2 * Copyright (C) 2011 Fujitsu. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache *delayed_node_cache;
32 int __init btrfs_delayed_inode_init(void)
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
39 if (!delayed_node_cache)
44 void btrfs_delayed_inode_exit(void)
46 kmem_cache_destroy(delayed_node_cache);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
75 static struct btrfs_delayed_node *btrfs_get_delayed_node(
76 struct btrfs_inode *btrfs_inode)
78 struct btrfs_root *root = btrfs_inode->root;
79 u64 ino = btrfs_ino(btrfs_inode);
80 struct btrfs_delayed_node *node;
82 node = READ_ONCE(btrfs_inode->delayed_node);
84 atomic_inc(&node->refs);
88 spin_lock(&root->inode_lock);
89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
91 if (btrfs_inode->delayed_node) {
92 atomic_inc(&node->refs); /* can be accessed */
93 BUG_ON(btrfs_inode->delayed_node != node);
94 spin_unlock(&root->inode_lock);
97 btrfs_inode->delayed_node = node;
98 /* can be accessed and cached in the inode */
99 atomic_add(2, &node->refs);
100 spin_unlock(&root->inode_lock);
103 spin_unlock(&root->inode_lock);
108 /* Will return either the node or PTR_ERR(-ENOMEM) */
109 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 struct btrfs_inode *btrfs_inode)
112 struct btrfs_delayed_node *node;
113 struct btrfs_root *root = btrfs_inode->root;
114 u64 ino = btrfs_ino(btrfs_inode);
118 node = btrfs_get_delayed_node(btrfs_inode);
122 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124 return ERR_PTR(-ENOMEM);
125 btrfs_init_delayed_node(node, root, ino);
127 /* cached in the btrfs inode and can be accessed */
128 atomic_add(2, &node->refs);
130 ret = radix_tree_preload(GFP_NOFS);
132 kmem_cache_free(delayed_node_cache, node);
136 spin_lock(&root->inode_lock);
137 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
138 if (ret == -EEXIST) {
139 spin_unlock(&root->inode_lock);
140 kmem_cache_free(delayed_node_cache, node);
141 radix_tree_preload_end();
144 btrfs_inode->delayed_node = node;
145 spin_unlock(&root->inode_lock);
146 radix_tree_preload_end();
152 * Call it when holding delayed_node->mutex
154 * If mod = 1, add this node into the prepared list.
156 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
157 struct btrfs_delayed_node *node,
160 spin_lock(&root->lock);
161 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
162 if (!list_empty(&node->p_list))
163 list_move_tail(&node->p_list, &root->prepare_list);
165 list_add_tail(&node->p_list, &root->prepare_list);
167 list_add_tail(&node->n_list, &root->node_list);
168 list_add_tail(&node->p_list, &root->prepare_list);
169 atomic_inc(&node->refs); /* inserted into list */
171 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173 spin_unlock(&root->lock);
176 /* Call it when holding delayed_node->mutex */
177 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
178 struct btrfs_delayed_node *node)
180 spin_lock(&root->lock);
181 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183 atomic_dec(&node->refs); /* not in the list */
184 list_del_init(&node->n_list);
185 if (!list_empty(&node->p_list))
186 list_del_init(&node->p_list);
187 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189 spin_unlock(&root->lock);
192 static struct btrfs_delayed_node *btrfs_first_delayed_node(
193 struct btrfs_delayed_root *delayed_root)
196 struct btrfs_delayed_node *node = NULL;
198 spin_lock(&delayed_root->lock);
199 if (list_empty(&delayed_root->node_list))
202 p = delayed_root->node_list.next;
203 node = list_entry(p, struct btrfs_delayed_node, n_list);
204 atomic_inc(&node->refs);
206 spin_unlock(&delayed_root->lock);
211 static struct btrfs_delayed_node *btrfs_next_delayed_node(
212 struct btrfs_delayed_node *node)
214 struct btrfs_delayed_root *delayed_root;
216 struct btrfs_delayed_node *next = NULL;
218 delayed_root = node->root->fs_info->delayed_root;
219 spin_lock(&delayed_root->lock);
220 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221 /* not in the list */
222 if (list_empty(&delayed_root->node_list))
224 p = delayed_root->node_list.next;
225 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
228 p = node->n_list.next;
230 next = list_entry(p, struct btrfs_delayed_node, n_list);
231 atomic_inc(&next->refs);
233 spin_unlock(&delayed_root->lock);
238 static void __btrfs_release_delayed_node(
239 struct btrfs_delayed_node *delayed_node,
242 struct btrfs_delayed_root *delayed_root;
247 delayed_root = delayed_node->root->fs_info->delayed_root;
249 mutex_lock(&delayed_node->mutex);
250 if (delayed_node->count)
251 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
253 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
254 mutex_unlock(&delayed_node->mutex);
256 if (atomic_dec_and_test(&delayed_node->refs)) {
258 struct btrfs_root *root = delayed_node->root;
259 spin_lock(&root->inode_lock);
260 if (atomic_read(&delayed_node->refs) == 0) {
261 radix_tree_delete(&root->delayed_nodes_tree,
262 delayed_node->inode_id);
265 spin_unlock(&root->inode_lock);
