]> Git Repo - linux.git/blob - drivers/infiniband/core/verbs.c
Merge branch 'thermal-soc' into next
[linux.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56         [IB_EVENT_CQ_ERR]               = "CQ error",
57         [IB_EVENT_QP_FATAL]             = "QP fatal error",
58         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
59         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
60         [IB_EVENT_COMM_EST]             = "communication established",
61         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
62         [IB_EVENT_PATH_MIG]             = "path migration successful",
63         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
64         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
65         [IB_EVENT_PORT_ACTIVE]          = "port active",
66         [IB_EVENT_PORT_ERR]             = "port error",
67         [IB_EVENT_LID_CHANGE]           = "LID change",
68         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
69         [IB_EVENT_SM_CHANGE]            = "SM change",
70         [IB_EVENT_SRQ_ERR]              = "SRQ error",
71         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
72         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
73         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
74         [IB_EVENT_GID_CHANGE]           = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79         size_t index = event;
80
81         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82                         ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87         [IB_WC_SUCCESS]                 = "success",
88         [IB_WC_LOC_LEN_ERR]             = "local length error",
89         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
90         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
91         [IB_WC_LOC_PROT_ERR]            = "local protection error",
92         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
93         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
94         [IB_WC_BAD_RESP_ERR]            = "bad response error",
95         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
96         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
97         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
98         [IB_WC_REM_OP_ERR]              = "remote operation error",
99         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
100         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
101         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
102         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
103         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
104         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
105         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
106         [IB_WC_FATAL_ERR]               = "fatal error",
107         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
108         [IB_WC_GENERAL_ERR]             = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113         size_t index = status;
114
115         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116                         wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122         switch (rate) {
123         case IB_RATE_2_5_GBPS: return  1;
124         case IB_RATE_5_GBPS:   return  2;
125         case IB_RATE_10_GBPS:  return  4;
126         case IB_RATE_20_GBPS:  return  8;
127         case IB_RATE_30_GBPS:  return 12;
128         case IB_RATE_40_GBPS:  return 16;
129         case IB_RATE_60_GBPS:  return 24;
130         case IB_RATE_80_GBPS:  return 32;
131         case IB_RATE_120_GBPS: return 48;
132         default:               return -1;
133         }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139         switch (mult) {
140         case 1:  return IB_RATE_2_5_GBPS;
141         case 2:  return IB_RATE_5_GBPS;
142         case 4:  return IB_RATE_10_GBPS;
143         case 8:  return IB_RATE_20_GBPS;
144         case 12: return IB_RATE_30_GBPS;
145         case 16: return IB_RATE_40_GBPS;
146         case 24: return IB_RATE_60_GBPS;
147         case 32: return IB_RATE_80_GBPS;
148         case 48: return IB_RATE_120_GBPS;
149         default: return IB_RATE_PORT_CURRENT;
150         }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156         switch (rate) {
157         case IB_RATE_2_5_GBPS: return 2500;
158         case IB_RATE_5_GBPS:   return 5000;
159         case IB_RATE_10_GBPS:  return 10000;
160         case IB_RATE_20_GBPS:  return 20000;
161         case IB_RATE_30_GBPS:  return 30000;
162         case IB_RATE_40_GBPS:  return 40000;
163         case IB_RATE_60_GBPS:  return 60000;
164         case IB_RATE_80_GBPS:  return 80000;
165         case IB_RATE_120_GBPS: return 120000;
166         case IB_RATE_14_GBPS:  return 14062;
167         case IB_RATE_56_GBPS:  return 56250;
168         case IB_RATE_112_GBPS: return 112500;
169         case IB_RATE_168_GBPS: return 168750;
170         case IB_RATE_25_GBPS:  return 25781;
171         case IB_RATE_100_GBPS: return 103125;
172         case IB_RATE_200_GBPS: return 206250;
173         case IB_RATE_300_GBPS: return 309375;
174         default:               return -1;
175         }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182         switch (node_type) {
183         case RDMA_NODE_IB_CA:
184         case RDMA_NODE_IB_SWITCH:
185         case RDMA_NODE_IB_ROUTER:
186                 return RDMA_TRANSPORT_IB;
187         case RDMA_NODE_RNIC:
188                 return RDMA_TRANSPORT_IWARP;
189         case RDMA_NODE_USNIC:
190                 return RDMA_TRANSPORT_USNIC;
191         case RDMA_NODE_USNIC_UDP:
192                 return RDMA_TRANSPORT_USNIC_UDP;
193         default:
194                 BUG();
195                 return 0;
196         }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202         if (device->get_link_layer)
203                 return device->get_link_layer(device, port_num);
204
205         switch (rdma_node_get_transport(device->node_type)) {
206         case RDMA_TRANSPORT_IB:
207                 return IB_LINK_LAYER_INFINIBAND;
208         case RDMA_TRANSPORT_IWARP:
209         case RDMA_TRANSPORT_USNIC:
210         case RDMA_TRANSPORT_USNIC_UDP:
211                 return IB_LINK_LAYER_ETHERNET;
212         default:
213                 return IB_LINK_LAYER_UNSPECIFIED;
214         }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221  * ib_alloc_pd - Allocates an unused protection domain.
222  * @device: The device on which to allocate the protection domain.
223  *
224  * A protection domain object provides an association between QPs, shared
225  * receive queues, address handles, memory regions, and memory windows.
226  *
227  * Every PD has a local_dma_lkey which can be used as the lkey value for local
228  * memory operations.
229  */
230 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
231                 const char *caller)
232 {
233         struct ib_pd *pd;
234         int mr_access_flags = 0;
235
236         pd = device->alloc_pd(device, NULL, NULL);
237         if (IS_ERR(pd))
238                 return pd;
239
240         pd->device = device;
241         pd->uobject = NULL;
242         pd->__internal_mr = NULL;
243         atomic_set(&pd->usecnt, 0);
244         pd->flags = flags;
245
246         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
247                 pd->local_dma_lkey = device->local_dma_lkey;
248         else
249                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
250
251         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
252                 pr_warn("%s: enabling unsafe global rkey\n", caller);
253                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
254         }
255
256         if (mr_access_flags) {
257                 struct ib_mr *mr;
258
259                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
260                 if (IS_ERR(mr)) {
261                         ib_dealloc_pd(pd);
262                         return ERR_CAST(mr);
263                 }
264
265                 mr->device      = pd->device;
266                 mr->pd          = pd;
267                 mr->uobject     = NULL;
268                 mr->need_inval  = false;
269
270                 pd->__internal_mr = mr;
271
272                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
273                         pd->local_dma_lkey = pd->__internal_mr->lkey;
274
275                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
276                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
277         }
278
279         return pd;
280 }
281 EXPORT_SYMBOL(__ib_alloc_pd);
282
283 /**
284  * ib_dealloc_pd - Deallocates a protection domain.
285  * @pd: The protection domain to deallocate.
286  *
287  * It is an error to call this function while any resources in the pd still
288  * exist.  The caller is responsible to synchronously destroy them and
289  * guarantee no new allocations will happen.
290  */
291 void ib_dealloc_pd(struct ib_pd *pd)
292 {
293         int ret;
294
295         if (pd->__internal_mr) {
296                 ret = pd->device->dereg_mr(pd->__internal_mr);
297                 WARN_ON(ret);
298                 pd->__internal_mr = NULL;
299         }
300
301         /* uverbs manipulates usecnt with proper locking, while the kabi
302            requires the caller to guarantee we can't race here. */
303         WARN_ON(atomic_read(&pd->usecnt));
304
305         /* Making delalloc_pd a void return is a WIP, no driver should return
306            an error here. */
307         ret = pd->device->dealloc_pd(pd);
308         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
309 }
310 EXPORT_SYMBOL(ib_dealloc_pd);
311
312 /* Address handles */
313
314 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
315 {
316         struct ib_ah *ah;
317
318         ah = pd->device->create_ah(pd, ah_attr, NULL);
319
320         if (!IS_ERR(ah)) {
321                 ah->device  = pd->device;
322                 ah->pd      = pd;
323                 ah->uobject = NULL;
324                 atomic_inc(&pd->usecnt);
325         }
326
327         return ah;
328 }
329 EXPORT_SYMBOL(ib_create_ah);
330
331 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
332 {
333         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
334         struct iphdr ip4h_checked;
335         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
336
337         /* If it's IPv6, the version must be 6, otherwise, the first
338          * 20 bytes (before the IPv4 header) are garbled.
