tci = sk_rx_queue_get(sk);
4225
4226                 if (tci >= 0)
4227                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4228                                                           tci);
4229         }
4230
4231 get_cpus_map:
4232         if (queue_index < 0) {
4233                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4234                 if (dev_maps) {
4235                         unsigned int tci = skb->sender_cpu - 1;
4236
4237                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4238                                                           tci);
4239                 }
4240         }
4241         rcu_read_unlock();
4242
4243         return queue_index;
4244 #else
4245         return -1;
4246 #endif
4247 }
4248
4249 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4250                      struct net_device *sb_dev)
4251 {
4252         return 0;
4253 }
4254 EXPORT_SYMBOL(dev_pick_tx_zero);
4255
4256 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4257                      struct net_device *sb_dev)
4258 {
4259         struct sock *sk = skb->sk;
4260         int queue_index = sk_tx_queue_get(sk);
4261
4262         sb_dev = sb_dev ? : dev;
4263
4264         if (queue_index < 0 || skb->ooo_okay ||
4265             queue_index >= dev->real_num_tx_queues) {
4266                 int new_index = get_xps_queue(dev, sb_dev, skb);
4267
4268                 if (new_index < 0)
4269                         new_index = skb_tx_hash(dev, sb_dev, skb);
4270
4271                 if (queue_index != new_index && sk &&
4272                     sk_fullsock(sk) &&
4273                     rcu_access_pointer(sk->sk_dst_cache))
4274                         sk_tx_queue_set(sk, new_index);
4275
4276                 queue_index = new_index;
4277         }
4278
4279         return queue_index;
4280 }
4281 EXPORT_SYMBOL(netdev_pick_tx);
4282
4283 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4284                                          struct sk_buff *skb,
4285                                          struct net_device *sb_dev)
4286 {
4287         int queue_index = 0;
4288
4289 #ifdef CONFIG_XPS
4290         u32 sender_cpu = skb->sender_cpu - 1;
4291
4292         if (sender_cpu >= (u32)NR_CPUS)
4293                 skb->sender_cpu = raw_smp_processor_id() + 1;
4294 #endif
4295
4296         if (dev->real_num_tx_queues != 1) {
4297                 const struct net_device_ops *ops = dev->netdev_ops;
4298
4299                 if (ops->ndo_select_queue)
4300                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4301                 else
4302                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4303
4304                 queue_index = netdev_cap_txqueue(dev, queue_index);
4305         }
4306
4307         skb_set_queue_mapping(skb, queue_index);
4308         return netdev_get_tx_queue(dev, queue_index);
4309 }
4310
4311 /**
4312  * __dev_queue_xmit() - transmit a buffer
4313  * @skb:        buffer to transmit
4314  * @sb_dev:     suboordinate device used for L2 forwarding offload
4315  *
4316  * Queue a buffer for transmission to a network device. The caller must
4317  * have set the device and priority and built the buffer before calling
4318  * this function. The function can be called from an interrupt.
4319  *
4320  * When calling this method, interrupts MUST be enabled. This is because
4321  * the BH enable code must have IRQs enabled so that it will not deadlock.
4322  *
4323  * Regardless of the return value, the skb is consumed, so it is currently
4324  * difficult to retry a send to this method. (You can bump the ref count
4325  * before sending to hold a reference for retry if you are careful.)
4326  *
4327  * Return:
4328  * * 0                          - buffer successfully transmitted
4329  * * positive qdisc return code - NET_XMIT_DROP etc.
4330  * * negative errno             - other errors
4331  */
4332 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4333 {
4334         struct net_device *dev = skb->dev;
4335         struct netdev_queue *txq = NULL;
4336         struct Qdisc *q;
4337         int rc = -ENOMEM;
4338         bool again = false;
4339
4340         skb_reset_mac_header(skb);
4341         skb_assert_len(skb);
4342
4343         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4344                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4345
4346         /* Disable soft irqs for various locks below. Also
4347          * stops preemption for RCU.
4348          */
4349         rcu_read_lock_bh();
4350
4351         skb_update_prio(skb);
4352
4353         qdisc_pkt_len_init(skb);
4354         tcx_set_ingress(skb, false);
4355 #ifdef CONFIG_NET_EGRESS
4356         if (static_branch_unlikely(&egress_needed_key)) {
4357                 if (nf_hook_egress_active()) {
4358                         skb = nf_hook_egress(skb, &rc, dev);
4359                         if (!skb)
4360                                 goto out;
4361                 }
4362
4363                 netdev_xmit_skip_txqueue(false);
4364
4365                 nf_skip_egress(skb, true);
4366                 skb = sch_handle_egress(skb, &rc, dev);
4367                 if (!skb)
4368                         goto out;
4369                 nf_skip_egress(skb, false);
4370
4371                 if (netdev_xmit_txqueue_skipped())
4372                         txq = netdev_tx_queue_mapping(dev, skb);
4373         }
4374 #endif
4375         /* If device/qdisc don't need skb->dst, release it right now while
4376          * its hot in this cpu cache.
4377          */
4378         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4379                 skb_dst_drop(skb);
4380         else
4381                 skb_dst_force(skb);
4382
4383         if (!txq)
4384                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4385
4386         q = rcu_dereference_bh(txq->qdisc);
4387
4388         trace_net_dev_queue(skb);
4389         if (q->enqueue) {
4390                 rc = __dev_xmit_skb(skb, q, dev, txq);
4391                 goto out;
4392         }
4393
4394         /* The device has no queue. Common case for software devices:
4395          * loopback, all the sorts of tunnels...
4396
4397          * Really, it is unlikely that netif_tx_lock protection is necessary
4398          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4399          * counters.)
4400          * However, it is possible, that they rely on protection
4401          * made by us here.
4402
4403          * Check this and shot the lock. It is not prone from deadlocks.
4404          *Either shot noqueue qdisc, it is even simpler 8)
4405          */
4406         if (dev->flags & IFF_UP) {
4407                 int cpu = smp_processor_id(); /* ok because BHs are off */
4408
4409                 /* Other cpus might concurrently change txq->xmit_lock_owner
4410                  * to -1 or to their cpu id, but not to our id.
4411                  */
4412                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4413                         if (dev_xmit_recursion())
4414                                 goto recursion_alert;
4415
4416                         skb = validate_xmit_skb(skb, dev, &again);
4417                         if (!skb)
4418                                 goto out;
4419
4420                         HARD_TX_LOCK(dev, txq, cpu);
4421
4422                         if (!netif_xmit_stopped(txq)) {
4423                                 dev_xmit_recursion_inc();
4424                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4425                                 dev_xmit_recursion_dec();
4426                                 if (dev_xmit_complete(rc)) {
4427                                         HARD_TX_UNLOCK(dev, txq);
4428                                         goto out;
4429                                 }
4430                         }
4431                         HARD_TX_UNLOCK(dev, txq);
4432                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4433                                              dev->name);
4434                 } else {
4435                         /* Recursion is detected! It is possible,
4436                          * unfortunately
4437                          */
4438 recursion_alert:
4439                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4440                                              dev->name);
4441                 }
4442         }
4443
4444         rc = -ENETDOWN;
4445         rcu_read_unlock_bh();
4446
4447         dev_core_stats_tx_dropped_inc(dev);
4448         kfree_skb_list(skb);
4449         return rc;
4450 out:
4451         rcu_read_unlock_bh();
4452         return rc;
4453 }
4454 EXPORT_SYMBOL(__dev_queue_xmit);
4455
4456 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4457 {
4458         struct net_device *dev = skb->dev;
4459         struct sk_buff *orig_skb = skb;
4460         struct netdev_queue *txq;
4461         int ret = NETDEV_TX_BUSY;
4462         bool again = false;
4463
4464         if (unlikely(!netif_running(dev) ||
4465                      !netif_carrier_ok(dev)))
4466                 goto drop;
4467
4468         skb = validate_xmit_skb_list(skb, dev, &again);
4469         if (skb != orig_skb)
4470                 goto drop;
4471
4472         skb_set_queue_mapping(skb, queue_id);
4473         txq = skb_get_tx_queue(dev, skb);
4474
4475         local_bh_disable();
4476
4477         dev_xmit_recursion_inc();
4478         HARD_TX_LOCK(dev, txq, smp_processor_id());
4479         if (!netif_xmit_frozen_or_drv_stopped(txq))
4480                 ret = netdev_start_xmit(skb, dev, txq, false);
4481         HARD_TX_UNLOCK(dev, txq);
4482         dev_xmit_recursion_dec();
4483
4484         local_bh_enable();
4485         return ret;
4486 drop:
4487         dev_core_stats_tx_dropped_inc(dev);
4488         kfree_skb_list(skb);
4489         return NET_XMIT_DROP;
4490 }
4491 EXPORT_SYMBOL(__dev_direct_xmit);
4492
4493 /*************************************************************************
4494  *                      Receiver routines
4495  *************************************************************************/
4496 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4497
4498 int weight_p __read_mostly = 64;           /* old backlog weight */
4499 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4500 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4501
4502 /* Called with irq disabled */
4503 static inline void ____napi_schedule(struct softnet_data *sd,
4504                                      struct napi_struct *napi)
4505 {
4506         struct task_struct *thread;
4507
4508         lockdep_assert_irqs_disabled();
4509
4510         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4511                 /* Paired with smp_mb__before_atomic() in
4512                  * napi_enable()/dev_set_threaded().
4513                  * Use READ_ONCE() to guarantee a complete
4514                  * read on napi->thread. Only call
4515                  * wake_up_process() when it's not NULL.
4516                  */
4517                 thread = READ_ONCE(napi->thread);
4518                 if (thread) {
4519                         if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4520                                 goto use_local_napi;
4521
4522                         set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4523                         wake_up_process(thread);
4524                         return;
4525                 }
4526         }
4527
4528 use_local_napi:
4529         list_add_tail(&napi->poll_list, &sd->poll_list);
4530         WRITE_ONCE(napi->list_owner, smp_processor_id());
4531         /* If not called from net_rx_action()
4532          * we have to raise NET_RX_SOFTIRQ.
4533          */
4534         if (!sd->in_net_rx_action)
4535                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4536 }
4537
4538 #ifdef CONFIG_RPS
4539
4540 struct static_key_false rps_needed __read_mostly;
4541 EXPORT_SYMBOL(rps_needed);
4542 struct static_key_false rfs_needed __read_mostly;
4543 EXPORT_SYMBOL(rfs_needed);
4544
4545 static struct rps_dev_flow *
4546 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4547             struct rps_dev_flow *rflow, u16 next_cpu)
4548 {
4549         if (next_cpu < nr_cpu_ids) {
4550                 u32 head;
4551 #ifdef CONFIG_RFS_ACCEL
4552                 struct netdev_rx_queue *rxqueue;
4553                 struct rps_dev_flow_table *flow_table;
4554                 struct rps_dev_flow *old_rflow;
4555                 u16 rxq_index;
4556                 u32 flow_id;
4557                 int rc;
4558
4559                 /* Should we steer this flow to a different hardware queue? */
4560                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4561                     !(dev->features & NETIF_F_NTUPLE))
4562                         goto out;
4563                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4564                 if (rxq_index == skb_get_rx_queue(skb))
4565                         goto out;
4566
4567                 rxqueue = dev->_rx + rxq_index;
4568                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4569                 if (!flow_table)
4570                         goto out;
4571                 flow_id = skb_get_hash(skb) & flow_table->mask;
4572                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4573                                                         rxq_index, flow_id);
4574                 if (rc < 0)
4575                         goto out;
4576                 old_rflow = rflow;
4577                 rflow = &flow_table->flows[flow_id];
4578                 WRITE_ONCE(rflow->filter, rc);
4579                 if (old_rflow->filter == rc)
4580                         WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4581         out:
4582 #endif
4583                 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4584                 rps_input_queue_tail_save(&rflow->last_qtail, head);
4585         }
4586
4587         WRITE_ONCE(rflow->cpu, next_cpu);
4588         return rflow;
4589 }
4590
4591 /*
4592  * get_rps_cpu is called from netif_receive_skb and returns the target
4593  * CPU from the RPS map of the receiving queue for a given skb.
4594  * rcu_read_lock must be held on entry.
4595  */
4596 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4597                        struct rps_dev_flow **rflowp)
4598 {
4599         const struct rps_sock_flow_table *sock_flow_table;
4600         struct netdev_rx_queue *rxqueue = dev->_rx;
4601         struct rps_dev_flow_table *flow_table;
4602         struct rps_map *map;
4603         int cpu = -1;
4604         u32 tcpu;
4605         u32 hash;
4606
4607         if (skb_rx_queue_recorded(skb)) {
4608                 u16 index = skb_get_rx_queue(skb);
4609
4610                 if (unlikely(index >= dev->real_num_rx_queues)) {
4611                         WARN_ONCE(dev->real_num_rx_queues > 1,
4612                                   "%s received packet on queue %u, but number "
4613                                   "of RX queues is %u\n",
4614                                   dev->name, index, dev->real_num_rx_queues);
4615                         goto done;
4616                 }
4617                 rxqueue += index;
4618         }
4619
4620         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4621
4622         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4623         map = rcu_dereference(rxqueue->rps_map);
4624         if (!flow_table && !map)
4625                 goto done;
4626
4627         skb_reset_network_header(skb);
4628         hash = skb_get_hash(skb);
4629         if (!hash)
4630                 goto done;
4631
4632         sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4633         if (flow_table && sock_flow_table) {
4634                 struct rps_dev_flow *rflow;
4635                 u32 next_cpu;
4636                 u32 ident;
4637
4638                 /* First check into global flow table if there is a match.
4639                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4640                  */
4641                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4642                 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4643                         goto try_rps;
4644
4645                 next_cpu = ident & net_hotdata.rps_cpu_mask;
4646
4647                 /* OK, now we know there is a match,
4648                  * we can look at the local (per receive queue) flow table
4649                  */
4650                 rflow = &flow_table->flows[hash & flow_table->mask];
4651                 tcpu = rflow->cpu;
4652
4653                 /*
4654                  * If the desired CPU (where last recvmsg was done) is
4655                  * different from current CPU (one in the rx-queue flow
4656                  * table entry), switch if one of the following holds:
4657                  *   - Current CPU is unset (>= nr_cpu_ids).
4658                  *   - Current CPU is offline.
4659                  *   - The current CPU's queue tail has advanced beyond the
4660                  *     last packet that was enqueued using this table entry.
4661                  *     This guarantees that all previous packets for the flow
4662                  *     have been dequeued, thus preserving in order delivery.
4663                  */
4664                 if (unlikely(tcpu != next_cpu) &&
4665                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4666                      ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4667                       rflow->last_qtail)) >= 0)) {
4668                         tcpu = next_cpu;
4669                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4670                 }
4671
4672                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4673                         *rflowp = rflow;
4674                         cpu = tcpu;
4675                         goto done;
4676                 }
4677         }
4678
4679 try_rps:
4680
4681         if (map) {
4682                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4683                 if (cpu_online(tcpu)) {
4684                         cpu = tcpu;
4685                         goto done;
4686                 }
4687         }
4688
4689 done:
4690         return cpu;
4691 }
4692
4693 #ifdef CONFIG_RFS_ACCEL
4694
4695 /**
4696  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4697  * @dev: Device on which the filter was set
4698  * @rxq_index: RX queue index
4699  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4700  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4701  *
4702  * Drivers that implement ndo_rx_flow_steer() should periodically call
4703  * this function for each installed filter and remove the filters for
4704  * which it returns %true.
4705  */
4706 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4707                          u32 flow_id, u16 filter_id)
4708 {
4709         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4710         struct rps_dev_flow_table *flow_table;
4711         struct rps_dev_flow *rflow;
4712         bool expire = true;
4713         unsigned int cpu;
4714
4715         rcu_read_lock();
4716         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4717         if (flow_table && flow_id <= flow_table->mask) {
4718                 rflow = &flow_table->flows[flow_id];
4719                 cpu = READ_ONCE(rflow->cpu);
4720                 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4721                     ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4722                            READ_ONCE(rflow->last_qtail)) <
4723                      (int)(10 * flow_table->mask)))
4724                         expire = false;
4725         }
4726         rcu_read_unlock();
4727         return expire;
4728 }
4729 EXPORT_SYMBOL(rps_may_expire_flow);
4730
4731 #endif /* CONFIG_RFS_ACCEL */
4732
4733 /* Called from hardirq (IPI) context */
4734 static void rps_trigger_softirq(void *data)
4735 {
4736         struct softnet_data *sd = data;
4737
4738         ____napi_schedule(sd, &sd->backlog);
4739         sd->received_rps++;
4740 }
4741
4742 #endif /* CONFIG_RPS */
4743
4744 /* Called from hardirq (IPI) context */
4745 static void trigger_rx_softirq(void *data)
4746 {
4747         struct softnet_data *sd = data;
4748
4749         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4750         smp_store_release(&sd->defer_ipi_scheduled, 0);
4751 }
4752
4753 /*
4754  * After we queued a packet into sd->input_pkt_queue,
4755  * we need to make sure this queue is serviced soon.
4756  *
4757  * - If this is another cpu queue, link it to our rps_ipi_list,
4758  *   and make sure we will process rps_ipi_list from net_rx_action().
4759  *
4760  * - If this is our own queue, NAPI schedule our backlog.
4761  *   Note that this also raises NET_RX_SOFTIRQ.
4762  */
4763 static void napi_schedule_rps(struct softnet_data *sd)
4764 {
4765         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4766
4767 #ifdef CONFIG_RPS
4768         if (sd != mysd) {
4769                 if (use_backlog_threads()) {
4770                         __napi_schedule_irqoff(&sd->backlog);
4771                         return;
4772                 }
4773
4774                 sd->rps_ipi_next = mysd->rps_ipi_list;
4775                 mysd->rps_ipi_list = sd;
4776
4777                 /* If not called from net_rx_action() or napi_threaded_poll()
4778                  * we have to raise NET_RX_SOFTIRQ.
4779                  */
4780                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4781                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4782                 return;
4783         }
4784 #endif /* CONFIG_RPS */
4785         __napi_schedule_irqoff(&mysd->backlog);
4786 }
4787
4788 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4789 {
4790         unsigned long flags;
4791
4792         if (use_backlog_threads()) {
4793                 backlog_lock_irq_save(sd, &flags);
4794
4795                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4796                         __napi_schedule_irqoff(&sd->backlog);
4797
4798                 backlog_unlock_irq_restore(sd, &flags);
4799
4800         } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4801                 smp_call_function_single_async(cpu, &sd->defer_csd);
4802         }
4803 }
4804
4805 #ifdef CONFIG_NET_FLOW_LIMIT
4806 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4807 #endif
4808
4809 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4810 {
4811 #ifdef CONFIG_NET_FLOW_LIMIT
4812         struct sd_flow_limit *fl;
4813         struct softnet_data *sd;
4814         unsigned int old_flow, new_flow;
4815
4816         if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4817                 return false;
4818
4819         sd = this_cpu_ptr(&softnet_data);
4820
4821         rcu_read_lock();
4822         fl = rcu_dereference(sd->flow_limit);
4823         if (fl) {
4824                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4825                 old_flow = fl->history[fl->history_head];
4826                 fl->history[fl->history_head] = new_flow;
4827
4828                 fl->history_head++;
4829                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4830
4831                 if (likely(fl->buckets[old_flow]))
4832                         fl->buckets[old_flow]--;
4833
4834                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4835                         fl->count++;
4836                         rcu_read_unlock();
4837                         return true;
4838                 }
4839         }
4840         rcu_read_unlock();
4841 #endif
4842         return false;
4843 }
4844
4845 /*
4846  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4847  * queue (may be a remote CPU queue).
4848  */
4849 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4850                               unsigned int *qtail)
4851 {
4852         enum skb_drop_reason reason;
4853         struct softnet_data *sd;
4854         unsigned long flags;
4855         unsigned int qlen;
4856         int max_backlog;
4857         u32 tail;
4858
4859         reason = SKB_DROP_REASON_DEV_READY;
4860         if (!netif_running(skb->dev))
4861                 goto bad_dev;
4862
4863         reason = SKB_DROP_REASON_CPU_BACKLOG;
4864         sd = &per_cpu(softnet_data, cpu);
4865
4866         qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4867         max_backlog = READ_ONCE(net_hotdata.max_backlog);
4868         if (unlikely(qlen > max_backlog))
4869                 goto cpu_backlog_drop;
4870         backlog_lock_irq_save(sd, &flags);
4871         qlen = skb_queue_len(&sd->input_pkt_queue);
4872         if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4873                 if (!qlen) {
4874                         /* Schedule NAPI for backlog device. We can use
4875                          * non atomic operation as we own the queue lock.
4876                          */
4877                         if (!__test_and_set_bit(NAPI_STATE_SCHED,
4878                                                 &sd->backlog.state))
4879                                 napi_schedule_rps(sd);
4880                 }
4881                 __skb_queue_tail(&sd->input_pkt_queue, skb);
4882                 tail = rps_input_queue_tail_incr(sd);
4883                 backlog_unlock_irq_restore(sd, &flags);
4884
4885                 /* save the tail outside of the critical section */
4886                 rps_input_queue_tail_save(qtail, tail);
4887                 return NET_RX_SUCCESS;
4888         }
4889
4890         backlog_unlock_irq_restore(sd, &flags);
4891
4892 cpu_backlog_drop:
4893         atomic_inc(&sd->dropped);
4894 bad_dev:
4895         dev_core_stats_rx_dropped_inc(skb->dev);
4896         kfree_skb_reason(skb, reason);
4897         return NET_RX_DROP;
4898 }
4899
4900 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4901 {
4902         struct net_device *dev = skb->dev;
4903         struct netdev_rx_queue *rxqueue;
4904
4905         rxqueue = dev->_rx;
4906
4907         if (skb_rx_queue_recorded(skb)) {
4908                 u16 index = skb_get_rx_queue(skb);
4909
4910                 if (unlikely(index >= dev->real_num_rx_queues)) {
4911                         WARN_ONCE(dev->real_num_rx_queues > 1,
4912                                   "%s received packet on queue %u, but number "
4913                                   "of RX queues is %u\n",
4914                                   dev->name, index, dev->real_num_rx_queues);
4915
4916                         return rxqueue; /* Return first rxqueue */
4917                 }
4918                 rxqueue += index;
4919         }
4920         return rxqueue;
4921 }
4922
4923 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4924                              struct bpf_prog *xdp_prog)
4925 {
4926         void *orig_data, *orig_data_end, *hard_start;
4927         struct netdev_rx_queue *rxqueue;
4928         bool orig_bcast, orig_host;
4929         u32 mac_len, frame_sz;
4930         __be16 orig_eth_type;
4931         struct ethhdr *eth;
4932         u32 metalen, act;
4933         int off;
4934
4935         /* The XDP program wants to see the packet starting at the MAC
4936          * header.
4937          */
4938         mac_len = skb->data - skb_mac_header(skb);
4939         hard_start = skb->data - skb_headroom(skb);
4940
4941         /* SKB "head" area always have tailroom for skb_shared_info */
4942         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4943         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4944
4945         rxqueue = netif_get_rxqueue(skb);
4946         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4947         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4948                          skb_headlen(skb) + mac_len, true);
4949         if (skb_is_nonlinear(skb)) {
4950                 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4951                 xdp_buff_set_frags_flag(xdp);
4952         } else {
4953                 xdp_buff_clear_frags_flag(xdp);
4954         }
4955
4956         orig_data_end = xdp->data_end;
4957         orig_data = xdp->data;
4958         eth = (struct ethhdr *)xdp->data;
4959         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4960         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4961         orig_eth_type = eth->h_proto;
4962
4963         act = bpf_prog_run_xdp(xdp_prog, xdp);
4964
4965         /* check if bpf_xdp_adjust_head was used */
4966         off = xdp->data - orig_data;
4967         if (off) {
4968                 if (off > 0)
4969                         __skb_pull(skb, off);
4970                 else if (off < 0)
4971                         __skb_push(skb, -off);
4972
4973                 skb->mac_header += off;
4974                 skb_reset_network_header(skb);
4975         }
4976
4977         /* check if bpf_xdp_adjust_tail was used */
4978         off = xdp->data_end - orig_data_end;
4979         if (off != 0) {
4980                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4981                 skb->len += off; /* positive on grow, negative on shrink */
4982         }
4983
4984         /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4985          * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4986          */
4987         if (xdp_buff_has_frags(xdp))
4988                 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4989         else
4990                 skb->data_len = 0;
4991
4992         /* check if XDP changed eth hdr such SKB needs update */
4993         eth = (struct ethhdr *)xdp->data;
4994         if ((orig_eth_type != eth->h_proto) ||
4995             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4996                                                   skb->dev->dev_addr)) ||
4997             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4998                 __skb_push(skb, ETH_HLEN);
4999                 skb->pkt_type = PACKET_HOST;
5000                 skb->protocol = eth_type_trans(skb, skb->dev);
5001         }
5002
5003         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5004          * before calling us again on redirect path. We do not call do_redirect
5005          * as we leave that up to the caller.
5006          *
5007          * Caller is responsible for managing lifetime of skb (i.e. calling
5008          * kfree_skb in response to actions it cannot handle/XDP_DROP).
5009          */
5010         switch (act) {
5011         case XDP_REDIRECT:
5012         case XDP_TX:
5013                 __skb_push(skb, mac_len);
5014                 break;
5015         case XDP_PASS:
5016                 metalen = xdp->data - xdp->data_meta;
5017                 if (metalen)
5018                         skb_metadata_set(skb, metalen);
5019                 break;
5020         }
5021
5022         return act;
5023 }
5024
5025 static int
5026 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5027 {
5028         struct sk_buff *skb = *pskb;
5029         int err, hroom, troom;
5030
5031         if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5032                 return 0;
5033
5034         /* In case we have to go down the path and also linearize,
5035          * then lets do the pskb_expand_head() work just once here.
5036          */
5037         hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5038         troom = skb->tail + skb->data_len - skb->end;
5039         err = pskb_expand_head(skb,
5040                                hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5041                                troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5042         if (err)
5043                 return err;
5044
5045         return skb_linearize(skb);
5046 }
5047
5048 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5049                                      struct xdp_buff *xdp,
5050                                      struct bpf_prog *xdp_prog)
5051 {
5052         struct sk_buff *skb = *pskb;
5053         u32 mac_len, act = XDP_DROP;
5054
5055         /* Reinjected packets coming from act_mirred or similar should
5056          * not get XDP generic processing.
5057          */
5058         if (skb_is_redirected(skb))
5059                 return XDP_PASS;
5060
5061         /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5062          * bytes. This is the guarantee that also native XDP provides,
5063          * thus we need to do it here as well.
5064          */
5065         mac_len = skb->data - skb_mac_header(skb);
5066         __skb_push(skb, mac_len);
5067
5068         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5069             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5070                 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5071                         goto do_drop;
5072         }
5073
5074         __skb_pull(*pskb, mac_len);
5075
5076         act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5077         switch (act) {
5078         case XDP_REDIRECT:
5079         case XDP_TX:
5080         case XDP_PASS:
5081                 break;
5082         default:
5083                 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5084                 fallthrough;
5085         case XDP_ABORTED:
5086                 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5087                 fallthrough;
5088         case XDP_DROP:
5089         do_drop:
5090                 kfree_skb(*pskb);
5091                 break;
5092         }
5093
5094         return act;
5095 }
5096
5097 /* When doing generic XDP we have to bypass the qdisc layer and the
5098  * network taps in order to match in-driver-XDP behavior. This also means
5099  * that XDP packets are able to starve other packets going through a qdisc,
5100  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5101  * queues, so they do not have this starvation issue.
5102  */
5103 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5104 {
5105         struct net_device *dev = skb->dev;
5106         struct netdev_queue *txq;
5107         bool free_skb = true;
5108         int cpu, rc;
5109
5110         txq = netdev_core_pick_tx(dev, skb, NULL);
5111         cpu = smp_processor_id();
5112         HARD_TX_LOCK(dev, txq, cpu);
5113         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5114                 rc = netdev_start_xmit(skb, dev, txq, 0);
5115                 if (dev_xmit_complete(rc))
5116                         free_skb = false;
5117         }
5118         HARD_TX_UNLOCK(dev, txq);
5119         if (free_skb) {
5120                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5121                 dev_core_stats_tx_dropped_inc(dev);
5122                 kfree_skb(skb);
5123         }
5124 }
5125
5126 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5127
5128 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5129 {
5130         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5131
5132         if (xdp_prog) {
5133                 struct xdp_buff xdp;
5134                 u32 act;
5135                 int err;
5136
5137                 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5138                 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5139                 if (act != XDP_PASS) {
5140                         switch (act) {
5141                         case XDP_REDIRECT:
5142                                 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5143                                                               &xdp, xdp_prog);
5144                                 if (err)
5145                                         goto out_redir;
5146                                 break;
5147                         case XDP_TX:
5148                                 generic_xdp_tx(*pskb, xdp_prog);
5149                                 break;
5150                         }
5151                         bpf_net_ctx_clear(bpf_net_ctx);
5152                         return XDP_DROP;
5153                 }
5154                 bpf_net_ctx_clear(bpf_net_ctx);
5155         }
5156         return XDP_PASS;
5157 out_redir:
5158         bpf_net_ctx_clear(bpf_net_ctx);
5159         kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5160         return XDP_DROP;
5161 }
5162 EXPORT_SYMBOL_GPL(do_xdp_generic);
5163
5164 static int netif_rx_internal(struct sk_buff *skb)
5165 {
5166         int ret;
5167
5168         net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5169
5170         trace_netif_rx(skb);
5171
5172 #ifdef CONFIG_RPS
5173         if (static_branch_unlikely(&rps_needed)) {
5174                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5175                 int cpu;
5176
5177                 rcu_read_lock();
5178
5179                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5180                 if (cpu < 0)
5181                         cpu = smp_processor_id();
5182
5183                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5184
5185                 rcu_read_unlock();
5186         } else
5187 #endif
5188         {
5189                 unsigned int qtail;
5190
5191                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5192         }
5193         return ret;
5194 }
5195
5196 /**
5197  *      __netif_rx      -       Slightly optimized version of netif_rx
5198  *      @skb: buffer to post
5199  *
5200  *      This behaves as netif_rx except that it does not disable bottom halves.