267 kmem_cache_free(delayed_node_cache, delayed_node);
271 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
273 __btrfs_release_delayed_node(node, 0);
276 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
277 struct btrfs_delayed_root *delayed_root)
280 struct btrfs_delayed_node *node = NULL;
282 spin_lock(&delayed_root->lock);
283 if (list_empty(&delayed_root->prepare_list))
286 p = delayed_root->prepare_list.next;
288 node = list_entry(p, struct btrfs_delayed_node, p_list);
289 atomic_inc(&node->refs);
291 spin_unlock(&delayed_root->lock);
296 static inline void btrfs_release_prepared_delayed_node(
297 struct btrfs_delayed_node *node)
299 __btrfs_release_delayed_node(node, 1);
302 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304 struct btrfs_delayed_item *item;
305 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
307 item->data_len = data_len;
308 item->ins_or_del = 0;
309 item->bytes_reserved = 0;
310 item->delayed_node = NULL;
311 atomic_set(&item->refs, 1);
317 * __btrfs_lookup_delayed_item - look up the delayed item by key
318 * @delayed_node: pointer to the delayed node
319 * @key: the key to look up
320 * @prev: used to store the prev item if the right item isn't found
321 * @next: used to store the next item if the right item isn't found
323 * Note: if we don't find the right item, we will return the prev item and
326 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
327 struct rb_root *root,
328 struct btrfs_key *key,
329 struct btrfs_delayed_item **prev,
330 struct btrfs_delayed_item **next)
332 struct rb_node *node, *prev_node = NULL;
333 struct btrfs_delayed_item *delayed_item = NULL;
336 node = root->rb_node;
339 delayed_item = rb_entry(node, struct btrfs_delayed_item,
342 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
344 node = node->rb_right;
346 node = node->rb_left;
355 *prev = delayed_item;
356 else if ((node = rb_prev(prev_node)) != NULL) {
357 *prev = rb_entry(node, struct btrfs_delayed_item,
367 *next = delayed_item;
368 else if ((node = rb_next(prev_node)) != NULL) {
369 *next = rb_entry(node, struct btrfs_delayed_item,
377 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
378 struct btrfs_delayed_node *delayed_node,
379 struct btrfs_key *key)
381 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
385 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
386 struct btrfs_delayed_item *ins,
389 struct rb_node **p, *node;
390 struct rb_node *parent_node = NULL;
391 struct rb_root *root;
392 struct btrfs_delayed_item *item;
395 if (action == BTRFS_DELAYED_INSERTION_ITEM)
396 root = &delayed_node->ins_root;
397 else if (action == BTRFS_DELAYED_DELETION_ITEM)
398 root = &delayed_node->del_root;
402 node = &ins->rb_node;
406 item = rb_entry(parent_node, struct btrfs_delayed_item,
409 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
418 rb_link_node(node, parent_node, p);
419 rb_insert_color(node, root);
420 ins->delayed_node = delayed_node;
421 ins->ins_or_del = action;
423 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
424 action == BTRFS_DELAYED_INSERTION_ITEM &&
425 ins->key.offset >= delayed_node->index_cnt)
426 delayed_node->index_cnt = ins->key.offset + 1;
428 delayed_node->count++;
429 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
433 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
434 struct btrfs_delayed_item *item)
436 return __btrfs_add_delayed_item(node, item,
437 BTRFS_DELAYED_INSERTION_ITEM);
440 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
441 struct btrfs_delayed_item *item)
443 return __btrfs_add_delayed_item(node, item,
444 BTRFS_DELAYED_DELETION_ITEM);
447 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
449 int seq = atomic_inc_return(&delayed_root->items_seq);
452 * atomic_dec_return implies a barrier for waitqueue_active
454 if ((atomic_dec_return(&delayed_root->items) <
455 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
456 waitqueue_active(&delayed_root->wait))
457 wake_up(&delayed_root->wait);
460 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
462 struct rb_root *root;
463 struct btrfs_delayed_root *delayed_root;
465 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
467 BUG_ON(!delayed_root);
468 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
469 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
471 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
472 root = &delayed_item->delayed_node->ins_root;
474 root = &delayed_item->delayed_node->del_root;
476 rb_erase(&delayed_item->rb_node, root);
477 delayed_item->delayed_node->count--;
479 finish_one_item(delayed_root);
482 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
485 __btrfs_remove_delayed_item(item);
486 if (atomic_dec_and_test(&item->refs))
491 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
492 struct btrfs_delayed_node *delayed_node)
495 struct btrfs_delayed_item *item = NULL;
497 p = rb_first(&delayed_node->ins_root);
499 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
504 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