339          */
340         if (ip6h->version != 6)
341                 return (ip4h->version == 4) ? 4 : 0;
342         /* version may be 6 or 4 because the first 20 bytes could be garbled */
343
344         /* RoCE v2 requires no options, thus header length
345          * must be 5 words
346          */
347         if (ip4h->ihl != 5)
348                 return 6;
349
350         /* Verify checksum.
351          * We can't write on scattered buffers so we need to copy to
352          * temp buffer.
353          */
354         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
355         ip4h_checked.check = 0;
356         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
357         /* if IPv4 header checksum is OK, believe it */
358         if (ip4h->check == ip4h_checked.check)
359                 return 4;
360         return 6;
361 }
362 EXPORT_SYMBOL(ib_get_rdma_header_version);
363
364 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
365                                                      u8 port_num,
366                                                      const struct ib_grh *grh)
367 {
368         int grh_version;
369
370         if (rdma_protocol_ib(device, port_num))
371                 return RDMA_NETWORK_IB;
372
373         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
374
375         if (grh_version == 4)
376                 return RDMA_NETWORK_IPV4;
377
378         if (grh->next_hdr == IPPROTO_UDP)
379                 return RDMA_NETWORK_IPV6;
380
381         return RDMA_NETWORK_ROCE_V1;
382 }
383
384 struct find_gid_index_context {
385         u16 vlan_id;
386         enum ib_gid_type gid_type;
387 };
388
389 static bool find_gid_index(const union ib_gid *gid,
390                            const struct ib_gid_attr *gid_attr,
391                            void *context)
392 {
393         struct find_gid_index_context *ctx =
394                 (struct find_gid_index_context *)context;
395
396         if (ctx->gid_type != gid_attr->gid_type)
397                 return false;
398
399         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
400             (is_vlan_dev(gid_attr->ndev) &&
401              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
402                 return false;
403
404         return true;
405 }
406
407 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
408                                    u16 vlan_id, const union ib_gid *sgid,
409                                    enum ib_gid_type gid_type,
410                                    u16 *gid_index)
411 {
412         struct find_gid_index_context context = {.vlan_id = vlan_id,
413                                                  .gid_type = gid_type};
414
415         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
416                                      &context, gid_index);
417 }
418
419 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
420                               enum rdma_network_type net_type,
421                               union ib_gid *sgid, union ib_gid *dgid)
422 {
423         struct sockaddr_in  src_in;
424         struct sockaddr_in  dst_in;
425         __be32 src_saddr, dst_saddr;
426
427         if (!sgid || !dgid)
428                 return -EINVAL;
429
430         if (net_type == RDMA_NETWORK_IPV4) {
431                 memcpy(&src_in.sin_addr.s_addr,
432                        &hdr->roce4grh.saddr, 4);
433                 memcpy(&dst_in.sin_addr.s_addr,
434                        &hdr->roce4grh.daddr, 4);
435                 src_saddr = src_in.sin_addr.s_addr;
436                 dst_saddr = dst_in.sin_addr.s_addr;
437                 ipv6_addr_set_v4mapped(src_saddr,
438                                        (struct in6_addr *)sgid);
439                 ipv6_addr_set_v4mapped(dst_saddr,
440                                        (struct in6_addr *)dgid);
441                 return 0;
442         } else if (net_type == RDMA_NETWORK_IPV6 ||
443                    net_type == RDMA_NETWORK_IB) {
444                 *dgid = hdr->ibgrh.dgid;
445                 *sgid = hdr->ibgrh.sgid;
446                 return 0;
447         } else {
448                 return -EINVAL;
449         }
450 }
451 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
452
453 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
454                        const struct ib_wc *wc, const struct ib_grh *grh,
455                        struct ib_ah_attr *ah_attr)
456 {
457         u32 flow_class;
458         u16 gid_index;
459         int ret;
460         enum rdma_network_type net_type = RDMA_NETWORK_IB;
461         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
462         int hoplimit = 0xff;
463         union ib_gid dgid;
464         union ib_gid sgid;
465
466         memset(ah_attr, 0, sizeof *ah_attr);
467         if (rdma_cap_eth_ah(device, port_num)) {
468                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
469                         net_type = wc->network_hdr_type;
470                 else
471                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
472                 gid_type = ib_network_to_gid_type(net_type);
473         }
474         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
475                                         &sgid, &dgid);
476         if (ret)
477                 return ret;
478
479         if (rdma_protocol_roce(device, port_num)) {
480                 int if_index = 0;
481                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
482                                 wc->vlan_id : 0xffff;
483                 struct net_device *idev;
484                 struct net_device *resolved_dev;
485
486                 if (!(wc->wc_flags & IB_WC_GRH))
487                         return -EPROTOTYPE;
488
489                 if (!device->get_netdev)
490                         return -EOPNOTSUPP;
491
492                 idev = device->get_netdev(device, port_num);
493                 if (!idev)
494                         return -ENODEV;
495
496                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
497                                                    ah_attr->dmac,
498                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
499                                                    NULL : &vlan_id,
500                                                    &if_index, &hoplimit);
501                 if (ret) {
502                         dev_put(idev);
503                         return ret;
504                 }
505
506                 resolved_dev = dev_get_by_index(&init_net, if_index);
507                 if (resolved_dev->flags & IFF_LOOPBACK) {
508                         dev_put(resolved_dev);
509                         resolved_dev = idev;
510                         dev_hold(resolved_dev);
511                 }
512                 rcu_read_lock();
513                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
514                                                                    resolved_dev))
515                         ret = -EHOSTUNREACH;
516                 rcu_read_unlock();
517                 dev_put(idev);
518                 dev_put(resolved_dev);
519                 if (ret)
520                         return ret;
521
522                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
523                                               &dgid, gid_type, &gid_index);
524                 if (ret)
525                         return ret;
526         }
527
528         ah_attr->dlid = wc->slid;
529         ah_attr->sl = wc->sl;
530         ah_attr->src_path_bits = wc->dlid_path_bits;
531         ah_attr->port_num = port_num;
532
533         if (wc->wc_flags & IB_WC_GRH) {
534                 ah_attr->ah_flags = IB_AH_GRH;
535                 ah_attr->grh.dgid = sgid;
536
537                 if (!rdma_cap_eth_ah(device, port_num)) {
538                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
539                                 ret = ib_find_cached_gid_by_port(device, &dgid,
540                                                                  IB_GID_TYPE_IB,
541                                                                  port_num, NULL,
542                                                                  &gid_index);
543                                 if (ret)
544                                         return ret;
545                         } else {
546                                 gid_index = 0;
547                         }
548                 }
549
550                 ah_attr->grh.sgid_index = (u8) gid_index;
551                 flow_class = be32_to_cpu(grh->version_tclass_flow);
552                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
553                 ah_attr->grh.hop_limit = hoplimit;
554                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
555         }
556         return 0;
557 }
558 EXPORT_SYMBOL(ib_init_ah_from_wc);
559
560 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
561                                    const struct ib_grh *grh, u8 port_num)
562 {
563         struct ib_ah_attr ah_attr;
564         int ret;
565
566         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
567         if (ret)
568                 return ERR_PTR(ret);
569
570         return ib_create_ah(pd, &ah_attr);
571 }
572 EXPORT_SYMBOL(ib_create_ah_from_wc);
573
574 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
575 {
576         return ah->device->modify_ah ?
577                 ah->device->modify_ah(ah, ah_attr) :
578                 -ENOSYS;
579 }
580 EXPORT_SYMBOL(ib_modify_ah);
581
582 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
583 {
584         return ah->device->query_ah ?