5201  *      As a result this function may only be invoked from the interrupt context
5202  *      (either hard or soft interrupt).
5203  */
5204 int __netif_rx(struct sk_buff *skb)
5205 {
5206         int ret;
5207
5208         lockdep_assert_once(hardirq_count() | softirq_count());
5209
5210         trace_netif_rx_entry(skb);
5211         ret = netif_rx_internal(skb);
5212         trace_netif_rx_exit(ret);
5213         return ret;
5214 }
5215 EXPORT_SYMBOL(__netif_rx);
5216
5217 /**
5218  *      netif_rx        -       post buffer to the network code
5219  *      @skb: buffer to post
5220  *
5221  *      This function receives a packet from a device driver and queues it for
5222  *      the upper (protocol) levels to process via the backlog NAPI device. It
5223  *      always succeeds. The buffer may be dropped during processing for
5224  *      congestion control or by the protocol layers.
5225  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5226  *      driver should use NAPI and GRO.
5227  *      This function can used from interrupt and from process context. The
5228  *      caller from process context must not disable interrupts before invoking
5229  *      this function.
5230  *
5231  *      return values:
5232  *      NET_RX_SUCCESS  (no congestion)
5233  *      NET_RX_DROP     (packet was dropped)
5234  *
5235  */
5236 int netif_rx(struct sk_buff *skb)
5237 {
5238         bool need_bh_off = !(hardirq_count() | softirq_count());
5239         int ret;
5240
5241         if (need_bh_off)
5242                 local_bh_disable();
5243         trace_netif_rx_entry(skb);
5244         ret = netif_rx_internal(skb);
5245         trace_netif_rx_exit(ret);
5246         if (need_bh_off)
5247                 local_bh_enable();
5248         return ret;
5249 }
5250 EXPORT_SYMBOL(netif_rx);
5251
5252 static __latent_entropy void net_tx_action(void)
5253 {
5254         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5255
5256         if (sd->completion_queue) {
5257                 struct sk_buff *clist;
5258
5259                 local_irq_disable();
5260                 clist = sd->completion_queue;
5261                 sd->completion_queue = NULL;
5262                 local_irq_enable();
5263
5264                 while (clist) {
5265                         struct sk_buff *skb = clist;
5266
5267                         clist = clist->next;
5268
5269                         WARN_ON(refcount_read(&skb->users));
5270                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5271                                 trace_consume_skb(skb, net_tx_action);
5272                         else
5273                                 trace_kfree_skb(skb, net_tx_action,
5274                                                 get_kfree_skb_cb(skb)->reason, NULL);
5275
5276                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5277                                 __kfree_skb(skb);
5278                         else
5279                                 __napi_kfree_skb(skb,
5280                                                  get_kfree_skb_cb(skb)->reason);
5281                 }
5282         }
5283
5284         if (sd->output_queue) {
5285                 struct Qdisc *head;
5286
5287                 local_irq_disable();
5288                 head = sd->output_queue;
5289                 sd->output_queue = NULL;
5290                 sd->output_queue_tailp = &sd->output_queue;
5291                 local_irq_enable();
5292
5293                 rcu_read_lock();
5294
5295                 while (head) {
5296                         struct Qdisc *q = head;
5297                         spinlock_t *root_lock = NULL;
5298
5299                         head = head->next_sched;
5300
5301                         /* We need to make sure head->next_sched is read
5302                          * before clearing __QDISC_STATE_SCHED
5303                          */
5304                         smp_mb__before_atomic();
5305
5306                         if (!(q->flags & TCQ_F_NOLOCK)) {
5307                                 root_lock = qdisc_lock(q);
5308                                 spin_lock(root_lock);
5309                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5310                                                      &q->state))) {
5311                                 /* There is a synchronize_net() between
5312                                  * STATE_DEACTIVATED flag being set and
5313                                  * qdisc_reset()/some_qdisc_is_busy() in
5314                                  * dev_deactivate(), so we can safely bail out
5315                                  * early here to avoid data race between
5316                                  * qdisc_deactivate() and some_qdisc_is_busy()
5317                                  * for lockless qdisc.
5318                                  */
5319                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5320                                 continue;
5321                         }
5322
5323                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5324                         qdisc_run(q);
5325                         if (root_lock)
5326                                 spin_unlock(root_lock);
5327                 }
5328
5329                 rcu_read_unlock();
5330         }
5331
5332         xfrm_dev_backlog(sd);
5333 }
5334
5335 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5336 /* This hook is defined here for ATM LANE */
5337 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5338                              unsigned char *addr) __read_mostly;
5339 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5340 #endif
5341
5342 /**
5343  *      netdev_is_rx_handler_busy - check if receive handler is registered
5344  *      @dev: device to check
5345  *
5346  *      Check if a receive handler is already registered for a given device.
5347  *      Return true if there one.
5348  *
5349  *      The caller must hold the rtnl_mutex.
5350  */
5351 bool netdev_is_rx_handler_busy(struct net_device *dev)
5352 {
5353         ASSERT_RTNL();
5354         return dev && rtnl_dereference(dev->rx_handler);
5355 }
5356 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5357
5358 /**
5359  *      netdev_rx_handler_register - register receive handler
5360  *      @dev: device to register a handler for
5361  *      @rx_handler: receive handler to register
5362  *      @rx_handler_data: data pointer that is used by rx handler
5363  *
5364  *      Register a receive handler for a device. This handler will then be
5365  *      called from __netif_receive_skb. A negative errno code is returned
5366  *      on a failure.
5367  *
5368  *      The caller must hold the rtnl_mutex.
5369  *
5370  *      For a general description of rx_handler, see enum rx_handler_result.
5371  */
5372 int netdev_rx_handler_register(struct net_device *dev,
5373                                rx_handler_func_t *rx_handler,
5374                                void *rx_handler_data)
5375 {
5376         if (netdev_is_rx_handler_busy(dev))
5377                 return -EBUSY;
5378
5379         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5380                 return -EINVAL;
5381
5382         /* Note: rx_handler_data must be set before rx_handler */
5383         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5384         rcu_assign_pointer(dev->rx_handler, rx_handler);
5385
5386         return 0;
5387 }
5388 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5389
5390 /**
5391  *      netdev_rx_handler_unregister - unregister receive handler
5392  *      @dev: device to unregister a handler from
5393  *
5394  *      Unregister a receive handler from a device.
5395  *
5396  *      The caller must hold the rtnl_mutex.
5397  */
5398 void netdev_rx_handler_unregister(struct net_device *dev)
5399 {
5400
5401         ASSERT_RTNL();
5402         RCU_INIT_POINTER(dev->rx_handler, NULL);
5403         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5404          * section has a guarantee to see a non NULL rx_handler_data
5405          * as well.
5406          */
5407         synchronize_net();
5408         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5409 }
5410 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5411
5412 /*
5413  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5414  * the special handling of PFMEMALLOC skbs.
5415  */
5416 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5417 {
5418         switch (skb->protocol) {
5419         case htons(ETH_P_ARP):
5420         case htons(ETH_P_IP):
5421         case htons(ETH_P_IPV6):
5422         case htons(ETH_P_8021Q):
5423         case htons(ETH_P_8021AD):
5424                 return true;
5425         default:
5426                 return false;
5427         }
5428 }
5429
5430 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5431                              int *ret, struct net_device *orig_dev)
5432 {
5433         if (nf_hook_ingress_active(skb)) {
5434                 int ingress_retval;
5435
5436                 if (*pt_prev) {
5437                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5438                         *pt_prev = NULL;
5439                 }
5440
5441                 rcu_read_lock();
5442                 ingress_retval = nf_hook_ingress(skb);
5443                 rcu_read_unlock();
5444                 return ingress_retval;
5445         }
5446         return 0;
5447 }
5448
5449 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5450                                     struct packet_type **ppt_prev)
5451 {
5452         struct packet_type *ptype, *pt_prev;
5453         rx_handler_func_t *rx_handler;
5454         struct sk_buff *skb = *pskb;
5455         struct net_device *orig_dev;
5456         bool deliver_exact = false;
5457         int ret = NET_RX_DROP;
5458         __be16 type;
5459
5460         net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5461
5462         trace_netif_receive_skb(skb);
5463
5464         orig_dev = skb->dev;
5465
5466         skb_reset_network_header(skb);
5467         if (!skb_transport_header_was_set(skb))
5468                 skb_reset_transport_header(skb);
5469         skb_reset_mac_len(skb);
5470
5471         pt_prev = NULL;
5472
5473 another_round:
5474         skb->skb_iif = skb->dev->ifindex;
5475
5476         __this_cpu_inc(softnet_data.processed);
5477
5478         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5479                 int ret2;
5480
5481                 migrate_disable();
5482                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5483                                       &skb);
5484                 migrate_enable();
5485
5486                 if (ret2 != XDP_PASS) {
5487                         ret = NET_RX_DROP;
5488                         goto out;
5489                 }
5490         }
5491
5492         if (eth_type_vlan(skb->protocol)) {
5493                 skb = skb_vlan_untag(skb);
5494                 if (unlikely(!skb))
5495                         goto out;
5496         }
5497
5498         if (skb_skip_tc_classify(skb))
5499                 goto skip_classify;
5500
5501         if (pfmemalloc)
5502                 goto skip_taps;
5503
5504         list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5505                 if (pt_prev)
5506                         ret = deliver_skb(skb, pt_prev, orig_dev);
5507                 pt_prev = ptype;
5508         }
5509
5510         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5511                 if (pt_prev)
5512                         ret = deliver_skb(skb, pt_prev, orig_dev);
5513                 pt_prev = ptype;
5514         }
5515
5516 skip_taps:
5517 #ifdef CONFIG_NET_INGRESS
5518         if (static_branch_unlikely(&ingress_needed_key)) {
5519                 bool another = false;
5520
5521                 nf_skip_egress(skb, true);
5522                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5523                                          &another);
5524                 if (another)
5525                         goto another_round;
5526                 if (!skb)
5527                         goto out;
5528
5529                 nf_skip_egress(skb, false);
5530                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5531                         goto out;
5532         }
5533 #endif
5534         skb_reset_redirect(skb);
5535 skip_classify:
5536         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5537                 goto drop;
5538
5539         if (skb_vlan_tag_present(skb)) {
5540                 if (pt_prev) {
5541                         ret = deliver_skb(skb, pt_prev, orig_dev);
5542                         pt_prev = NULL;
5543                 }
5544                 if (vlan_do_receive(&skb))
5545                         goto another_round;
5546                 else if (unlikely(!skb))
5547                         goto out;
5548         }
5549
5550         rx_handler = rcu_dereference(skb->dev->rx_handler);
5551         if (rx_handler) {
5552                 if (pt_prev) {
5553                         ret = deliver_skb(skb, pt_prev, orig_dev);
5554                         pt_prev = NULL;
5555                 }
5556                 switch (rx_handler(&skb)) {
5557                 case RX_HANDLER_CONSUMED:
5558                         ret = NET_RX_SUCCESS;
5559                         goto out;
5560                 case RX_HANDLER_ANOTHER:
5561                         goto another_round;
5562                 case RX_HANDLER_EXACT:
5563                         deliver_exact = true;
5564                         break;
5565                 case RX_HANDLER_PASS:
5566                         break;
5567                 default:
5568                         BUG();
5569                 }
5570         }
5571
5572         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5573 check_vlan_id:
5574                 if (skb_vlan_tag_get_id(skb)) {
5575                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5576                          * find vlan device.
5577                          */
5578                         skb->pkt_type = PACKET_OTHERHOST;
5579                 } else if (eth_type_vlan(skb->protocol)) {
5580                         /* Outer header is 802.1P with vlan 0, inner header is
5581                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5582                          * not find vlan dev for vlan id 0.
5583                          */
5584                         __vlan_hwaccel_clear_tag(skb);
5585                         skb = skb_vlan_untag(skb);
5586                         if (unlikely(!skb))
5587                                 goto out;
5588                         if (vlan_do_receive(&skb))
5589                                 /* After stripping off 802.1P header with vlan 0
5590                                  * vlan dev is found for inner header.
5591                                  */
5592                                 goto another_round;
5593                         else if (unlikely(!skb))
5594                                 goto out;
5595                         else
5596                                 /* We have stripped outer 802.1P vlan 0 header.
5597                                  * But could not find vlan dev.
5598                                  * check again for vlan id to set OTHERHOST.
5599                                  */
5600                                 goto check_vlan_id;
5601                 }
5602                 /* Note: we might in the future use prio bits
5603                  * and set skb->priority like in vlan_do_receive()
5604                  * For the time being, just ignore Priority Code Point
5605                  */
5606                 __vlan_hwaccel_clear_tag(skb);
5607         }
5608
5609         type = skb->protocol;
5610
5611         /* deliver only exact match when indicated */
5612         if (likely(!deliver_exact)) {
5613                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5614                                        &ptype_base[ntohs(type) &
5615                                                    PTYPE_HASH_MASK]);
5616         }
5617
5618         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5619                                &orig_dev->ptype_specific);
5620
5621         if (unlikely(skb->dev != orig_dev)) {
5622                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5623                                        &skb->dev->ptype_specific);
5624         }
5625
5626         if (pt_prev) {
5627                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5628                         goto drop;
5629                 *ppt_prev = pt_prev;
5630         } else {
5631 drop:
5632                 if (!deliver_exact)
5633                         dev_core_stats_rx_dropped_inc(skb->dev);
5634                 else
5635                         dev_core_stats_rx_nohandler_inc(skb->dev);
5636                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5637                 /* Jamal, now you will not able to escape explaining
5638                  * me how you were going to use this. :-)
5639                  */
5640                 ret = NET_RX_DROP;
5641         }
5642
5643 out:
5644         /* The invariant here is that if *ppt_prev is not NULL
5645          * then skb should also be non-NULL.
5646          *
5647          * Apparently *ppt_prev assignment above holds this invariant due to
5648          * skb dereferencing near it.
5649          */
5650         *pskb = skb;
5651         return ret;
5652 }
5653
5654 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5655 {
5656         struct net_device *orig_dev = skb->dev;
5657         struct packet_type *pt_prev = NULL;
5658         int ret;
5659
5660         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5661         if (pt_prev)
5662                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5663                                          skb->dev, pt_prev, orig_dev);
5664         return ret;
5665 }
5666
5667 /**
5668  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5669  *      @skb: buffer to process
5670  *
5671  *      More direct receive version of netif_receive_skb().  It should
5672  *      only be used by callers that have a need to skip RPS and Generic XDP.
5673  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5674  *
5675  *      This function may only be called from softirq context and interrupts
5676  *      should be enabled.
5677  *
5678  *      Return values (usually ignored):
5679  *      NET_RX_SUCCESS: no congestion
5680  *      NET_RX_DROP: packet was dropped
5681  */
5682 int netif_receive_skb_core(struct sk_buff *skb)
5683 {
5684         int ret;
5685
5686         rcu_read_lock();
5687         ret = __netif_receive_skb_one_core(skb, false);
5688         rcu_read_unlock();
5689
5690         return ret;
5691 }
5692 EXPORT_SYMBOL(netif_receive_skb_core);
5693
5694 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5695                                                   struct packet_type *pt_prev,
5696                                                   struct net_device *orig_dev)
5697 {
5698         struct sk_buff *skb, *next;
5699
5700         if (!pt_prev)
5701                 return;
5702         if (list_empty(head))
5703                 return;
5704         if (pt_prev->list_func != NULL)
5705                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5706                                    ip_list_rcv, head, pt_prev, orig_dev);
5707         else
5708                 list_for_each_entry_safe(skb, next, head, list) {
5709                         skb_list_del_init(skb);
5710                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5711                 }
5712 }
5713
5714 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5715 {
5716         /* Fast-path assumptions:
5717          * - There is no RX handler.
5718          * - Only one packet_type matches.
5719          * If either of these fails, we will end up doing some per-packet
5720          * processing in-line, then handling the 'last ptype' for the whole
5721          * sublist.  This can't cause out-of-order delivery to any single ptype,
5722          * because the 'last ptype' must be constant across the sublist, and all
5723          * other ptypes are handled per-packet.
5724          */
5725         /* Current (common) ptype of sublist */
5726         struct packet_type *pt_curr = NULL;
5727         /* Current (common) orig_dev of sublist */
5728         struct net_device *od_curr = NULL;
5729         struct sk_buff *skb, *next;
5730         LIST_HEAD(sublist);
5731
5732         list_for_each_entry_safe(skb, next, head, list) {
5733                 struct net_device *orig_dev = skb->dev;
5734                 struct packet_type *pt_prev = NULL;
5735
5736                 skb_list_del_init(skb);
5737                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5738                 if (!pt_prev)
5739                         continue;
5740                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5741                         /* dispatch old sublist */
5742                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5743                         /* start new sublist */
5744                         INIT_LIST_HEAD(&sublist);
5745                         pt_curr = pt_prev;
5746                         od_curr = orig_dev;
5747                 }
5748                 list_add_tail(&skb->list, &sublist);
5749         }
5750
5751         /* dispatch final sublist */
5752         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5753 }
5754
5755 static int __netif_receive_skb(struct sk_buff *skb)
5756 {
5757         int ret;
5758
5759         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5760                 unsigned int noreclaim_flag;
5761
5762                 /*
5763                  * PFMEMALLOC skbs are special, they should
5764                  * - be delivered to SOCK_MEMALLOC sockets only
5765                  * - stay away from userspace
5766                  * - have bounded memory usage
5767                  *
5768                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5769                  * context down to all allocation sites.
5770                  */
5771                 noreclaim_flag = memalloc_noreclaim_save();
5772                 ret = __netif_receive_skb_one_core(skb, true);
5773                 memalloc_noreclaim_restore(noreclaim_flag);
5774         } else
5775                 ret = __netif_receive_skb_one_core(skb, false);
5776
5777         return ret;
5778 }
5779
5780 static void __netif_receive_skb_list(struct list_head *head)
5781 {
5782         unsigned long noreclaim_flag = 0;
5783         struct sk_buff *skb, *next;
5784         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5785
5786         list_for_each_entry_safe(skb, next, head, list) {
5787                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5788                         struct list_head sublist;
5789
5790                         /* Handle the previous sublist */
5791                         list_cut_before(&sublist, head, &skb->list);
5792                         if (!list_empty(&sublist))
5793                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5794                         pfmemalloc = !pfmemalloc;
5795                         /* See comments in __netif_receive_skb */
5796                         if (pfmemalloc)
5797                                 noreclaim_flag = memalloc_noreclaim_save();
5798                         else
5799                                 memalloc_noreclaim_restore(noreclaim_flag);
5800                 }
5801         }
5802         /* Handle the remaining sublist */
5803         if (!list_empty(head))
5804                 __netif_receive_skb_list_core(head, pfmemalloc);
5805         /* Restore pflags */
5806         if (pfmemalloc)
5807                 memalloc_noreclaim_restore(noreclaim_flag);
5808 }
5809
5810 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5811 {
5812         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5813         struct bpf_prog *new = xdp->prog;
5814         int ret = 0;
5815
5816         switch (xdp->command) {
5817         case XDP_SETUP_PROG:
5818                 rcu_assign_pointer(dev->xdp_prog, new);
5819                 if (old)
5820                         bpf_prog_put(old);
5821
5822                 if (old && !new) {
5823                         static_branch_dec(&generic_xdp_needed_key);
5824                 } else if (new && !old) {
5825                         static_branch_inc(&generic_xdp_needed_key);
5826                         dev_disable_lro(dev);
5827                         dev_disable_gro_hw(dev);
5828                 }
5829                 break;
5830
5831         default:
5832                 ret = -EINVAL;
5833                 break;
5834         }
5835
5836         return ret;
5837 }
5838
5839 static int netif_receive_skb_internal(struct sk_buff *skb)
5840 {
5841         int ret;
5842
5843         net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5844
5845         if (skb_defer_rx_timestamp(skb))
5846                 return NET_RX_SUCCESS;
5847
5848         rcu_read_lock();
5849 #ifdef CONFIG_RPS
5850         if (static_branch_unlikely(&rps_needed)) {
5851                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5852                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5853
5854                 if (cpu >= 0) {
5855                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5856                         rcu_read_unlock();
5857                         return ret;
5858                 }
5859         }
5860 #endif
5861         ret = __netif_receive_skb(skb);
5862         rcu_read_unlock();
5863         return ret;
5864 }
5865
5866 void netif_receive_skb_list_internal(struct list_head *head)
5867 {
5868         struct sk_buff *skb, *next;
5869         LIST_HEAD(sublist);
5870
5871         list_for_each_entry_safe(skb, next, head, list) {
5872                 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5873                                     skb);
5874                 skb_list_del_init(skb);
5875                 if (!skb_defer_rx_timestamp(skb))
5876                         list_add_tail(&skb->list, &sublist);
5877         }
5878         list_splice_init(&sublist, head);
5879
5880         rcu_read_lock();
5881 #ifdef CONFIG_RPS
5882         if (static_branch_unlikely(&rps_needed)) {
5883                 list_for_each_entry_safe(skb, next, head, list) {
5884                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5885                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5886
5887                         if (cpu >= 0) {
5888                                 /* Will be handled, remove from list */
5889                                 skb_list_del_init(skb);
5890                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5891                         }
5892                 }
5893         }
5894 #endif
5895         __netif_receive_skb_list(head);
5896         rcu_read_unlock();
5897 }
5898
5899 /**
5900  *      netif_receive_skb - process receive buffer from network
5901  *      @skb: buffer to process
5902  *
5903  *      netif_receive_skb() is the main receive data processing function.
5904  *      It always succeeds. The buffer may be dropped during processing
5905  *      for congestion control or by the protocol layers.
5906  *
5907  *      This function may only be called from softirq context and interrupts
5908  *      should be enabled.
5909  *
5910  *      Return values (usually ignored):
5911  *      NET_RX_SUCCESS: no congestion
5912  *      NET_RX_DROP: packet was dropped
5913  */
5914 int netif_receive_skb(struct sk_buff *skb)
5915 {
5916         int ret;
5917
5918         trace_netif_receive_skb_entry(skb);
5919
5920         ret = netif_receive_skb_internal(skb);
5921         trace_netif_receive_skb_exit(ret);
5922
5923         return ret;
5924 }
5925 EXPORT_SYMBOL(netif_receive_skb);
5926
5927 /**
5928  *      netif_receive_skb_list - process many receive buffers from network
5929  *      @head: list of skbs to process.
5930  *
5931  *      Since return value of netif_receive_skb() is normally ignored, and
5932  *      wouldn't be meaningful for a list, this function returns void.
5933  *
5934  *      This function may only be called from softirq context and interrupts
5935  *      should be enabled.
5936  */
5937 void netif_receive_skb_list(struct list_head *head)
5938 {
5939         struct sk_buff *skb;
5940
5941         if (list_empty(head))
5942                 return;
5943         if (trace_netif_receive_skb_list_entry_enabled()) {
5944                 list_for_each_entry(skb, head, list)
5945                         trace_netif_receive_skb_list_entry(skb);
5946         }
5947         netif_receive_skb_list_internal(head);
5948         trace_netif_receive_skb_list_exit(0);
5949 }
5950 EXPORT_SYMBOL(netif_receive_skb_list);
5951
5952 static DEFINE_PER_CPU(struct work_struct, flush_works);
5953
5954 /* Network device is going away, flush any packets still pending */
5955 static void flush_backlog(struct work_struct *work)
5956 {
5957         struct sk_buff *skb, *tmp;
5958         struct softnet_data *sd;
5959
5960         local_bh_disable();
5961         sd = this_cpu_ptr(&softnet_data);
5962
5963         backlog_lock_irq_disable(sd);
5964         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5965                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5966                         __skb_unlink(skb, &sd->input_pkt_queue);
5967                         dev_kfree_skb_irq(skb);
5968                         rps_input_queue_head_incr(sd);
5969                 }
5970         }
5971         backlog_unlock_irq_enable(sd);
5972
5973         local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5974         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5975                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5976                         __skb_unlink(skb, &sd->process_queue);
5977                         kfree_skb(skb);
5978                         rps_input_queue_head_incr(sd);
5979                 }
5980         }
5981         local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5982         local_bh_enable();
5983 }
5984
5985 static bool flush_required(int cpu)
5986 {
5987 #if IS_ENABLED(CONFIG_RPS)
5988         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5989         bool do_flush;
5990
5991         backlog_lock_irq_disable(sd);
5992
5993         /* as insertion into process_queue happens with the rps lock held,
5994          * process_queue access may race only with dequeue
5995          */
5996         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5997                    !skb_queue_empty_lockless(&sd->process_queue);
5998         backlog_unlock_irq_enable(sd);
5999
6000         return do_flush;
6001 #endif
6002         /* without RPS we can't safely check input_pkt_queue: during a
6003          * concurrent remote skb_queue_splice() we can detect as empty both
6004          * input_pkt_queue and process_queue even if the latter could end-up
6005          * containing a lot of packets.
6006          */
6007         return true;
6008 }
6009
6010 static void flush_all_backlogs(void)
6011 {
6012         static cpumask_t flush_cpus;
6013         unsigned int cpu;
6014
6015         /* since we are under rtnl lock protection we can use static data
6016          * for the cpumask and avoid allocating on stack the possibly
6017          * large mask
6018          */
6019         ASSERT_RTNL();
6020
6021         cpus_read_lock();
6022
6023         cpumask_clear(&flush_cpus);
6024         for_each_online_cpu(cpu) {
6025                 if (flush_required(cpu)) {
6026                         queue_work_on(cpu, system_highpri_wq,
6027                                       per_cpu_ptr(&flush_works, cpu));
6028                         cpumask_set_cpu(cpu, &flush_cpus);
6029                 }
6030         }
6031
6032         /* we can have in flight packet[s] on the cpus we are not flushing,
6033          * synchronize_net() in unregister_netdevice_many() will take care of
6034          * them
6035          */
6036         for_each_cpu(cpu, &flush_cpus)
6037                 flush_work(per_cpu_ptr(&flush_works, cpu));
6038
6039         cpus_read_unlock();
6040 }
6041
6042 static void net_rps_send_ipi(struct softnet_data *remsd)
6043 {
6044 #ifdef CONFIG_RPS
6045         while (remsd) {
6046                 struct softnet_data *next = remsd->rps_ipi_next;
6047
6048                 if (cpu_online(remsd->cpu))
6049                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6050                 remsd = next;
6051         }
6052 #endif
6053 }
6054
6055 /*
6056  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6057  * Note: called with local irq disabled, but exits with local irq enabled.
6058  */
6059 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6060 {
6061 #ifdef CONFIG_RPS
6062         struct softnet_data *remsd = sd->rps_ipi_list;
6063
6064         if (!use_backlog_threads() && remsd) {
6065                 sd->rps_ipi_list = NULL;
6066
6067                 local_irq_enable();
6068
6069                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6070                 net_rps_send_ipi(remsd);
6071         } else
6072 #endif
6073                 local_irq_enable();
6074 }
6075
6076 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6077 {
6078 #ifdef CONFIG_RPS
6079         return !use_backlog_threads() && sd->rps_ipi_list;
6080 #else
6081         return false;
6082 #endif
6083 }
6084
6085 static int process_backlog(struct napi_struct *napi, int quota)
6086 {
6087         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6088         bool again = true;
6089         int work = 0;
6090
6091         /* Check if we have pending ipi, its better to send them now,
6092          * not waiting net_rx_action() end.
6093          */
6094         if (sd_has_rps_ipi_waiting(sd)) {
6095                 local_irq_disable();
6096                 net_rps_action_and_irq_enable(sd);
6097         }
6098
6099         napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6100         while (again) {
6101                 struct sk_buff *skb;
6102
6103                 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6104                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6105                         local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6106                         rcu_read_lock();
6107                         __netif_receive_skb(skb);
6108                         rcu_read_unlock();
6109                         if (++work >= quota) {
6110                                 rps_input_queue_head_add(sd, work);
6111                                 return work;
6112                         }
6113
6114                         local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6115                 }
6116                 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6117
6118                 backlog_lock_irq_disable(sd);
6119                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6120                         /*
6121                          * Inline a custom version of __napi_complete().
6122                          * only current cpu owns and manipulates this napi,
6123                          * and NAPI_STATE_SCHED is the only possible flag set
6124                          * on backlog.
6125                          * We can use a plain write instead of clear_bit(),
6126                          * and we dont need an smp_mb() memory barrier.