505 struct btrfs_delayed_node *delayed_node)
508 struct btrfs_delayed_item *item = NULL;
510 p = rb_first(&delayed_node->del_root);
512 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
517 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
518 struct btrfs_delayed_item *item)
521 struct btrfs_delayed_item *next = NULL;
523 p = rb_next(&item->rb_node);
525 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
530 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
531 struct btrfs_fs_info *fs_info,
532 struct btrfs_delayed_item *item)
534 struct btrfs_block_rsv *src_rsv;
535 struct btrfs_block_rsv *dst_rsv;
539 if (!trans->bytes_reserved)
542 src_rsv = trans->block_rsv;
543 dst_rsv = &fs_info->delayed_block_rsv;
545 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
546 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
548 trace_btrfs_space_reservation(fs_info, "delayed_item",
551 item->bytes_reserved = num_bytes;
557 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
558 struct btrfs_delayed_item *item)
560 struct btrfs_block_rsv *rsv;
562 if (!item->bytes_reserved)
565 rsv = &fs_info->delayed_block_rsv;
566 trace_btrfs_space_reservation(fs_info, "delayed_item",
567 item->key.objectid, item->bytes_reserved,
569 btrfs_block_rsv_release(fs_info, rsv,
570 item->bytes_reserved);
573 static int btrfs_delayed_inode_reserve_metadata(
574 struct btrfs_trans_handle *trans,
575 struct btrfs_root *root,
576 struct btrfs_inode *inode,
577 struct btrfs_delayed_node *node)
579 struct btrfs_fs_info *fs_info = root->fs_info;
580 struct btrfs_block_rsv *src_rsv;
581 struct btrfs_block_rsv *dst_rsv;
584 bool release = false;
586 src_rsv = trans->block_rsv;
587 dst_rsv = &fs_info->delayed_block_rsv;
589 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
592 * If our block_rsv is the delalloc block reserve then check and see if
593 * we have our extra reservation for updating the inode. If not fall
594 * through and try to reserve space quickly.
596 * We used to try and steal from the delalloc block rsv or the global
597 * reserve, but we'd steal a full reservation, which isn't kind. We are
598 * here through delalloc which means we've likely just cowed down close
599 * to the leaf that contains the inode, so we would steal less just
600 * doing the fallback inode update, so if we do end up having to steal
601 * from the global block rsv we hopefully only steal one or two blocks
602 * worth which is less likely to hurt us.
604 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
605 spin_lock(&inode->lock);
606 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
607 &inode->runtime_flags))
611 spin_unlock(&inode->lock);
615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 * which doesn't reserve space for speed. This is a problem since we
617 * still need to reserve space for this update, so try to reserve the
620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 * we're accounted for.
623 if (!src_rsv || (!trans->bytes_reserved &&
624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
626 BTRFS_RESERVE_NO_FLUSH);
628 * Since we're under a transaction reserve_metadata_bytes could
629 * try to commit the transaction which will make it return
630 * EAGAIN to make us stop the transaction we have, so return
631 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636 node->bytes_reserved = num_bytes;
637 trace_btrfs_space_reservation(fs_info,
645 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
648 * Migrate only takes a reservation, it doesn't touch the size of the
649 * block_rsv. This is to simplify people who don't normally have things
650 * migrated from their block rsv. If they go to release their
651 * reservation, that will decrease the size as well, so if migrate
652 * reduced size we'd end up with a negative size. But for the
653 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
654 * but we could in fact do this reserve/migrate dance several times
655 * between the time we did the original reservation and we'd clean it
656 * up. So to take care of this, release the space for the meta
657 * reservation here. I think it may be time for a documentation page on
658 * how block rsvs. work.
661 trace_btrfs_space_reservation(fs_info, "delayed_inode",
662 btrfs_ino(inode), num_bytes, 1);
663 node->bytes_reserved = num_bytes;
667 trace_btrfs_space_reservation(fs_info, "delalloc",
668 btrfs_ino(inode), num_bytes, 0);
669 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
675 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
676 struct btrfs_delayed_node *node)
678 struct btrfs_block_rsv *rsv;
680 if (!node->bytes_reserved)
683 rsv = &fs_info->delayed_block_rsv;
684 trace_btrfs_space_reservation(fs_info, "delayed_inode",
685 node->inode_id, node->bytes_reserved, 0);
686 btrfs_block_rsv_release(fs_info, rsv,
687 node->bytes_reserved);
688 node->bytes_reserved = 0;
692 * This helper will insert some continuous items into the same leaf according
693 * to the free space of the leaf.