585                 ah->device->query_ah(ah, ah_attr) :
586                 -ENOSYS;
587 }
588 EXPORT_SYMBOL(ib_query_ah);
589
590 int ib_destroy_ah(struct ib_ah *ah)
591 {
592         struct ib_pd *pd;
593         int ret;
594
595         pd = ah->pd;
596         ret = ah->device->destroy_ah(ah);
597         if (!ret)
598                 atomic_dec(&pd->usecnt);
599
600         return ret;
601 }
602 EXPORT_SYMBOL(ib_destroy_ah);
603
604 /* Shared receive queues */
605
606 struct ib_srq *ib_create_srq(struct ib_pd *pd,
607                              struct ib_srq_init_attr *srq_init_attr)
608 {
609         struct ib_srq *srq;
610
611         if (!pd->device->create_srq)
612                 return ERR_PTR(-ENOSYS);
613
614         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
615
616         if (!IS_ERR(srq)) {
617                 srq->device        = pd->device;
618                 srq->pd            = pd;
619                 srq->uobject       = NULL;
620                 srq->event_handler = srq_init_attr->event_handler;
621                 srq->srq_context   = srq_init_attr->srq_context;
622                 srq->srq_type      = srq_init_attr->srq_type;
623                 if (srq->srq_type == IB_SRQT_XRC) {
624                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
625                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
626                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
627                         atomic_inc(&srq->ext.xrc.cq->usecnt);
628                 }
629                 atomic_inc(&pd->usecnt);
630                 atomic_set(&srq->usecnt, 0);
631         }
632
633         return srq;
634 }
635 EXPORT_SYMBOL(ib_create_srq);
636
637 int ib_modify_srq(struct ib_srq *srq,
638                   struct ib_srq_attr *srq_attr,
639                   enum ib_srq_attr_mask srq_attr_mask)
640 {
641         return srq->device->modify_srq ?
642                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
643                 -ENOSYS;
644 }
645 EXPORT_SYMBOL(ib_modify_srq);
646
647 int ib_query_srq(struct ib_srq *srq,
648                  struct ib_srq_attr *srq_attr)
649 {
650         return srq->device->query_srq ?
651                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
652 }
653 EXPORT_SYMBOL(ib_query_srq);
654
655 int ib_destroy_srq(struct ib_srq *srq)
656 {
657         struct ib_pd *pd;
658         enum ib_srq_type srq_type;
659         struct ib_xrcd *uninitialized_var(xrcd);
660         struct ib_cq *uninitialized_var(cq);
661         int ret;
662
663         if (atomic_read(&srq->usecnt))
664                 return -EBUSY;
665
666         pd = srq->pd;
667         srq_type = srq->srq_type;
668         if (srq_type == IB_SRQT_XRC) {
669                 xrcd = srq->ext.xrc.xrcd;
670                 cq = srq->ext.xrc.cq;
671         }
672
673         ret = srq->device->destroy_srq(srq);
674         if (!ret) {
675                 atomic_dec(&pd->usecnt);
676                 if (srq_type == IB_SRQT_XRC) {
677                         atomic_dec(&xrcd->usecnt);
678                         atomic_dec(&cq->usecnt);
679                 }
680         }
681
682         return ret;
683 }
684 EXPORT_SYMBOL(ib_destroy_srq);
685
686 /* Queue pairs */
687
688 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
689 {
690         struct ib_qp *qp = context;
691         unsigned long flags;
692
693         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
694         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
695                 if (event->element.qp->event_handler)
696                         event->element.qp->event_handler(event, event->element.qp->qp_context);
697         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
698 }
699
700 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
701 {
702         mutex_lock(&xrcd->tgt_qp_mutex);
703         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
704         mutex_unlock(&xrcd->tgt_qp_mutex);
705 }
706
707 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
708                                   void (*event_handler)(struct ib_event *, void *),
709                                   void *qp_context)
710 {
711         struct ib_qp *qp;
712         unsigned long flags;
713
714         qp = kzalloc(sizeof *qp, GFP_KERNEL);
715         if (!qp)
716                 return ERR_PTR(-ENOMEM);
717
718         qp->real_qp = real_qp;
719         atomic_inc(&real_qp->usecnt);
720         qp->device = real_qp->device;
721         qp->event_handler = event_handler;
722         qp->qp_context = qp_context;
723         qp->qp_num = real_qp->qp_num;
724         qp->qp_type = real_qp->qp_type;
725
726         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
727         list_add(&qp->open_list, &real_qp->open_list);
728         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
729
730         return qp;
731 }
732
733 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
734                          struct ib_qp_open_attr *qp_open_attr)
735 {
736         struct ib_qp *qp, *real_qp;
737
738         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
739                 return ERR_PTR(-EINVAL);
740
741         qp = ERR_PTR(-EINVAL);
742         mutex_lock(&xrcd->tgt_qp_mutex);
743         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
744                 if (real_qp->qp_num == qp_open_attr->qp_num) {
745                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
746                                           qp_open_attr->qp_context);
747                         break;
748                 }
749         }
750         mutex_unlock(&xrcd->tgt_qp_mutex);
751         return qp;
752 }
753 EXPORT_SYMBOL(ib_open_qp);
754
755 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
756                 struct ib_qp_init_attr *qp_init_attr)
757 {
758         struct ib_qp *real_qp = qp;
759
760         qp->event_handler = __ib_shared_qp_event_handler;
761         qp->qp_context = qp;
762         qp->pd = NULL;
763         qp->send_cq = qp->recv_cq = NULL;
764         qp->srq = NULL;
765         qp->xrcd = qp_init_attr->xrcd;
766         atomic_inc(&qp_init_attr->xrcd->usecnt);
767         INIT_LIST_HEAD(&qp->open_list);
768
769         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
770                           qp_init_attr->qp_context);
771         if (!IS_ERR(qp))
772                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
773         else
774                 real_qp->device->destroy_qp(real_qp);
775         return qp;
776 }
777
778 struct ib_qp *ib_create_qp(struct ib_pd *pd,
779                            struct ib_qp_init_attr *qp_init_attr)
780 {
781         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
782         struct ib_qp *qp;
783         int ret;
784
785         if (qp_init_attr->rwq_ind_tbl &&
786             (qp_init_attr->recv_cq ||
787             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
788             qp_init_attr->cap.max_recv_sge))
789                 return ERR_PTR(-EINVAL);
790
791         /*
792          * If the callers is using the RDMA API calculate the resources
793          * needed for the RDMA READ/WRITE operations.
794          *
795          * Note that these callers need to pass in a port number.
796          */
797         if (qp_init_attr->cap.max_rdma_ctxs)
798                 rdma_rw_init_qp(device, qp_init_attr);
799
800         qp = device->create_qp(pd, qp_init_attr, NULL);
801         if (IS_ERR(qp))
802                 return qp;
803
804         qp->device     = device;
805         qp->real_qp    = qp;
806         qp->uobject    = NULL;
807         qp->qp_type    = qp_init_attr->qp_type;
808         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
809
810         atomic_set(&qp->usecnt, 0);
811         qp->mrs_used = 0;
812         spin_lock_init(&qp->mr_lock);
813         INIT_LIST_HEAD(&qp->rdma_mrs);
814         INIT_LIST_HEAD(&qp->sig_mrs);
815
816         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
817                 return ib_create_xrc_qp(qp, qp_init_attr);
818
819         qp->event_handler = qp_init_attr->event_handler;
820         qp->qp_context = qp_init_attr->qp_context;
821         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
822                 qp->recv_cq = NULL;
823                 qp->srq = NULL;
824         } else {
825                 qp->recv_cq = qp_init_attr->recv_cq;
826                 if (qp_init_attr->recv_cq)
827                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
828                 qp->srq = qp_init_attr->srq;
829                 if (qp->srq)
830                         atomic_inc(&qp_init_attr->srq->usecnt);
831         }
832
833         qp->pd      = pd;
834         qp->send_cq = qp_init_attr->send_cq;
835         qp->xrcd    = NULL;
836
837         atomic_inc(&pd->usecnt);
838         if (qp_init_attr->send_cq)
839                 atomic_inc(&qp_init_attr->send_cq->usecnt);
840         if (qp_init_attr->rwq_ind_tbl)
841                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
842
843         if (qp_init_attr->cap.max_rdma_ctxs) {
844                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
845                 if (ret) {
846                         pr_err("failed to init MR pool ret= %d\n", ret);
847                         ib_destroy_qp(qp);
848                         return ERR_PTR(ret);
849                 }
850         }
851
852         /*
853          * Note: all hw drivers guarantee that max_send_sge is lower than
854          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
855          * max_send_sge <= max_sge_rd.