6127                          */
6128                         napi->state &= NAPIF_STATE_THREADED;
6129                         again = false;
6130                 } else {
6131                         local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6132                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6133                                                    &sd->process_queue);
6134                         local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6135                 }
6136                 backlog_unlock_irq_enable(sd);
6137         }
6138
6139         if (work)
6140                 rps_input_queue_head_add(sd, work);
6141         return work;
6142 }
6143
6144 /**
6145  * __napi_schedule - schedule for receive
6146  * @n: entry to schedule
6147  *
6148  * The entry's receive function will be scheduled to run.
6149  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6150  */
6151 void __napi_schedule(struct napi_struct *n)
6152 {
6153         unsigned long flags;
6154
6155         local_irq_save(flags);
6156         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6157         local_irq_restore(flags);
6158 }
6159 EXPORT_SYMBOL(__napi_schedule);
6160
6161 /**
6162  *      napi_schedule_prep - check if napi can be scheduled
6163  *      @n: napi context
6164  *
6165  * Test if NAPI routine is already running, and if not mark
6166  * it as running.  This is used as a condition variable to
6167  * insure only one NAPI poll instance runs.  We also make
6168  * sure there is no pending NAPI disable.
6169  */
6170 bool napi_schedule_prep(struct napi_struct *n)
6171 {
6172         unsigned long new, val = READ_ONCE(n->state);
6173
6174         do {
6175                 if (unlikely(val & NAPIF_STATE_DISABLE))
6176                         return false;
6177                 new = val | NAPIF_STATE_SCHED;
6178
6179                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6180                  * This was suggested by Alexander Duyck, as compiler
6181                  * emits better code than :
6182                  * if (val & NAPIF_STATE_SCHED)
6183                  *     new |= NAPIF_STATE_MISSED;
6184                  */
6185                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6186                                                    NAPIF_STATE_MISSED;
6187         } while (!try_cmpxchg(&n->state, &val, new));
6188
6189         return !(val & NAPIF_STATE_SCHED);
6190 }
6191 EXPORT_SYMBOL(napi_schedule_prep);
6192
6193 /**
6194  * __napi_schedule_irqoff - schedule for receive
6195  * @n: entry to schedule
6196  *
6197  * Variant of __napi_schedule() assuming hard irqs are masked.
6198  *
6199  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6200  * because the interrupt disabled assumption might not be true
6201  * due to force-threaded interrupts and spinlock substitution.
6202  */
6203 void __napi_schedule_irqoff(struct napi_struct *n)
6204 {
6205         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6206                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6207         else
6208                 __napi_schedule(n);
6209 }
6210 EXPORT_SYMBOL(__napi_schedule_irqoff);
6211
6212 bool napi_complete_done(struct napi_struct *n, int work_done)
6213 {
6214         unsigned long flags, val, new, timeout = 0;
6215         bool ret = true;
6216
6217         /*
6218          * 1) Don't let napi dequeue from the cpu poll list
6219          *    just in case its running on a different cpu.
6220          * 2) If we are busy polling, do nothing here, we have
6221          *    the guarantee we will be called later.
6222          */
6223         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6224                                  NAPIF_STATE_IN_BUSY_POLL)))
6225                 return false;
6226
6227         if (work_done) {
6228                 if (n->gro_bitmask)
6229                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6230                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6231         }
6232         if (n->defer_hard_irqs_count > 0) {
6233                 n->defer_hard_irqs_count--;
6234                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6235                 if (timeout)
6236                         ret = false;
6237         }
6238         if (n->gro_bitmask) {
6239                 /* When the NAPI instance uses a timeout and keeps postponing
6240                  * it, we need to bound somehow the time packets are kept in
6241                  * the GRO layer
6242                  */
6243                 napi_gro_flush(n, !!timeout);
6244         }
6245
6246         gro_normal_list(n);
6247
6248         if (unlikely(!list_empty(&n->poll_list))) {
6249                 /* If n->poll_list is not empty, we need to mask irqs */
6250                 local_irq_save(flags);
6251                 list_del_init(&n->poll_list);
6252                 local_irq_restore(flags);
6253         }
6254         WRITE_ONCE(n->list_owner, -1);
6255
6256         val = READ_ONCE(n->state);
6257         do {
6258                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6259
6260                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6261                               NAPIF_STATE_SCHED_THREADED |
6262                               NAPIF_STATE_PREFER_BUSY_POLL);
6263
6264                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6265                  * because we will call napi->poll() one more time.
6266                  * This C code was suggested by Alexander Duyck to help gcc.
6267                  */
6268                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6269                                                     NAPIF_STATE_SCHED;
6270         } while (!try_cmpxchg(&n->state, &val, new));
6271
6272         if (unlikely(val & NAPIF_STATE_MISSED)) {
6273                 __napi_schedule(n);
6274                 return false;
6275         }
6276
6277         if (timeout)
6278                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6279                               HRTIMER_MODE_REL_PINNED);
6280         return ret;
6281 }
6282 EXPORT_SYMBOL(napi_complete_done);
6283
6284 /* must be called under rcu_read_lock(), as we dont take a reference */
6285 struct napi_struct *napi_by_id(unsigned int napi_id)
6286 {
6287         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6288         struct napi_struct *napi;
6289
6290         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6291                 if (napi->napi_id == napi_id)
6292                         return napi;
6293
6294         return NULL;
6295 }
6296
6297 static void skb_defer_free_flush(struct softnet_data *sd)
6298 {
6299         struct sk_buff *skb, *next;
6300
6301         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6302         if (!READ_ONCE(sd->defer_list))
6303                 return;
6304
6305         spin_lock(&sd->defer_lock);
6306         skb = sd->defer_list;
6307         sd->defer_list = NULL;
6308         sd->defer_count = 0;
6309         spin_unlock(&sd->defer_lock);
6310
6311         while (skb != NULL) {
6312                 next = skb->next;
6313                 napi_consume_skb(skb, 1);
6314                 skb = next;
6315         }
6316 }
6317
6318 #if defined(CONFIG_NET_RX_BUSY_POLL)
6319
6320 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6321 {
6322         if (!skip_schedule) {
6323                 gro_normal_list(napi);
6324                 __napi_schedule(napi);
6325                 return;
6326         }
6327
6328         if (napi->gro_bitmask) {
6329                 /* flush too old packets
6330                  * If HZ < 1000, flush all packets.
6331                  */
6332                 napi_gro_flush(napi, HZ >= 1000);
6333         }
6334
6335         gro_normal_list(napi);
6336         clear_bit(NAPI_STATE_SCHED, &napi->state);
6337 }
6338
6339 enum {
6340         NAPI_F_PREFER_BUSY_POLL = 1,
6341         NAPI_F_END_ON_RESCHED   = 2,
6342 };
6343
6344 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6345                            unsigned flags, u16 budget)
6346 {
6347         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6348         bool skip_schedule = false;
6349         unsigned long timeout;
6350         int rc;
6351
6352         /* Busy polling means there is a high chance device driver hard irq
6353          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6354          * set in napi_schedule_prep().
6355          * Since we are about to call napi->poll() once more, we can safely
6356          * clear NAPI_STATE_MISSED.
6357          *
6358          * Note: x86 could use a single "lock and ..." instruction
6359          * to perform these two clear_bit()
6360          */
6361         clear_bit(NAPI_STATE_MISSED, &napi->state);
6362         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6363
6364         local_bh_disable();
6365         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6366
6367         if (flags & NAPI_F_PREFER_BUSY_POLL) {
6368                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6369                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6370                 if (napi->defer_hard_irqs_count && timeout) {
6371                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6372                         skip_schedule = true;
6373                 }
6374         }
6375
6376         /* All we really want here is to re-enable device interrupts.
6377          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6378          */
6379         rc = napi->poll(napi, budget);
6380         /* We can't gro_normal_list() here, because napi->poll() might have
6381          * rearmed the napi (napi_complete_done()) in which case it could
6382          * already be running on another CPU.
6383          */
6384         trace_napi_poll(napi, rc, budget);
6385         netpoll_poll_unlock(have_poll_lock);
6386         if (rc == budget)
6387                 __busy_poll_stop(napi, skip_schedule);
6388         bpf_net_ctx_clear(bpf_net_ctx);
6389         local_bh_enable();
6390 }
6391
6392 static void __napi_busy_loop(unsigned int napi_id,
6393                       bool (*loop_end)(void *, unsigned long),
6394                       void *loop_end_arg, unsigned flags, u16 budget)
6395 {
6396         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6397         int (*napi_poll)(struct napi_struct *napi, int budget);
6398         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6399         void *have_poll_lock = NULL;
6400         struct napi_struct *napi;
6401
6402         WARN_ON_ONCE(!rcu_read_lock_held());
6403
6404 restart:
6405         napi_poll = NULL;
6406
6407         napi = napi_by_id(napi_id);
6408         if (!napi)
6409                 return;
6410
6411         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6412                 preempt_disable();
6413         for (;;) {
6414                 int work = 0;
6415
6416                 local_bh_disable();
6417                 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6418                 if (!napi_poll) {
6419                         unsigned long val = READ_ONCE(napi->state);
6420
6421                         /* If multiple threads are competing for this napi,
6422                          * we avoid dirtying napi->state as much as we can.
6423                          */
6424                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6425                                    NAPIF_STATE_IN_BUSY_POLL)) {
6426                                 if (flags & NAPI_F_PREFER_BUSY_POLL)
6427                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6428                                 goto count;
6429                         }
6430                         if (cmpxchg(&napi->state, val,
6431                                     val | NAPIF_STATE_IN_BUSY_POLL |
6432                                           NAPIF_STATE_SCHED) != val) {
6433                                 if (flags & NAPI_F_PREFER_BUSY_POLL)
6434                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6435                                 goto count;
6436                         }
6437                         have_poll_lock = netpoll_poll_lock(napi);
6438                         napi_poll = napi->poll;
6439                 }
6440                 work = napi_poll(napi, budget);
6441                 trace_napi_poll(napi, work, budget);
6442                 gro_normal_list(napi);
6443 count:
6444                 if (work > 0)
6445                         __NET_ADD_STATS(dev_net(napi->dev),
6446                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6447                 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6448                 bpf_net_ctx_clear(bpf_net_ctx);
6449                 local_bh_enable();
6450
6451                 if (!loop_end || loop_end(loop_end_arg, start_time))
6452                         break;
6453
6454                 if (unlikely(need_resched())) {
6455                         if (flags & NAPI_F_END_ON_RESCHED)
6456                                 break;
6457                         if (napi_poll)
6458                                 busy_poll_stop(napi, have_poll_lock, flags, budget);
6459                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6460                                 preempt_enable();
6461                         rcu_read_unlock();
6462                         cond_resched();
6463                         rcu_read_lock();
6464                         if (loop_end(loop_end_arg, start_time))
6465                                 return;
6466                         goto restart;
6467                 }
6468                 cpu_relax();
6469         }
6470         if (napi_poll)
6471                 busy_poll_stop(napi, have_poll_lock, flags, budget);
6472         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6473                 preempt_enable();
6474 }
6475
6476 void napi_busy_loop_rcu(unsigned int napi_id,
6477                         bool (*loop_end)(void *, unsigned long),
6478                         void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6479 {
6480         unsigned flags = NAPI_F_END_ON_RESCHED;
6481
6482         if (prefer_busy_poll)
6483                 flags |= NAPI_F_PREFER_BUSY_POLL;
6484
6485         __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6486 }
6487
6488 void napi_busy_loop(unsigned int napi_id,
6489                     bool (*loop_end)(void *, unsigned long),
6490                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6491 {
6492         unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6493
6494         rcu_read_lock();
6495         __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6496         rcu_read_unlock();
6497 }
6498 EXPORT_SYMBOL(napi_busy_loop);
6499
6500 #endif /* CONFIG_NET_RX_BUSY_POLL */
6501
6502 static void napi_hash_add(struct napi_struct *napi)
6503 {
6504         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6505                 return;
6506
6507         spin_lock(&napi_hash_lock);
6508
6509         /* 0..NR_CPUS range is reserved for sender_cpu use */
6510         do {
6511                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6512                         napi_gen_id = MIN_NAPI_ID;
6513         } while (napi_by_id(napi_gen_id));
6514         napi->napi_id = napi_gen_id;
6515
6516         hlist_add_head_rcu(&napi->napi_hash_node,
6517                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6518
6519         spin_unlock(&napi_hash_lock);
6520 }
6521
6522 /* Warning : caller is responsible to make sure rcu grace period
6523  * is respected before freeing memory containing @napi
6524  */
6525 static void napi_hash_del(struct napi_struct *napi)
6526 {
6527         spin_lock(&napi_hash_lock);
6528
6529         hlist_del_init_rcu(&napi->napi_hash_node);
6530
6531         spin_unlock(&napi_hash_lock);
6532 }
6533
6534 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6535 {
6536         struct napi_struct *napi;
6537
6538         napi = container_of(timer, struct napi_struct, timer);
6539
6540         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6541          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6542          */
6543         if (!napi_disable_pending(napi) &&
6544             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6545                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6546                 __napi_schedule_irqoff(napi);
6547         }
6548
6549         return HRTIMER_NORESTART;
6550 }
6551
6552 static void init_gro_hash(struct napi_struct *napi)
6553 {
6554         int i;
6555
6556         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6557                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6558                 napi->gro_hash[i].count = 0;
6559         }
6560         napi->gro_bitmask = 0;
6561 }
6562
6563 int dev_set_threaded(struct net_device *dev, bool threaded)
6564 {
6565         struct napi_struct *napi;
6566         int err = 0;
6567
6568         if (dev->threaded == threaded)
6569                 return 0;
6570
6571         if (threaded) {
6572                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6573                         if (!napi->thread) {
6574                                 err = napi_kthread_create(napi);
6575                                 if (err) {
6576                                         threaded = false;
6577                                         break;
6578                                 }
6579                         }
6580                 }
6581         }
6582
6583         WRITE_ONCE(dev->threaded, threaded);
6584
6585         /* Make sure kthread is created before THREADED bit
6586          * is set.
6587          */
6588         smp_mb__before_atomic();
6589
6590         /* Setting/unsetting threaded mode on a napi might not immediately
6591          * take effect, if the current napi instance is actively being
6592          * polled. In this case, the switch between threaded mode and
6593          * softirq mode will happen in the next round of napi_schedule().
6594          * This should not cause hiccups/stalls to the live traffic.
6595          */
6596         list_for_each_entry(napi, &dev->napi_list, dev_list)
6597                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6598
6599         return err;
6600 }
6601 EXPORT_SYMBOL(dev_set_threaded);
6602
6603 /**
6604  * netif_queue_set_napi - Associate queue with the napi
6605  * @dev: device to which NAPI and queue belong
6606  * @queue_index: Index of queue
6607  * @type: queue type as RX or TX
6608  * @napi: NAPI context, pass NULL to clear previously set NAPI
6609  *
6610  * Set queue with its corresponding napi context. This should be done after
6611  * registering the NAPI handler for the queue-vector and the queues have been
6612  * mapped to the corresponding interrupt vector.
6613  */
6614 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6615                           enum netdev_queue_type type, struct napi_struct *napi)
6616 {
6617         struct netdev_rx_queue *rxq;
6618         struct netdev_queue *txq;
6619
6620         if (WARN_ON_ONCE(napi && !napi->dev))
6621                 return;
6622         if (dev->reg_state >= NETREG_REGISTERED)
6623                 ASSERT_RTNL();
6624
6625         switch (type) {
6626         case NETDEV_QUEUE_TYPE_RX:
6627                 rxq = __netif_get_rx_queue(dev, queue_index);
6628                 rxq->napi = napi;
6629                 return;
6630         case NETDEV_QUEUE_TYPE_TX:
6631                 txq = netdev_get_tx_queue(dev, queue_index);
6632                 txq->napi = napi;
6633                 return;
6634         default:
6635                 return;
6636         }
6637 }
6638 EXPORT_SYMBOL(netif_queue_set_napi);
6639
6640 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6641                            int (*poll)(struct napi_struct *, int), int weight)
6642 {
6643         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6644                 return;
6645
6646         INIT_LIST_HEAD(&napi->poll_list);
6647         INIT_HLIST_NODE(&napi->napi_hash_node);
6648         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6649         napi->timer.function = napi_watchdog;
6650         init_gro_hash(napi);
6651         napi->skb = NULL;
6652         INIT_LIST_HEAD(&napi->rx_list);
6653         napi->rx_count = 0;
6654         napi->poll = poll;
6655         if (weight > NAPI_POLL_WEIGHT)
6656                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6657                                 weight);
6658         napi->weight = weight;
6659         napi->dev = dev;
6660 #ifdef CONFIG_NETPOLL
6661         napi->poll_owner = -1;
6662 #endif
6663         napi->list_owner = -1;
6664         set_bit(NAPI_STATE_SCHED, &napi->state);
6665         set_bit(NAPI_STATE_NPSVC, &napi->state);
6666         list_add_rcu(&napi->dev_list, &dev->napi_list);
6667         napi_hash_add(napi);
6668         napi_get_frags_check(napi);
6669         /* Create kthread for this napi if dev->threaded is set.
6670          * Clear dev->threaded if kthread creation failed so that
6671          * threaded mode will not be enabled in napi_enable().
6672          */
6673         if (dev->threaded && napi_kthread_create(napi))
6674                 dev->threaded = false;
6675         netif_napi_set_irq(napi, -1);
6676 }
6677 EXPORT_SYMBOL(netif_napi_add_weight);
6678
6679 void napi_disable(struct napi_struct *n)
6680 {
6681         unsigned long val, new;
6682
6683         might_sleep();
6684         set_bit(NAPI_STATE_DISABLE, &n->state);
6685
6686         val = READ_ONCE(n->state);
6687         do {
6688                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6689                         usleep_range(20, 200);
6690                         val = READ_ONCE(n->state);
6691                 }
6692
6693                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6694                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6695         } while (!try_cmpxchg(&n->state, &val, new));
6696
6697         hrtimer_cancel(&n->timer);
6698
6699         clear_bit(NAPI_STATE_DISABLE, &n->state);
6700 }
6701 EXPORT_SYMBOL(napi_disable);
6702
6703 /**
6704  *      napi_enable - enable NAPI scheduling
6705  *      @n: NAPI context
6706  *
6707  * Resume NAPI from being scheduled on this context.
6708  * Must be paired with napi_disable.
6709  */
6710 void napi_enable(struct napi_struct *n)
6711 {
6712         unsigned long new, val = READ_ONCE(n->state);
6713
6714         do {
6715                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6716
6717                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6718                 if (n->dev->threaded && n->thread)
6719                         new |= NAPIF_STATE_THREADED;
6720         } while (!try_cmpxchg(&n->state, &val, new));
6721 }
6722 EXPORT_SYMBOL(napi_enable);
6723
6724 static void flush_gro_hash(struct napi_struct *napi)
6725 {
6726         int i;
6727
6728         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6729                 struct sk_buff *skb, *n;
6730
6731                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6732                         kfree_skb(skb);
6733                 napi->gro_hash[i].count = 0;
6734         }
6735 }
6736
6737 /* Must be called in process context */
6738 void __netif_napi_del(struct napi_struct *napi)
6739 {
6740         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6741                 return;
6742
6743         napi_hash_del(napi);
6744         list_del_rcu(&napi->dev_list);
6745         napi_free_frags(napi);
6746
6747         flush_gro_hash(napi);
6748         napi->gro_bitmask = 0;
6749
6750         if (napi->thread) {
6751                 kthread_stop(napi->thread);
6752                 napi->thread = NULL;
6753         }
6754 }
6755 EXPORT_SYMBOL(__netif_napi_del);
6756
6757 static int __napi_poll(struct napi_struct *n, bool *repoll)
6758 {
6759         int work, weight;
6760
6761         weight = n->weight;
6762
6763         /* This NAPI_STATE_SCHED test is for avoiding a race
6764          * with netpoll's poll_napi().  Only the entity which
6765          * obtains the lock and sees NAPI_STATE_SCHED set will
6766          * actually make the ->poll() call.  Therefore we avoid
6767          * accidentally calling ->poll() when NAPI is not scheduled.
6768          */
6769         work = 0;
6770         if (napi_is_scheduled(n)) {
6771                 work = n->poll(n, weight);
6772                 trace_napi_poll(n, work, weight);
6773
6774                 xdp_do_check_flushed(n);
6775         }
6776
6777         if (unlikely(work > weight))
6778                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6779                                 n->poll, work, weight);
6780
6781         if (likely(work < weight))
6782                 return work;
6783
6784         /* Drivers must not modify the NAPI state if they
6785          * consume the entire weight.  In such cases this code
6786          * still "owns" the NAPI instance and therefore can
6787          * move the instance around on the list at-will.
6788          */
6789         if (unlikely(napi_disable_pending(n))) {
6790                 napi_complete(n);
6791                 return work;
6792         }
6793
6794         /* The NAPI context has more processing work, but busy-polling
6795          * is preferred. Exit early.
6796          */
6797         if (napi_prefer_busy_poll(n)) {
6798                 if (napi_complete_done(n, work)) {
6799                         /* If timeout is not set, we need to make sure
6800                          * that the NAPI is re-scheduled.
6801                          */
6802                         napi_schedule(n);
6803                 }
6804                 return work;
6805         }
6806
6807         if (n->gro_bitmask) {
6808                 /* flush too old packets
6809                  * If HZ < 1000, flush all packets.
6810                  */
6811                 napi_gro_flush(n, HZ >= 1000);
6812         }
6813
6814         gro_normal_list(n);
6815
6816         /* Some drivers may have called napi_schedule
6817          * prior to exhausting their budget.
6818          */
6819         if (unlikely(!list_empty(&n->poll_list))) {
6820                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6821                              n->dev ? n->dev->name : "backlog");
6822                 return work;
6823         }
6824
6825         *repoll = true;
6826
6827         return work;
6828 }
6829
6830 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6831 {
6832         bool do_repoll = false;
6833         void *have;
6834         int work;
6835
6836         list_del_init(&n->poll_list);
6837
6838         have = netpoll_poll_lock(n);
6839
6840         work = __napi_poll(n, &do_repoll);
6841
6842         if (do_repoll)
6843                 list_add_tail(&n->poll_list, repoll);
6844
6845         netpoll_poll_unlock(have);
6846
6847         return work;
6848 }
6849
6850 static int napi_thread_wait(struct napi_struct *napi)
6851 {
6852         set_current_state(TASK_INTERRUPTIBLE);
6853
6854         while (!kthread_should_stop()) {
6855                 /* Testing SCHED_THREADED bit here to make sure the current
6856                  * kthread owns this napi and could poll on this napi.
6857                  * Testing SCHED bit is not enough because SCHED bit might be
6858                  * set by some other busy poll thread or by napi_disable().
6859                  */
6860                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6861                         WARN_ON(!list_empty(&napi->poll_list));
6862                         __set_current_state(TASK_RUNNING);
6863                         return 0;
6864                 }
6865
6866                 schedule();
6867                 set_current_state(TASK_INTERRUPTIBLE);
6868         }
6869         __set_current_state(TASK_RUNNING);
6870
6871         return -1;
6872 }
6873
6874 static void napi_threaded_poll_loop(struct napi_struct *napi)
6875 {
6876         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6877         struct softnet_data *sd;
6878         unsigned long last_qs = jiffies;
6879
6880         for (;;) {
6881                 bool repoll = false;
6882                 void *have;
6883
6884                 local_bh_disable();
6885                 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6886
6887                 sd = this_cpu_ptr(&softnet_data);
6888                 sd->in_napi_threaded_poll = true;
6889
6890                 have = netpoll_poll_lock(napi);
6891                 __napi_poll(napi, &repoll);
6892                 netpoll_poll_unlock(have);
6893
6894                 sd->in_napi_threaded_poll = false;
6895                 barrier();
6896
6897                 if (sd_has_rps_ipi_waiting(sd)) {
6898                         local_irq_disable();
6899                         net_rps_action_and_irq_enable(sd);
6900                 }
6901                 skb_defer_free_flush(sd);
6902                 bpf_net_ctx_clear(bpf_net_ctx);
6903                 local_bh_enable();
6904
6905                 if (!repoll)
6906                         break;
6907
6908                 rcu_softirq_qs_periodic(last_qs);
6909                 cond_resched();
6910         }
6911 }
6912
6913 static int napi_threaded_poll(void *data)
6914 {
6915         struct napi_struct *napi = data;
6916
6917         while (!napi_thread_wait(napi))
6918                 napi_threaded_poll_loop(napi);
6919
6920         return 0;
6921 }
6922
6923 static __latent_entropy void net_rx_action(void)
6924 {
6925         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6926         unsigned long time_limit = jiffies +
6927                 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6928         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6929         int budget = READ_ONCE(net_hotdata.netdev_budget);
6930         LIST_HEAD(list);
6931         LIST_HEAD(repoll);
6932
6933         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6934 start:
6935         sd->in_net_rx_action = true;
6936         local_irq_disable();
6937         list_splice_init(&sd->poll_list, &list);
6938         local_irq_enable();
6939
6940         for (;;) {
6941                 struct napi_struct *n;
6942
6943                 skb_defer_free_flush(sd);
6944
6945                 if (list_empty(&list)) {
6946                         if (list_empty(&repoll)) {
6947                                 sd->in_net_rx_action = false;
6948                                 barrier();
6949                                 /* We need to check if ____napi_schedule()
6950                                  * had refilled poll_list while
6951                                  * sd->in_net_rx_action was true.
6952                                  */
6953                                 if (!list_empty(&sd->poll_list))
6954                                         goto start;
6955                                 if (!sd_has_rps_ipi_waiting(sd))
6956                                         goto end;
6957                         }
6958                         break;
6959                 }
6960
6961                 n = list_first_entry(&list, struct napi_struct, poll_list);
6962                 budget -= napi_poll(n, &repoll);
6963
6964                 /* If softirq window is exhausted then punt.
6965                  * Allow this to run for 2 jiffies since which will allow
6966                  * an average latency of 1.5/HZ.
6967                  */
6968                 if (unlikely(budget <= 0 ||
6969                              time_after_eq(jiffies, time_limit))) {
6970                         sd->time_squeeze++;
6971                         break;
6972                 }
6973         }
6974
6975         local_irq_disable();
6976
6977         list_splice_tail_init(&sd->poll_list, &list);
6978         list_splice_tail(&repoll, &list);
6979         list_splice(&list, &sd->poll_list);
6980         if (!list_empty(&sd->poll_list))
6981                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6982         else
6983                 sd->in_net_rx_action = false;
6984
6985         net_rps_action_and_irq_enable(sd);
6986 end:
6987         bpf_net_ctx_clear(bpf_net_ctx);
6988 }
6989
6990 struct netdev_adjacent {
6991         struct net_device *dev;
6992         netdevice_tracker dev_tracker;
6993
6994         /* upper master flag, there can only be one master device per list */
6995         bool master;
6996
6997         /* lookup ignore flag */
6998         bool ignore;
6999
7000         /* counter for the number of times this device was added to us */
7001         u16 ref_nr;
7002
7003         /* private field for the users */
7004         void *private;
7005
7006         struct list_head list;
7007         struct rcu_head rcu;
7008 };
7009
7010 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7011                                                  struct list_head *adj_list)
7012 {
7013         struct netdev_adjacent *adj;
7014
7015         list_for_each_entry(adj, adj_list, list) {
7016                 if (adj->dev == adj_dev)
7017                         return adj;
7018         }
7019         return NULL;
7020 }
7021
7022 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7023                                     struct netdev_nested_priv *priv)
7024 {
7025         struct net_device *dev = (struct net_device *)priv->data;
7026
7027         return upper_dev == dev;
7028 }
7029
7030 /**
7031  * netdev_has_upper_dev - Check if device is linked to an upper device
7032  * @dev: device
7033  * @upper_dev: upper device to check
7034  *
7035  * Find out if a device is linked to specified upper device and return true
7036  * in case it is. Note that this checks only immediate upper device,
7037  * not through a complete stack of devices. The caller must hold the RTNL lock.
7038  */
7039 bool netdev_has_upper_dev(struct net_device *dev,
7040                           struct net_device *upper_dev)
7041 {
7042         struct netdev_nested_priv priv = {
7043                 .data = (void *)upper_dev,
7044         };
7045
7046         ASSERT_RTNL();
7047
7048         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7049                                              &priv);
7050 }
7051 EXPORT_SYMBOL(netdev_has_upper_dev);
7052
7053 /**
7054  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7055  * @dev: device
7056  * @upper_dev: upper device to check
7057  *
7058  * Find out if a device is linked to specified upper device and return true
7059  * in case it is. Note that this checks the entire upper device chain.
7060  * The caller must hold rcu lock.
7061  */
7062
7063 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7064                                   struct net_device *upper_dev)
7065 {
7066         struct netdev_nested_priv priv = {
7067                 .data = (void *)upper_dev,
7068         };
7069
7070         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7071                                                &priv);
7072 }
7073 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7074
7075 /**
7076  * netdev_has_any_upper_dev - Check if device is linked to some device
7077  * @dev: device
7078  *
7079  * Find out if a device is linked to an upper device and return true in case
7080  * it is. The caller must hold the RTNL lock.
7081  */
7082 bool netdev_has_any_upper_dev(struct net_device *dev)
7083 {
7084         ASSERT_RTNL();
7085
7086         return !list_empty(&dev->adj_list.upper);
7087 }
7088 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7089
7090 /**
7091  * netdev_master_upper_dev_get - Get master upper device
7092  * @dev: device
7093  *
7094  * Find a master upper device and return pointer to it or NULL in case
7095  * it's not there. The caller must hold the RTNL lock.