695 static int btrfs_batch_insert_items(struct btrfs_root *root,
696 struct btrfs_path *path,
697 struct btrfs_delayed_item *item)
699 struct btrfs_fs_info *fs_info = root->fs_info;
700 struct btrfs_delayed_item *curr, *next;
702 int total_data_size = 0, total_size = 0;
703 struct extent_buffer *leaf;
705 struct btrfs_key *keys;
707 struct list_head head;
713 BUG_ON(!path->nodes[0]);
715 leaf = path->nodes[0];
716 free_space = btrfs_leaf_free_space(fs_info, leaf);
717 INIT_LIST_HEAD(&head);
723 * count the number of the continuous items that we can insert in batch
725 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
727 total_data_size += next->data_len;
728 total_size += next->data_len + sizeof(struct btrfs_item);
729 list_add_tail(&next->tree_list, &head);
733 next = __btrfs_next_delayed_item(curr);
737 if (!btrfs_is_continuous_delayed_item(curr, next))
747 * we need allocate some memory space, but it might cause the task
748 * to sleep, so we set all locked nodes in the path to blocking locks
751 btrfs_set_path_blocking(path);
753 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
759 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
765 /* get keys of all the delayed items */
767 list_for_each_entry(next, &head, tree_list) {
769 data_size[i] = next->data_len;
773 /* reset all the locked nodes in the patch to spinning locks. */
774 btrfs_clear_path_blocking(path, NULL, 0);
776 /* insert the keys of the items */
777 setup_items_for_insert(root, path, keys, data_size,
778 total_data_size, total_size, nitems);
780 /* insert the dir index items */
781 slot = path->slots[0];
782 list_for_each_entry_safe(curr, next, &head, tree_list) {
783 data_ptr = btrfs_item_ptr(leaf, slot, char);
784 write_extent_buffer(leaf, &curr->data,
785 (unsigned long)data_ptr,
789 btrfs_delayed_item_release_metadata(fs_info, curr);
791 list_del(&curr->tree_list);
792 btrfs_release_delayed_item(curr);
803 * This helper can just do simple insertion that needn't extend item for new
804 * data, such as directory name index insertion, inode insertion.
806 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
807 struct btrfs_root *root,
808 struct btrfs_path *path,
809 struct btrfs_delayed_item *delayed_item)
811 struct btrfs_fs_info *fs_info = root->fs_info;
812 struct extent_buffer *leaf;
816 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
817 delayed_item->data_len);
818 if (ret < 0 && ret != -EEXIST)
821 leaf = path->nodes[0];
823 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
825 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
826 delayed_item->data_len);
827 btrfs_mark_buffer_dirty(leaf);
829 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
834 * we insert an item first, then if there are some continuous items, we try
835 * to insert those items into the same leaf.
837 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
838 struct btrfs_path *path,
839 struct btrfs_root *root,
840 struct btrfs_delayed_node *node)
842 struct btrfs_delayed_item *curr, *prev;
846 mutex_lock(&node->mutex);
847 curr = __btrfs_first_delayed_insertion_item(node);
851 ret = btrfs_insert_delayed_item(trans, root, path, curr);
853 btrfs_release_path(path);
858 curr = __btrfs_next_delayed_item(prev);
859 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
860 /* insert the continuous items into the same leaf */
862 btrfs_batch_insert_items(root, path, curr);
864 btrfs_release_delayed_item(prev);
865 btrfs_mark_buffer_dirty(path->nodes[0]);
867 btrfs_release_path(path);
868 mutex_unlock(&node->mutex);
872 mutex_unlock(&node->mutex);
876 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
877 struct btrfs_root *root,
878 struct btrfs_path *path,
879 struct btrfs_delayed_item *item)
881 struct btrfs_fs_info *fs_info = root->fs_info;
882 struct btrfs_delayed_item *curr, *next;
883 struct extent_buffer *leaf;
884 struct btrfs_key key;
885 struct list_head head;
886 int nitems, i, last_item;
889 BUG_ON(!path->nodes[0]);
891 leaf = path->nodes[0];
894 last_item = btrfs_header_nritems(leaf) - 1;
896 return -ENOENT; /* FIXME: Is errno suitable? */
899 INIT_LIST_HEAD(&head);
900 btrfs_item_key_to_cpu(leaf, &key, i);
903 * count the number of the dir index items that we can delete in batch
905 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
906 list_add_tail(&next->tree_list, &head);
910 next = __btrfs_next_delayed_item(curr);
914 if (!btrfs_is_continuous_delayed_item(curr, next))
920 btrfs_item_key_to_cpu(leaf, &key, i);
926 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
930 list_for_each_entry_safe(curr, next, &head, tree_list) {
931 btrfs_delayed_item_release_metadata(fs_info, curr);
932 list_del(&curr->tree_list);
933 btrfs_release_delayed_item(curr);
940 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
941 struct btrfs_path *path,
942 struct btrfs_root *root,
943 struct btrfs_delayed_node *node)
945 struct btrfs_delayed_item *curr, *prev;
949 mutex_lock(&node->mutex);
950 curr = __btrfs_first_delayed_deletion_item(node);
954 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
959 * can't find the item which the node points to, so this node
960 * is invalid, just drop it.