856          */
857         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
858         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
859                                  device->attrs.max_sge_rd);
860
861         return qp;
862 }
863 EXPORT_SYMBOL(ib_create_qp);
864
865 static const struct {
866         int                     valid;
867         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
868         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
869 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
870         [IB_QPS_RESET] = {
871                 [IB_QPS_RESET] = { .valid = 1 },
872                 [IB_QPS_INIT]  = {
873                         .valid = 1,
874                         .req_param = {
875                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
876                                                 IB_QP_PORT                      |
877                                                 IB_QP_QKEY),
878                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
879                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
880                                                 IB_QP_PORT                      |
881                                                 IB_QP_ACCESS_FLAGS),
882                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
883                                                 IB_QP_PORT                      |
884                                                 IB_QP_ACCESS_FLAGS),
885                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
886                                                 IB_QP_PORT                      |
887                                                 IB_QP_ACCESS_FLAGS),
888                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
889                                                 IB_QP_PORT                      |
890                                                 IB_QP_ACCESS_FLAGS),
891                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
892                                                 IB_QP_QKEY),
893                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
894                                                 IB_QP_QKEY),
895                         }
896                 },
897         },
898         [IB_QPS_INIT]  = {
899                 [IB_QPS_RESET] = { .valid = 1 },
900                 [IB_QPS_ERR] =   { .valid = 1 },
901                 [IB_QPS_INIT]  = {
902                         .valid = 1,
903                         .opt_param = {
904                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
905                                                 IB_QP_PORT                      |
906                                                 IB_QP_QKEY),
907                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
908                                                 IB_QP_PORT                      |
909                                                 IB_QP_ACCESS_FLAGS),
910                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
911                                                 IB_QP_PORT                      |
912                                                 IB_QP_ACCESS_FLAGS),
913                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
914                                                 IB_QP_PORT                      |
915                                                 IB_QP_ACCESS_FLAGS),
916                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
917                                                 IB_QP_PORT                      |
918                                                 IB_QP_ACCESS_FLAGS),
919                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
920                                                 IB_QP_QKEY),
921                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
922                                                 IB_QP_QKEY),
923                         }
924                 },
925                 [IB_QPS_RTR]   = {
926                         .valid = 1,
927                         .req_param = {
928                                 [IB_QPT_UC]  = (IB_QP_AV                        |
929                                                 IB_QP_PATH_MTU                  |
930                                                 IB_QP_DEST_QPN                  |
931                                                 IB_QP_RQ_PSN),
932                                 [IB_QPT_RC]  = (IB_QP_AV                        |
933                                                 IB_QP_PATH_MTU                  |
934                                                 IB_QP_DEST_QPN                  |
935                                                 IB_QP_RQ_PSN                    |
936                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
937                                                 IB_QP_MIN_RNR_TIMER),
938                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
939                                                 IB_QP_PATH_MTU                  |
940                                                 IB_QP_DEST_QPN                  |
941                                                 IB_QP_RQ_PSN),
942                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
943                                                 IB_QP_PATH_MTU                  |
944                                                 IB_QP_DEST_QPN                  |
945                                                 IB_QP_RQ_PSN                    |
946                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
947                                                 IB_QP_MIN_RNR_TIMER),
948                         },
949                         .opt_param = {
950                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
951                                                  IB_QP_QKEY),
952                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
953                                                  IB_QP_ACCESS_FLAGS             |
954                                                  IB_QP_PKEY_INDEX),
955                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
956                                                  IB_QP_ACCESS_FLAGS             |
957                                                  IB_QP_PKEY_INDEX),
958                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
959                                                  IB_QP_ACCESS_FLAGS             |
960                                                  IB_QP_PKEY_INDEX),
961                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
962                                                  IB_QP_ACCESS_FLAGS             |
963                                                  IB_QP_PKEY_INDEX),
964                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
965                                                  IB_QP_QKEY),
966                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
967                                                  IB_QP_QKEY),
968                          },
969                 },
970         },
971         [IB_QPS_RTR]   = {
972                 [IB_QPS_RESET] = { .valid = 1 },
973                 [IB_QPS_ERR] =   { .valid = 1 },
974                 [IB_QPS_RTS]   = {
975                         .valid = 1,
976                         .req_param = {
977                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
978                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
979                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
980                                                 IB_QP_RETRY_CNT                 |
981                                                 IB_QP_RNR_RETRY                 |
982                                                 IB_QP_SQ_PSN                    |
983                                                 IB_QP_MAX_QP_RD_ATOMIC),
984                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
985                                                 IB_QP_RETRY_CNT                 |
986                                                 IB_QP_RNR_RETRY                 |
987                                                 IB_QP_SQ_PSN                    |
988                                                 IB_QP_MAX_QP_RD_ATOMIC),
989                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
990                                                 IB_QP_SQ_PSN),
991                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
992                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
993                         },
994                         .opt_param = {
995                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
996                                                  IB_QP_QKEY),
997                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
998                                                  IB_QP_ALT_PATH                 |
999                                                  IB_QP_ACCESS_FLAGS             |
1000                                                  IB_QP_PATH_MIG_STATE),
1001                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1002                                                  IB_QP_ALT_PATH                 |
1003                                                  IB_QP_ACCESS_FLAGS             |
1004                                                  IB_QP_MIN_RNR_TIMER            |
1005                                                  IB_QP_PATH_MIG_STATE),
1006                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1007                                                  IB_QP_ALT_PATH                 |
1008                                                  IB_QP_ACCESS_FLAGS             |
1009                                                  IB_QP_PATH_MIG_STATE),
1010                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1011                                                  IB_QP_ALT_PATH                 |
1012                                                  IB_QP_ACCESS_FLAGS             |
1013                                                  IB_QP_MIN_RNR_TIMER            |
1014                                                  IB_QP_PATH_MIG_STATE),
1015                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1016                                                  IB_QP_QKEY),
1017                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1018                                                  IB_QP_QKEY),
1019                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1020                          }
1021                 }
1022         },
1023         [IB_QPS_RTS]   = {
1024                 [IB_QPS_RESET] = { .valid = 1 },
1025                 [IB_QPS_ERR] =   { .valid = 1 },
1026                 [IB_QPS_RTS]   = {
1027                         .valid = 1,
1028                         .opt_param = {
1029                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1030                                                 IB_QP_QKEY),
1031                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1032                                                 IB_QP_ACCESS_FLAGS              |
1033                                                 IB_QP_ALT_PATH                  |
1034                                                 IB_QP_PATH_MIG_STATE),
1035                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1036                                                 IB_QP_ACCESS_FLAGS              |
1037                                                 IB_QP_ALT_PATH                  |
1038                                                 IB_QP_PATH_MIG_STATE            |
1039                                                 IB_QP_MIN_RNR_TIMER),
1040                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1041                                                 IB_QP_ACCESS_FLAGS              |
1042                                                 IB_QP_ALT_PATH                  |
