]> Git Repo - linux.git/blob - drivers/mtd/lpddr/lpddr_cmds.c
Merge tag 'jfs-5.8' of git://github.com/kleikamp/linux-shaggy
[linux.git] / drivers / mtd / lpddr / lpddr_cmds.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * LPDDR flash memory device operations. This module provides read, write,
4  * erase, lock/unlock support for LPDDR flash memories
5  * (C) 2008 Korolev Alexey <[email protected]>
6  * (C) 2008 Vasiliy Leonenko <[email protected]>
7  * Many thanks to Roman Borisov for initial enabling
8  *
9  * TODO:
10  * Implement VPP management
11  * Implement XIP support
12  * Implement OTP support
13  */
14 #include <linux/mtd/pfow.h>
15 #include <linux/mtd/qinfo.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18
19 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
20                                         size_t *retlen, u_char *buf);
21 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
22                                 size_t len, size_t *retlen, const u_char *buf);
23 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
24                                 unsigned long count, loff_t to, size_t *retlen);
25 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
26 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
27 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
28 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
29                         size_t *retlen, void **mtdbuf, resource_size_t *phys);
30 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
31 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
32 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
33 static void put_chip(struct map_info *map, struct flchip *chip);
34
35 struct mtd_info *lpddr_cmdset(struct map_info *map)
36 {
37         struct lpddr_private *lpddr = map->fldrv_priv;
38         struct flchip_shared *shared;
39         struct flchip *chip;
40         struct mtd_info *mtd;
41         int numchips;
42         int i, j;
43
44         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
45         if (!mtd)
46                 return NULL;
47         mtd->priv = map;
48         mtd->type = MTD_NORFLASH;
49
50         /* Fill in the default mtd operations */
51         mtd->_read = lpddr_read;
52         mtd->type = MTD_NORFLASH;
53         mtd->flags = MTD_CAP_NORFLASH;
54         mtd->flags &= ~MTD_BIT_WRITEABLE;
55         mtd->_erase = lpddr_erase;
56         mtd->_write = lpddr_write_buffers;
57         mtd->_writev = lpddr_writev;
58         mtd->_lock = lpddr_lock;
59         mtd->_unlock = lpddr_unlock;
60         if (map_is_linear(map)) {
61                 mtd->_point = lpddr_point;
62                 mtd->_unpoint = lpddr_unpoint;
63         }
64         mtd->size = 1 << lpddr->qinfo->DevSizeShift;
65         mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
66         mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
67
68         shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
69                                                 GFP_KERNEL);
70         if (!shared) {
71                 kfree(mtd);
72                 return NULL;
73         }
74
75         chip = &lpddr->chips[0];
76         numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
77         for (i = 0; i < numchips; i++) {
78                 shared[i].writing = shared[i].erasing = NULL;
79                 mutex_init(&shared[i].lock);
80                 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
81                         *chip = lpddr->chips[i];
82                         chip->start += j << lpddr->chipshift;
83                         chip->oldstate = chip->state = FL_READY;
84                         chip->priv = &shared[i];
85                         /* those should be reset too since
86                            they create memory references. */
87                         init_waitqueue_head(&chip->wq);
88                         mutex_init(&chip->mutex);
89                         chip++;
90                 }
91         }
92
93         return mtd;
94 }
95 EXPORT_SYMBOL(lpddr_cmdset);
96
97 static int wait_for_ready(struct map_info *map, struct flchip *chip,
98                 unsigned int chip_op_time)
99 {
100         unsigned int timeo, reset_timeo, sleep_time;
101         unsigned int dsr;
102         flstate_t chip_state = chip->state;
103         int ret = 0;
104
105         /* set our timeout to 8 times the expected delay */
106         timeo = chip_op_time * 8;
107         if (!timeo)
108                 timeo = 500000;
109         reset_timeo = timeo;
110         sleep_time = chip_op_time / 2;
111
112         for (;;) {
113                 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
114                 if (dsr & DSR_READY_STATUS)
115                         break;
116                 if (!timeo) {
117                         printk(KERN_ERR "%s: Flash timeout error state %d \n",
118                                                         map->name, chip_state);
119                         ret = -ETIME;
120                         break;
121                 }
122
123                 /* OK Still waiting. Drop the lock, wait a while and retry. */
124                 mutex_unlock(&chip->mutex);
125                 if (sleep_time >= 1000000/HZ) {
126                         /*
127                          * Half of the normal delay still remaining
128                          * can be performed with a sleeping delay instead
129                          * of busy waiting.