7096  */
7097 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7098 {
7099         struct netdev_adjacent *upper;
7100
7101         ASSERT_RTNL();
7102
7103         if (list_empty(&dev->adj_list.upper))
7104                 return NULL;
7105
7106         upper = list_first_entry(&dev->adj_list.upper,
7107                                  struct netdev_adjacent, list);
7108         if (likely(upper->master))
7109                 return upper->dev;
7110         return NULL;
7111 }
7112 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7113
7114 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7115 {
7116         struct netdev_adjacent *upper;
7117
7118         ASSERT_RTNL();
7119
7120         if (list_empty(&dev->adj_list.upper))
7121                 return NULL;
7122
7123         upper = list_first_entry(&dev->adj_list.upper,
7124                                  struct netdev_adjacent, list);
7125         if (likely(upper->master) && !upper->ignore)
7126                 return upper->dev;
7127         return NULL;
7128 }
7129
7130 /**
7131  * netdev_has_any_lower_dev - Check if device is linked to some device
7132  * @dev: device
7133  *
7134  * Find out if a device is linked to a lower device and return true in case
7135  * it is. The caller must hold the RTNL lock.
7136  */
7137 static bool netdev_has_any_lower_dev(struct net_device *dev)
7138 {
7139         ASSERT_RTNL();
7140
7141         return !list_empty(&dev->adj_list.lower);
7142 }
7143
7144 void *netdev_adjacent_get_private(struct list_head *adj_list)
7145 {
7146         struct netdev_adjacent *adj;
7147
7148         adj = list_entry(adj_list, struct netdev_adjacent, list);
7149
7150         return adj->private;
7151 }
7152 EXPORT_SYMBOL(netdev_adjacent_get_private);
7153
7154 /**
7155  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7156  * @dev: device
7157  * @iter: list_head ** of the current position
7158  *
7159  * Gets the next device from the dev's upper list, starting from iter
7160  * position. The caller must hold RCU read lock.
7161  */
7162 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7163                                                  struct list_head **iter)
7164 {
7165         struct netdev_adjacent *upper;
7166
7167         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7168
7169         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7170
7171         if (&upper->list == &dev->adj_list.upper)
7172                 return NULL;
7173
7174         *iter = &upper->list;
7175
7176         return upper->dev;
7177 }
7178 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7179
7180 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7181                                                   struct list_head **iter,
7182                                                   bool *ignore)
7183 {
7184         struct netdev_adjacent *upper;
7185
7186         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7187
7188         if (&upper->list == &dev->adj_list.upper)
7189                 return NULL;
7190
7191         *iter = &upper->list;
7192         *ignore = upper->ignore;
7193
7194         return upper->dev;
7195 }
7196
7197 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7198                                                     struct list_head **iter)
7199 {
7200         struct netdev_adjacent *upper;
7201
7202         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7203
7204         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7205
7206         if (&upper->list == &dev->adj_list.upper)
7207                 return NULL;
7208
7209         *iter = &upper->list;
7210
7211         return upper->dev;
7212 }
7213
7214 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7215                                        int (*fn)(struct net_device *dev,
7216                                          struct netdev_nested_priv *priv),
7217                                        struct netdev_nested_priv *priv)
7218 {
7219         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7220         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7221         int ret, cur = 0;
7222         bool ignore;
7223
7224         now = dev;
7225         iter = &dev->adj_list.upper;
7226
7227         while (1) {
7228                 if (now != dev) {
7229                         ret = fn(now, priv);
7230                         if (ret)
7231                                 return ret;
7232                 }
7233
7234                 next = NULL;
7235                 while (1) {
7236                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7237                         if (!udev)
7238                                 break;
7239                         if (ignore)
7240                                 continue;
7241
7242                         next = udev;
7243                         niter = &udev->adj_list.upper;
7244                         dev_stack[cur] = now;
7245                         iter_stack[cur++] = iter;
7246                         break;
7247                 }
7248
7249                 if (!next) {
7250                         if (!cur)
7251                                 return 0;
7252                         next = dev_stack[--cur];
7253                         niter = iter_stack[cur];
7254                 }
7255
7256                 now = next;
7257                 iter = niter;
7258         }
7259
7260         return 0;
7261 }
7262
7263 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7264                                   int (*fn)(struct net_device *dev,
7265                                             struct netdev_nested_priv *priv),
7266                                   struct netdev_nested_priv *priv)
7267 {
7268         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7269         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7270         int ret, cur = 0;
7271
7272         now = dev;
7273         iter = &dev->adj_list.upper;
7274
7275         while (1) {
7276                 if (now != dev) {
7277                         ret = fn(now, priv);
7278                         if (ret)
7279                                 return ret;
7280                 }
7281
7282                 next = NULL;
7283                 while (1) {
7284                         udev = netdev_next_upper_dev_rcu(now, &iter);
7285                         if (!udev)
7286                                 break;
7287
7288                         next = udev;
7289                         niter = &udev->adj_list.upper;
7290                         dev_stack[cur] = now;
7291                         iter_stack[cur++] = iter;
7292                         break;
7293                 }
7294
7295                 if (!next) {
7296                         if (!cur)
7297                                 return 0;
7298                         next = dev_stack[--cur];
7299                         niter = iter_stack[cur];
7300                 }
7301
7302                 now = next;
7303                 iter = niter;
7304         }
7305
7306         return 0;
7307 }
7308 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7309
7310 static bool __netdev_has_upper_dev(struct net_device *dev,
7311                                    struct net_device *upper_dev)
7312 {
7313         struct netdev_nested_priv priv = {
7314                 .flags = 0,
7315                 .data = (void *)upper_dev,
7316         };
7317
7318         ASSERT_RTNL();
7319
7320         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7321                                            &priv);
7322 }
7323
7324 /**
7325  * netdev_lower_get_next_private - Get the next ->private from the
7326  *                                 lower neighbour list
7327  * @dev: device
7328  * @iter: list_head ** of the current position
7329  *
7330  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7331  * list, starting from iter position. The caller must hold either hold the
7332  * RTNL lock or its own locking that guarantees that the neighbour lower
7333  * list will remain unchanged.
7334  */
7335 void *netdev_lower_get_next_private(struct net_device *dev,
7336                                     struct list_head **iter)
7337 {
7338         struct netdev_adjacent *lower;
7339
7340         lower = list_entry(*iter, struct netdev_adjacent, list);
7341
7342         if (&lower->list == &dev->adj_list.lower)
7343                 return NULL;
7344
7345         *iter = lower->list.next;
7346
7347         return lower->private;
7348 }
7349 EXPORT_SYMBOL(netdev_lower_get_next_private);
7350
7351 /**
7352  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7353  *                                     lower neighbour list, RCU
7354  *                                     variant
7355  * @dev: device
7356  * @iter: list_head ** of the current position
7357  *
7358  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7359  * list, starting from iter position. The caller must hold RCU read lock.
7360  */
7361 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7362                                         struct list_head **iter)
7363 {
7364         struct netdev_adjacent *lower;
7365
7366         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7367
7368         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7369
7370         if (&lower->list == &dev->adj_list.lower)
7371                 return NULL;
7372
7373         *iter = &lower->list;
7374
7375         return lower->private;
7376 }
7377 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7378
7379 /**
7380  * netdev_lower_get_next - Get the next device from the lower neighbour
7381  *                         list
7382  * @dev: device
7383  * @iter: list_head ** of the current position
7384  *
7385  * Gets the next netdev_adjacent from the dev's lower neighbour
7386  * list, starting from iter position. The caller must hold RTNL lock or
7387  * its own locking that guarantees that the neighbour lower
7388  * list will remain unchanged.
7389  */
7390 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7391 {
7392         struct netdev_adjacent *lower;
7393
7394         lower = list_entry(*iter, struct netdev_adjacent, list);
7395
7396         if (&lower->list == &dev->adj_list.lower)
7397                 return NULL;
7398
7399         *iter = lower->list.next;
7400
7401         return lower->dev;
7402 }
7403 EXPORT_SYMBOL(netdev_lower_get_next);
7404
7405 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7406                                                 struct list_head **iter)
7407 {
7408         struct netdev_adjacent *lower;
7409
7410         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7411
7412         if (&lower->list == &dev->adj_list.lower)
7413                 return NULL;
7414
7415         *iter = &lower->list;
7416
7417         return lower->dev;
7418 }
7419
7420 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7421                                                   struct list_head **iter,
7422                                                   bool *ignore)
7423 {
7424         struct netdev_adjacent *lower;
7425
7426         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7427
7428         if (&lower->list == &dev->adj_list.lower)
7429                 return NULL;
7430
7431         *iter = &lower->list;
7432         *ignore = lower->ignore;
7433
7434         return lower->dev;
7435 }
7436
7437 int netdev_walk_all_lower_dev(struct net_device *dev,
7438                               int (*fn)(struct net_device *dev,
7439                                         struct netdev_nested_priv *priv),
7440                               struct netdev_nested_priv *priv)
7441 {
7442         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7443         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7444         int ret, cur = 0;
7445
7446         now = dev;
7447         iter = &dev->adj_list.lower;
7448
7449         while (1) {
7450                 if (now != dev) {
7451                         ret = fn(now, priv);
7452                         if (ret)
7453                                 return ret;
7454                 }
7455
7456                 next = NULL;
7457                 while (1) {
7458                         ldev = netdev_next_lower_dev(now, &iter);
7459                         if (!ldev)
7460                                 break;
7461
7462                         next = ldev;
7463                         niter = &ldev->adj_list.lower;
7464                         dev_stack[cur] = now;
7465                         iter_stack[cur++] = iter;
7466                         break;
7467                 }
7468
7469                 if (!next) {
7470                         if (!cur)
7471                                 return 0;
7472                         next = dev_stack[--cur];
7473                         niter = iter_stack[cur];
7474                 }
7475
7476                 now = next;
7477                 iter = niter;
7478         }
7479
7480         return 0;
7481 }
7482 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7483
7484 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7485                                        int (*fn)(struct net_device *dev,
7486                                          struct netdev_nested_priv *priv),
7487                                        struct netdev_nested_priv *priv)
7488 {
7489         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7490         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7491         int ret, cur = 0;
7492         bool ignore;
7493
7494         now = dev;
7495         iter = &dev->adj_list.lower;
7496
7497         while (1) {
7498                 if (now != dev) {
7499                         ret = fn(now, priv);
7500                         if (ret)
7501                                 return ret;
7502                 }
7503
7504                 next = NULL;
7505                 while (1) {
7506                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7507                         if (!ldev)
7508                                 break;
7509                         if (ignore)
7510                                 continue;
7511
7512                         next = ldev;
7513                         niter = &ldev->adj_list.lower;
7514                         dev_stack[cur] = now;
7515                         iter_stack[cur++] = iter;
7516                         break;
7517                 }
7518
7519                 if (!next) {
7520                         if (!cur)
7521                                 return 0;
7522                         next = dev_stack[--cur];
7523                         niter = iter_stack[cur];
7524                 }
7525
7526                 now = next;
7527                 iter = niter;
7528         }
7529
7530         return 0;
7531 }
7532
7533 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7534                                              struct list_head **iter)
7535 {
7536         struct netdev_adjacent *lower;
7537
7538         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7539         if (&lower->list == &dev->adj_list.lower)
7540                 return NULL;
7541
7542         *iter = &lower->list;
7543
7544         return lower->dev;
7545 }
7546 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7547
7548 static u8 __netdev_upper_depth(struct net_device *dev)
7549 {
7550         struct net_device *udev;
7551         struct list_head *iter;
7552         u8 max_depth = 0;
7553         bool ignore;
7554
7555         for (iter = &dev->adj_list.upper,
7556              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7557              udev;
7558              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7559                 if (ignore)
7560                         continue;
7561                 if (max_depth < udev->upper_level)
7562                         max_depth = udev->upper_level;
7563         }
7564
7565         return max_depth;
7566 }
7567
7568 static u8 __netdev_lower_depth(struct net_device *dev)
7569 {
7570         struct net_device *ldev;
7571         struct list_head *iter;
7572         u8 max_depth = 0;
7573         bool ignore;
7574
7575         for (iter = &dev->adj_list.lower,
7576              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7577              ldev;
7578              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7579                 if (ignore)
7580                         continue;
7581                 if (max_depth < ldev->lower_level)
7582                         max_depth = ldev->lower_level;
7583         }
7584
7585         return max_depth;
7586 }
7587
7588 static int __netdev_update_upper_level(struct net_device *dev,
7589                                        struct netdev_nested_priv *__unused)
7590 {
7591         dev->upper_level = __netdev_upper_depth(dev) + 1;
7592         return 0;
7593 }
7594
7595 #ifdef CONFIG_LOCKDEP
7596 static LIST_HEAD(net_unlink_list);
7597
7598 static void net_unlink_todo(struct net_device *dev)
7599 {
7600         if (list_empty(&dev->unlink_list))
7601                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7602 }
7603 #endif
7604
7605 static int __netdev_update_lower_level(struct net_device *dev,
7606                                        struct netdev_nested_priv *priv)
7607 {
7608         dev->lower_level = __netdev_lower_depth(dev) + 1;
7609
7610 #ifdef CONFIG_LOCKDEP
7611         if (!priv)
7612                 return 0;
7613
7614         if (priv->flags & NESTED_SYNC_IMM)
7615                 dev->nested_level = dev->lower_level - 1;
7616         if (priv->flags & NESTED_SYNC_TODO)
7617                 net_unlink_todo(dev);
7618 #endif
7619         return 0;
7620 }
7621
7622 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7623                                   int (*fn)(struct net_device *dev,
7624                                             struct netdev_nested_priv *priv),
7625                                   struct netdev_nested_priv *priv)
7626 {
7627         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7628         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7629         int ret, cur = 0;
7630
7631         now = dev;
7632         iter = &dev->adj_list.lower;
7633
7634         while (1) {
7635                 if (now != dev) {
7636                         ret = fn(now, priv);
7637                         if (ret)
7638                                 return ret;
7639                 }
7640
7641                 next = NULL;
7642                 while (1) {
7643                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7644                         if (!ldev)
7645                                 break;
7646
7647                         next = ldev;
7648                         niter = &ldev->adj_list.lower;
7649                         dev_stack[cur] = now;
7650                         iter_stack[cur++] = iter;
7651                         break;
7652                 }
7653
7654                 if (!next) {
7655                         if (!cur)
7656                                 return 0;
7657                         next = dev_stack[--cur];
7658                         niter = iter_stack[cur];
7659                 }
7660
7661                 now = next;
7662                 iter = niter;
7663         }
7664
7665         return 0;
7666 }
7667 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7668
7669 /**
7670  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7671  *                                     lower neighbour list, RCU
7672  *                                     variant
7673  * @dev: device
7674  *
7675  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7676  * list. The caller must hold RCU read lock.
7677  */
7678 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7679 {
7680         struct netdev_adjacent *lower;
7681
7682         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7683                         struct netdev_adjacent, list);
7684         if (lower)
7685                 return lower->private;
7686         return NULL;
7687 }
7688 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7689
7690 /**
7691  * netdev_master_upper_dev_get_rcu - Get master upper device
7692  * @dev: device
7693  *
7694  * Find a master upper device and return pointer to it or NULL in case
7695  * it's not there. The caller must hold the RCU read lock.
7696  */
7697 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7698 {
7699         struct netdev_adjacent *upper;
7700
7701         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7702                                        struct netdev_adjacent, list);
7703         if (upper && likely(upper->master))
7704                 return upper->dev;
7705         return NULL;
7706 }
7707 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7708
7709 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7710                               struct net_device *adj_dev,
7711                               struct list_head *dev_list)
7712 {
7713         char linkname[IFNAMSIZ+7];
7714
7715         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7716                 "upper_%s" : "lower_%s", adj_dev->name);
7717         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7718                                  linkname);
7719 }
7720 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7721                                char *name,
7722                                struct list_head *dev_list)
7723 {
7724         char linkname[IFNAMSIZ+7];
7725
7726         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7727                 "upper_%s" : "lower_%s", name);
7728         sysfs_remove_link(&(dev->dev.kobj), linkname);
7729 }
7730
7731 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7732                                                  struct net_device *adj_dev,
7733                                                  struct list_head *dev_list)
7734 {
7735         return (dev_list == &dev->adj_list.upper ||
7736                 dev_list == &dev->adj_list.lower) &&
7737                 net_eq(dev_net(dev), dev_net(adj_dev));
7738 }
7739
7740 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7741                                         struct net_device *adj_dev,
7742                                         struct list_head *dev_list,
7743                                         void *private, bool master)
7744 {
7745         struct netdev_adjacent *adj;
7746         int ret;
7747
7748         adj = __netdev_find_adj(adj_dev, dev_list);
7749
7750         if (adj) {
7751                 adj->ref_nr += 1;
7752                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7753                          dev->name, adj_dev->name, adj->ref_nr);
7754
7755                 return 0;
7756         }
7757
7758         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7759         if (!adj)
7760                 return -ENOMEM;
7761
7762         adj->dev = adj_dev;
7763         adj->master = master;
7764         adj->ref_nr = 1;
7765         adj->private = private;
7766         adj->ignore = false;
7767         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7768
7769         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7770                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7771
7772         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7773                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7774                 if (ret)
7775                         goto free_adj;
7776         }
7777
7778         /* Ensure that master link is always the first item in list. */
7779         if (master) {
7780                 ret = sysfs_create_link(&(dev->dev.kobj),
7781                                         &(adj_dev->dev.kobj), "master");
7782                 if (ret)
7783                         goto remove_symlinks;
7784
7785                 list_add_rcu(&adj->list, dev_list);
7786         } else {
7787                 list_add_tail_rcu(&adj->list, dev_list);
7788         }
7789
7790         return 0;
7791
7792 remove_symlinks:
7793         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7794                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7795 free_adj:
7796         netdev_put(adj_dev, &adj->dev_tracker);
7797         kfree(adj);
7798
7799         return ret;
7800 }
7801
7802 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7803                                          struct net_device *adj_dev,
7804                                          u16 ref_nr,
7805                                          struct list_head *dev_list)
7806 {
7807         struct netdev_adjacent *adj;
7808
7809         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7810                  dev->name, adj_dev->name, ref_nr);
7811
7812         adj = __netdev_find_adj(adj_dev, dev_list);
7813
7814         if (!adj) {
7815                 pr_err("Adjacency does not exist for device %s from %s\n",
7816                        dev->name, adj_dev->name);
7817                 WARN_ON(1);
7818                 return;
7819         }
7820
7821         if (adj->ref_nr > ref_nr) {
7822                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7823                          dev->name, adj_dev->name, ref_nr,
7824                          adj->ref_nr - ref_nr);
7825                 adj->ref_nr -= ref_nr;
7826                 return;
7827         }
7828
7829         if (adj->master)
7830                 sysfs_remove_link(&(dev->dev.kobj), "master");
7831
7832         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7833                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7834
7835         list_del_rcu(&adj->list);
7836         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7837                  adj_dev->name, dev->name, adj_dev->name);
7838         netdev_put(adj_dev, &adj->dev_tracker);
7839         kfree_rcu(adj, rcu);
7840 }
7841
7842 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7843                                             struct net_device *upper_dev,
7844                                             struct list_head *up_list,
7845                                             struct list_head *down_list,
7846                                             void *private, bool master)
7847 {
7848         int ret;
7849
7850         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7851                                            private, master);
7852         if (ret)
7853                 return ret;
7854
7855         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7856                                            private, false);
7857         if (ret) {
7858                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7859                 return ret;
7860         }
7861
7862         return 0;
7863 }
7864
7865 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7866                                                struct net_device *upper_dev,
7867                                                u16 ref_nr,
7868                                                struct list_head *up_list,
7869                                                struct list_head *down_list)
7870 {
7871         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7872         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7873 }
7874
7875 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7876                                                 struct net_device *upper_dev,
7877                                                 void *private, bool master)
7878 {
7879         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7880                                                 &dev->adj_list.upper,
7881                                                 &upper_dev->adj_list.lower,
7882                                                 private, master);
7883 }
7884
7885 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7886                                                    struct net_device *upper_dev)
7887 {
7888         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7889                                            &dev->adj_list.upper,
7890                                            &upper_dev->adj_list.lower);
7891 }
7892
7893 static int __netdev_upper_dev_link(struct net_device *dev,
7894                                    struct net_device *upper_dev, bool master,
7895                                    void *upper_priv, void *upper_info,
7896                                    struct netdev_nested_priv *priv,
7897                                    struct netlink_ext_ack *extack)
7898 {
7899         struct netdev_notifier_changeupper_info changeupper_info = {
7900                 .info = {
7901                         .dev = dev,
7902                         .extack = extack,
7903                 },
7904                 .upper_dev = upper_dev,
7905                 .master = master,
7906                 .linking = true,
7907                 .upper_info = upper_info,
7908         };
7909         struct net_device *master_dev;
7910         int ret = 0;
7911
7912         ASSERT_RTNL();
7913
7914         if (dev == upper_dev)
7915                 return -EBUSY;
7916
7917         /* To prevent loops, check if dev is not upper device to upper_dev. */
7918         if (__netdev_has_upper_dev(upper_dev, dev))
7919                 return -EBUSY;
7920
7921         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7922                 return -EMLINK;
7923
7924         if (!master) {
7925                 if (__netdev_has_upper_dev(dev, upper_dev))
7926                         return -EEXIST;
7927         } else {
7928                 master_dev = __netdev_master_upper_dev_get(dev);
7929                 if (master_dev)
7930                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7931         }
7932
7933         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7934                                             &changeupper_info.info);
7935         ret = notifier_to_errno(ret);
7936         if (ret)
7937                 return ret;
7938
7939         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7940                                                    master);
7941         if (ret)
7942                 return ret;
7943
7944         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7945                                             &changeupper_info.info);
7946         ret = notifier_to_errno(ret);
7947         if (ret)
7948                 goto rollback;
7949
7950         __netdev_update_upper_level(dev, NULL);
7951         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7952
7953         __netdev_update_lower_level(upper_dev, priv);
7954         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7955                                     priv);
7956
7957         return 0;
7958
7959 rollback:
7960         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7961
7962         return ret;
7963 }
7964
7965 /**
7966  * netdev_upper_dev_link - Add a link to the upper device
7967  * @dev: device
7968  * @upper_dev: new upper device
7969  * @extack: netlink extended ack
7970  *
7971  * Adds a link to device which is upper to this one. The caller must hold
7972  * the RTNL lock. On a failure a negative errno code is returned.
7973  * On success the reference counts are adjusted and the function
7974  * returns zero.
7975  */
7976 int netdev_upper_dev_link(struct net_device *dev,
7977                           struct net_device *upper_dev,
7978                           struct netlink_ext_ack *extack)
7979 {
7980         struct netdev_nested_priv priv = {
7981                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7982                 .data = NULL,
7983         };
7984
7985         return __netdev_upper_dev_link(dev, upper_dev, false,
7986                                        NULL, NULL, &priv, extack);
7987 }
7988 EXPORT_SYMBOL(netdev_upper_dev_link);
7989
7990 /**
7991  * netdev_master_upper_dev_link - Add a master link to the upper device
7992  * @dev: device
7993  * @upper_dev: new upper device
7994  * @upper_priv: upper device private
7995  * @upper_info: upper info to be passed down via notifier
7996  * @extack: netlink extended ack
7997  *
7998  * Adds a link to device which is upper to this one. In this case, only
7999  * one master upper device can be linked, although other non-master devices
8000  * might be linked as well. The caller must hold the RTNL lock.
8001  * On a failure a negative errno code is returned. On success the reference
8002  * counts are adjusted and the function returns zero.
8003  */
8004 int netdev_master_upper_dev_link(struct net_device *dev,
8005                                  struct net_device *upper_dev,
8006                                  void *upper_priv, void *upper_info,
8007                                  struct netlink_ext_ack *extack)
8008 {
8009         struct netdev_nested_priv priv = {
8010                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8011                 .data = NULL,
8012         };
8013
8014         return __netdev_upper_dev_link(dev, upper_dev, true,
8015                                        upper_priv, upper_info, &priv, extack);
8016 }
8017 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8018
8019 static void __netdev_upper_dev_unlink(struct net_device *dev,
8020                                       struct net_device *upper_dev,
8021                                       struct netdev_nested_priv *priv)
8022 {
8023         struct netdev_notifier_changeupper_info changeupper_info = {
8024                 .info = {
8025                         .dev = dev,
8026                 },
8027                 .upper_dev = upper_dev,
8028                 .linking = false,
8029         };
8030
8031         ASSERT_RTNL();
8032
8033         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8034
8035         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8036                                       &changeupper_info.info);
8037
8038         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8039
8040         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8041                                       &changeupper_info.info);
8042
8043         __netdev_update_upper_level(dev, NULL);
8044         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8045
8046         __netdev_update_lower_level(upper_dev, priv);
8047         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8048                                     priv);
8049 }
8050
8051 /**
8052  * netdev_upper_dev_unlink - Removes a link to upper device
8053  * @dev: device
8054  * @upper_dev: new upper device
8055  *
8056  * Removes a link to device which is upper to this one. The caller must hold
8057  * the RTNL lock.
8058  */
8059 void netdev_upper_dev_unlink(struct net_device *dev,
8060                              struct net_device *upper_dev)
8061 {
8062         struct netdev_nested_priv priv = {
8063                 .flags = NESTED_SYNC_TODO,
8064                 .data = NULL,
8065         };
8066
8067         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8068 }
8069 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8070
8071 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8072                                       struct net_device *lower_dev,
8073                                       bool val)
8074 {
8075         struct netdev_adjacent *adj;
8076
8077         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8078         if (adj)
8079                 adj->ignore = val;
8080
8081         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8082         if (adj)
8083                 adj->ignore = val;
8084 }
8085
8086 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8087                                         struct net_device *lower_dev)
8088 {
8089         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8090 }
8091
8092 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8093                                        struct net_device *lower_dev)
8094 {
8095         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8096 }
8097
8098 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8099                                    struct net_device *new_dev,
8100                                    struct net_device *dev,
8101                                    struct netlink_ext_ack *extack)
8102 {
8103         struct netdev_nested_priv priv = {
8104                 .flags = 0,
8105                 .data = NULL,
8106         };
8107         int err;
8108
8109         if (!new_dev)
8110                 return 0;
8111
8112         if (old_dev && new_dev != old_dev)
8113                 netdev_adjacent_dev_disable(dev, old_dev);
8114         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8115                                       extack);
8116         if (err) {
8117                 if (old_dev && new_dev != old_dev)
8118                         netdev_adjacent_dev_enable(dev, old_dev);
8119                 return err;
8120         }
8121
8122         return 0;
8123 }
8124 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8125
8126 void netdev_adjacent_change_commit(struct net_device *old_dev,
8127                                    struct net_device *new_dev,
8128                                    struct net_device *dev)
8129 {
8130         struct netdev_nested_priv priv = {
8131                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8132                 .data = NULL,
8133         };
8134
8135         if (!new_dev || !old_dev)
8136                 return;
8137
8138         if (new_dev == old_dev)
8139                 return;
8140
8141         netdev_adjacent_dev_enable(dev, old_dev);
8142         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8143 }
8144 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8145
8146 void netdev_adjacent_change_abort(struct net_device *old_dev,
8147                                   struct net_device *new_dev,
8148                                   struct net_device *dev)
8149 {
8150         struct netdev_nested_priv priv = {
8151                 .flags = 0,
8152                 .data = NULL,
8153         };
8154
8155         if (!new_dev)
8156                 return;
8157
8158         if (old_dev && new_dev != old_dev)
8159                 netdev_adjacent_dev_enable(dev, old_dev);
8160
8161         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8162 }
8163 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8164
8165 /**
8166  * netdev_bonding_info_change - Dispatch event about slave change
8167  * @dev: device
8168  * @bonding_info: info to dispatch
8169  *
8170  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8171  * The caller must hold the RTNL lock.