1043                                                 IB_QP_PATH_MIG_STATE),
1044                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1045                                                 IB_QP_ACCESS_FLAGS              |
1046                                                 IB_QP_ALT_PATH                  |
1047                                                 IB_QP_PATH_MIG_STATE            |
1048                                                 IB_QP_MIN_RNR_TIMER),
1049                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1050                                                 IB_QP_QKEY),
1051                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1052                                                 IB_QP_QKEY),
1053                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1054                         }
1055                 },
1056                 [IB_QPS_SQD]   = {
1057                         .valid = 1,
1058                         .opt_param = {
1059                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1060                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1061                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1062                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1063                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1064                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1065                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1066                         }
1067                 },
1068         },
1069         [IB_QPS_SQD]   = {
1070                 [IB_QPS_RESET] = { .valid = 1 },
1071                 [IB_QPS_ERR] =   { .valid = 1 },
1072                 [IB_QPS_RTS]   = {
1073                         .valid = 1,
1074                         .opt_param = {
1075                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1076                                                 IB_QP_QKEY),
1077                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1078                                                 IB_QP_ALT_PATH                  |
1079                                                 IB_QP_ACCESS_FLAGS              |
1080                                                 IB_QP_PATH_MIG_STATE),
1081                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1082                                                 IB_QP_ALT_PATH                  |
1083                                                 IB_QP_ACCESS_FLAGS              |
1084                                                 IB_QP_MIN_RNR_TIMER             |
1085                                                 IB_QP_PATH_MIG_STATE),
1086                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1087                                                 IB_QP_ALT_PATH                  |
1088                                                 IB_QP_ACCESS_FLAGS              |
1089                                                 IB_QP_PATH_MIG_STATE),
1090                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1091                                                 IB_QP_ALT_PATH                  |
1092                                                 IB_QP_ACCESS_FLAGS              |
1093                                                 IB_QP_MIN_RNR_TIMER             |
1094                                                 IB_QP_PATH_MIG_STATE),
1095                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1096                                                 IB_QP_QKEY),
1097                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1098                                                 IB_QP_QKEY),
1099                         }
1100                 },
1101                 [IB_QPS_SQD]   = {
1102                         .valid = 1,
1103                         .opt_param = {
1104                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1105                                                 IB_QP_QKEY),
1106                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1107                                                 IB_QP_ALT_PATH                  |
1108                                                 IB_QP_ACCESS_FLAGS              |
1109                                                 IB_QP_PKEY_INDEX                |
1110                                                 IB_QP_PATH_MIG_STATE),
1111                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1112                                                 IB_QP_AV                        |
1113                                                 IB_QP_TIMEOUT                   |
1114                                                 IB_QP_RETRY_CNT                 |
1115                                                 IB_QP_RNR_RETRY                 |
1116                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1117                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1118                                                 IB_QP_ALT_PATH                  |
1119                                                 IB_QP_ACCESS_FLAGS              |
1120                                                 IB_QP_PKEY_INDEX                |
1121                                                 IB_QP_MIN_RNR_TIMER             |
1122                                                 IB_QP_PATH_MIG_STATE),
1123                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1124                                                 IB_QP_AV                        |
1125                                                 IB_QP_TIMEOUT                   |
1126                                                 IB_QP_RETRY_CNT                 |
1127                                                 IB_QP_RNR_RETRY                 |
1128                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1129                                                 IB_QP_ALT_PATH                  |
1130                                                 IB_QP_ACCESS_FLAGS              |
1131                                                 IB_QP_PKEY_INDEX                |
1132                                                 IB_QP_PATH_MIG_STATE),
1133                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1134                                                 IB_QP_AV                        |
1135                                                 IB_QP_TIMEOUT                   |
1136                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1137                                                 IB_QP_ALT_PATH                  |
1138                                                 IB_QP_ACCESS_FLAGS              |
1139                                                 IB_QP_PKEY_INDEX                |
1140                                                 IB_QP_MIN_RNR_TIMER             |
1141                                                 IB_QP_PATH_MIG_STATE),
1142                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1143                                                 IB_QP_QKEY),
1144                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1145                                                 IB_QP_QKEY),
1146                         }
1147                 }
1148         },
1149         [IB_QPS_SQE]   = {
1150                 [IB_QPS_RESET] = { .valid = 1 },
1151                 [IB_QPS_ERR] =   { .valid = 1 },
1152                 [IB_QPS_RTS]   = {
1153                         .valid = 1,
1154                         .opt_param = {
1155                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1156                                                 IB_QP_QKEY),
1157                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1158                                                 IB_QP_ACCESS_FLAGS),
1159                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1160                                                 IB_QP_QKEY),
1161                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1162                                                 IB_QP_QKEY),
1163                         }
1164                 }
1165         },
1166         [IB_QPS_ERR] = {
1167                 [IB_QPS_RESET] = { .valid = 1 },
1168                 [IB_QPS_ERR] =   { .valid = 1 }
1169         }
1170 };
1171
1172 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1173                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1174                        enum rdma_link_layer ll)
1175 {
1176         enum ib_qp_attr_mask req_param, opt_param;
1177
1178         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1179             next_state < 0 || next_state > IB_QPS_ERR)
1180                 return 0;
1181
1182         if (mask & IB_QP_CUR_STATE  &&
1183             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1184             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1185                 return 0;
1186
1187         if (!qp_state_table[cur_state][next_state].valid)
1188                 return 0;
1189
1190         req_param = qp_state_table[cur_state][next_state].req_param[type];
1191         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1192
1193         if ((mask & req_param) != req_param)
1194                 return 0;
1195
1196         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1197                 return 0;
1198
1199         return 1;
1200 }
1201 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1202
1203 int ib_resolve_eth_dmac(struct ib_device *device,
1204                         struct ib_ah_attr *ah_attr)
1205 {
1206         int           ret = 0;
1207
1208         if (!rdma_is_port_valid(device, ah_attr->port_num))
1209                 return -EINVAL;
1210
1211         if (!rdma_cap_eth_ah(device, ah_attr->port_num))
1212                 return 0;
1213
1214         if (rdma_link_local_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1215                 rdma_get_ll_mac((struct in6_addr *)ah_attr->grh.dgid.raw,
1216                                 ah_attr->dmac);
1217         } else {
1218                 union ib_gid            sgid;
1219                 struct ib_gid_attr      sgid_attr;
1220                 int                     ifindex;
1221                 int                     hop_limit;
1222
1223                 ret = ib_query_gid(device,
1224                                    ah_attr->port_num,
1225                                    ah_attr->grh.sgid_index,
1226                                    &sgid, &sgid_attr);
1227
1228                 if (ret || !sgid_attr.ndev) {
1229                         if (!ret)
1230                                 ret = -ENXIO;
1231                         goto out;
1232                 }
1233
1234                 ifindex = sgid_attr.ndev->ifindex;
1235
1236                 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1237                                                    &ah_attr->grh.dgid,
1238                                                    ah_attr->dmac,
1239                                                    NULL, &ifindex, &hop_limit);
1240
1241                 dev_put(sgid_attr.ndev);
1242
1243                 ah_attr->grh.hop_limit = hop_limit;
1244         }
1245 out:
1246         return ret;
1247 }
1248 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1249
1250 int ib_modify_qp(struct ib_qp *qp,
1251                  struct ib_qp_attr *qp_attr,
1252                  int qp_attr_mask)
1253 {
1254
1255         if (qp_attr_mask & IB_QP_AV) {
1256                 int ret;
1257
1258                 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1259                 if (ret)
1260                         return ret;
1261         }
1262
1263         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1264 }
1265 EXPORT_SYMBOL(ib_modify_qp);
1266
1267 int ib_query_qp(struct ib_qp *qp,
1268                 struct ib_qp_attr *qp_attr,
1269                 int qp_attr_mask,
1270                 struct ib_qp_init_attr *qp_init_attr)
1271 {
1272         return qp->device->query_qp ?