130                          */
131                         msleep(sleep_time/1000);
132                         timeo -= sleep_time;
133                         sleep_time = 1000000/HZ;
134                 } else {
135                         udelay(1);
136                         cond_resched();
137                         timeo--;
138                 }
139                 mutex_lock(&chip->mutex);
140
141                 while (chip->state != chip_state) {
142                         /* Someone's suspended the operation: sleep */
143                         DECLARE_WAITQUEUE(wait, current);
144                         set_current_state(TASK_UNINTERRUPTIBLE);
145                         add_wait_queue(&chip->wq, &wait);
146                         mutex_unlock(&chip->mutex);
147                         schedule();
148                         remove_wait_queue(&chip->wq, &wait);
149                         mutex_lock(&chip->mutex);
150                 }
151                 if (chip->erase_suspended || chip->write_suspended)  {
152                         /* Suspend has occurred while sleep: reset timeout */
153                         timeo = reset_timeo;
154                         chip->erase_suspended = chip->write_suspended = 0;
155                 }
156         }
157         /* check status for errors */
158         if (dsr & DSR_ERR) {
159                 /* Clear DSR*/
160                 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
161                 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
162                                 map->name, dsr);
163                 print_drs_error(dsr);
164                 ret = -EIO;
165         }
166         chip->state = FL_READY;
167         return ret;
168 }
169
170 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
171 {
172         int ret;
173         DECLARE_WAITQUEUE(wait, current);
174
175  retry:
176         if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
177                 && chip->state != FL_SYNCING) {
178                 /*
179                  * OK. We have possibility for contension on the write/erase
180                  * operations which are global to the real chip and not per
181                  * partition.  So let's fight it over in the partition which
182                  * currently has authority on the operation.
183                  *
184                  * The rules are as follows:
185                  *
186                  * - any write operation must own shared->writing.
187                  *
188                  * - any erase operation must own _both_ shared->writing and
189                  *   shared->erasing.
190                  *
191                  * - contension arbitration is handled in the owner's context.
192                  *
193                  * The 'shared' struct can be read and/or written only when
194                  * its lock is taken.
195                  */
196                 struct flchip_shared *shared = chip->priv;
197                 struct flchip *contender;
198                 mutex_lock(&shared->lock);
199                 contender = shared->writing;
200                 if (contender && contender != chip) {
201                         /*
202                          * The engine to perform desired operation on this
203                          * partition is already in use by someone else.
204                          * Let's fight over it in the context of the chip
205                          * currently using it.  If it is possible to suspend,
206                          * that other partition will do just that, otherwise
207                          * it'll happily send us to sleep.  In any case, when
208                          * get_chip returns success we're clear to go ahead.
209                          */
210                         ret = mutex_trylock(&contender->mutex);
211                         mutex_unlock(&shared->lock);
212                         if (!ret)
213                                 goto retry;
214                         mutex_unlock(&chip->mutex);
215                         ret = chip_ready(map, contender, mode);
216                         mutex_lock(&chip->mutex);
217
218                         if (ret == -EAGAIN) {
219                                 mutex_unlock(&contender->mutex);
220                                 goto retry;
221                         }
222                         if (ret) {
223                                 mutex_unlock(&contender->mutex);
224                                 return ret;
225                         }
226                         mutex_lock(&shared->lock);
227
228                         /* We should not own chip if it is already in FL_SYNCING
229                          * state. Put contender and retry. */
230                         if (chip->state == FL_SYNCING) {
231                                 put_chip(map, contender);
232                                 mutex_unlock(&contender->mutex);
233                                 goto retry;
234                         }
235                         mutex_unlock(&contender->mutex);
236                 }
237
238                 /* Check if we have suspended erase on this chip.
239                    Must sleep in such a case. */
240                 if (mode == FL_ERASING && shared->erasing
241                     && shared->erasing->oldstate == FL_ERASING) {
242                         mutex_unlock(&shared->lock);
243                         set_current_state(TASK_UNINTERRUPTIBLE);
244                         add_wait_queue(&chip->wq, &wait);
245                         mutex_unlock(&chip->mutex);
246                         schedule();
247                         remove_wait_queue(&chip->wq, &wait);
248                         mutex_lock(&chip->mutex);
249                         goto retry;
250                 }
251
252                 /* We now own it */
253                 shared->writing = chip;
254                 if (mode == FL_ERASING)
255                         shared->erasing = chip;
256                 mutex_unlock(&shared->lock);
257         }
258
259         ret = chip_ready(map, chip, mode);
260         if (ret == -EAGAIN)
261                 goto retry;
262
263         return ret;
264 }
265
266 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
267 {
268         struct lpddr_private *lpddr = map->fldrv_priv;
269         int ret = 0;
270         DECLARE_WAITQUEUE(wait, current);
271
272         /* Prevent setting state FL_SYNCING for chip in suspended state. */
273         if (FL_SYNCING == mode && FL_READY != chip->oldstate)
274                 goto sleep;
275
276         switch (chip->state) {
277         case FL_READY:
278         case FL_JEDEC_QUERY:
279                 return 0;
280
281         case FL_ERASING:
282                 if (!lpddr->qinfo->SuspEraseSupp ||
283                         !(mode == FL_READY || mode == FL_POINT))
284                         goto sleep;
285
286                 map_write(map, CMD(LPDDR_SUSPEND),
287                         map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
288                 chip->oldstate = FL_ERASING;
289                 chip->state = FL_ERASE_SUSPENDING;
290                 ret = wait_for_ready(map, chip, 0);
291                 if (ret) {
292                         /* Oops. something got wrong. */
293                         /* Resume and pretend we weren't here.  */
294                         put_chip(map, chip);
295                         printk(KERN_ERR "%s: suspend operation failed."