8172  */
8173 void netdev_bonding_info_change(struct net_device *dev,
8174                                 struct netdev_bonding_info *bonding_info)
8175 {
8176         struct netdev_notifier_bonding_info info = {
8177                 .info.dev = dev,
8178         };
8179
8180         memcpy(&info.bonding_info, bonding_info,
8181                sizeof(struct netdev_bonding_info));
8182         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8183                                       &info.info);
8184 }
8185 EXPORT_SYMBOL(netdev_bonding_info_change);
8186
8187 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8188                                            struct netlink_ext_ack *extack)
8189 {
8190         struct netdev_notifier_offload_xstats_info info = {
8191                 .info.dev = dev,
8192                 .info.extack = extack,
8193                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8194         };
8195         int err;
8196         int rc;
8197
8198         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8199                                          GFP_KERNEL);
8200         if (!dev->offload_xstats_l3)
8201                 return -ENOMEM;
8202
8203         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8204                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8205                                                   &info.info);
8206         err = notifier_to_errno(rc);
8207         if (err)
8208                 goto free_stats;
8209
8210         return 0;
8211
8212 free_stats:
8213         kfree(dev->offload_xstats_l3);
8214         dev->offload_xstats_l3 = NULL;
8215         return err;
8216 }
8217
8218 int netdev_offload_xstats_enable(struct net_device *dev,
8219                                  enum netdev_offload_xstats_type type,
8220                                  struct netlink_ext_ack *extack)
8221 {
8222         ASSERT_RTNL();
8223
8224         if (netdev_offload_xstats_enabled(dev, type))
8225                 return -EALREADY;
8226
8227         switch (type) {
8228         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8229                 return netdev_offload_xstats_enable_l3(dev, extack);
8230         }
8231
8232         WARN_ON(1);
8233         return -EINVAL;
8234 }
8235 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8236
8237 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8238 {
8239         struct netdev_notifier_offload_xstats_info info = {
8240                 .info.dev = dev,
8241                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8242         };
8243
8244         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8245                                       &info.info);
8246         kfree(dev->offload_xstats_l3);
8247         dev->offload_xstats_l3 = NULL;
8248 }
8249
8250 int netdev_offload_xstats_disable(struct net_device *dev,
8251                                   enum netdev_offload_xstats_type type)
8252 {
8253         ASSERT_RTNL();
8254
8255         if (!netdev_offload_xstats_enabled(dev, type))
8256                 return -EALREADY;
8257
8258         switch (type) {
8259         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8260                 netdev_offload_xstats_disable_l3(dev);
8261                 return 0;
8262         }
8263
8264         WARN_ON(1);
8265         return -EINVAL;
8266 }
8267 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8268
8269 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8270 {
8271         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8272 }
8273
8274 static struct rtnl_hw_stats64 *
8275 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8276                               enum netdev_offload_xstats_type type)
8277 {
8278         switch (type) {
8279         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8280                 return dev->offload_xstats_l3;
8281         }
8282
8283         WARN_ON(1);
8284         return NULL;
8285 }
8286
8287 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8288                                    enum netdev_offload_xstats_type type)
8289 {
8290         ASSERT_RTNL();
8291
8292         return netdev_offload_xstats_get_ptr(dev, type);
8293 }
8294 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8295
8296 struct netdev_notifier_offload_xstats_ru {
8297         bool used;
8298 };
8299
8300 struct netdev_notifier_offload_xstats_rd {
8301         struct rtnl_hw_stats64 stats;
8302         bool used;
8303 };
8304
8305 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8306                                   const struct rtnl_hw_stats64 *src)
8307 {
8308         dest->rx_packets          += src->rx_packets;
8309         dest->tx_packets          += src->tx_packets;
8310         dest->rx_bytes            += src->rx_bytes;
8311         dest->tx_bytes            += src->tx_bytes;
8312         dest->rx_errors           += src->rx_errors;
8313         dest->tx_errors           += src->tx_errors;
8314         dest->rx_dropped          += src->rx_dropped;
8315         dest->tx_dropped          += src->tx_dropped;
8316         dest->multicast           += src->multicast;
8317 }
8318
8319 static int netdev_offload_xstats_get_used(struct net_device *dev,
8320                                           enum netdev_offload_xstats_type type,
8321                                           bool *p_used,
8322                                           struct netlink_ext_ack *extack)
8323 {
8324         struct netdev_notifier_offload_xstats_ru report_used = {};
8325         struct netdev_notifier_offload_xstats_info info = {
8326                 .info.dev = dev,
8327                 .info.extack = extack,
8328                 .type = type,
8329                 .report_used = &report_used,
8330         };
8331         int rc;
8332
8333         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8334         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8335                                            &info.info);
8336         *p_used = report_used.used;
8337         return notifier_to_errno(rc);
8338 }
8339
8340 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8341                                            enum netdev_offload_xstats_type type,
8342                                            struct rtnl_hw_stats64 *p_stats,
8343                                            bool *p_used,
8344                                            struct netlink_ext_ack *extack)
8345 {
8346         struct netdev_notifier_offload_xstats_rd report_delta = {};
8347         struct netdev_notifier_offload_xstats_info info = {
8348                 .info.dev = dev,
8349                 .info.extack = extack,
8350                 .type = type,
8351                 .report_delta = &report_delta,
8352         };
8353         struct rtnl_hw_stats64 *stats;
8354         int rc;
8355
8356         stats = netdev_offload_xstats_get_ptr(dev, type);
8357         if (WARN_ON(!stats))
8358                 return -EINVAL;
8359
8360         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8361                                            &info.info);
8362
8363         /* Cache whatever we got, even if there was an error, otherwise the
8364          * successful stats retrievals would get lost.
8365          */
8366         netdev_hw_stats64_add(stats, &report_delta.stats);
8367
8368         if (p_stats)
8369                 *p_stats = *stats;
8370         *p_used = report_delta.used;
8371
8372         return notifier_to_errno(rc);
8373 }
8374
8375 int netdev_offload_xstats_get(struct net_device *dev,
8376                               enum netdev_offload_xstats_type type,
8377                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8378                               struct netlink_ext_ack *extack)
8379 {
8380         ASSERT_RTNL();
8381
8382         if (p_stats)
8383                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8384                                                        p_used, extack);
8385         else
8386                 return netdev_offload_xstats_get_used(dev, type, p_used,
8387                                                       extack);
8388 }
8389 EXPORT_SYMBOL(netdev_offload_xstats_get);
8390
8391 void
8392 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8393                                    const struct rtnl_hw_stats64 *stats)
8394 {
8395         report_delta->used = true;
8396         netdev_hw_stats64_add(&report_delta->stats, stats);
8397 }
8398 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8399
8400 void
8401 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8402 {
8403         report_used->used = true;
8404 }
8405 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8406
8407 void netdev_offload_xstats_push_delta(struct net_device *dev,
8408                                       enum netdev_offload_xstats_type type,
8409                                       const struct rtnl_hw_stats64 *p_stats)
8410 {
8411         struct rtnl_hw_stats64 *stats;
8412
8413         ASSERT_RTNL();
8414
8415         stats = netdev_offload_xstats_get_ptr(dev, type);
8416         if (WARN_ON(!stats))
8417                 return;
8418
8419         netdev_hw_stats64_add(stats, p_stats);
8420 }
8421 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8422
8423 /**
8424  * netdev_get_xmit_slave - Get the xmit slave of master device
8425  * @dev: device
8426  * @skb: The packet
8427  * @all_slaves: assume all the slaves are active
8428  *
8429  * The reference counters are not incremented so the caller must be
8430  * careful with locks. The caller must hold RCU lock.
8431  * %NULL is returned if no slave is found.
8432  */
8433
8434 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8435                                          struct sk_buff *skb,
8436                                          bool all_slaves)
8437 {
8438         const struct net_device_ops *ops = dev->netdev_ops;
8439
8440         if (!ops->ndo_get_xmit_slave)
8441                 return NULL;
8442         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8443 }
8444 EXPORT_SYMBOL(netdev_get_xmit_slave);
8445
8446 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8447                                                   struct sock *sk)
8448 {
8449         const struct net_device_ops *ops = dev->netdev_ops;
8450
8451         if (!ops->ndo_sk_get_lower_dev)
8452                 return NULL;
8453         return ops->ndo_sk_get_lower_dev(dev, sk);
8454 }
8455
8456 /**
8457  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8458  * @dev: device
8459  * @sk: the socket
8460  *
8461  * %NULL is returned if no lower device is found.
8462  */
8463
8464 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8465                                             struct sock *sk)
8466 {
8467         struct net_device *lower;
8468
8469         lower = netdev_sk_get_lower_dev(dev, sk);
8470         while (lower) {
8471                 dev = lower;
8472                 lower = netdev_sk_get_lower_dev(dev, sk);
8473         }
8474
8475         return dev;
8476 }
8477 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8478
8479 static void netdev_adjacent_add_links(struct net_device *dev)
8480 {
8481         struct netdev_adjacent *iter;
8482
8483         struct net *net = dev_net(dev);
8484
8485         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8486                 if (!net_eq(net, dev_net(iter->dev)))
8487                         continue;
8488                 netdev_adjacent_sysfs_add(iter->dev, dev,
8489                                           &iter->dev->adj_list.lower);
8490                 netdev_adjacent_sysfs_add(dev, iter->dev,
8491                                           &dev->adj_list.upper);
8492         }
8493
8494         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8495                 if (!net_eq(net, dev_net(iter->dev)))
8496                         continue;
8497                 netdev_adjacent_sysfs_add(iter->dev, dev,
8498                                           &iter->dev->adj_list.upper);
8499                 netdev_adjacent_sysfs_add(dev, iter->dev,
8500                                           &dev->adj_list.lower);
8501         }
8502 }
8503
8504 static void netdev_adjacent_del_links(struct net_device *dev)
8505 {
8506         struct netdev_adjacent *iter;
8507
8508         struct net *net = dev_net(dev);
8509
8510         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8511                 if (!net_eq(net, dev_net(iter->dev)))
8512                         continue;
8513                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8514                                           &iter->dev->adj_list.lower);
8515                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8516                                           &dev->adj_list.upper);
8517         }
8518
8519         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8520                 if (!net_eq(net, dev_net(iter->dev)))
8521                         continue;
8522                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8523                                           &iter->dev->adj_list.upper);
8524                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8525                                           &dev->adj_list.lower);
8526         }
8527 }
8528
8529 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8530 {
8531         struct netdev_adjacent *iter;
8532
8533         struct net *net = dev_net(dev);
8534
8535         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8536                 if (!net_eq(net, dev_net(iter->dev)))
8537                         continue;
8538                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8539                                           &iter->dev->adj_list.lower);
8540                 netdev_adjacent_sysfs_add(iter->dev, dev,
8541                                           &iter->dev->adj_list.lower);
8542         }
8543
8544         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8545                 if (!net_eq(net, dev_net(iter->dev)))
8546                         continue;
8547                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8548                                           &iter->dev->adj_list.upper);
8549                 netdev_adjacent_sysfs_add(iter->dev, dev,
8550                                           &iter->dev->adj_list.upper);
8551         }
8552 }
8553
8554 void *netdev_lower_dev_get_private(struct net_device *dev,
8555                                    struct net_device *lower_dev)
8556 {
8557         struct netdev_adjacent *lower;
8558
8559         if (!lower_dev)
8560                 return NULL;
8561         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8562         if (!lower)
8563                 return NULL;
8564
8565         return lower->private;
8566 }
8567 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8568
8569
8570 /**
8571  * netdev_lower_state_changed - Dispatch event about lower device state change
8572  * @lower_dev: device
8573  * @lower_state_info: state to dispatch
8574  *
8575  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8576  * The caller must hold the RTNL lock.
8577  */
8578 void netdev_lower_state_changed(struct net_device *lower_dev,
8579                                 void *lower_state_info)
8580 {
8581         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8582                 .info.dev = lower_dev,
8583         };
8584
8585         ASSERT_RTNL();
8586         changelowerstate_info.lower_state_info = lower_state_info;
8587         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8588                                       &changelowerstate_info.info);
8589 }
8590 EXPORT_SYMBOL(netdev_lower_state_changed);
8591
8592 static void dev_change_rx_flags(struct net_device *dev, int flags)
8593 {
8594         const struct net_device_ops *ops = dev->netdev_ops;
8595
8596         if (ops->ndo_change_rx_flags)
8597                 ops->ndo_change_rx_flags(dev, flags);
8598 }
8599
8600 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8601 {
8602         unsigned int old_flags = dev->flags;
8603         unsigned int promiscuity, flags;
8604         kuid_t uid;
8605         kgid_t gid;
8606
8607         ASSERT_RTNL();
8608
8609         promiscuity = dev->promiscuity + inc;
8610         if (promiscuity == 0) {
8611                 /*
8612                  * Avoid overflow.
8613                  * If inc causes overflow, untouch promisc and return error.
8614                  */
8615                 if (unlikely(inc > 0)) {
8616                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8617                         return -EOVERFLOW;
8618                 }
8619                 flags = old_flags & ~IFF_PROMISC;
8620         } else {
8621                 flags = old_flags | IFF_PROMISC;
8622         }
8623         WRITE_ONCE(dev->promiscuity, promiscuity);
8624         if (flags != old_flags) {
8625                 WRITE_ONCE(dev->flags, flags);
8626                 netdev_info(dev, "%s promiscuous mode\n",
8627                             dev->flags & IFF_PROMISC ? "entered" : "left");
8628                 if (audit_enabled) {
8629                         current_uid_gid(&uid, &gid);
8630                         audit_log(audit_context(), GFP_ATOMIC,
8631                                   AUDIT_ANOM_PROMISCUOUS,
8632                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8633                                   dev->name, (dev->flags & IFF_PROMISC),
8634                                   (old_flags & IFF_PROMISC),
8635                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8636                                   from_kuid(&init_user_ns, uid),
8637                                   from_kgid(&init_user_ns, gid),
8638                                   audit_get_sessionid(current));
8639                 }
8640
8641                 dev_change_rx_flags(dev, IFF_PROMISC);
8642         }
8643         if (notify)
8644                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8645         return 0;
8646 }
8647
8648 /**
8649  *      dev_set_promiscuity     - update promiscuity count on a device
8650  *      @dev: device
8651  *      @inc: modifier
8652  *
8653  *      Add or remove promiscuity from a device. While the count in the device
8654  *      remains above zero the interface remains promiscuous. Once it hits zero
8655  *      the device reverts back to normal filtering operation. A negative inc
8656  *      value is used to drop promiscuity on the device.
8657  *      Return 0 if successful or a negative errno code on error.
8658  */
8659 int dev_set_promiscuity(struct net_device *dev, int inc)
8660 {
8661         unsigned int old_flags = dev->flags;
8662         int err;
8663
8664         err = __dev_set_promiscuity(dev, inc, true);
8665         if (err < 0)
8666                 return err;
8667         if (dev->flags != old_flags)
8668                 dev_set_rx_mode(dev);
8669         return err;
8670 }
8671 EXPORT_SYMBOL(dev_set_promiscuity);
8672
8673 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8674 {
8675         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8676         unsigned int allmulti, flags;
8677
8678         ASSERT_RTNL();
8679
8680         allmulti = dev->allmulti + inc;
8681         if (allmulti == 0) {
8682                 /*
8683                  * Avoid overflow.
8684                  * If inc causes overflow, untouch allmulti and return error.
8685                  */
8686                 if (unlikely(inc > 0)) {
8687                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8688                         return -EOVERFLOW;
8689                 }
8690                 flags = old_flags & ~IFF_ALLMULTI;
8691         } else {
8692                 flags = old_flags | IFF_ALLMULTI;
8693         }
8694         WRITE_ONCE(dev->allmulti, allmulti);
8695         if (flags != old_flags) {
8696                 WRITE_ONCE(dev->flags, flags);
8697                 netdev_info(dev, "%s allmulticast mode\n",
8698                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8699                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8700                 dev_set_rx_mode(dev);
8701                 if (notify)
8702                         __dev_notify_flags(dev, old_flags,
8703                                            dev->gflags ^ old_gflags, 0, NULL);
8704         }
8705         return 0;
8706 }
8707
8708 /**
8709  *      dev_set_allmulti        - update allmulti count on a device
8710  *      @dev: device
8711  *      @inc: modifier
8712  *
8713  *      Add or remove reception of all multicast frames to a device. While the
8714  *      count in the device remains above zero the interface remains listening
8715  *      to all interfaces. Once it hits zero the device reverts back to normal
8716  *      filtering operation. A negative @inc value is used to drop the counter
8717  *      when releasing a resource needing all multicasts.
8718  *      Return 0 if successful or a negative errno code on error.
8719  */
8720
8721 int dev_set_allmulti(struct net_device *dev, int inc)
8722 {
8723         return __dev_set_allmulti(dev, inc, true);
8724 }
8725 EXPORT_SYMBOL(dev_set_allmulti);
8726
8727 /*
8728  *      Upload unicast and multicast address lists to device and
8729  *      configure RX filtering. When the device doesn't support unicast
8730  *      filtering it is put in promiscuous mode while unicast addresses
8731  *      are present.
8732  */
8733 void __dev_set_rx_mode(struct net_device *dev)
8734 {
8735         const struct net_device_ops *ops = dev->netdev_ops;
8736
8737         /* dev_open will call this function so the list will stay sane. */
8738         if (!(dev->flags&IFF_UP))
8739                 return;
8740
8741         if (!netif_device_present(dev))
8742                 return;
8743
8744         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8745                 /* Unicast addresses changes may only happen under the rtnl,
8746                  * therefore calling __dev_set_promiscuity here is safe.
8747                  */
8748                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8749                         __dev_set_promiscuity(dev, 1, false);
8750                         dev->uc_promisc = true;
8751                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8752                         __dev_set_promiscuity(dev, -1, false);
8753                         dev->uc_promisc = false;
8754                 }
8755         }
8756
8757         if (ops->ndo_set_rx_mode)
8758                 ops->ndo_set_rx_mode(dev);
8759 }
8760
8761 void dev_set_rx_mode(struct net_device *dev)
8762 {
8763         netif_addr_lock_bh(dev);
8764         __dev_set_rx_mode(dev);
8765         netif_addr_unlock_bh(dev);
8766 }
8767
8768 /**
8769  *      dev_get_flags - get flags reported to userspace
8770  *      @dev: device
8771  *
8772  *      Get the combination of flag bits exported through APIs to userspace.
8773  */
8774 unsigned int dev_get_flags(const struct net_device *dev)
8775 {
8776         unsigned int flags;
8777
8778         flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8779                                 IFF_ALLMULTI |
8780                                 IFF_RUNNING |
8781                                 IFF_LOWER_UP |
8782                                 IFF_DORMANT)) |
8783                 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8784                                 IFF_ALLMULTI));
8785
8786         if (netif_running(dev)) {
8787                 if (netif_oper_up(dev))
8788                         flags |= IFF_RUNNING;
8789                 if (netif_carrier_ok(dev))
8790                         flags |= IFF_LOWER_UP;
8791                 if (netif_dormant(dev))
8792                         flags |= IFF_DORMANT;
8793         }
8794
8795         return flags;
8796 }
8797 EXPORT_SYMBOL(dev_get_flags);
8798
8799 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8800                        struct netlink_ext_ack *extack)
8801 {
8802         unsigned int old_flags = dev->flags;
8803         int ret;
8804
8805         ASSERT_RTNL();
8806
8807         /*
8808          *      Set the flags on our device.
8809          */
8810
8811         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8812                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8813                                IFF_AUTOMEDIA)) |
8814                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8815                                     IFF_ALLMULTI));
8816
8817         /*
8818          *      Load in the correct multicast list now the flags have changed.
8819          */
8820
8821         if ((old_flags ^ flags) & IFF_MULTICAST)
8822                 dev_change_rx_flags(dev, IFF_MULTICAST);
8823
8824         dev_set_rx_mode(dev);
8825
8826         /*
8827          *      Have we downed the interface. We handle IFF_UP ourselves
8828          *      according to user attempts to set it, rather than blindly
8829          *      setting it.
8830          */
8831
8832         ret = 0;
8833         if ((old_flags ^ flags) & IFF_UP) {
8834                 if (old_flags & IFF_UP)
8835                         __dev_close(dev);
8836                 else
8837                         ret = __dev_open(dev, extack);
8838         }
8839
8840         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8841                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8842                 unsigned int old_flags = dev->flags;
8843
8844                 dev->gflags ^= IFF_PROMISC;
8845
8846                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8847                         if (dev->flags != old_flags)
8848                                 dev_set_rx_mode(dev);
8849         }
8850
8851         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8852          * is important. Some (broken) drivers set IFF_PROMISC, when
8853          * IFF_ALLMULTI is requested not asking us and not reporting.
8854          */
8855         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8856                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8857
8858                 dev->gflags ^= IFF_ALLMULTI;
8859                 __dev_set_allmulti(dev, inc, false);
8860         }
8861
8862         return ret;
8863 }
8864
8865 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8866                         unsigned int gchanges, u32 portid,
8867                         const struct nlmsghdr *nlh)
8868 {
8869         unsigned int changes = dev->flags ^ old_flags;
8870
8871         if (gchanges)
8872                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8873
8874         if (changes & IFF_UP) {
8875                 if (dev->flags & IFF_UP)
8876                         call_netdevice_notifiers(NETDEV_UP, dev);
8877                 else
8878                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8879         }
8880
8881         if (dev->flags & IFF_UP &&
8882             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8883                 struct netdev_notifier_change_info change_info = {
8884                         .info = {
8885                                 .dev = dev,
8886                         },
8887                         .flags_changed = changes,
8888                 };
8889
8890                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8891         }
8892 }
8893
8894 /**
8895  *      dev_change_flags - change device settings
8896  *      @dev: device
8897  *      @flags: device state flags
8898  *      @extack: netlink extended ack
8899  *
8900  *      Change settings on device based state flags. The flags are
8901  *      in the userspace exported format.
8902  */
8903 int dev_change_flags(struct net_device *dev, unsigned int flags,
8904                      struct netlink_ext_ack *extack)
8905 {
8906         int ret;
8907         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8908
8909         ret = __dev_change_flags(dev, flags, extack);
8910         if (ret < 0)
8911                 return ret;
8912
8913         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8914         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8915         return ret;
8916 }
8917 EXPORT_SYMBOL(dev_change_flags);
8918
8919 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8920 {
8921         const struct net_device_ops *ops = dev->netdev_ops;
8922
8923         if (ops->ndo_change_mtu)
8924                 return ops->ndo_change_mtu(dev, new_mtu);
8925
8926         /* Pairs with all the lockless reads of dev->mtu in the stack */
8927         WRITE_ONCE(dev->mtu, new_mtu);
8928         return 0;
8929 }
8930 EXPORT_SYMBOL(__dev_set_mtu);
8931
8932 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8933                      struct netlink_ext_ack *extack)
8934 {
8935         /* MTU must be positive, and in range */
8936         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8937                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8938                 return -EINVAL;
8939         }
8940
8941         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8942                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8943                 return -EINVAL;
8944         }
8945         return 0;
8946 }
8947
8948 /**
8949  *      dev_set_mtu_ext - Change maximum transfer unit
8950  *      @dev: device
8951  *      @new_mtu: new transfer unit
8952  *      @extack: netlink extended ack
8953  *
8954  *      Change the maximum transfer size of the network device.
8955  */
8956 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8957                     struct netlink_ext_ack *extack)
8958 {
8959         int err, orig_mtu;
8960
8961         if (new_mtu == dev->mtu)
8962                 return 0;
8963
8964         err = dev_validate_mtu(dev, new_mtu, extack);
8965         if (err)
8966                 return err;
8967
8968         if (!netif_device_present(dev))
8969                 return -ENODEV;
8970
8971         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8972         err = notifier_to_errno(err);
8973         if (err)
8974                 return err;
8975
8976         orig_mtu = dev->mtu;
8977         err = __dev_set_mtu(dev, new_mtu);
8978
8979         if (!err) {
8980                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8981                                                    orig_mtu);
8982                 err = notifier_to_errno(err);
8983                 if (err) {
8984                         /* setting mtu back and notifying everyone again,
8985                          * so that they have a chance to revert changes.
8986                          */
8987                         __dev_set_mtu(dev, orig_mtu);
8988                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8989                                                      new_mtu);
8990                 }
8991         }
8992         return err;
8993 }
8994
8995 int dev_set_mtu(struct net_device *dev, int new_mtu)
8996 {
8997         struct netlink_ext_ack extack;
8998         int err;
8999
9000         memset(&extack, 0, sizeof(extack));
9001         err = dev_set_mtu_ext(dev, new_mtu, &extack);
9002         if (err && extack._msg)
9003                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9004         return err;
9005 }
9006 EXPORT_SYMBOL(dev_set_mtu);
9007
9008 /**
9009  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
9010  *      @dev: device
9011  *      @new_len: new tx queue length
9012  */
9013 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9014 {
9015         unsigned int orig_len = dev->tx_queue_len;
9016         int res;
9017
9018         if (new_len != (unsigned int)new_len)
9019                 return -ERANGE;
9020
9021         if (new_len != orig_len) {
9022                 WRITE_ONCE(dev->tx_queue_len, new_len);
9023                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9024                 res = notifier_to_errno(res);
9025                 if (res)
9026                         goto err_rollback;
9027                 res = dev_qdisc_change_tx_queue_len(dev);
9028                 if (res)
9029                         goto err_rollback;
9030         }
9031
9032         return 0;
9033
9034 err_rollback:
9035         netdev_err(dev, "refused to change device tx_queue_len\n");
9036         WRITE_ONCE(dev->tx_queue_len, orig_len);
9037         return res;
9038 }
9039
9040 /**
9041  *      dev_set_group - Change group this device belongs to
9042  *      @dev: device
9043  *      @new_group: group this device should belong to
9044  */
9045 void dev_set_group(struct net_device *dev, int new_group)
9046 {
9047         dev->group = new_group;
9048 }
9049
9050 /**
9051  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9052  *      @dev: device
9053  *      @addr: new address
9054  *      @extack: netlink extended ack
9055  */
9056 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9057                               struct netlink_ext_ack *extack)
9058 {
9059         struct netdev_notifier_pre_changeaddr_info info = {
9060                 .info.dev = dev,
9061                 .info.extack = extack,
9062                 .dev_addr = addr,
9063         };
9064         int rc;
9065
9066         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9067         return notifier_to_errno(rc);
9068 }
9069 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9070
9071 /**
9072  *      dev_set_mac_address - Change Media Access Control Address
9073  *      @dev: device
9074  *      @sa: new address
9075  *      @extack: netlink extended ack
9076  *
9077  *      Change the hardware (MAC) address of the device
9078  */
9079 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9080                         struct netlink_ext_ack *extack)
9081 {
9082         const struct net_device_ops *ops = dev->netdev_ops;
9083         int err;
9084
9085         if (!ops->ndo_set_mac_address)
9086                 return -EOPNOTSUPP;
9087         if (sa->sa_family != dev->type)
9088                 return -EINVAL;
9089         if (!netif_device_present(dev))
9090                 return -ENODEV;
9091         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9092         if (err)
9093                 return err;
9094         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9095                 err = ops->ndo_set_mac_address(dev, sa);
9096                 if (err)
9097                         return err;
9098         }
9099         dev->addr_assign_type = NET_ADDR_SET;
9100         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9101         add_device_randomness(dev->dev_addr, dev->addr_len);
9102         return 0;
9103 }
9104 EXPORT_SYMBOL(dev_set_mac_address);
9105
9106 DECLARE_RWSEM(dev_addr_sem);
9107
9108 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9109                              struct netlink_ext_ack *extack)
9110 {
9111         int ret;
9112
9113         down_write(&dev_addr_sem);
9114         ret = dev_set_mac_address(dev, sa, extack);
9115         up_write(&dev_addr_sem);
9116         return ret;
9117 }
9118 EXPORT_SYMBOL(dev_set_mac_address_user);
9119
9120 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9121 {
9122         size_t size = sizeof(sa->sa_data_min);
9123         struct net_device *dev;
9124         int ret = 0;
9125
9126         down_read(&dev_addr_sem);
9127         rcu_read_lock();
9128
9129         dev = dev_get_by_name_rcu(net, dev_name);
9130         if (!dev) {
9131                 ret = -ENODEV;
9132                 goto unlock;
9133         }
9134         if (!dev->addr_len)
9135                 memset(sa->sa_data, 0, size);
9136         else
9137                 memcpy(sa->sa_data, dev->dev_addr,
9138                        min_t(size_t, size, dev->addr_len));
9139         sa->sa_family = dev->type;
9140
9141 unlock:
9142         rcu_read_unlock();
9143         up_read(&dev_addr_sem);
9144         return ret;
9145 }
9146 EXPORT_SYMBOL(dev_get_mac_address);
9147
9148 /**
9149  *      dev_change_carrier - Change device carrier
9150  *      @dev: device
9151  *      @new_carrier: new value
9152  *
9153  *      Change device carrier
9154  */
9155 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9156 {
9157         const struct net_device_ops *ops = dev->netdev_ops;
9158
9159         if (!ops->ndo_change_carrier)
9160                 return -EOPNOTSUPP;
9161         if (!netif_device_present(dev))
9162                 return -ENODEV;
9163         return ops->ndo_change_carrier(dev, new_carrier);
9164 }
9165
9166 /**
9167  *      dev_get_phys_port_id - Get device physical port ID
9168  *      @dev: device
9169  *      @ppid: port ID
9170  *
9171  *      Get device physical port ID
9172  */
9173 int dev_get_phys_port_id(struct net_device *dev,
9174                          struct netdev_phys_item_id *ppid)
9175 {
9176         const struct net_device_ops *ops = dev->netdev_ops;
9177
9178         if (!ops->ndo_get_phys_port_id)
9179                 return -EOPNOTSUPP;
9180         return ops->ndo_get_phys_port_id(dev, ppid);
9181 }
9182
9183 /**
9184  *      dev_get_phys_port_name - Get device physical port name
9185  *      @dev: device
9186  *      @name: port name
9187  *      @len: limit of bytes to copy to name
9188  *
9189  *      Get device physical port name
9190  */
9191 int dev_get_phys_port_name(struct net_device *dev,
9192                            char *name, size_t len)
9193 {
9194         const struct net_device_ops *ops = dev->netdev_ops;
9195         int err;
9196
9197         if (ops->ndo_get_phys_port_name) {
9198                 err = ops->ndo_get_phys_port_name(dev, name, len);
9199                 if (err != -EOPNOTSUPP)
9200                         return err;
9201         }
9202         return devlink_compat_phys_port_name_get(dev, name, len);
9203 }
9204
9205 /**
9206  *      dev_get_port_parent_id - Get the device's port parent identifier
9207  *      @dev: network device
9208  *      @ppid: pointer to a storage for the port's parent identifier
9209  *      @recurse: allow/disallow recursion to lower devices
9210  *
9211  *      Get the devices's port parent identifier
9212  */
9213 int dev_get_port_parent_id(struct net_device *dev,
9214                            struct netdev_phys_item_id *ppid,
9215                            bool recurse)
9216 {
9217         const struct net_device_ops *ops = dev->netdev_ops;
9218         struct netdev_phys_item_id first = { };
9219         struct net_device *lower_dev;
9220         struct list_head *iter;
9221         int err;
9222
9223         if (ops->ndo_get_port_parent_id) {
9224                 err = ops->ndo_get_port_parent_id(dev, ppid);
9225                 if (err != -EOPNOTSUPP)
9226                         return err;
9227         }
9228
9229         err = devlink_compat_switch_id_get(dev, ppid);
9230         if (!recurse || err != -EOPNOTSUPP)
9231                 return err;
9232
9233         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9234                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9235                 if (err)
9236                         break;
9237                 if (!first.id_len)
9238                         first = *ppid;
9239                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9240                         return -EOPNOTSUPP;
9241         }
9242
9243         return err;
9244 }
9245 EXPORT_SYMBOL(dev_get_port_parent_id);
9246
9247 /**
9248  *      netdev_port_same_parent_id - Indicate if two network devices have
9249  *      the same port parent identifier
9250  *      @a: first network device
9251  *      @b: second network device
9252  */
9253 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9254 {
9255         struct netdev_phys_item_id a_id = { };
9256         struct netdev_phys_item_id b_id = { };
9257
9258         if (dev_get_port_parent_id(a, &a_id, true) ||
9259             dev_get_port_parent_id(b, &b_id, true))
9260                 return false;
9261
9262         return netdev_phys_item_id_same(&a_id, &b_id);
9263 }
9264 EXPORT_SYMBOL(netdev_port_same_parent_id);
9265
9266 /**
9267  *      dev_change_proto_down - set carrier according to proto_down.