1273                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1274                 -ENOSYS;
1275 }
1276 EXPORT_SYMBOL(ib_query_qp);
1277
1278 int ib_close_qp(struct ib_qp *qp)
1279 {
1280         struct ib_qp *real_qp;
1281         unsigned long flags;
1282
1283         real_qp = qp->real_qp;
1284         if (real_qp == qp)
1285                 return -EINVAL;
1286
1287         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1288         list_del(&qp->open_list);
1289         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1290
1291         atomic_dec(&real_qp->usecnt);
1292         kfree(qp);
1293
1294         return 0;
1295 }
1296 EXPORT_SYMBOL(ib_close_qp);
1297
1298 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1299 {
1300         struct ib_xrcd *xrcd;
1301         struct ib_qp *real_qp;
1302         int ret;
1303
1304         real_qp = qp->real_qp;
1305         xrcd = real_qp->xrcd;
1306
1307         mutex_lock(&xrcd->tgt_qp_mutex);
1308         ib_close_qp(qp);
1309         if (atomic_read(&real_qp->usecnt) == 0)
1310                 list_del(&real_qp->xrcd_list);
1311         else
1312                 real_qp = NULL;
1313         mutex_unlock(&xrcd->tgt_qp_mutex);
1314
1315         if (real_qp) {
1316                 ret = ib_destroy_qp(real_qp);
1317                 if (!ret)
1318                         atomic_dec(&xrcd->usecnt);
1319                 else
1320                         __ib_insert_xrcd_qp(xrcd, real_qp);
1321         }
1322
1323         return 0;
1324 }
1325
1326 int ib_destroy_qp(struct ib_qp *qp)
1327 {
1328         struct ib_pd *pd;
1329         struct ib_cq *scq, *rcq;
1330         struct ib_srq *srq;
1331         struct ib_rwq_ind_table *ind_tbl;
1332         int ret;
1333
1334         WARN_ON_ONCE(qp->mrs_used > 0);
1335
1336         if (atomic_read(&qp->usecnt))
1337                 return -EBUSY;
1338
1339         if (qp->real_qp != qp)
1340                 return __ib_destroy_shared_qp(qp);
1341
1342         pd   = qp->pd;
1343         scq  = qp->send_cq;
1344         rcq  = qp->recv_cq;
1345         srq  = qp->srq;
1346         ind_tbl = qp->rwq_ind_tbl;
1347
1348         if (!qp->uobject)
1349                 rdma_rw_cleanup_mrs(qp);
1350
1351         ret = qp->device->destroy_qp(qp);
1352         if (!ret) {
1353                 if (pd)
1354                         atomic_dec(&pd->usecnt);
1355                 if (scq)
1356                         atomic_dec(&scq->usecnt);
1357                 if (rcq)
1358                         atomic_dec(&rcq->usecnt);
1359                 if (srq)
1360                         atomic_dec(&srq->usecnt);
1361                 if (ind_tbl)
1362                         atomic_dec(&ind_tbl->usecnt);
1363         }
1364
1365         return ret;
1366 }
1367 EXPORT_SYMBOL(ib_destroy_qp);
1368
1369 /* Completion queues */
1370
1371 struct ib_cq *ib_create_cq(struct ib_device *device,
1372                            ib_comp_handler comp_handler,
1373                            void (*event_handler)(struct ib_event *, void *),
1374                            void *cq_context,
1375                            const struct ib_cq_init_attr *cq_attr)
1376 {
1377         struct ib_cq *cq;
1378
1379         cq = device->create_cq(device, cq_attr, NULL, NULL);
1380
1381         if (!IS_ERR(cq)) {
1382                 cq->device        = device;
1383                 cq->uobject       = NULL;
1384                 cq->comp_handler  = comp_handler;
1385                 cq->event_handler = event_handler;
1386                 cq->cq_context    = cq_context;
1387                 atomic_set(&cq->usecnt, 0);
1388         }
1389
1390         return cq;
1391 }
1392 EXPORT_SYMBOL(ib_create_cq);
1393
1394 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1395 {
1396         return cq->device->modify_cq ?
1397                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1398 }
1399 EXPORT_SYMBOL(ib_modify_cq);
1400
1401 int ib_destroy_cq(struct ib_cq *cq)
1402 {
1403         if (atomic_read(&cq->usecnt))
1404                 return -EBUSY;
1405
1406         return cq->device->destroy_cq(cq);
1407 }
1408 EXPORT_SYMBOL(ib_destroy_cq);
1409
1410 int ib_resize_cq(struct ib_cq *cq, int cqe)
1411 {
1412         return cq->device->resize_cq ?
1413                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1414 }
1415 EXPORT_SYMBOL(ib_resize_cq);
1416
1417 /* Memory regions */
1418
1419 int ib_dereg_mr(struct ib_mr *mr)
1420 {
1421         struct ib_pd *pd = mr->pd;
1422         int ret;
1423
1424         ret = mr->device->dereg_mr(mr);
1425         if (!ret)
1426                 atomic_dec(&pd->usecnt);
1427
1428         return ret;
1429 }
1430 EXPORT_SYMBOL(ib_dereg_mr);
1431
1432 /**
1433  * ib_alloc_mr() - Allocates a memory region
1434  * @pd:            protection domain associated with the region
1435  * @mr_type:       memory region type
1436  * @max_num_sg:    maximum sg entries available for registration.
1437  *
1438  * Notes:
1439  * Memory registeration page/sg lists must not exceed max_num_sg.
1440  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1441  * max_num_sg * used_page_size.
1442  *
1443  */
1444 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1445                           enum ib_mr_type mr_type,
1446                           u32 max_num_sg)
1447 {
1448         struct ib_mr *mr;
1449
1450         if (!pd->device->alloc_mr)
1451                 return ERR_PTR(-ENOSYS);
1452
1453         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1454         if (!IS_ERR(mr)) {
1455                 mr->device  = pd->device;
1456                 mr->pd      = pd;
1457                 mr->uobject = NULL;
1458                 atomic_inc(&pd->usecnt);
1459                 mr->need_inval = false;
1460         }
1461
1462         return mr;
1463 }
1464 EXPORT_SYMBOL(ib_alloc_mr);
1465
1466 /* "Fast" memory regions */
1467
1468 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1469                             int mr_access_flags,
1470                             struct ib_fmr_attr *fmr_attr)
1471 {
1472         struct ib_fmr *fmr;
1473
1474         if (!pd->device->alloc_fmr)
1475                 return ERR_PTR(-ENOSYS);
1476
1477         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1478         if (!IS_ERR(fmr)) {
1479                 fmr->device = pd->device;
1480                 fmr->pd     = pd;
1481                 atomic_inc(&pd->usecnt);
1482         }
1483
1484         return fmr;
1485 }
1486 EXPORT_SYMBOL(ib_alloc_fmr);
1487
1488 int ib_unmap_fmr(struct list_head *fmr_list)
1489 {
1490         struct ib_fmr *fmr;
1491
1492         if (list_empty(fmr_list))
1493                 return 0;
1494
1495         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1496         return fmr->device->unmap_fmr(fmr_list);
1497 }
1498 EXPORT_SYMBOL(ib_unmap_fmr);
1499
1500 int ib_dealloc_fmr(struct ib_fmr *fmr)
1501 {
1502         struct ib_pd *pd;
1503         int ret;
1504
1505         pd = fmr->pd;
1506         ret = fmr->device->dealloc_fmr(fmr);
1507         if (!ret)
1508                 atomic_dec(&pd->usecnt);
1509
1510         return ret;
1511 }
1512 EXPORT_SYMBOL(ib_dealloc_fmr);
1513
1514 /* Multicast groups */
1515
1516 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1517 {
1518         int ret;
1519
1520         if (!qp->device->attach_mcast)
1521                 return -ENOSYS;
1522         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1523                 return -EINVAL;
1524
1525         ret = qp->device->attach_mcast(qp, gid, lid);
1526         if (!ret)
1527                 atomic_inc(&qp->usecnt);
1528         return ret;
1529 }
1530 EXPORT_SYMBOL(ib_attach_mcast);
1531
1532 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1533 {
1534         int ret;
1535
1536         if (!qp->device->detach_mcast)
1537                 return -ENOSYS;
1538         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1539                 return -EINVAL;
1540
1541         ret = qp->device->detach_mcast(qp, gid, lid);
1542         if (!ret)
1543                 atomic_dec(&qp->usecnt);
1544         return ret;
1545 }
1546 EXPORT_SYMBOL(ib_detach_mcast);
1547
1548 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1549 {
1550         struct ib_xrcd *xrcd;
1551
1552         if (!device->alloc_xrcd)
1553                 return ERR_PTR(-ENOSYS);
1554
1555         xrcd = device->alloc_xrcd(device, NULL, NULL);
1556         if (!IS_ERR(xrcd)) {
1557                 xrcd->device = device;
1558                 xrcd->inode = NULL;
1559                 atomic_set(&xrcd->usecnt, 0);
1560                 mutex_init(&xrcd->tgt_qp_mutex);
1561                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1562         }
1563
1564         return xrcd;
1565 }
1566 EXPORT_SYMBOL(ib_alloc_xrcd);
1567
1568 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1569 {
1570         struct ib_qp *qp;
1571         int ret;
1572
1573         if (atomic_read(&xrcd->usecnt))
1574                 return -EBUSY;
1575
1576         while (!list_empty(&xrcd->tgt_qp_list)) {
1577                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1578                 ret = ib_destroy_qp(qp);
1579                 if (ret)
1580                         return ret;
1581         }
1582
1583         return xrcd->device->dealloc_xrcd(xrcd);
1584 }
1585 EXPORT_SYMBOL(ib_dealloc_xrcd);
1586
1587 /**
1588  * ib_create_wq - Creates a WQ associated with the specified protection
1589  * domain.