963 curr = __btrfs_next_delayed_item(prev);
964 btrfs_release_delayed_item(prev);
966 btrfs_release_path(path);
968 mutex_unlock(&node->mutex);
974 btrfs_batch_delete_items(trans, root, path, curr);
975 btrfs_release_path(path);
976 mutex_unlock(&node->mutex);
980 btrfs_release_path(path);
981 mutex_unlock(&node->mutex);
985 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
987 struct btrfs_delayed_root *delayed_root;
990 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
991 BUG_ON(!delayed_node->root);
992 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
993 delayed_node->count--;
995 delayed_root = delayed_node->root->fs_info->delayed_root;
996 finish_one_item(delayed_root);
1000 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002 struct btrfs_delayed_root *delayed_root;
1004 ASSERT(delayed_node->root);
1005 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1006 delayed_node->count--;
1008 delayed_root = delayed_node->root->fs_info->delayed_root;
1009 finish_one_item(delayed_root);
1012 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root,
1014 struct btrfs_path *path,
1015 struct btrfs_delayed_node *node)
1017 struct btrfs_fs_info *fs_info = root->fs_info;
1018 struct btrfs_key key;
1019 struct btrfs_inode_item *inode_item;
1020 struct extent_buffer *leaf;
1024 key.objectid = node->inode_id;
1025 key.type = BTRFS_INODE_ITEM_KEY;
1028 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1033 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 btrfs_release_path(path);
1037 } else if (ret < 0) {
1041 leaf = path->nodes[0];
1042 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1043 struct btrfs_inode_item);
1044 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1045 sizeof(struct btrfs_inode_item));
1046 btrfs_mark_buffer_dirty(leaf);
1048 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052 if (path->slots[0] >= btrfs_header_nritems(leaf))
1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1056 if (key.objectid != node->inode_id)
1059 if (key.type != BTRFS_INODE_REF_KEY &&
1060 key.type != BTRFS_INODE_EXTREF_KEY)
1064 * Delayed iref deletion is for the inode who has only one link,
1065 * so there is only one iref. The case that several irefs are
1066 * in the same item doesn't exist.
1068 btrfs_del_item(trans, root, path);
1070 btrfs_release_delayed_iref(node);
1072 btrfs_release_path(path);
1074 btrfs_delayed_inode_release_metadata(fs_info, node);
1075 btrfs_release_delayed_inode(node);
1080 btrfs_release_path(path);
1082 key.type = BTRFS_INODE_EXTREF_KEY;
1084 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1090 leaf = path->nodes[0];
1095 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 struct btrfs_delayed_node *node)
1102 mutex_lock(&node->mutex);
1103 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1104 mutex_unlock(&node->mutex);
1108 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1109 mutex_unlock(&node->mutex);
1114 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1115 struct btrfs_path *path,
1116 struct btrfs_delayed_node *node)
1120 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1133 * Called when committing the transaction.
1134 * Returns 0 on success.
1135 * Returns < 0 on error and returns with an aborted transaction with any
1136 * outstanding delayed items cleaned up.
1138 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1139 struct btrfs_fs_info *fs_info, int nr)
1141 struct btrfs_delayed_root *delayed_root;
1142 struct btrfs_delayed_node *curr_node, *prev_node;
1143 struct btrfs_path *path;
1144 struct btrfs_block_rsv *block_rsv;
1146 bool count = (nr > 0);
1151 path = btrfs_alloc_path();
1154 path->leave_spinning = 1;
1156 block_rsv = trans->block_rsv;
1157 trans->block_rsv = &fs_info->delayed_block_rsv;
1159 delayed_root = fs_info->delayed_root;
1161 curr_node = btrfs_first_delayed_node(delayed_root);
1162 while (curr_node && (!count || (count && nr--))) {
1163 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 btrfs_release_delayed_node(curr_node);
1168 btrfs_abort_transaction(trans, ret);
1172 prev_node = curr_node;
1173 curr_node = btrfs_next_delayed_node(curr_node);
1174 btrfs_release_delayed_node(prev_node);
1178 btrfs_release_delayed_node(curr_node);
1179 btrfs_free_path(path);
1180 trans->block_rsv = block_rsv;
1185 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1186 struct btrfs_fs_info *fs_info)
1188 return __btrfs_run_delayed_items(trans, fs_info, -1);
1191 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1192 struct btrfs_fs_info *fs_info, int nr)
1194 return __btrfs_run_delayed_items(trans, fs_info, nr);
1197 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1198 struct btrfs_inode *inode)
1200 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1201 struct btrfs_path *path;
1202 struct btrfs_block_rsv *block_rsv;
1208 mutex_lock(&delayed_node->mutex);
1209 if (!delayed_node->count) {
1210 mutex_unlock(&delayed_node->mutex);
1211 btrfs_release_delayed_node(delayed_node);
1214 mutex_unlock(&delayed_node->mutex);
1216 path = btrfs_alloc_path();
1218 btrfs_release_delayed_node(delayed_node);
1221 path->leave_spinning = 1;
1223 block_rsv = trans->block_rsv;
1224 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228 btrfs_release_delayed_node(delayed_node);
1229 btrfs_free_path(path);
1230 trans->block_rsv = block_rsv;
1235 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1237 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1238 struct btrfs_trans_handle *trans;
1239 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1240 struct btrfs_path *path;
1241 struct btrfs_block_rsv *block_rsv;
1247 mutex_lock(&delayed_node->mutex);
1248 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1249 mutex_unlock(&delayed_node->mutex);
1250 btrfs_release_delayed_node(delayed_node);
1253 mutex_unlock(&delayed_node->mutex);
1255 trans = btrfs_join_transaction(delayed_node->root);
1256 if (IS_ERR(trans)) {
1257 ret = PTR_ERR(trans);
1261 path = btrfs_alloc_path();
1266 path->leave_spinning = 1;