9268  *
9269  *      @dev: device
9270  *      @proto_down: new value
9271  */
9272 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9273 {
9274         if (!dev->change_proto_down)
9275                 return -EOPNOTSUPP;
9276         if (!netif_device_present(dev))
9277                 return -ENODEV;
9278         if (proto_down)
9279                 netif_carrier_off(dev);
9280         else
9281                 netif_carrier_on(dev);
9282         WRITE_ONCE(dev->proto_down, proto_down);
9283         return 0;
9284 }
9285
9286 /**
9287  *      dev_change_proto_down_reason - proto down reason
9288  *
9289  *      @dev: device
9290  *      @mask: proto down mask
9291  *      @value: proto down value
9292  */
9293 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9294                                   u32 value)
9295 {
9296         u32 proto_down_reason;
9297         int b;
9298
9299         if (!mask) {
9300                 proto_down_reason = value;
9301         } else {
9302                 proto_down_reason = dev->proto_down_reason;
9303                 for_each_set_bit(b, &mask, 32) {
9304                         if (value & (1 << b))
9305                                 proto_down_reason |= BIT(b);
9306                         else
9307                                 proto_down_reason &= ~BIT(b);
9308                 }
9309         }
9310         WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9311 }
9312
9313 struct bpf_xdp_link {
9314         struct bpf_link link;
9315         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9316         int flags;
9317 };
9318
9319 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9320 {
9321         if (flags & XDP_FLAGS_HW_MODE)
9322                 return XDP_MODE_HW;
9323         if (flags & XDP_FLAGS_DRV_MODE)
9324                 return XDP_MODE_DRV;
9325         if (flags & XDP_FLAGS_SKB_MODE)
9326                 return XDP_MODE_SKB;
9327         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9328 }
9329
9330 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9331 {
9332         switch (mode) {
9333         case XDP_MODE_SKB:
9334                 return generic_xdp_install;
9335         case XDP_MODE_DRV:
9336         case XDP_MODE_HW:
9337                 return dev->netdev_ops->ndo_bpf;
9338         default:
9339                 return NULL;
9340         }
9341 }
9342
9343 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9344                                          enum bpf_xdp_mode mode)
9345 {
9346         return dev->xdp_state[mode].link;
9347 }
9348
9349 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9350                                      enum bpf_xdp_mode mode)
9351 {
9352         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9353
9354         if (link)
9355                 return link->link.prog;
9356         return dev->xdp_state[mode].prog;
9357 }
9358
9359 u8 dev_xdp_prog_count(struct net_device *dev)
9360 {
9361         u8 count = 0;
9362         int i;
9363
9364         for (i = 0; i < __MAX_XDP_MODE; i++)
9365                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9366                         count++;
9367         return count;
9368 }
9369 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9370
9371 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9372 {
9373         if (!dev->netdev_ops->ndo_bpf)
9374                 return -EOPNOTSUPP;
9375
9376         if (dev_get_min_mp_channel_count(dev)) {
9377                 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9378                 return -EBUSY;
9379         }
9380
9381         return dev->netdev_ops->ndo_bpf(dev, bpf);
9382 }
9383 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9384
9385 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9386 {
9387         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9388
9389         return prog ? prog->aux->id : 0;
9390 }
9391
9392 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9393                              struct bpf_xdp_link *link)
9394 {
9395         dev->xdp_state[mode].link = link;
9396         dev->xdp_state[mode].prog = NULL;
9397 }
9398
9399 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9400                              struct bpf_prog *prog)
9401 {
9402         dev->xdp_state[mode].link = NULL;
9403         dev->xdp_state[mode].prog = prog;
9404 }
9405
9406 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9407                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9408                            u32 flags, struct bpf_prog *prog)
9409 {
9410         struct netdev_bpf xdp;
9411         int err;
9412
9413         if (dev_get_min_mp_channel_count(dev)) {
9414                 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9415                 return -EBUSY;
9416         }
9417
9418         memset(&xdp, 0, sizeof(xdp));
9419         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9420         xdp.extack = extack;
9421         xdp.flags = flags;
9422         xdp.prog = prog;
9423
9424         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9425          * "moved" into driver), so they don't increment it on their own, but
9426          * they do decrement refcnt when program is detached or replaced.
9427          * Given net_device also owns link/prog, we need to bump refcnt here
9428          * to prevent drivers from underflowing it.
9429          */
9430         if (prog)
9431                 bpf_prog_inc(prog);
9432         err = bpf_op(dev, &xdp);
9433         if (err) {
9434                 if (prog)
9435                         bpf_prog_put(prog);
9436                 return err;
9437         }
9438
9439         if (mode != XDP_MODE_HW)
9440                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9441
9442         return 0;
9443 }
9444
9445 static void dev_xdp_uninstall(struct net_device *dev)
9446 {
9447         struct bpf_xdp_link *link;
9448         struct bpf_prog *prog;
9449         enum bpf_xdp_mode mode;
9450         bpf_op_t bpf_op;
9451
9452         ASSERT_RTNL();
9453
9454         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9455                 prog = dev_xdp_prog(dev, mode);
9456                 if (!prog)
9457                         continue;
9458
9459                 bpf_op = dev_xdp_bpf_op(dev, mode);
9460                 if (!bpf_op)
9461                         continue;
9462
9463                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9464
9465                 /* auto-detach link from net device */
9466                 link = dev_xdp_link(dev, mode);
9467                 if (link)
9468                         link->dev = NULL;
9469                 else
9470                         bpf_prog_put(prog);
9471
9472                 dev_xdp_set_link(dev, mode, NULL);
9473         }
9474 }
9475
9476 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9477                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9478                           struct bpf_prog *old_prog, u32 flags)
9479 {
9480         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9481         struct bpf_prog *cur_prog;
9482         struct net_device *upper;
9483         struct list_head *iter;
9484         enum bpf_xdp_mode mode;
9485         bpf_op_t bpf_op;
9486         int err;
9487
9488         ASSERT_RTNL();
9489
9490         /* either link or prog attachment, never both */
9491         if (link && (new_prog || old_prog))
9492                 return -EINVAL;
9493         /* link supports only XDP mode flags */
9494         if (link && (flags & ~XDP_FLAGS_MODES)) {
9495                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9496                 return -EINVAL;
9497         }
9498         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9499         if (num_modes > 1) {
9500                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9501                 return -EINVAL;
9502         }
9503         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9504         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9505                 NL_SET_ERR_MSG(extack,
9506                                "More than one program loaded, unset mode is ambiguous");
9507                 return -EINVAL;
9508         }
9509         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9510         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9511                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9512                 return -EINVAL;
9513         }
9514
9515         mode = dev_xdp_mode(dev, flags);
9516         /* can't replace attached link */
9517         if (dev_xdp_link(dev, mode)) {
9518                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9519                 return -EBUSY;
9520         }
9521
9522         /* don't allow if an upper device already has a program */
9523         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9524                 if (dev_xdp_prog_count(upper) > 0) {
9525                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9526                         return -EEXIST;
9527                 }
9528         }
9529
9530         cur_prog = dev_xdp_prog(dev, mode);
9531         /* can't replace attached prog with link */
9532         if (link && cur_prog) {
9533                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9534                 return -EBUSY;
9535         }
9536         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9537                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9538                 return -EEXIST;
9539         }
9540
9541         /* put effective new program into new_prog */
9542         if (link)
9543                 new_prog = link->link.prog;
9544
9545         if (new_prog) {
9546                 bool offload = mode == XDP_MODE_HW;
9547                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9548                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9549
9550                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9551                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9552                         return -EBUSY;
9553                 }
9554                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9555                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9556                         return -EEXIST;
9557                 }
9558                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9559                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9560                         return -EINVAL;
9561                 }
9562                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9563                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9564                         return -EINVAL;
9565                 }
9566                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9567                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9568                         return -EINVAL;
9569                 }
9570                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9571                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9572                         return -EINVAL;
9573                 }
9574         }
9575
9576         /* don't call drivers if the effective program didn't change */
9577         if (new_prog != cur_prog) {
9578                 bpf_op = dev_xdp_bpf_op(dev, mode);
9579                 if (!bpf_op) {
9580                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9581                         return -EOPNOTSUPP;
9582                 }
9583
9584                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9585                 if (err)
9586                         return err;
9587         }
9588
9589         if (link)
9590                 dev_xdp_set_link(dev, mode, link);
9591         else
9592                 dev_xdp_set_prog(dev, mode, new_prog);
9593         if (cur_prog)
9594                 bpf_prog_put(cur_prog);
9595
9596         return 0;
9597 }
9598
9599 static int dev_xdp_attach_link(struct net_device *dev,
9600                                struct netlink_ext_ack *extack,
9601                                struct bpf_xdp_link *link)
9602 {
9603         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9604 }
9605
9606 static int dev_xdp_detach_link(struct net_device *dev,
9607                                struct netlink_ext_ack *extack,
9608                                struct bpf_xdp_link *link)
9609 {
9610         enum bpf_xdp_mode mode;
9611         bpf_op_t bpf_op;
9612
9613         ASSERT_RTNL();
9614
9615         mode = dev_xdp_mode(dev, link->flags);
9616         if (dev_xdp_link(dev, mode) != link)
9617                 return -EINVAL;
9618
9619         bpf_op = dev_xdp_bpf_op(dev, mode);
9620         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9621         dev_xdp_set_link(dev, mode, NULL);
9622         return 0;
9623 }
9624
9625 static void bpf_xdp_link_release(struct bpf_link *link)
9626 {
9627         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9628
9629         rtnl_lock();
9630
9631         /* if racing with net_device's tear down, xdp_link->dev might be
9632          * already NULL, in which case link was already auto-detached
9633          */
9634         if (xdp_link->dev) {
9635                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9636                 xdp_link->dev = NULL;
9637         }
9638
9639         rtnl_unlock();
9640 }
9641
9642 static int bpf_xdp_link_detach(struct bpf_link *link)
9643 {
9644         bpf_xdp_link_release(link);
9645         return 0;
9646 }
9647
9648 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9649 {
9650         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9651
9652         kfree(xdp_link);
9653 }
9654
9655 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9656                                      struct seq_file *seq)
9657 {
9658         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9659         u32 ifindex = 0;
9660
9661         rtnl_lock();
9662         if (xdp_link->dev)
9663                 ifindex = xdp_link->dev->ifindex;
9664         rtnl_unlock();
9665
9666         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9667 }
9668
9669 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9670                                        struct bpf_link_info *info)
9671 {
9672         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9673         u32 ifindex = 0;
9674
9675         rtnl_lock();
9676         if (xdp_link->dev)
9677                 ifindex = xdp_link->dev->ifindex;
9678         rtnl_unlock();
9679
9680         info->xdp.ifindex = ifindex;
9681         return 0;
9682 }
9683
9684 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9685                                struct bpf_prog *old_prog)
9686 {
9687         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9688         enum bpf_xdp_mode mode;
9689         bpf_op_t bpf_op;
9690         int err = 0;
9691
9692         rtnl_lock();
9693
9694         /* link might have been auto-released already, so fail */
9695         if (!xdp_link->dev) {
9696                 err = -ENOLINK;
9697                 goto out_unlock;
9698         }
9699
9700         if (old_prog && link->prog != old_prog) {
9701                 err = -EPERM;
9702                 goto out_unlock;
9703         }
9704         old_prog = link->prog;
9705         if (old_prog->type != new_prog->type ||
9706             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9707                 err = -EINVAL;
9708                 goto out_unlock;
9709         }
9710
9711         if (old_prog == new_prog) {
9712                 /* no-op, don't disturb drivers */
9713                 bpf_prog_put(new_prog);
9714                 goto out_unlock;
9715         }
9716
9717         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9718         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9719         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9720                               xdp_link->flags, new_prog);
9721         if (err)
9722                 goto out_unlock;
9723
9724         old_prog = xchg(&link->prog, new_prog);
9725         bpf_prog_put(old_prog);
9726
9727 out_unlock:
9728         rtnl_unlock();
9729         return err;
9730 }
9731
9732 static const struct bpf_link_ops bpf_xdp_link_lops = {
9733         .release = bpf_xdp_link_release,
9734         .dealloc = bpf_xdp_link_dealloc,
9735         .detach = bpf_xdp_link_detach,
9736         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9737         .fill_link_info = bpf_xdp_link_fill_link_info,
9738         .update_prog = bpf_xdp_link_update,
9739 };
9740
9741 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9742 {
9743         struct net *net = current->nsproxy->net_ns;
9744         struct bpf_link_primer link_primer;
9745         struct netlink_ext_ack extack = {};
9746         struct bpf_xdp_link *link;
9747         struct net_device *dev;
9748         int err, fd;
9749
9750         rtnl_lock();
9751         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9752         if (!dev) {
9753                 rtnl_unlock();
9754                 return -EINVAL;
9755         }
9756
9757         link = kzalloc(sizeof(*link), GFP_USER);
9758         if (!link) {
9759                 err = -ENOMEM;
9760                 goto unlock;
9761         }
9762
9763         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9764         link->dev = dev;
9765         link->flags = attr->link_create.flags;
9766
9767         err = bpf_link_prime(&link->link, &link_primer);
9768         if (err) {
9769                 kfree(link);
9770                 goto unlock;
9771         }
9772
9773         err = dev_xdp_attach_link(dev, &extack, link);
9774         rtnl_unlock();
9775
9776         if (err) {
9777                 link->dev = NULL;
9778                 bpf_link_cleanup(&link_primer);
9779                 trace_bpf_xdp_link_attach_failed(extack._msg);
9780                 goto out_put_dev;
9781         }
9782
9783         fd = bpf_link_settle(&link_primer);
9784         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9785         dev_put(dev);
9786         return fd;
9787
9788 unlock:
9789         rtnl_unlock();
9790
9791 out_put_dev:
9792         dev_put(dev);
9793         return err;
9794 }
9795
9796 /**
9797  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9798  *      @dev: device
9799  *      @extack: netlink extended ack
9800  *      @fd: new program fd or negative value to clear
9801  *      @expected_fd: old program fd that userspace expects to replace or clear
9802  *      @flags: xdp-related flags
9803  *
9804  *      Set or clear a bpf program for a device
9805  */
9806 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9807                       int fd, int expected_fd, u32 flags)
9808 {
9809         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9810         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9811         int err;
9812
9813         ASSERT_RTNL();
9814
9815         if (fd >= 0) {
9816                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9817                                                  mode != XDP_MODE_SKB);
9818                 if (IS_ERR(new_prog))
9819                         return PTR_ERR(new_prog);
9820         }
9821
9822         if (expected_fd >= 0) {
9823                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9824                                                  mode != XDP_MODE_SKB);
9825                 if (IS_ERR(old_prog)) {
9826                         err = PTR_ERR(old_prog);
9827                         old_prog = NULL;
9828                         goto err_out;
9829                 }
9830         }
9831
9832         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9833
9834 err_out:
9835         if (err && new_prog)
9836                 bpf_prog_put(new_prog);
9837         if (old_prog)
9838                 bpf_prog_put(old_prog);
9839         return err;
9840 }
9841
9842 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9843 {
9844         int i;
9845
9846         ASSERT_RTNL();
9847
9848         for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9849                 if (dev->_rx[i].mp_params.mp_priv)
9850                         /* The channel count is the idx plus 1. */
9851                         return i + 1;
9852
9853         return 0;
9854 }
9855
9856 /**
9857  * dev_index_reserve() - allocate an ifindex in a namespace
9858  * @net: the applicable net namespace
9859  * @ifindex: requested ifindex, pass %0 to get one allocated
9860  *
9861  * Allocate a ifindex for a new device. Caller must either use the ifindex
9862  * to store the device (via list_netdevice()) or call dev_index_release()
9863  * to give the index up.
9864  *
9865  * Return: a suitable unique value for a new device interface number or -errno.
9866  */
9867 static int dev_index_reserve(struct net *net, u32 ifindex)
9868 {
9869         int err;
9870
9871         if (ifindex > INT_MAX) {
9872                 DEBUG_NET_WARN_ON_ONCE(1);
9873                 return -EINVAL;
9874         }
9875
9876         if (!ifindex)
9877                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9878                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9879         else
9880                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9881         if (err < 0)
9882                 return err;
9883
9884         return ifindex;
9885 }
9886
9887 static void dev_index_release(struct net *net, int ifindex)
9888 {
9889         /* Expect only unused indexes, unlist_netdevice() removes the used */
9890         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9891 }
9892
9893 /* Delayed registration/unregisteration */
9894 LIST_HEAD(net_todo_list);
9895 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9896 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9897
9898 static void net_set_todo(struct net_device *dev)
9899 {
9900         list_add_tail(&dev->todo_list, &net_todo_list);
9901 }
9902
9903 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9904         struct net_device *upper, netdev_features_t features)
9905 {
9906         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9907         netdev_features_t feature;
9908         int feature_bit;
9909
9910         for_each_netdev_feature(upper_disables, feature_bit) {
9911                 feature = __NETIF_F_BIT(feature_bit);
9912                 if (!(upper->wanted_features & feature)
9913                     && (features & feature)) {
9914                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9915                                    &feature, upper->name);
9916                         features &= ~feature;
9917                 }
9918         }
9919
9920         return features;
9921 }
9922
9923 static void netdev_sync_lower_features(struct net_device *upper,
9924         struct net_device *lower, netdev_features_t features)
9925 {
9926         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9927         netdev_features_t feature;
9928         int feature_bit;
9929
9930         for_each_netdev_feature(upper_disables, feature_bit) {
9931                 feature = __NETIF_F_BIT(feature_bit);
9932                 if (!(features & feature) && (lower->features & feature)) {
9933                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9934                                    &feature, lower->name);
9935                         lower->wanted_features &= ~feature;
9936                         __netdev_update_features(lower);
9937
9938                         if (unlikely(lower->features & feature))
9939                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9940                                             &feature, lower->name);
9941                         else
9942                                 netdev_features_change(lower);
9943                 }
9944         }
9945 }
9946
9947 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9948 {
9949         netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9950         bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9951         bool hw_csum = features & NETIF_F_HW_CSUM;
9952
9953         return ip_csum || hw_csum;
9954 }
9955
9956 static netdev_features_t netdev_fix_features(struct net_device *dev,
9957         netdev_features_t features)
9958 {
9959         /* Fix illegal checksum combinations */
9960         if ((features & NETIF_F_HW_CSUM) &&
9961             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9962                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9963                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9964         }
9965
9966         /* TSO requires that SG is present as well. */
9967         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9968                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9969                 features &= ~NETIF_F_ALL_TSO;
9970         }
9971
9972         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9973                                         !(features & NETIF_F_IP_CSUM)) {
9974                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9975                 features &= ~NETIF_F_TSO;
9976                 features &= ~NETIF_F_TSO_ECN;
9977         }
9978
9979         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9980                                          !(features & NETIF_F_IPV6_CSUM)) {
9981                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9982                 features &= ~NETIF_F_TSO6;
9983         }
9984
9985         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9986         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9987                 features &= ~NETIF_F_TSO_MANGLEID;
9988
9989         /* TSO ECN requires that TSO is present as well. */
9990         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9991                 features &= ~NETIF_F_TSO_ECN;
9992
9993         /* Software GSO depends on SG. */
9994         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9995                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9996                 features &= ~NETIF_F_GSO;
9997         }
9998
9999         /* GSO partial features require GSO partial be set */
10000         if ((features & dev->gso_partial_features) &&
10001             !(features & NETIF_F_GSO_PARTIAL)) {
10002                 netdev_dbg(dev,
10003                            "Dropping partially supported GSO features since no GSO partial.\n");
10004                 features &= ~dev->gso_partial_features;
10005         }
10006
10007         if (!(features & NETIF_F_RXCSUM)) {
10008                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10009                  * successfully merged by hardware must also have the
10010                  * checksum verified by hardware.  If the user does not
10011                  * want to enable RXCSUM, logically, we should disable GRO_HW.
10012                  */
10013                 if (features & NETIF_F_GRO_HW) {
10014                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10015                         features &= ~NETIF_F_GRO_HW;
10016                 }
10017         }
10018
10019         /* LRO/HW-GRO features cannot be combined with RX-FCS */
10020         if (features & NETIF_F_RXFCS) {
10021                 if (features & NETIF_F_LRO) {
10022                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10023                         features &= ~NETIF_F_LRO;
10024                 }
10025
10026                 if (features & NETIF_F_GRO_HW) {
10027                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10028                         features &= ~NETIF_F_GRO_HW;
10029                 }
10030         }
10031
10032         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10033                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10034                 features &= ~NETIF_F_LRO;
10035         }
10036
10037         if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10038                 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10039                 features &= ~NETIF_F_HW_TLS_TX;
10040         }
10041
10042         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10043                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10044                 features &= ~NETIF_F_HW_TLS_RX;
10045         }
10046
10047         if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10048                 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10049                 features &= ~NETIF_F_GSO_UDP_L4;
10050         }
10051
10052         return features;
10053 }
10054
10055 int __netdev_update_features(struct net_device *dev)
10056 {
10057         struct net_device *upper, *lower;
10058         netdev_features_t features;
10059         struct list_head *iter;
10060         int err = -1;
10061
10062         ASSERT_RTNL();
10063
10064         features = netdev_get_wanted_features(dev);
10065
10066         if (dev->netdev_ops->ndo_fix_features)
10067                 features = dev->netdev_ops->ndo_fix_features(dev, features);
10068
10069         /* driver might be less strict about feature dependencies */
10070         features = netdev_fix_features(dev, features);
10071
10072         /* some features can't be enabled if they're off on an upper device */
10073         netdev_for_each_upper_dev_rcu(dev, upper, iter)
10074                 features = netdev_sync_upper_features(dev, upper, features);
10075
10076         if (dev->features == features)
10077                 goto sync_lower;
10078
10079         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10080                 &dev->features, &features);
10081
10082         if (dev->netdev_ops->ndo_set_features)
10083                 err = dev->netdev_ops->ndo_set_features(dev, features);
10084         else
10085                 err = 0;
10086
10087         if (unlikely(err < 0)) {
10088                 netdev_err(dev,
10089                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
10090                         err, &features, &dev->features);
10091                 /* return non-0 since some features might have changed and
10092                  * it's better to fire a spurious notification than miss it
10093                  */
10094                 return -1;
10095         }
10096
10097 sync_lower:
10098         /* some features must be disabled on lower devices when disabled
10099          * on an upper device (think: bonding master or bridge)
10100          */
10101         netdev_for_each_lower_dev(dev, lower, iter)
10102                 netdev_sync_lower_features(dev, lower, features);
10103
10104         if (!err) {
10105                 netdev_features_t diff = features ^ dev->features;
10106
10107                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10108                         /* udp_tunnel_{get,drop}_rx_info both need
10109                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10110                          * device, or they won't do anything.
10111                          * Thus we need to update dev->features
10112                          * *before* calling udp_tunnel_get_rx_info,
10113                          * but *after* calling udp_tunnel_drop_rx_info.
10114                          */
10115                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10116                                 dev->features = features;
10117                                 udp_tunnel_get_rx_info(dev);
10118                         } else {
10119                                 udp_tunnel_drop_rx_info(dev);
10120                         }
10121                 }
10122
10123                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10124                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10125                                 dev->features = features;
10126                                 err |= vlan_get_rx_ctag_filter_info(dev);
10127                         } else {
10128                                 vlan_drop_rx_ctag_filter_info(dev);
10129                         }
10130                 }
10131
10132                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10133                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10134                                 dev->features = features;
10135                                 err |= vlan_get_rx_stag_filter_info(dev);
10136                         } else {
10137                                 vlan_drop_rx_stag_filter_info(dev);
10138                         }
10139                 }
10140
10141                 dev->features = features;
10142         }
10143
10144         return err < 0 ? 0 : 1;
10145 }
10146
10147 /**
10148  *      netdev_update_features - recalculate device features
10149  *      @dev: the device to check
10150  *
10151  *      Recalculate dev->features set and send notifications if it
10152  *      has changed. Should be called after driver or hardware dependent
10153  *      conditions might have changed that influence the features.
10154  */
10155 void netdev_update_features(struct net_device *dev)
10156 {
10157         if (__netdev_update_features(dev))
10158                 netdev_features_change(dev);
10159 }
10160 EXPORT_SYMBOL(netdev_update_features);
10161
10162 /**
10163  *      netdev_change_features - recalculate device features
10164  *      @dev: the device to check
10165  *
10166  *      Recalculate dev->features set and send notifications even
10167  *      if they have not changed. Should be called instead of
10168  *      netdev_update_features() if also dev->vlan_features might
10169  *      have changed to allow the changes to be propagated to stacked
10170  *      VLAN devices.
10171  */
10172 void netdev_change_features(struct net_device *dev)
10173 {
10174         __netdev_update_features(dev);
10175         netdev_features_change(dev);
10176 }
10177 EXPORT_SYMBOL(netdev_change_features);
10178
10179 /**
10180  *      netif_stacked_transfer_operstate -      transfer operstate
10181  *      @rootdev: the root or lower level device to transfer state from
10182  *      @dev: the device to transfer operstate to
10183  *
10184  *      Transfer operational state from root to device. This is normally
10185  *      called when a stacking relationship exists between the root
10186  *      device and the device(a leaf device).
10187  */
10188 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10189                                         struct net_device *dev)
10190 {
10191         if (rootdev->operstate == IF_OPER_DORMANT)
10192                 netif_dormant_on(dev);
10193         else
10194                 netif_dormant_off(dev);
10195
10196         if (rootdev->operstate == IF_OPER_TESTING)
10197                 netif_testing_on(dev);
10198         else
10199                 netif_testing_off(dev);
10200
10201         if (netif_carrier_ok(rootdev))
10202                 netif_carrier_on(dev);
10203         else
10204                 netif_carrier_off(dev);
10205 }
10206 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10207
10208 static int netif_alloc_rx_queues(struct net_device *dev)
10209 {
10210         unsigned int i, count = dev->num_rx_queues;
10211         struct netdev_rx_queue *rx;
10212         size_t sz = count * sizeof(*rx);
10213         int err = 0;
10214
10215         BUG_ON(count < 1);
10216
10217         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10218         if (!rx)
10219                 return -ENOMEM;
10220
10221         dev->_rx = rx;
10222
10223         for (i = 0; i < count; i++) {
10224                 rx[i].dev = dev;
10225
10226                 /* XDP RX-queue setup */
10227                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10228                 if (err < 0)
10229                         goto err_rxq_info;
10230         }
10231         return 0;
10232
10233 err_rxq_info:
10234         /* Rollback successful reg's and free other resources */
10235         while (i--)
10236                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10237         kvfree(dev->_rx);
10238         dev->_rx = NULL;
10239         return err;
10240 }
10241
10242 static void netif_free_rx_queues(struct net_device *dev)
10243 {
10244         unsigned int i, count = dev->num_rx_queues;
10245
10246         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10247         if (!dev->_rx)
10248                 return;
10249
10250         for (i = 0; i < count; i++)
10251                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10252
10253         kvfree(dev->_rx);
10254 }
10255
10256 static void netdev_init_one_queue(struct net_device *dev,
10257                                   struct netdev_queue *queue, void *_unused)
10258 {
10259         /* Initialize queue lock */
10260         spin_lock_init(&queue->_xmit_lock);
10261         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10262         queue->xmit_lock_owner = -1;
10263         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10264         queue->dev = dev;
10265 #ifdef CONFIG_BQL
10266         dql_init(&queue->dql, HZ);
10267 #endif
10268 }
10269
10270 static void netif_free_tx_queues(struct net_device *dev)
10271 {
10272         kvfree(dev->_tx);
10273 }
10274
10275 static int netif_alloc_netdev_queues(struct net_device *dev)
10276 {
10277         unsigned int count = dev->num_tx_queues;
10278         struct netdev_queue *tx;
10279         size_t sz = count * sizeof(*tx);
10280
10281         if (count < 1 || count > 0xffff)
10282                 return -EINVAL;
10283
10284         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10285         if (!tx)
10286                 return -ENOMEM;
10287
10288         dev->_tx = tx;
10289
10290         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10291         spin_lock_init(&dev->tx_global_lock);
10292
10293         return 0;
10294 }
10295
10296 void netif_tx_stop_all_queues(struct net_device *dev)
10297 {
10298         unsigned int i;
10299
10300         for (i = 0; i < dev->num_tx_queues; i++) {
10301                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10302
10303                 netif_tx_stop_queue(txq);
10304         }
10305 }
10306 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10307
10308 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10309 {
10310         void __percpu *v;
10311
10312         /* Drivers implementing ndo_get_peer_dev must support tstat
10313          * accounting, so that skb_do_redirect() can bump the dev's
10314          * RX stats upon network namespace switch.