1590  * @pd: The protection domain associated with the WQ.
1591  * @wq_init_attr: A list of initial attributes required to create the
1592  * WQ. If WQ creation succeeds, then the attributes are updated to
1593  * the actual capabilities of the created WQ.
1594  *
1595  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1596  * the requested size of the WQ, and set to the actual values allocated
1597  * on return.
1598  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1599  * at least as large as the requested values.
1600  */
1601 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1602                            struct ib_wq_init_attr *wq_attr)
1603 {
1604         struct ib_wq *wq;
1605
1606         if (!pd->device->create_wq)
1607                 return ERR_PTR(-ENOSYS);
1608
1609         wq = pd->device->create_wq(pd, wq_attr, NULL);
1610         if (!IS_ERR(wq)) {
1611                 wq->event_handler = wq_attr->event_handler;
1612                 wq->wq_context = wq_attr->wq_context;
1613                 wq->wq_type = wq_attr->wq_type;
1614                 wq->cq = wq_attr->cq;
1615                 wq->device = pd->device;
1616                 wq->pd = pd;
1617                 wq->uobject = NULL;
1618                 atomic_inc(&pd->usecnt);
1619                 atomic_inc(&wq_attr->cq->usecnt);
1620                 atomic_set(&wq->usecnt, 0);
1621         }
1622         return wq;
1623 }
1624 EXPORT_SYMBOL(ib_create_wq);
1625
1626 /**
1627  * ib_destroy_wq - Destroys the specified WQ.
1628  * @wq: The WQ to destroy.
1629  */
1630 int ib_destroy_wq(struct ib_wq *wq)
1631 {
1632         int err;
1633         struct ib_cq *cq = wq->cq;
1634         struct ib_pd *pd = wq->pd;
1635
1636         if (atomic_read(&wq->usecnt))
1637                 return -EBUSY;
1638
1639         err = wq->device->destroy_wq(wq);
1640         if (!err) {
1641                 atomic_dec(&pd->usecnt);
1642                 atomic_dec(&cq->usecnt);
1643         }
1644         return err;
1645 }
1646 EXPORT_SYMBOL(ib_destroy_wq);
1647
1648 /**
1649  * ib_modify_wq - Modifies the specified WQ.
1650  * @wq: The WQ to modify.
1651  * @wq_attr: On input, specifies the WQ attributes to modify.
1652  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1653  *   are being modified.
1654  * On output, the current values of selected WQ attributes are returned.
1655  */
1656 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1657                  u32 wq_attr_mask)
1658 {
1659         int err;
1660
1661         if (!wq->device->modify_wq)
1662                 return -ENOSYS;
1663
1664         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1665         return err;
1666 }
1667 EXPORT_SYMBOL(ib_modify_wq);
1668
1669 /*
1670  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1671  * @device: The device on which to create the rwq indirection table.
1672  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1673  * create the Indirection Table.
1674  *
1675  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1676  *      than the created ib_rwq_ind_table object and the caller is responsible
1677  *      for its memory allocation/free.
1678  */
1679 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1680                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1681 {
1682         struct ib_rwq_ind_table *rwq_ind_table;
1683         int i;
1684         u32 table_size;
1685
1686         if (!device->create_rwq_ind_table)
1687                 return ERR_PTR(-ENOSYS);
1688
1689         table_size = (1 << init_attr->log_ind_tbl_size);
1690         rwq_ind_table = device->create_rwq_ind_table(device,
1691                                 init_attr, NULL);
1692         if (IS_ERR(rwq_ind_table))
1693                 return rwq_ind_table;
1694
1695         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1696         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1697         rwq_ind_table->device = device;
1698         rwq_ind_table->uobject = NULL;
1699         atomic_set(&rwq_ind_table->usecnt, 0);
1700
1701         for (i = 0; i < table_size; i++)
1702                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1703
1704         return rwq_ind_table;
1705 }
1706 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1707
1708 /*
1709  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1710  * @wq_ind_table: The Indirection Table to destroy.
1711 */
1712 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1713 {
1714         int err, i;
1715         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1716         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1717
1718         if (atomic_read(&rwq_ind_table->usecnt))
1719                 return -EBUSY;
1720
1721         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1722         if (!err) {
1723                 for (i = 0; i < table_size; i++)
1724                         atomic_dec(&ind_tbl[i]->usecnt);
1725         }
1726
1727         return err;
1728 }
1729 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1730
1731 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1732                                struct ib_flow_attr *flow_attr,
1733                                int domain)
1734 {
1735         struct ib_flow *flow_id;
1736         if (!qp->device->create_flow)
1737                 return ERR_PTR(-ENOSYS);
1738
1739         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1740         if (!IS_ERR(flow_id)) {
1741                 atomic_inc(&qp->usecnt);
1742                 flow_id->qp = qp;
1743         }
1744         return flow_id;
1745 }
1746 EXPORT_SYMBOL(ib_create_flow);
1747
1748 int ib_destroy_flow(struct ib_flow *flow_id)
1749 {
1750         int err;
1751         struct ib_qp *qp = flow_id->qp;
1752
1753         err = qp->device->destroy_flow(flow_id);
1754         if (!err)
1755                 atomic_dec(&qp->usecnt);
1756         return err;
1757 }
1758 EXPORT_SYMBOL(ib_destroy_flow);
1759
1760 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1761                        struct ib_mr_status *mr_status)
1762 {
1763         return mr->device->check_mr_status ?
1764                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1765 }
1766 EXPORT_SYMBOL(ib_check_mr_status);
1767
1768 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1769                          int state)
1770 {
1771         if (!device->set_vf_link_state)
1772                 return -ENOSYS;
1773
1774         return device->set_vf_link_state(device, vf, port, state);
1775 }
1776 EXPORT_SYMBOL(ib_set_vf_link_state);
1777
1778 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1779                      struct ifla_vf_info *info)
1780 {
1781         if (!device->get_vf_config)
1782                 return -ENOSYS;
1783
1784         return device->get_vf_config(device, vf, port, info);
1785 }
1786 EXPORT_SYMBOL(ib_get_vf_config);
1787
1788 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1789                     struct ifla_vf_stats *stats)
1790 {
1791         if (!device->get_vf_stats)
1792                 return -ENOSYS;
1793
1794         return device->get_vf_stats(device, vf, port, stats);
1795 }
1796 EXPORT_SYMBOL(ib_get_vf_stats);
1797
1798 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1799                    int type)
1800 {
1801         if (!device->set_vf_guid)
1802                 return -ENOSYS;
1803
1804         return device->set_vf_guid(device, vf, port, guid, type);
1805 }
1806 EXPORT_SYMBOL(ib_set_vf_guid);
1807
1808 /**
1809  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1810  *     and set it the memory region.
1811  * @mr:            memory region
1812  * @sg:            dma mapped scatterlist
1813  * @sg_nents:      number of entries in sg
1814  * @sg_offset:     offset in bytes into sg
1815  * @page_size:     page vector desired page size
1816  *
1817  * Constraints:
1818  * - The first sg element is allowed to have an offset.
1819  * - Each sg element must either be aligned to page_size or virtually
1820  *   contiguous to the previous element. In case an sg element has a
1821  *   non-contiguous offset, the mapping prefix will not include it.
1822  * - The last sg element is allowed to have length less than page_size.
1823  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1824  *   then only max_num_sg entries will be mapped.
1825  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1826  *   constraints holds and the page_size argument is ignored.
1827  *
1828  * Returns the number of sg elements that were mapped to the memory region.