1268 block_rsv = trans->block_rsv;
1269 trans->block_rsv = &fs_info->delayed_block_rsv;
1271 mutex_lock(&delayed_node->mutex);
1272 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1273 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1274 path, delayed_node);
1277 mutex_unlock(&delayed_node->mutex);
1279 btrfs_free_path(path);
1280 trans->block_rsv = block_rsv;
1282 btrfs_end_transaction(trans);
1283 btrfs_btree_balance_dirty(fs_info);
1285 btrfs_release_delayed_node(delayed_node);
1290 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1292 struct btrfs_delayed_node *delayed_node;
1294 delayed_node = READ_ONCE(inode->delayed_node);
1298 inode->delayed_node = NULL;
1299 btrfs_release_delayed_node(delayed_node);
1302 struct btrfs_async_delayed_work {
1303 struct btrfs_delayed_root *delayed_root;
1305 struct btrfs_work work;
1308 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310 struct btrfs_async_delayed_work *async_work;
1311 struct btrfs_delayed_root *delayed_root;
1312 struct btrfs_trans_handle *trans;
1313 struct btrfs_path *path;
1314 struct btrfs_delayed_node *delayed_node = NULL;
1315 struct btrfs_root *root;
1316 struct btrfs_block_rsv *block_rsv;
1319 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1320 delayed_root = async_work->delayed_root;
1322 path = btrfs_alloc_path();
1327 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1330 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1334 path->leave_spinning = 1;
1335 root = delayed_node->root;
1337 trans = btrfs_join_transaction(root);
1341 block_rsv = trans->block_rsv;
1342 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346 trans->block_rsv = block_rsv;
1347 btrfs_end_transaction(trans);
1348 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1351 btrfs_release_path(path);
1354 btrfs_release_prepared_delayed_node(delayed_node);
1355 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1356 total_done < async_work->nr)
1360 btrfs_free_path(path);
1362 wake_up(&delayed_root->wait);
1367 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1368 struct btrfs_fs_info *fs_info, int nr)
1370 struct btrfs_async_delayed_work *async_work;
1372 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1373 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1376 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1380 async_work->delayed_root = delayed_root;
1381 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1382 btrfs_async_run_delayed_root, NULL, NULL);
1383 async_work->nr = nr;
1385 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1389 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1394 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396 int val = atomic_read(&delayed_root->items_seq);
1398 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1401 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1407 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1414 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1418 seq = atomic_read(&delayed_root->items_seq);
1420 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1424 wait_event_interruptible(delayed_root->wait,
1425 could_end_wait(delayed_root, seq));
1429 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432 /* Will return 0 or -ENOMEM */
1433 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1434 struct btrfs_fs_info *fs_info,
1435 const char *name, int name_len,
1436 struct btrfs_inode *dir,
1437 struct btrfs_disk_key *disk_key, u8 type,
1440 struct btrfs_delayed_node *delayed_node;
1441 struct btrfs_delayed_item *delayed_item;
1442 struct btrfs_dir_item *dir_item;
1445 delayed_node = btrfs_get_or_create_delayed_node(dir);
1446 if (IS_ERR(delayed_node))
1447 return PTR_ERR(delayed_node);
1449 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1450 if (!delayed_item) {
1455 delayed_item->key.objectid = btrfs_ino(dir);
1456 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1457 delayed_item->key.offset = index;
1459 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1460 dir_item->location = *disk_key;
1461 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1462 btrfs_set_stack_dir_data_len(dir_item, 0);
1463 btrfs_set_stack_dir_name_len(dir_item, name_len);
1464 btrfs_set_stack_dir_type(dir_item, type);
1465 memcpy((char *)(dir_item + 1), name, name_len);
1467 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1469 * we have reserved enough space when we start a new transaction,
1470 * so reserving metadata failure is impossible
1475 mutex_lock(&delayed_node->mutex);
1476 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477 if (unlikely(ret)) {
1479 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480 name_len, name, delayed_node->root->objectid,
1481 delayed_node->inode_id, ret);
1484 mutex_unlock(&delayed_node->mutex);
1487 btrfs_release_delayed_node(delayed_node);
1491 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492 struct btrfs_delayed_node *node,
1493 struct btrfs_key *key)
1495 struct btrfs_delayed_item *item;
1497 mutex_lock(&node->mutex);
1498 item = __btrfs_lookup_delayed_insertion_item(node, key);
1500 mutex_unlock(&node->mutex);
1504 btrfs_delayed_item_release_metadata(fs_info, item);
1505 btrfs_release_delayed_item(item);
1506 mutex_unlock(&node->mutex);
1510 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511 struct btrfs_fs_info *fs_info,
1512 struct btrfs_inode *dir, u64 index)
1514 struct btrfs_delayed_node *node;
1515 struct btrfs_delayed_item *item;
1516 struct btrfs_key item_key;
1519 node = btrfs_get_or_create_delayed_node(dir);
1521 return PTR_ERR(node);
1523 item_key.objectid = btrfs_ino(dir);
1524 item_key.type = BTRFS_DIR_INDEX_KEY;
1525 item_key.offset = index;
1527 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1531 item = btrfs_alloc_delayed_item(0);
1537 item->key = item_key;
1539 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541 * we have reserved enough space when we start a new transaction,
1542 * so reserving metadata failure is impossible.