10315          */
10316         if (dev->netdev_ops->ndo_get_peer_dev &&
10317             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10318                 return -EOPNOTSUPP;
10319
10320         switch (dev->pcpu_stat_type) {
10321         case NETDEV_PCPU_STAT_NONE:
10322                 return 0;
10323         case NETDEV_PCPU_STAT_LSTATS:
10324                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10325                 break;
10326         case NETDEV_PCPU_STAT_TSTATS:
10327                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10328                 break;
10329         case NETDEV_PCPU_STAT_DSTATS:
10330                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10331                 break;
10332         default:
10333                 return -EINVAL;
10334         }
10335
10336         return v ? 0 : -ENOMEM;
10337 }
10338
10339 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10340 {
10341         switch (dev->pcpu_stat_type) {
10342         case NETDEV_PCPU_STAT_NONE:
10343                 return;
10344         case NETDEV_PCPU_STAT_LSTATS:
10345                 free_percpu(dev->lstats);
10346                 break;
10347         case NETDEV_PCPU_STAT_TSTATS:
10348                 free_percpu(dev->tstats);
10349                 break;
10350         case NETDEV_PCPU_STAT_DSTATS:
10351                 free_percpu(dev->dstats);
10352                 break;
10353         }
10354 }
10355
10356 static void netdev_free_phy_link_topology(struct net_device *dev)
10357 {
10358         struct phy_link_topology *topo = dev->link_topo;
10359
10360         if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10361                 xa_destroy(&topo->phys);
10362                 kfree(topo);
10363                 dev->link_topo = NULL;
10364         }
10365 }
10366
10367 /**
10368  * register_netdevice() - register a network device
10369  * @dev: device to register
10370  *
10371  * Take a prepared network device structure and make it externally accessible.
10372  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10373  * Callers must hold the rtnl lock - you may want register_netdev()
10374  * instead of this.
10375  */
10376 int register_netdevice(struct net_device *dev)
10377 {
10378         int ret;
10379         struct net *net = dev_net(dev);
10380
10381         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10382                      NETDEV_FEATURE_COUNT);
10383         BUG_ON(dev_boot_phase);
10384         ASSERT_RTNL();
10385
10386         might_sleep();
10387
10388         /* When net_device's are persistent, this will be fatal. */
10389         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10390         BUG_ON(!net);
10391
10392         ret = ethtool_check_ops(dev->ethtool_ops);
10393         if (ret)
10394                 return ret;
10395
10396         /* rss ctx ID 0 is reserved for the default context, start from 1 */
10397         xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10398         mutex_init(&dev->ethtool->rss_lock);
10399
10400         spin_lock_init(&dev->addr_list_lock);
10401         netdev_set_addr_lockdep_class(dev);
10402
10403         ret = dev_get_valid_name(net, dev, dev->name);
10404         if (ret < 0)
10405                 goto out;
10406
10407         ret = -ENOMEM;
10408         dev->name_node = netdev_name_node_head_alloc(dev);
10409         if (!dev->name_node)
10410                 goto out;
10411
10412         /* Init, if this function is available */
10413         if (dev->netdev_ops->ndo_init) {
10414                 ret = dev->netdev_ops->ndo_init(dev);
10415                 if (ret) {
10416                         if (ret > 0)
10417                                 ret = -EIO;
10418                         goto err_free_name;
10419                 }
10420         }
10421
10422         if (((dev->hw_features | dev->features) &
10423              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10424             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10425              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10426                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10427                 ret = -EINVAL;
10428                 goto err_uninit;
10429         }
10430
10431         ret = netdev_do_alloc_pcpu_stats(dev);
10432         if (ret)
10433                 goto err_uninit;
10434
10435         ret = dev_index_reserve(net, dev->ifindex);
10436         if (ret < 0)
10437                 goto err_free_pcpu;
10438         dev->ifindex = ret;
10439
10440         /* Transfer changeable features to wanted_features and enable
10441          * software offloads (GSO and GRO).
10442          */
10443         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10444         dev->features |= NETIF_F_SOFT_FEATURES;
10445
10446         if (dev->udp_tunnel_nic_info) {
10447                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10448                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10449         }
10450
10451         dev->wanted_features = dev->features & dev->hw_features;
10452
10453         if (!(dev->flags & IFF_LOOPBACK))
10454                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10455
10456         /* If IPv4 TCP segmentation offload is supported we should also
10457          * allow the device to enable segmenting the frame with the option
10458          * of ignoring a static IP ID value.  This doesn't enable the
10459          * feature itself but allows the user to enable it later.
10460          */
10461         if (dev->hw_features & NETIF_F_TSO)
10462                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10463         if (dev->vlan_features & NETIF_F_TSO)
10464                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10465         if (dev->mpls_features & NETIF_F_TSO)
10466                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10467         if (dev->hw_enc_features & NETIF_F_TSO)
10468                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10469
10470         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10471          */
10472         dev->vlan_features |= NETIF_F_HIGHDMA;
10473
10474         /* Make NETIF_F_SG inheritable to tunnel devices.
10475          */
10476         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10477
10478         /* Make NETIF_F_SG inheritable to MPLS.
10479          */
10480         dev->mpls_features |= NETIF_F_SG;
10481
10482         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10483         ret = notifier_to_errno(ret);
10484         if (ret)
10485                 goto err_ifindex_release;
10486
10487         ret = netdev_register_kobject(dev);
10488
10489         WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10490
10491         if (ret)
10492                 goto err_uninit_notify;
10493
10494         __netdev_update_features(dev);
10495
10496         /*
10497          *      Default initial state at registry is that the
10498          *      device is present.
10499          */
10500
10501         set_bit(__LINK_STATE_PRESENT, &dev->state);
10502
10503         linkwatch_init_dev(dev);
10504
10505         dev_init_scheduler(dev);
10506
10507         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10508         list_netdevice(dev);
10509
10510         add_device_randomness(dev->dev_addr, dev->addr_len);
10511
10512         /* If the device has permanent device address, driver should
10513          * set dev_addr and also addr_assign_type should be set to
10514          * NET_ADDR_PERM (default value).
10515          */
10516         if (dev->addr_assign_type == NET_ADDR_PERM)
10517                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10518
10519         /* Notify protocols, that a new device appeared. */
10520         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10521         ret = notifier_to_errno(ret);
10522         if (ret) {
10523                 /* Expect explicit free_netdev() on failure */
10524                 dev->needs_free_netdev = false;
10525                 unregister_netdevice_queue(dev, NULL);
10526                 goto out;
10527         }
10528         /*
10529          *      Prevent userspace races by waiting until the network
10530          *      device is fully setup before sending notifications.
10531          */
10532         if (!dev->rtnl_link_ops ||
10533             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10534                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10535
10536 out:
10537         return ret;
10538
10539 err_uninit_notify:
10540         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10541 err_ifindex_release:
10542         dev_index_release(net, dev->ifindex);
10543 err_free_pcpu:
10544         netdev_do_free_pcpu_stats(dev);
10545 err_uninit:
10546         if (dev->netdev_ops->ndo_uninit)
10547                 dev->netdev_ops->ndo_uninit(dev);
10548         if (dev->priv_destructor)
10549                 dev->priv_destructor(dev);
10550 err_free_name:
10551         netdev_name_node_free(dev->name_node);
10552         goto out;
10553 }
10554 EXPORT_SYMBOL(register_netdevice);
10555
10556 /* Initialize the core of a dummy net device.
10557  * This is useful if you are calling this function after alloc_netdev(),
10558  * since it does not memset the net_device fields.
10559  */
10560 static void init_dummy_netdev_core(struct net_device *dev)
10561 {
10562         /* make sure we BUG if trying to hit standard
10563          * register/unregister code path
10564          */
10565         dev->reg_state = NETREG_DUMMY;
10566
10567         /* NAPI wants this */
10568         INIT_LIST_HEAD(&dev->napi_list);
10569
10570         /* a dummy interface is started by default */
10571         set_bit(__LINK_STATE_PRESENT, &dev->state);
10572         set_bit(__LINK_STATE_START, &dev->state);
10573
10574         /* napi_busy_loop stats accounting wants this */
10575         dev_net_set(dev, &init_net);
10576
10577         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10578          * because users of this 'device' dont need to change
10579          * its refcount.
10580          */
10581 }
10582
10583 /**
10584  *      init_dummy_netdev       - init a dummy network device for NAPI
10585  *      @dev: device to init
10586  *
10587  *      This takes a network device structure and initializes the minimum
10588  *      amount of fields so it can be used to schedule NAPI polls without
10589  *      registering a full blown interface. This is to be used by drivers
10590  *      that need to tie several hardware interfaces to a single NAPI
10591  *      poll scheduler due to HW limitations.
10592  */
10593 void init_dummy_netdev(struct net_device *dev)
10594 {
10595         /* Clear everything. Note we don't initialize spinlocks
10596          * as they aren't supposed to be taken by any of the
10597          * NAPI code and this dummy netdev is supposed to be
10598          * only ever used for NAPI polls
10599          */
10600         memset(dev, 0, sizeof(struct net_device));
10601         init_dummy_netdev_core(dev);
10602 }
10603 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10604
10605 /**
10606  *      register_netdev - register a network device
10607  *      @dev: device to register
10608  *
10609  *      Take a completed network device structure and add it to the kernel
10610  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10611  *      chain. 0 is returned on success. A negative errno code is returned
10612  *      on a failure to set up the device, or if the name is a duplicate.
10613  *
10614  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10615  *      and expands the device name if you passed a format string to
10616  *      alloc_netdev.
10617  */
10618 int register_netdev(struct net_device *dev)
10619 {
10620         int err;
10621
10622         if (rtnl_lock_killable())
10623                 return -EINTR;
10624         err = register_netdevice(dev);
10625         rtnl_unlock();
10626         return err;
10627 }
10628 EXPORT_SYMBOL(register_netdev);
10629
10630 int netdev_refcnt_read(const struct net_device *dev)
10631 {
10632 #ifdef CONFIG_PCPU_DEV_REFCNT
10633         int i, refcnt = 0;
10634
10635         for_each_possible_cpu(i)
10636                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10637         return refcnt;
10638 #else
10639         return refcount_read(&dev->dev_refcnt);
10640 #endif
10641 }
10642 EXPORT_SYMBOL(netdev_refcnt_read);
10643
10644 int netdev_unregister_timeout_secs __read_mostly = 10;
10645
10646 #define WAIT_REFS_MIN_MSECS 1
10647 #define WAIT_REFS_MAX_MSECS 250
10648 /**
10649  * netdev_wait_allrefs_any - wait until all references are gone.
10650  * @list: list of net_devices to wait on
10651  *
10652  * This is called when unregistering network devices.
10653  *
10654  * Any protocol or device that holds a reference should register
10655  * for netdevice notification, and cleanup and put back the
10656  * reference if they receive an UNREGISTER event.
10657  * We can get stuck here if buggy protocols don't correctly
10658  * call dev_put.
10659  */
10660 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10661 {
10662         unsigned long rebroadcast_time, warning_time;
10663         struct net_device *dev;
10664         int wait = 0;
10665
10666         rebroadcast_time = warning_time = jiffies;
10667
10668         list_for_each_entry(dev, list, todo_list)
10669                 if (netdev_refcnt_read(dev) == 1)
10670                         return dev;
10671
10672         while (true) {
10673                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10674                         rtnl_lock();
10675
10676                         /* Rebroadcast unregister notification */
10677                         list_for_each_entry(dev, list, todo_list)
10678                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10679
10680                         __rtnl_unlock();
10681                         rcu_barrier();
10682                         rtnl_lock();
10683
10684                         list_for_each_entry(dev, list, todo_list)
10685                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10686                                              &dev->state)) {
10687                                         /* We must not have linkwatch events
10688                                          * pending on unregister. If this
10689                                          * happens, we simply run the queue
10690                                          * unscheduled, resulting in a noop
10691                                          * for this device.
10692                                          */
10693                                         linkwatch_run_queue();
10694                                         break;
10695                                 }
10696
10697                         __rtnl_unlock();
10698
10699                         rebroadcast_time = jiffies;
10700                 }
10701
10702                 rcu_barrier();
10703
10704                 if (!wait) {
10705                         wait = WAIT_REFS_MIN_MSECS;
10706                 } else {
10707                         msleep(wait);
10708                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10709                 }
10710
10711                 list_for_each_entry(dev, list, todo_list)
10712                         if (netdev_refcnt_read(dev) == 1)
10713                                 return dev;
10714
10715                 if (time_after(jiffies, warning_time +
10716                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10717                         list_for_each_entry(dev, list, todo_list) {
10718                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10719                                          dev->name, netdev_refcnt_read(dev));
10720                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10721                         }
10722
10723                         warning_time = jiffies;
10724                 }
10725         }
10726 }
10727
10728 /* The sequence is:
10729  *
10730  *      rtnl_lock();
10731  *      ...
10732  *      register_netdevice(x1);
10733  *      register_netdevice(x2);
10734  *      ...
10735  *      unregister_netdevice(y1);
10736  *      unregister_netdevice(y2);
10737  *      ...
10738  *      rtnl_unlock();
10739  *      free_netdev(y1);
10740  *      free_netdev(y2);
10741  *
10742  * We are invoked by rtnl_unlock().
10743  * This allows us to deal with problems:
10744  * 1) We can delete sysfs objects which invoke hotplug
10745  *    without deadlocking with linkwatch via keventd.
10746  * 2) Since we run with the RTNL semaphore not held, we can sleep
10747  *    safely in order to wait for the netdev refcnt to drop to zero.
10748  *
10749  * We must not return until all unregister events added during
10750  * the interval the lock was held have been completed.
10751  */
10752 void netdev_run_todo(void)
10753 {
10754         struct net_device *dev, *tmp;
10755         struct list_head list;
10756         int cnt;
10757 #ifdef CONFIG_LOCKDEP
10758         struct list_head unlink_list;
10759
10760         list_replace_init(&net_unlink_list, &unlink_list);
10761
10762         while (!list_empty(&unlink_list)) {
10763                 struct net_device *dev = list_first_entry(&unlink_list,
10764                                                           struct net_device,
10765                                                           unlink_list);
10766                 list_del_init(&dev->unlink_list);
10767                 dev->nested_level = dev->lower_level - 1;
10768         }
10769 #endif
10770
10771         /* Snapshot list, allow later requests */
10772         list_replace_init(&net_todo_list, &list);
10773
10774         __rtnl_unlock();
10775
10776         /* Wait for rcu callbacks to finish before next phase */
10777         if (!list_empty(&list))
10778                 rcu_barrier();
10779
10780         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10781                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10782                         netdev_WARN(dev, "run_todo but not unregistering\n");
10783                         list_del(&dev->todo_list);
10784                         continue;
10785                 }
10786
10787                 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10788                 linkwatch_sync_dev(dev);
10789         }
10790
10791         cnt = 0;
10792         while (!list_empty(&list)) {
10793                 dev = netdev_wait_allrefs_any(&list);
10794                 list_del(&dev->todo_list);
10795
10796                 /* paranoia */
10797                 BUG_ON(netdev_refcnt_read(dev) != 1);
10798                 BUG_ON(!list_empty(&dev->ptype_all));
10799                 BUG_ON(!list_empty(&dev->ptype_specific));
10800                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10801                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10802
10803                 netdev_do_free_pcpu_stats(dev);
10804                 if (dev->priv_destructor)
10805                         dev->priv_destructor(dev);
10806                 if (dev->needs_free_netdev)
10807                         free_netdev(dev);
10808
10809                 cnt++;
10810
10811                 /* Free network device */
10812                 kobject_put(&dev->dev.kobj);
10813         }
10814         if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10815                 wake_up(&netdev_unregistering_wq);
10816 }
10817
10818 /* Collate per-cpu network dstats statistics
10819  *
10820  * Read per-cpu network statistics from dev->dstats and populate the related
10821  * fields in @s.
10822  */
10823 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10824                              const struct pcpu_dstats __percpu *dstats)
10825 {
10826         int cpu;
10827
10828         for_each_possible_cpu(cpu) {
10829                 u64 rx_packets, rx_bytes, rx_drops;
10830                 u64 tx_packets, tx_bytes, tx_drops;
10831                 const struct pcpu_dstats *stats;
10832                 unsigned int start;
10833
10834                 stats = per_cpu_ptr(dstats, cpu);
10835                 do {
10836                         start = u64_stats_fetch_begin(&stats->syncp);
10837                         rx_packets = u64_stats_read(&stats->rx_packets);
10838                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10839                         rx_drops   = u64_stats_read(&stats->rx_drops);
10840                         tx_packets = u64_stats_read(&stats->tx_packets);
10841                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10842                         tx_drops   = u64_stats_read(&stats->tx_drops);
10843                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10844
10845                 s->rx_packets += rx_packets;
10846                 s->rx_bytes   += rx_bytes;
10847                 s->rx_dropped += rx_drops;
10848                 s->tx_packets += tx_packets;
10849                 s->tx_bytes   += tx_bytes;
10850                 s->tx_dropped += tx_drops;
10851         }
10852 }
10853
10854 /* ndo_get_stats64 implementation for dtstats-based accounting.
10855  *
10856  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10857  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10858  */
10859 static void dev_get_dstats64(const struct net_device *dev,
10860                              struct rtnl_link_stats64 *s)
10861 {
10862         netdev_stats_to_stats64(s, &dev->stats);
10863         dev_fetch_dstats(s, dev->dstats);
10864 }
10865
10866 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10867  * all the same fields in the same order as net_device_stats, with only
10868  * the type differing, but rtnl_link_stats64 may have additional fields
10869  * at the end for newer counters.
10870  */
10871 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10872                              const struct net_device_stats *netdev_stats)
10873 {
10874         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10875         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10876         u64 *dst = (u64 *)stats64;
10877
10878         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10879         for (i = 0; i < n; i++)
10880                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10881         /* zero out counters that only exist in rtnl_link_stats64 */
10882         memset((char *)stats64 + n * sizeof(u64), 0,
10883                sizeof(*stats64) - n * sizeof(u64));
10884 }
10885 EXPORT_SYMBOL(netdev_stats_to_stats64);
10886
10887 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10888                 struct net_device *dev)
10889 {
10890         struct net_device_core_stats __percpu *p;
10891
10892         p = alloc_percpu_gfp(struct net_device_core_stats,
10893                              GFP_ATOMIC | __GFP_NOWARN);
10894
10895         if (p && cmpxchg(&dev->core_stats, NULL, p))
10896                 free_percpu(p);
10897
10898         /* This READ_ONCE() pairs with the cmpxchg() above */
10899         return READ_ONCE(dev->core_stats);
10900 }
10901
10902 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10903 {
10904         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10905         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10906         unsigned long __percpu *field;
10907
10908         if (unlikely(!p)) {
10909                 p = netdev_core_stats_alloc(dev);
10910                 if (!p)
10911                         return;
10912         }
10913
10914         field = (unsigned long __percpu *)((void __percpu *)p + offset);
10915         this_cpu_inc(*field);
10916 }
10917 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10918
10919 /**
10920  *      dev_get_stats   - get network device statistics
10921  *      @dev: device to get statistics from
10922  *      @storage: place to store stats
10923  *
10924  *      Get network statistics from device. Return @storage.
10925  *      The device driver may provide its own method by setting
10926  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10927  *      otherwise the internal statistics structure is used.
10928  */
10929 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10930                                         struct rtnl_link_stats64 *storage)
10931 {
10932         const struct net_device_ops *ops = dev->netdev_ops;
10933         const struct net_device_core_stats __percpu *p;
10934
10935         if (ops->ndo_get_stats64) {
10936                 memset(storage, 0, sizeof(*storage));
10937                 ops->ndo_get_stats64(dev, storage);
10938         } else if (ops->ndo_get_stats) {
10939                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10940         } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10941                 dev_get_tstats64(dev, storage);
10942         } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10943                 dev_get_dstats64(dev, storage);
10944         } else {
10945                 netdev_stats_to_stats64(storage, &dev->stats);
10946         }
10947
10948         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10949         p = READ_ONCE(dev->core_stats);
10950         if (p) {
10951                 const struct net_device_core_stats *core_stats;
10952                 int i;
10953
10954                 for_each_possible_cpu(i) {
10955                         core_stats = per_cpu_ptr(p, i);
10956                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10957                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10958                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10959                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10960                 }
10961         }
10962         return storage;
10963 }
10964 EXPORT_SYMBOL(dev_get_stats);
10965
10966 /**
10967  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10968  *      @s: place to store stats
10969  *      @netstats: per-cpu network stats to read from
10970  *
10971  *      Read per-cpu network statistics and populate the related fields in @s.
10972  */
10973 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10974                            const struct pcpu_sw_netstats __percpu *netstats)
10975 {
10976         int cpu;
10977
10978         for_each_possible_cpu(cpu) {
10979                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10980                 const struct pcpu_sw_netstats *stats;
10981                 unsigned int start;
10982
10983                 stats = per_cpu_ptr(netstats, cpu);
10984                 do {
10985                         start = u64_stats_fetch_begin(&stats->syncp);
10986                         rx_packets = u64_stats_read(&stats->rx_packets);
10987                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10988                         tx_packets = u64_stats_read(&stats->tx_packets);
10989                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10990                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10991
10992                 s->rx_packets += rx_packets;
10993                 s->rx_bytes   += rx_bytes;
10994                 s->tx_packets += tx_packets;
10995                 s->tx_bytes   += tx_bytes;
10996         }
10997 }
10998 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10999
11000 /**
11001  *      dev_get_tstats64 - ndo_get_stats64 implementation
11002  *      @dev: device to get statistics from
11003  *      @s: place to store stats
11004  *
11005  *      Populate @s from dev->stats and dev->tstats. Can be used as
11006  *      ndo_get_stats64() callback.
11007  */
11008 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11009 {
11010         netdev_stats_to_stats64(s, &dev->stats);
11011         dev_fetch_sw_netstats(s, dev->tstats);
11012 }
11013 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11014
11015 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11016 {
11017         struct netdev_queue *queue = dev_ingress_queue(dev);
11018
11019 #ifdef CONFIG_NET_CLS_ACT
11020         if (queue)
11021                 return queue;
11022         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11023         if (!queue)
11024                 return NULL;
11025         netdev_init_one_queue(dev, queue, NULL);
11026         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11027         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11028         rcu_assign_pointer(dev->ingress_queue, queue);
11029 #endif
11030         return queue;
11031 }
11032
11033 static const struct ethtool_ops default_ethtool_ops;
11034
11035 void netdev_set_default_ethtool_ops(struct net_device *dev,
11036                                     const struct ethtool_ops *ops)
11037 {
11038         if (dev->ethtool_ops == &default_ethtool_ops)
11039                 dev->ethtool_ops = ops;
11040 }
11041 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11042
11043 /**
11044  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11045  * @dev: netdev to enable the IRQ coalescing on
11046  *
11047  * Sets a conservative default for SW IRQ coalescing. Users can use
11048  * sysfs attributes to override the default values.
11049  */
11050 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11051 {
11052         WARN_ON(dev->reg_state == NETREG_REGISTERED);
11053
11054         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11055                 dev->gro_flush_timeout = 20000;
11056                 dev->napi_defer_hard_irqs = 1;
11057         }
11058 }
11059 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11060
11061 /**
11062  * alloc_netdev_mqs - allocate network device
11063  * @sizeof_priv: size of private data to allocate space for
11064  * @name: device name format string
11065  * @name_assign_type: origin of device name
11066  * @setup: callback to initialize device
11067  * @txqs: the number of TX subqueues to allocate
11068  * @rxqs: the number of RX subqueues to allocate
11069  *
11070  * Allocates a struct net_device with private data area for driver use
11071  * and performs basic initialization.  Also allocates subqueue structs
11072  * for each queue on the device.
11073  */
11074 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11075                 unsigned char name_assign_type,
11076                 void (*setup)(struct net_device *),
11077                 unsigned int txqs, unsigned int rxqs)
11078 {
11079         struct net_device *dev;
11080
11081         BUG_ON(strlen(name) >= sizeof(dev->name));
11082
11083         if (txqs < 1) {
11084                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11085                 return NULL;
11086         }
11087
11088         if (rxqs < 1) {
11089                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11090                 return NULL;
11091         }
11092
11093         dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11094                        GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11095         if (!dev)
11096                 return NULL;
11097
11098         dev->priv_len = sizeof_priv;
11099
11100         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11101 #ifdef CONFIG_PCPU_DEV_REFCNT
11102         dev->pcpu_refcnt = alloc_percpu(int);
11103         if (!dev->pcpu_refcnt)
11104                 goto free_dev;
11105         __dev_hold(dev);
11106 #else
11107         refcount_set(&dev->dev_refcnt, 1);
11108 #endif
11109
11110         if (dev_addr_init(dev))
11111                 goto free_pcpu;
11112
11113         dev_mc_init(dev);
11114         dev_uc_init(dev);
11115
11116         dev_net_set(dev, &init_net);
11117
11118         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11119         dev->xdp_zc_max_segs = 1;
11120         dev->gso_max_segs = GSO_MAX_SEGS;
11121         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11122         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11123         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11124         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11125         dev->tso_max_segs = TSO_MAX_SEGS;
11126         dev->upper_level = 1;
11127         dev->lower_level = 1;
11128 #ifdef CONFIG_LOCKDEP
11129         dev->nested_level = 0;
11130         INIT_LIST_HEAD(&dev->unlink_list);
11131 #endif
11132
11133         INIT_LIST_HEAD(&dev->napi_list);
11134         INIT_LIST_HEAD(&dev->unreg_list);
11135         INIT_LIST_HEAD(&dev->close_list);
11136         INIT_LIST_HEAD(&dev->link_watch_list);
11137         INIT_LIST_HEAD(&dev->adj_list.upper);
11138         INIT_LIST_HEAD(&dev->adj_list.lower);
11139         INIT_LIST_HEAD(&dev->ptype_all);
11140         INIT_LIST_HEAD(&dev->ptype_specific);
11141         INIT_LIST_HEAD(&dev->net_notifier_list);
11142 #ifdef CONFIG_NET_SCHED
11143         hash_init(dev->qdisc_hash);
11144 #endif
11145
11146         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11147         setup(dev);
11148
11149         if (!dev->tx_queue_len) {
11150                 dev->priv_flags |= IFF_NO_QUEUE;
11151                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11152         }
11153
11154         dev->num_tx_queues = txqs;
11155         dev->real_num_tx_queues = txqs;
11156         if (netif_alloc_netdev_queues(dev))
11157                 goto free_all;
11158
11159         dev->num_rx_queues = rxqs;
11160         dev->real_num_rx_queues = rxqs;
11161         if (netif_alloc_rx_queues(dev))
11162                 goto free_all;
11163         dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11164         if (!dev->ethtool)
11165                 goto free_all;
11166
11167         strscpy(dev->name, name);
11168         dev->name_assign_type = name_assign_type;
11169         dev->group = INIT_NETDEV_GROUP;
11170         if (!dev->ethtool_ops)
11171                 dev->ethtool_ops = &default_ethtool_ops;
11172
11173         nf_hook_netdev_init(dev);
11174
11175         return dev;
11176
11177 free_all:
11178         free_netdev(dev);
11179         return NULL;
11180
11181 free_pcpu:
11182 #ifdef CONFIG_PCPU_DEV_REFCNT
11183         free_percpu(dev->pcpu_refcnt);
11184 free_dev:
11185 #endif
11186         kvfree(dev);
11187         return NULL;
11188 }
11189 EXPORT_SYMBOL(alloc_netdev_mqs);
11190
11191 /**
11192  * free_netdev - free network device
11193  * @dev: device
11194  *
11195  * This function does the last stage of destroying an allocated device
11196  * interface. The reference to the device object is released. If this
11197  * is the last reference then it will be freed.Must be called in process
11198  * context.
11199  */
11200 void free_netdev(struct net_device *dev)
11201 {
11202         struct napi_struct *p, *n;
11203
11204         might_sleep();
11205
11206         /* When called immediately after register_netdevice() failed the unwind
11207          * handling may still be dismantling the device. Handle that case by
11208          * deferring the free.