1829  *
1830  * After this completes successfully, the  memory region
1831  * is ready for registration.
1832  */
1833 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1834                  unsigned int *sg_offset, unsigned int page_size)
1835 {
1836         if (unlikely(!mr->device->map_mr_sg))
1837                 return -ENOSYS;
1838
1839         mr->page_size = page_size;
1840
1841         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1842 }
1843 EXPORT_SYMBOL(ib_map_mr_sg);
1844
1845 /**
1846  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1847  *     to a page vector
1848  * @mr:            memory region
1849  * @sgl:           dma mapped scatterlist
1850  * @sg_nents:      number of entries in sg
1851  * @sg_offset_p:   IN:  start offset in bytes into sg
1852  *                 OUT: offset in bytes for element n of the sg of the first
1853  *                      byte that has not been processed where n is the return
1854  *                      value of this function.
1855  * @set_page:      driver page assignment function pointer
1856  *
1857  * Core service helper for drivers to convert the largest
1858  * prefix of given sg list to a page vector. The sg list
1859  * prefix converted is the prefix that meet the requirements
1860  * of ib_map_mr_sg.
1861  *
1862  * Returns the number of sg elements that were assigned to
1863  * a page vector.
1864  */
1865 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1866                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1867 {
1868         struct scatterlist *sg;
1869         u64 last_end_dma_addr = 0;
1870         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1871         unsigned int last_page_off = 0;
1872         u64 page_mask = ~((u64)mr->page_size - 1);
1873         int i, ret;
1874
1875         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1876                 return -EINVAL;
1877
1878         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1879         mr->length = 0;
1880
1881         for_each_sg(sgl, sg, sg_nents, i) {
1882                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1883                 u64 prev_addr = dma_addr;
1884                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1885                 u64 end_dma_addr = dma_addr + dma_len;
1886                 u64 page_addr = dma_addr & page_mask;
1887
1888                 /*
1889                  * For the second and later elements, check whether either the
1890                  * end of element i-1 or the start of element i is not aligned
1891                  * on a page boundary.
1892                  */
1893                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1894                         /* Stop mapping if there is a gap. */
1895                         if (last_end_dma_addr != dma_addr)
1896                                 break;
1897
1898                         /*
1899                          * Coalesce this element with the last. If it is small
1900                          * enough just update mr->length. Otherwise start
1901                          * mapping from the next page.
1902                          */
1903                         goto next_page;
1904                 }
1905
1906                 do {
1907                         ret = set_page(mr, page_addr);
1908                         if (unlikely(ret < 0)) {
1909                                 sg_offset = prev_addr - sg_dma_address(sg);
1910                                 mr->length += prev_addr - dma_addr;
1911                                 if (sg_offset_p)
1912                                         *sg_offset_p = sg_offset;
1913                                 return i || sg_offset ? i : ret;
1914                         }
1915                         prev_addr = page_addr;
1916 next_page:
1917                         page_addr += mr->page_size;
1918                 } while (page_addr < end_dma_addr);
1919
1920                 mr->length += dma_len;
1921                 last_end_dma_addr = end_dma_addr;
1922                 last_page_off = end_dma_addr & ~page_mask;
1923
1924                 sg_offset = 0;
1925         }
1926
1927         if (sg_offset_p)
1928                 *sg_offset_p = 0;
1929         return i;
1930 }
1931 EXPORT_SYMBOL(ib_sg_to_pages);
1932
1933 struct ib_drain_cqe {
1934         struct ib_cqe cqe;
1935         struct completion done;
1936 };
1937
1938 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1939 {
1940         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1941                                                 cqe);
1942
1943         complete(&cqe->done);
1944 }
1945
1946 /*
1947  * Post a WR and block until its completion is reaped for the SQ.
1948  */
1949 static void __ib_drain_sq(struct ib_qp *qp)
1950 {
1951         struct ib_cq *cq = qp->send_cq;
1952         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1953         struct ib_drain_cqe sdrain;
1954         struct ib_send_wr swr = {}, *bad_swr;
1955         int ret;
1956
1957         swr.wr_cqe = &sdrain.cqe;
1958         sdrain.cqe.done = ib_drain_qp_done;
1959         init_completion(&sdrain.done);
1960
1961         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1962         if (ret) {
1963                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1964                 return;
1965         }
1966
1967         ret = ib_post_send(qp, &swr, &bad_swr);
1968         if (ret) {
1969                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1970                 return;
1971         }
1972
1973         if (cq->poll_ctx == IB_POLL_DIRECT)
1974                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
1975                         ib_process_cq_direct(cq, -1);
1976         else
1977                 wait_for_completion(&sdrain.done);
1978 }
1979
1980 /*
1981  * Post a WR and block until its completion is reaped for the RQ.
1982  */
1983 static void __ib_drain_rq(struct ib_qp *qp)
1984 {
1985         struct ib_cq *cq = qp->recv_cq;
1986         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1987         struct ib_drain_cqe rdrain;
1988         struct ib_recv_wr rwr = {}, *bad_rwr;
1989         int ret;
1990
1991         rwr.wr_cqe = &rdrain.cqe;
1992         rdrain.cqe.done = ib_drain_qp_done;
1993         init_completion(&rdrain.done);
1994
1995         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1996         if (ret) {
1997                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1998                 return;
1999         }
2000
2001         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2002         if (ret) {
2003                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2004                 return;
2005         }
2006
2007         if (cq->poll_ctx == IB_POLL_DIRECT)
2008                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2009                         ib_process_cq_direct(cq, -1);
2010         else
2011                 wait_for_completion(&rdrain.done);
2012 }
2013
2014 /**
2015  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2016  *                 application.
2017  * @qp:            queue pair to drain
2018  *
2019  * If the device has a provider-specific drain function, then
2020  * call that.  Otherwise call the generic drain function
2021  * __ib_drain_sq().
2022  *
2023  * The caller must:
2024  *
2025  * ensure there is room in the CQ and SQ for the drain work request and
2026  * completion.
2027  *
2028  * allocate the CQ using ib_alloc_cq().
2029  *
2030  * ensure that there are no other contexts that are posting WRs concurrently.
2031  * Otherwise the drain is not guaranteed.
2032  */
2033 void ib_drain_sq(struct ib_qp *qp)
2034 {
2035         if (qp->device->drain_sq)
2036                 qp->device->drain_sq(qp);
2037         else
2038                 __ib_drain_sq(qp);
2039 }
2040 EXPORT_SYMBOL(ib_drain_sq);
2041
2042 /**
2043  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2044  *                 application.
2045  * @qp:            queue pair to drain
2046  *
2047  * If the device has a provider-specific drain function, then
2048  * call that.  Otherwise call the generic drain function
2049  * __ib_drain_rq().
2050  *
2051  * The caller must:
2052  *
2053  * ensure there is room in the CQ and RQ for the drain work request and
2054  * completion.
2055  *
2056  * allocate the CQ using ib_alloc_cq().
2057  *
2058  * ensure that there are no other contexts that are posting WRs concurrently.
2059  * Otherwise the drain is not guaranteed.
2060  */
2061 void ib_drain_rq(struct ib_qp *qp)
2062 {
2063         if (qp->device->drain_rq)
2064                 qp->device->drain_rq(qp);
2065         else
2066                 __ib_drain_rq(qp);
2067 }
2068 EXPORT_SYMBOL(ib_drain_rq);
2069
2070 /**
2071  * ib_drain_qp() - Block until all CQEs have been consumed by the
2072  *                 application on both the RQ and SQ.
2073  * @qp:            queue pair to drain
2074  *
2075  * The caller must:
2076  *
2077  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2078  * and completions.
2079  *
2080  * allocate the CQs using ib_alloc_cq().
2081  *
2082  * ensure that there are no other contexts that are posting WRs concurrently.
2083  * Otherwise the drain is not guaranteed.
2084  */
2085 void ib_drain_qp(struct ib_qp *qp)
2086 {
2087         ib_drain_sq(qp);
2088         if (!qp->srq)
2089                 ib_drain_rq(qp);
2090 }
2091 EXPORT_SYMBOL(ib_drain_qp);
This page took 0.158233 seconds and 4 git commands to generate.