1546 mutex_lock(&node->mutex);
1547 ret = __btrfs_add_delayed_deletion_item(node, item);
1548 if (unlikely(ret)) {
1550 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1551 index, node->root->objectid, node->inode_id, ret);
1554 mutex_unlock(&node->mutex);
1556 btrfs_release_delayed_node(node);
1560 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1562 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1568 * Since we have held i_mutex of this directory, it is impossible that
1569 * a new directory index is added into the delayed node and index_cnt
1570 * is updated now. So we needn't lock the delayed node.
1572 if (!delayed_node->index_cnt) {
1573 btrfs_release_delayed_node(delayed_node);
1577 inode->index_cnt = delayed_node->index_cnt;
1578 btrfs_release_delayed_node(delayed_node);
1582 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1583 struct list_head *ins_list,
1584 struct list_head *del_list)
1586 struct btrfs_delayed_node *delayed_node;
1587 struct btrfs_delayed_item *item;
1589 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1594 * We can only do one readdir with delayed items at a time because of
1595 * item->readdir_list.
1597 inode_unlock_shared(inode);
1600 mutex_lock(&delayed_node->mutex);
1601 item = __btrfs_first_delayed_insertion_item(delayed_node);
1603 atomic_inc(&item->refs);
1604 list_add_tail(&item->readdir_list, ins_list);
1605 item = __btrfs_next_delayed_item(item);
1608 item = __btrfs_first_delayed_deletion_item(delayed_node);
1610 atomic_inc(&item->refs);
1611 list_add_tail(&item->readdir_list, del_list);
1612 item = __btrfs_next_delayed_item(item);
1614 mutex_unlock(&delayed_node->mutex);
1616 * This delayed node is still cached in the btrfs inode, so refs
1617 * must be > 1 now, and we needn't check it is going to be freed
1620 * Besides that, this function is used to read dir, we do not
1621 * insert/delete delayed items in this period. So we also needn't
1622 * requeue or dequeue this delayed node.
1624 atomic_dec(&delayed_node->refs);
1629 void btrfs_readdir_put_delayed_items(struct inode *inode,
1630 struct list_head *ins_list,
1631 struct list_head *del_list)
1633 struct btrfs_delayed_item *curr, *next;
1635 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1636 list_del(&curr->readdir_list);
1637 if (atomic_dec_and_test(&curr->refs))
1641 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1642 list_del(&curr->readdir_list);
1643 if (atomic_dec_and_test(&curr->refs))
1648 * The VFS is going to do up_read(), so we need to downgrade back to a
1651 downgrade_write(&inode->i_rwsem);
1654 int btrfs_should_delete_dir_index(struct list_head *del_list,
1657 struct btrfs_delayed_item *curr, *next;
1660 if (list_empty(del_list))
1663 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1664 if (curr->key.offset > index)
1667 list_del(&curr->readdir_list);
1668 ret = (curr->key.offset == index);
1670 if (atomic_dec_and_test(&curr->refs))
1682 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1685 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1686 struct list_head *ins_list)
1688 struct btrfs_dir_item *di;
1689 struct btrfs_delayed_item *curr, *next;
1690 struct btrfs_key location;
1694 unsigned char d_type;
1696 if (list_empty(ins_list))
1700 * Changing the data of the delayed item is impossible. So
1701 * we needn't lock them. And we have held i_mutex of the
1702 * directory, nobody can delete any directory indexes now.
1704 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1705 list_del(&curr->readdir_list);
1707 if (curr->key.offset < ctx->pos) {
1708 if (atomic_dec_and_test(&curr->refs))
1713 ctx->pos = curr->key.offset;
1715 di = (struct btrfs_dir_item *)curr->data;
1716 name = (char *)(di + 1);
1717 name_len = btrfs_stack_dir_name_len(di);
1719 d_type = btrfs_filetype_table[di->type];
1720 btrfs_disk_key_to_cpu(&location, &di->location);
1722 over = !dir_emit(ctx, name, name_len,
1723 location.objectid, d_type);
1725 if (atomic_dec_and_test(&curr->refs))
1734 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1735 struct btrfs_inode_item *inode_item,
1736 struct inode *inode)
1738 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1739 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1740 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1741 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1742 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1743 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1744 btrfs_set_stack_inode_generation(inode_item,
1745 BTRFS_I(inode)->generation);
1746 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1747 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1748 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1749 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1750 btrfs_set_stack_inode_block_group(inode_item, 0);
1752 btrfs_set_stack_timespec_sec(&inode_item->atime,
1753 inode->i_atime.tv_sec);
1754 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1755 inode->i_atime.tv_nsec);
1757 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1758 inode->i_mtime.tv_sec);
1759 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1760 inode->i_mtime.tv_nsec);
1762 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1763 inode->i_ctime.tv_sec);
1764 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1765 inode->i_ctime.tv_nsec);
1767 btrfs_set_stack_timespec_sec(&inode_item->otime,
1768 BTRFS_I(inode)->i_otime.tv_sec);
1769 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1770 BTRFS_I(inode)->i_otime.tv_nsec);
1773 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775 struct btrfs_delayed_node *delayed_node;
1776 struct btrfs_inode_item *inode_item;