11209          */
11210         if (dev->reg_state == NETREG_UNREGISTERING) {
11211                 ASSERT_RTNL();
11212                 dev->needs_free_netdev = true;
11213                 return;
11214         }
11215
11216         kfree(dev->ethtool);
11217         netif_free_tx_queues(dev);
11218         netif_free_rx_queues(dev);
11219
11220         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11221
11222         /* Flush device addresses */
11223         dev_addr_flush(dev);
11224
11225         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11226                 netif_napi_del(p);
11227
11228         ref_tracker_dir_exit(&dev->refcnt_tracker);
11229 #ifdef CONFIG_PCPU_DEV_REFCNT
11230         free_percpu(dev->pcpu_refcnt);
11231         dev->pcpu_refcnt = NULL;
11232 #endif
11233         free_percpu(dev->core_stats);
11234         dev->core_stats = NULL;
11235         free_percpu(dev->xdp_bulkq);
11236         dev->xdp_bulkq = NULL;
11237
11238         netdev_free_phy_link_topology(dev);
11239
11240         /*  Compatibility with error handling in drivers */
11241         if (dev->reg_state == NETREG_UNINITIALIZED ||
11242             dev->reg_state == NETREG_DUMMY) {
11243                 kvfree(dev);
11244                 return;
11245         }
11246
11247         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11248         WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11249
11250         /* will free via device release */
11251         put_device(&dev->dev);
11252 }
11253 EXPORT_SYMBOL(free_netdev);
11254
11255 /**
11256  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11257  * @sizeof_priv: size of private data to allocate space for
11258  *
11259  * Return: the allocated net_device on success, NULL otherwise
11260  */
11261 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11262 {
11263         return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11264                             init_dummy_netdev_core);
11265 }
11266 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11267
11268 /**
11269  *      synchronize_net -  Synchronize with packet receive processing
11270  *
11271  *      Wait for packets currently being received to be done.
11272  *      Does not block later packets from starting.
11273  */
11274 void synchronize_net(void)
11275 {
11276         might_sleep();
11277         if (rtnl_is_locked())
11278                 synchronize_rcu_expedited();
11279         else
11280                 synchronize_rcu();
11281 }
11282 EXPORT_SYMBOL(synchronize_net);
11283
11284 static void netdev_rss_contexts_free(struct net_device *dev)
11285 {
11286         struct ethtool_rxfh_context *ctx;
11287         unsigned long context;
11288
11289         mutex_lock(&dev->ethtool->rss_lock);
11290         xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11291                 struct ethtool_rxfh_param rxfh;
11292
11293                 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11294                 rxfh.key = ethtool_rxfh_context_key(ctx);
11295                 rxfh.hfunc = ctx->hfunc;
11296                 rxfh.input_xfrm = ctx->input_xfrm;
11297                 rxfh.rss_context = context;
11298                 rxfh.rss_delete = true;
11299
11300                 xa_erase(&dev->ethtool->rss_ctx, context);
11301                 if (dev->ethtool_ops->create_rxfh_context)
11302                         dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11303                                                               context, NULL);
11304                 else
11305                         dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11306                 kfree(ctx);
11307         }
11308         xa_destroy(&dev->ethtool->rss_ctx);
11309         mutex_unlock(&dev->ethtool->rss_lock);
11310 }
11311
11312 /**
11313  *      unregister_netdevice_queue - remove device from the kernel
11314  *      @dev: device
11315  *      @head: list
11316  *
11317  *      This function shuts down a device interface and removes it
11318  *      from the kernel tables.
11319  *      If head not NULL, device is queued to be unregistered later.
11320  *
11321  *      Callers must hold the rtnl semaphore.  You may want
11322  *      unregister_netdev() instead of this.
11323  */
11324
11325 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11326 {
11327         ASSERT_RTNL();
11328
11329         if (head) {
11330                 list_move_tail(&dev->unreg_list, head);
11331         } else {
11332                 LIST_HEAD(single);
11333
11334                 list_add(&dev->unreg_list, &single);
11335                 unregister_netdevice_many(&single);
11336         }
11337 }
11338 EXPORT_SYMBOL(unregister_netdevice_queue);
11339
11340 void unregister_netdevice_many_notify(struct list_head *head,
11341                                       u32 portid, const struct nlmsghdr *nlh)
11342 {
11343         struct net_device *dev, *tmp;
11344         LIST_HEAD(close_head);
11345         int cnt = 0;
11346
11347         BUG_ON(dev_boot_phase);
11348         ASSERT_RTNL();
11349
11350         if (list_empty(head))
11351                 return;
11352
11353         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11354                 /* Some devices call without registering
11355                  * for initialization unwind. Remove those
11356                  * devices and proceed with the remaining.
11357                  */
11358                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11359                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11360                                  dev->name, dev);
11361
11362                         WARN_ON(1);
11363                         list_del(&dev->unreg_list);
11364                         continue;
11365                 }
11366                 dev->dismantle = true;
11367                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11368         }
11369
11370         /* If device is running, close it first. */
11371         list_for_each_entry(dev, head, unreg_list)
11372                 list_add_tail(&dev->close_list, &close_head);
11373         dev_close_many(&close_head, true);
11374
11375         list_for_each_entry(dev, head, unreg_list) {
11376                 /* And unlink it from device chain. */
11377                 unlist_netdevice(dev);
11378                 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11379         }
11380         flush_all_backlogs();
11381
11382         synchronize_net();
11383
11384         list_for_each_entry(dev, head, unreg_list) {
11385                 struct sk_buff *skb = NULL;
11386
11387                 /* Shutdown queueing discipline. */
11388                 dev_shutdown(dev);
11389                 dev_tcx_uninstall(dev);
11390                 dev_xdp_uninstall(dev);
11391                 bpf_dev_bound_netdev_unregister(dev);
11392                 dev_dmabuf_uninstall(dev);
11393
11394                 netdev_offload_xstats_disable_all(dev);
11395
11396                 /* Notify protocols, that we are about to destroy
11397                  * this device. They should clean all the things.
11398                  */
11399                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11400
11401                 if (!dev->rtnl_link_ops ||
11402                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11403                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11404                                                      GFP_KERNEL, NULL, 0,
11405                                                      portid, nlh);
11406
11407                 /*
11408                  *      Flush the unicast and multicast chains
11409                  */
11410                 dev_uc_flush(dev);
11411                 dev_mc_flush(dev);
11412
11413                 netdev_name_node_alt_flush(dev);
11414                 netdev_name_node_free(dev->name_node);
11415
11416                 netdev_rss_contexts_free(dev);
11417
11418                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11419
11420                 if (dev->netdev_ops->ndo_uninit)
11421                         dev->netdev_ops->ndo_uninit(dev);
11422
11423                 mutex_destroy(&dev->ethtool->rss_lock);
11424
11425                 if (skb)
11426                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11427
11428                 /* Notifier chain MUST detach us all upper devices. */
11429                 WARN_ON(netdev_has_any_upper_dev(dev));
11430                 WARN_ON(netdev_has_any_lower_dev(dev));
11431
11432                 /* Remove entries from kobject tree */
11433                 netdev_unregister_kobject(dev);
11434 #ifdef CONFIG_XPS
11435                 /* Remove XPS queueing entries */
11436                 netif_reset_xps_queues_gt(dev, 0);
11437 #endif
11438         }
11439
11440         synchronize_net();
11441
11442         list_for_each_entry(dev, head, unreg_list) {
11443                 netdev_put(dev, &dev->dev_registered_tracker);
11444                 net_set_todo(dev);
11445                 cnt++;
11446         }
11447         atomic_add(cnt, &dev_unreg_count);
11448
11449         list_del(head);
11450 }
11451
11452 /**
11453  *      unregister_netdevice_many - unregister many devices
11454  *      @head: list of devices
11455  *
11456  *  Note: As most callers use a stack allocated list_head,
11457  *  we force a list_del() to make sure stack won't be corrupted later.
11458  */
11459 void unregister_netdevice_many(struct list_head *head)
11460 {
11461         unregister_netdevice_many_notify(head, 0, NULL);
11462 }
11463 EXPORT_SYMBOL(unregister_netdevice_many);
11464
11465 /**
11466  *      unregister_netdev - remove device from the kernel
11467  *      @dev: device
11468  *
11469  *      This function shuts down a device interface and removes it
11470  *      from the kernel tables.
11471  *
11472  *      This is just a wrapper for unregister_netdevice that takes
11473  *      the rtnl semaphore.  In general you want to use this and not
11474  *      unregister_netdevice.
11475  */
11476 void unregister_netdev(struct net_device *dev)
11477 {
11478         rtnl_lock();
11479         unregister_netdevice(dev);
11480         rtnl_unlock();
11481 }
11482 EXPORT_SYMBOL(unregister_netdev);
11483
11484 /**
11485  *      __dev_change_net_namespace - move device to different nethost namespace
11486  *      @dev: device
11487  *      @net: network namespace
11488  *      @pat: If not NULL name pattern to try if the current device name
11489  *            is already taken in the destination network namespace.
11490  *      @new_ifindex: If not zero, specifies device index in the target
11491  *                    namespace.
11492  *
11493  *      This function shuts down a device interface and moves it
11494  *      to a new network namespace. On success 0 is returned, on
11495  *      a failure a netagive errno code is returned.
11496  *
11497  *      Callers must hold the rtnl semaphore.
11498  */
11499
11500 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11501                                const char *pat, int new_ifindex)
11502 {
11503         struct netdev_name_node *name_node;
11504         struct net *net_old = dev_net(dev);
11505         char new_name[IFNAMSIZ] = {};
11506         int err, new_nsid;
11507
11508         ASSERT_RTNL();
11509
11510         /* Don't allow namespace local devices to be moved. */
11511         err = -EINVAL;
11512         if (dev->netns_local)
11513                 goto out;
11514
11515         /* Ensure the device has been registered */
11516         if (dev->reg_state != NETREG_REGISTERED)
11517                 goto out;
11518
11519         /* Get out if there is nothing todo */
11520         err = 0;
11521         if (net_eq(net_old, net))
11522                 goto out;
11523
11524         /* Pick the destination device name, and ensure
11525          * we can use it in the destination network namespace.
11526          */
11527         err = -EEXIST;
11528         if (netdev_name_in_use(net, dev->name)) {
11529                 /* We get here if we can't use the current device name */
11530                 if (!pat)
11531                         goto out;
11532                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11533                 if (err < 0)
11534                         goto out;
11535         }
11536         /* Check that none of the altnames conflicts. */
11537         err = -EEXIST;
11538         netdev_for_each_altname(dev, name_node)
11539                 if (netdev_name_in_use(net, name_node->name))
11540                         goto out;
11541
11542         /* Check that new_ifindex isn't used yet. */
11543         if (new_ifindex) {
11544                 err = dev_index_reserve(net, new_ifindex);
11545                 if (err < 0)
11546                         goto out;
11547         } else {
11548                 /* If there is an ifindex conflict assign a new one */
11549                 err = dev_index_reserve(net, dev->ifindex);
11550                 if (err == -EBUSY)
11551                         err = dev_index_reserve(net, 0);
11552                 if (err < 0)
11553                         goto out;
11554                 new_ifindex = err;
11555         }
11556
11557         /*
11558          * And now a mini version of register_netdevice unregister_netdevice.
11559          */
11560
11561         /* If device is running close it first. */
11562         dev_close(dev);
11563
11564         /* And unlink it from device chain */
11565         unlist_netdevice(dev);
11566
11567         synchronize_net();
11568
11569         /* Shutdown queueing discipline. */
11570         dev_shutdown(dev);
11571
11572         /* Notify protocols, that we are about to destroy
11573          * this device. They should clean all the things.
11574          *
11575          * Note that dev->reg_state stays at NETREG_REGISTERED.
11576          * This is wanted because this way 8021q and macvlan know
11577          * the device is just moving and can keep their slaves up.
11578          */
11579         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11580         rcu_barrier();
11581
11582         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11583
11584         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11585                             new_ifindex);
11586
11587         /*
11588          *      Flush the unicast and multicast chains
11589          */
11590         dev_uc_flush(dev);
11591         dev_mc_flush(dev);
11592
11593         /* Send a netdev-removed uevent to the old namespace */
11594         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11595         netdev_adjacent_del_links(dev);
11596
11597         /* Move per-net netdevice notifiers that are following the netdevice */
11598         move_netdevice_notifiers_dev_net(dev, net);
11599
11600         /* Actually switch the network namespace */
11601         dev_net_set(dev, net);
11602         dev->ifindex = new_ifindex;
11603
11604         if (new_name[0]) {
11605                 /* Rename the netdev to prepared name */
11606                 write_seqlock_bh(&netdev_rename_lock);
11607                 strscpy(dev->name, new_name, IFNAMSIZ);
11608                 write_sequnlock_bh(&netdev_rename_lock);
11609         }
11610
11611         /* Fixup kobjects */
11612         dev_set_uevent_suppress(&dev->dev, 1);
11613         err = device_rename(&dev->dev, dev->name);
11614         dev_set_uevent_suppress(&dev->dev, 0);
11615         WARN_ON(err);
11616
11617         /* Send a netdev-add uevent to the new namespace */
11618         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11619         netdev_adjacent_add_links(dev);
11620
11621         /* Adapt owner in case owning user namespace of target network
11622          * namespace is different from the original one.
11623          */
11624         err = netdev_change_owner(dev, net_old, net);
11625         WARN_ON(err);
11626
11627         /* Add the device back in the hashes */
11628         list_netdevice(dev);
11629
11630         /* Notify protocols, that a new device appeared. */
11631         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11632
11633         /*
11634          *      Prevent userspace races by waiting until the network
11635          *      device is fully setup before sending notifications.
11636          */
11637         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11638
11639         synchronize_net();
11640         err = 0;
11641 out:
11642         return err;
11643 }
11644 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11645
11646 static int dev_cpu_dead(unsigned int oldcpu)
11647 {
11648         struct sk_buff **list_skb;
11649         struct sk_buff *skb;
11650         unsigned int cpu;
11651         struct softnet_data *sd, *oldsd, *remsd = NULL;
11652
11653         local_irq_disable();
11654         cpu = smp_processor_id();
11655         sd = &per_cpu(softnet_data, cpu);
11656         oldsd = &per_cpu(softnet_data, oldcpu);
11657
11658         /* Find end of our completion_queue. */
11659         list_skb = &sd->completion_queue;
11660         while (*list_skb)
11661                 list_skb = &(*list_skb)->next;
11662         /* Append completion queue from offline CPU. */
11663         *list_skb = oldsd->completion_queue;
11664         oldsd->completion_queue = NULL;
11665
11666         /* Append output queue from offline CPU. */
11667         if (oldsd->output_queue) {
11668                 *sd->output_queue_tailp = oldsd->output_queue;
11669                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11670                 oldsd->output_queue = NULL;
11671                 oldsd->output_queue_tailp = &oldsd->output_queue;
11672         }
11673         /* Append NAPI poll list from offline CPU, with one exception :
11674          * process_backlog() must be called by cpu owning percpu backlog.
11675          * We properly handle process_queue & input_pkt_queue later.
11676          */
11677         while (!list_empty(&oldsd->poll_list)) {
11678                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11679                                                             struct napi_struct,
11680                                                             poll_list);
11681
11682                 list_del_init(&napi->poll_list);
11683                 if (napi->poll == process_backlog)
11684                         napi->state &= NAPIF_STATE_THREADED;
11685                 else
11686                         ____napi_schedule(sd, napi);
11687         }
11688
11689         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11690         local_irq_enable();
11691
11692         if (!use_backlog_threads()) {
11693 #ifdef CONFIG_RPS
11694                 remsd = oldsd->rps_ipi_list;
11695                 oldsd->rps_ipi_list = NULL;
11696 #endif
11697                 /* send out pending IPI's on offline CPU */
11698                 net_rps_send_ipi(remsd);
11699         }
11700
11701         /* Process offline CPU's input_pkt_queue */
11702         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11703                 netif_rx(skb);
11704                 rps_input_queue_head_incr(oldsd);
11705         }
11706         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11707                 netif_rx(skb);
11708                 rps_input_queue_head_incr(oldsd);
11709         }
11710
11711         return 0;
11712 }
11713
11714 /**
11715  *      netdev_increment_features - increment feature set by one
11716  *      @all: current feature set
11717  *      @one: new feature set
11718  *      @mask: mask feature set
11719  *
11720  *      Computes a new feature set after adding a device with feature set
11721  *      @one to the master device with current feature set @all.  Will not
11722  *      enable anything that is off in @mask. Returns the new feature set.
11723  */
11724 netdev_features_t netdev_increment_features(netdev_features_t all,
11725         netdev_features_t one, netdev_features_t mask)
11726 {
11727         if (mask & NETIF_F_HW_CSUM)
11728                 mask |= NETIF_F_CSUM_MASK;
11729         mask |= NETIF_F_VLAN_CHALLENGED;
11730
11731         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11732         all &= one | ~NETIF_F_ALL_FOR_ALL;
11733
11734         /* If one device supports hw checksumming, set for all. */
11735         if (all & NETIF_F_HW_CSUM)
11736                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11737
11738         return all;
11739 }
11740 EXPORT_SYMBOL(netdev_increment_features);
11741
11742 static struct hlist_head * __net_init netdev_create_hash(void)
11743 {
11744         int i;
11745         struct hlist_head *hash;
11746
11747         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11748         if (hash != NULL)
11749                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11750                         INIT_HLIST_HEAD(&hash[i]);
11751
11752         return hash;
11753 }
11754
11755 /* Initialize per network namespace state */
11756 static int __net_init netdev_init(struct net *net)
11757 {
11758         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11759                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11760
11761         INIT_LIST_HEAD(&net->dev_base_head);
11762
11763         net->dev_name_head = netdev_create_hash();
11764         if (net->dev_name_head == NULL)
11765                 goto err_name;
11766
11767         net->dev_index_head = netdev_create_hash();
11768         if (net->dev_index_head == NULL)
11769                 goto err_idx;
11770
11771         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11772
11773         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11774
11775         return 0;
11776
11777 err_idx:
11778         kfree(net->dev_name_head);
11779 err_name:
11780         return -ENOMEM;
11781 }
11782
11783 /**
11784  *      netdev_drivername - network driver for the device
11785  *      @dev: network device
11786  *
11787  *      Determine network driver for device.
11788  */
11789 const char *netdev_drivername(const struct net_device *dev)
11790 {
11791         const struct device_driver *driver;
11792         const struct device *parent;
11793         const char *empty = "";
11794
11795         parent = dev->dev.parent;
11796         if (!parent)
11797                 return empty;
11798
11799         driver = parent->driver;
11800         if (driver && driver->name)
11801                 return driver->name;
11802         return empty;
11803 }
11804
11805 static void __netdev_printk(const char *level, const struct net_device *dev,
11806                             struct va_format *vaf)
11807 {
11808         if (dev && dev->dev.parent) {
11809                 dev_printk_emit(level[1] - '0',
11810                                 dev->dev.parent,
11811                                 "%s %s %s%s: %pV",
11812                                 dev_driver_string(dev->dev.parent),
11813                                 dev_name(dev->dev.parent),
11814                                 netdev_name(dev), netdev_reg_state(dev),
11815                                 vaf);
11816         } else if (dev) {
11817                 printk("%s%s%s: %pV",
11818                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11819         } else {
11820                 printk("%s(NULL net_device): %pV", level, vaf);
11821         }
11822 }
11823
11824 void netdev_printk(const char *level, const struct net_device *dev,
11825                    const char *format, ...)
11826 {
11827         struct va_format vaf;
11828         va_list args;
11829
11830         va_start(args, format);
11831
11832         vaf.fmt = format;
11833         vaf.va = &args;
11834
11835         __netdev_printk(level, dev, &vaf);
11836
11837         va_end(args);
11838 }
11839 EXPORT_SYMBOL(netdev_printk);
11840
11841 #define define_netdev_printk_level(func, level)                 \
11842 void func(const struct net_device *dev, const char *fmt, ...)   \
11843 {                                                               \
11844         struct va_format vaf;                                   \
11845         va_list args;                                           \
11846                                                                 \
11847         va_start(args, fmt);                                    \
11848                                                                 \
11849         vaf.fmt = fmt;                                          \
11850         vaf.va = &args;                                         \
11851                                                                 \
11852         __netdev_printk(level, dev, &vaf);                      \
11853                                                                 \
11854         va_end(args);                                           \
11855 }                                                               \
11856 EXPORT_SYMBOL(func);
11857
11858 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11859 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11860 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11861 define_netdev_printk_level(netdev_err, KERN_ERR);
11862 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11863 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11864 define_netdev_printk_level(netdev_info, KERN_INFO);
11865
11866 static void __net_exit netdev_exit(struct net *net)
11867 {
11868         kfree(net->dev_name_head);
11869         kfree(net->dev_index_head);
11870         xa_destroy(&net->dev_by_index);
11871         if (net != &init_net)
11872                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11873 }
11874
11875 static struct pernet_operations __net_initdata netdev_net_ops = {
11876         .init = netdev_init,
11877         .exit = netdev_exit,
11878 };
11879
11880 static void __net_exit default_device_exit_net(struct net *net)
11881 {
11882         struct netdev_name_node *name_node, *tmp;
11883         struct net_device *dev, *aux;
11884         /*
11885          * Push all migratable network devices back to the
11886          * initial network namespace
11887          */
11888         ASSERT_RTNL();
11889         for_each_netdev_safe(net, dev, aux) {
11890                 int err;
11891                 char fb_name[IFNAMSIZ];
11892
11893                 /* Ignore unmoveable devices (i.e. loopback) */
11894                 if (dev->netns_local)
11895                         continue;
11896
11897                 /* Leave virtual devices for the generic cleanup */
11898                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11899                         continue;
11900
11901                 /* Push remaining network devices to init_net */
11902                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11903                 if (netdev_name_in_use(&init_net, fb_name))
11904                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11905
11906                 netdev_for_each_altname_safe(dev, name_node, tmp)
11907                         if (netdev_name_in_use(&init_net, name_node->name))
11908                                 __netdev_name_node_alt_destroy(name_node);
11909
11910                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11911                 if (err) {
11912                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11913                                  __func__, dev->name, err);
11914                         BUG();
11915                 }
11916         }
11917 }
11918
11919 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11920 {
11921         /* At exit all network devices most be removed from a network
11922          * namespace.  Do this in the reverse order of registration.
11923          * Do this across as many network namespaces as possible to
11924          * improve batching efficiency.
11925          */
11926         struct net_device *dev;
11927         struct net *net;
11928         LIST_HEAD(dev_kill_list);
11929
11930         rtnl_lock();
11931         list_for_each_entry(net, net_list, exit_list) {
11932                 default_device_exit_net(net);
11933                 cond_resched();
11934         }
11935
11936         list_for_each_entry(net, net_list, exit_list) {
11937                 for_each_netdev_reverse(net, dev) {
11938                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11939                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11940                         else
11941                                 unregister_netdevice_queue(dev, &dev_kill_list);
11942                 }
11943         }
11944         unregister_netdevice_many(&dev_kill_list);
11945         rtnl_unlock();
11946 }
11947
11948 static struct pernet_operations __net_initdata default_device_ops = {
11949         .exit_batch = default_device_exit_batch,
11950 };
11951
11952 static void __init net_dev_struct_check(void)
11953 {
11954         /* TX read-mostly hotpath */
11955         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11956         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11957         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11958         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11959         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11960         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11961         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11962         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11963         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11964         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11965         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11966         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11967         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11968 #ifdef CONFIG_XPS
11969         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11970 #endif
11971 #ifdef CONFIG_NETFILTER_EGRESS
11972         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11973 #endif
11974 #ifdef CONFIG_NET_XGRESS
11975         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11976 #endif
11977         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11978
11979         /* TXRX read-mostly hotpath */
11980         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11981         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11982         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11983         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11984         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11985         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11986         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11987
11988         /* RX read-mostly hotpath */
11989         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11990         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11991         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11992         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11993         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11994         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11995         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11996         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11997         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11998         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11999         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12000 #ifdef CONFIG_NETPOLL
12001         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12002 #endif
12003 #ifdef CONFIG_NET_XGRESS
12004         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12005 #endif
12006         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12007 }
12008
12009 /*
12010  *      Initialize the DEV module. At boot time this walks the device list and
12011  *      unhooks any devices that fail to initialise (normally hardware not
12012  *      present) and leaves us with a valid list of present and active devices.
12013  *
12014  */
12015
12016 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12017 #define SYSTEM_PERCPU_PAGE_POOL_SIZE    ((1 << 20) / PAGE_SIZE)
12018
12019 static int net_page_pool_create(int cpuid)
12020 {
12021 #if IS_ENABLED(CONFIG_PAGE_POOL)
12022         struct page_pool_params page_pool_params = {
12023                 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12024                 .flags = PP_FLAG_SYSTEM_POOL,
12025                 .nid = cpu_to_mem(cpuid),
12026         };
12027         struct page_pool *pp_ptr;
12028
12029         pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12030         if (IS_ERR(pp_ptr))
12031                 return -ENOMEM;
12032
12033         per_cpu(system_page_pool, cpuid) = pp_ptr;
12034 #endif
12035         return 0;
12036 }
12037
12038 static int backlog_napi_should_run(unsigned int cpu)
12039 {
12040         struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12041         struct napi_struct *napi = &sd->backlog;
12042
12043         return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12044 }
12045
12046 static void run_backlog_napi(unsigned int cpu)
12047 {
12048         struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12049
12050         napi_threaded_poll_loop(&sd->backlog);
12051 }
12052
12053 static void backlog_napi_setup(unsigned int cpu)
12054 {
12055         struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12056         struct napi_struct *napi = &sd->backlog;
12057
12058         napi->thread = this_cpu_read(backlog_napi);
12059         set_bit(NAPI_STATE_THREADED, &napi->state);
12060 }
12061
12062 static struct smp_hotplug_thread backlog_threads = {
12063         .store                  = &backlog_napi,
12064         .thread_should_run      = backlog_napi_should_run,
12065         .thread_fn              = run_backlog_napi,
12066         .thread_comm            = "backlog_napi/%u",
12067         .setup                  = backlog_napi_setup,
12068 };
12069
12070 /*
12071  *       This is called single threaded during boot, so no need
12072  *       to take the rtnl semaphore.
12073  */
12074 static int __init net_dev_init(void)
12075 {
12076         int i, rc = -ENOMEM;
12077
12078         BUG_ON(!dev_boot_phase);
12079
12080         net_dev_struct_check();
12081
12082         if (dev_proc_init())
12083                 goto out;
12084
12085         if (netdev_kobject_init())
12086                 goto out;
12087
12088         for (i = 0; i < PTYPE_HASH_SIZE; i++)
12089                 INIT_LIST_HEAD(&ptype_base[i]);
12090
12091         if (register_pernet_subsys(&netdev_net_ops))
12092                 goto out;
12093
12094         /*
12095          *      Initialise the packet receive queues.
12096          */
12097
12098         for_each_possible_cpu(i) {
12099                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12100                 struct softnet_data *sd = &per_cpu(softnet_data, i);
12101
12102                 INIT_WORK(flush, flush_backlog);
12103
12104                 skb_queue_head_init(&sd->input_pkt_queue);
12105                 skb_queue_head_init(&sd->process_queue);
12106 #ifdef CONFIG_XFRM_OFFLOAD
12107                 skb_queue_head_init(&sd->xfrm_backlog);
12108 #endif
12109                 INIT_LIST_HEAD(&sd->poll_list);
12110                 sd->output_queue_tailp = &sd->output_queue;
12111 #ifdef CONFIG_RPS
12112                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12113                 sd->cpu = i;
12114 #endif
12115                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12116                 spin_lock_init(&sd->defer_lock);
12117
12118                 init_gro_hash(&sd->backlog);
12119                 sd->backlog.poll = process_backlog;
12120                 sd->backlog.weight = weight_p;
12121                 INIT_LIST_HEAD(&sd->backlog.poll_list);
12122
12123                 if (net_page_pool_create(i))
12124                         goto out;
12125         }
12126         if (use_backlog_threads())
12127                 smpboot_register_percpu_thread(&backlog_threads);
12128
12129         dev_boot_phase = 0;
12130
12131         /* The loopback device is special if any other network devices
12132          * is present in a network namespace the loopback device must
12133          * be present. Since we now dynamically allocate and free the
12134          * loopback device ensure this invariant is maintained by
12135          * keeping the loopback device as the first device on the
12136          * list of network devices.  Ensuring the loopback devices
12137          * is the first device that appears and the last network device
12138          * that disappears.
12139          */
12140         if (register_pernet_device(&loopback_net_ops))
12141                 goto out;
12142
12143         if (register_pernet_device(&default_device_ops))
12144                 goto out;
12145
12146         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12147         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12148
12149         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12150                                        NULL, dev_cpu_dead);
12151         WARN_ON(rc < 0);
12152         rc = 0;
12153
12154         /* avoid static key IPIs to isolated CPUs */
12155         if (housekeeping_enabled(HK_TYPE_MISC))
12156                 net_enable_timestamp();
12157 out:
12158         if (rc < 0) {
12159                 for_each_possible_cpu(i) {
12160                         struct page_pool *pp_ptr;
12161
12162                         pp_ptr = per_cpu(system_page_pool, i);
12163                         if (!pp_ptr)
12164                                 continue;
12165
12166                         page_pool_destroy(pp_ptr);
12167                         per_cpu(system_page_pool, i) = NULL;
12168                 }
12169         }
12170
12171         return rc;
12172 }
12173
12174 subsys_initcall(net_dev_init);
This page took 0.791447 seconds and 4 git commands to generate.