1778 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1782 mutex_lock(&delayed_node->mutex);
1783 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784 mutex_unlock(&delayed_node->mutex);
1785 btrfs_release_delayed_node(delayed_node);
1789 inode_item = &delayed_node->inode_item;
1791 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1795 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1796 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1797 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1798 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1800 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802 *rdev = btrfs_stack_inode_rdev(inode_item);
1803 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1806 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1809 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1812 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814 BTRFS_I(inode)->i_otime.tv_sec =
1815 btrfs_stack_timespec_sec(&inode_item->otime);
1816 BTRFS_I(inode)->i_otime.tv_nsec =
1817 btrfs_stack_timespec_nsec(&inode_item->otime);
1819 inode->i_generation = BTRFS_I(inode)->generation;
1820 BTRFS_I(inode)->index_cnt = (u64)-1;
1822 mutex_unlock(&delayed_node->mutex);
1823 btrfs_release_delayed_node(delayed_node);
1827 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1828 struct btrfs_root *root, struct inode *inode)
1830 struct btrfs_delayed_node *delayed_node;
1833 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1834 if (IS_ERR(delayed_node))
1835 return PTR_ERR(delayed_node);
1837 mutex_lock(&delayed_node->mutex);
1838 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1839 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1843 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1848 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1849 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1850 delayed_node->count++;
1851 atomic_inc(&root->fs_info->delayed_root->items);
1853 mutex_unlock(&delayed_node->mutex);
1854 btrfs_release_delayed_node(delayed_node);
1858 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1861 struct btrfs_delayed_node *delayed_node;
1864 * we don't do delayed inode updates during log recovery because it
1865 * leads to enospc problems. This means we also can't do
1866 * delayed inode refs
1868 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1871 delayed_node = btrfs_get_or_create_delayed_node(inode);
1872 if (IS_ERR(delayed_node))
1873 return PTR_ERR(delayed_node);
1876 * We don't reserve space for inode ref deletion is because:
1877 * - We ONLY do async inode ref deletion for the inode who has only
1878 * one link(i_nlink == 1), it means there is only one inode ref.
1879 * And in most case, the inode ref and the inode item are in the
1880 * same leaf, and we will deal with them at the same time.
1881 * Since we are sure we will reserve the space for the inode item,
1882 * it is unnecessary to reserve space for inode ref deletion.
1883 * - If the inode ref and the inode item are not in the same leaf,
1884 * We also needn't worry about enospc problem, because we reserve
1885 * much more space for the inode update than it needs.
1886 * - At the worst, we can steal some space from the global reservation.
1889 mutex_lock(&delayed_node->mutex);
1890 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1893 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1894 delayed_node->count++;
1895 atomic_inc(&fs_info->delayed_root->items);
1897 mutex_unlock(&delayed_node->mutex);
1898 btrfs_release_delayed_node(delayed_node);
1902 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904 struct btrfs_root *root = delayed_node->root;
1905 struct btrfs_fs_info *fs_info = root->fs_info;
1906 struct btrfs_delayed_item *curr_item, *prev_item;
1908 mutex_lock(&delayed_node->mutex);
1909 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1912 prev_item = curr_item;
1913 curr_item = __btrfs_next_delayed_item(prev_item);
1914 btrfs_release_delayed_item(prev_item);
1917 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1920 prev_item = curr_item;
1921 curr_item = __btrfs_next_delayed_item(prev_item);
1922 btrfs_release_delayed_item(prev_item);
1925 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1926 btrfs_release_delayed_iref(delayed_node);
1928 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1929 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1930 btrfs_release_delayed_inode(delayed_node);
1932 mutex_unlock(&delayed_node->mutex);
1935 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1937 struct btrfs_delayed_node *delayed_node;
1939 delayed_node = btrfs_get_delayed_node(inode);
1943 __btrfs_kill_delayed_node(delayed_node);
1944 btrfs_release_delayed_node(delayed_node);
1947 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1950 struct btrfs_delayed_node *delayed_nodes[8];
1954 spin_lock(&root->inode_lock);
1955 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1956 (void **)delayed_nodes, inode_id,
1957 ARRAY_SIZE(delayed_nodes));
1959 spin_unlock(&root->inode_lock);
1963 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965 for (i = 0; i < n; i++)
1966 atomic_inc(&delayed_nodes[i]->refs);
1967 spin_unlock(&root->inode_lock);
1969 for (i = 0; i < n; i++) {
1970 __btrfs_kill_delayed_node(delayed_nodes[i]);
1971 btrfs_release_delayed_node(delayed_nodes[i]);
1976 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978 struct btrfs_delayed_node *curr_node, *prev_node;
1980 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1982 __btrfs_kill_delayed_node(curr_node);
1984 prev_node = curr_node;
1985 curr_node = btrfs_next_delayed_node(curr_node);
1986 btrfs_release_delayed_node(prev_node);