296                                         "State may be wrong \n", map->name);
297                         return -EIO;
298                 }
299                 chip->erase_suspended = 1;
300                 chip->state = FL_READY;
301                 return 0;
302                 /* Erase suspend */
303         case FL_POINT:
304                 /* Only if there's no operation suspended... */
305                 if (mode == FL_READY && chip->oldstate == FL_READY)
306                         return 0;
307                 fallthrough;
308         default:
309 sleep:
310                 set_current_state(TASK_UNINTERRUPTIBLE);
311                 add_wait_queue(&chip->wq, &wait);
312                 mutex_unlock(&chip->mutex);
313                 schedule();
314                 remove_wait_queue(&chip->wq, &wait);
315                 mutex_lock(&chip->mutex);
316                 return -EAGAIN;
317         }
318 }
319
320 static void put_chip(struct map_info *map, struct flchip *chip)
321 {
322         if (chip->priv) {
323                 struct flchip_shared *shared = chip->priv;
324                 mutex_lock(&shared->lock);
325                 if (shared->writing == chip && chip->oldstate == FL_READY) {
326                         /* We own the ability to write, but we're done */
327                         shared->writing = shared->erasing;
328                         if (shared->writing && shared->writing != chip) {
329                                 /* give back the ownership */
330                                 struct flchip *loaner = shared->writing;
331                                 mutex_lock(&loaner->mutex);
332                                 mutex_unlock(&shared->lock);
333                                 mutex_unlock(&chip->mutex);
334                                 put_chip(map, loaner);
335                                 mutex_lock(&chip->mutex);
336                                 mutex_unlock(&loaner->mutex);
337                                 wake_up(&chip->wq);
338                                 return;
339                         }
340                         shared->erasing = NULL;
341                         shared->writing = NULL;
342                 } else if (shared->erasing == chip && shared->writing != chip) {
343                         /*
344                          * We own the ability to erase without the ability
345                          * to write, which means the erase was suspended
346                          * and some other partition is currently writing.
347                          * Don't let the switch below mess things up since
348                          * we don't have ownership to resume anything.
349                          */
350                         mutex_unlock(&shared->lock);
351                         wake_up(&chip->wq);
352                         return;
353                 }
354                 mutex_unlock(&shared->lock);
355         }
356
357         switch (chip->oldstate) {
358         case FL_ERASING:
359                 map_write(map, CMD(LPDDR_RESUME),
360                                 map->pfow_base + PFOW_COMMAND_CODE);
361                 map_write(map, CMD(LPDDR_START_EXECUTION),
362                                 map->pfow_base + PFOW_COMMAND_EXECUTE);
363                 chip->oldstate = FL_READY;
364                 chip->state = FL_ERASING;
365                 break;
366         case FL_READY:
367                 break;
368         default:
369                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
370                                 map->name, chip->oldstate);
371         }
372         wake_up(&chip->wq);
373 }
374
375 static int do_write_buffer(struct map_info *map, struct flchip *chip,
376                         unsigned long adr, const struct kvec **pvec,
377                         unsigned long *pvec_seek, int len)
378 {
379         struct lpddr_private *lpddr = map->fldrv_priv;
380         map_word datum;
381         int ret, wbufsize, word_gap, words;
382         const struct kvec *vec;
383         unsigned long vec_seek;
384         unsigned long prog_buf_ofs;
385
386         wbufsize = 1 << lpddr->qinfo->BufSizeShift;
387
388         mutex_lock(&chip->mutex);
389         ret = get_chip(map, chip, FL_WRITING);
390         if (ret) {
391                 mutex_unlock(&chip->mutex);
392                 return ret;
393         }
394         /* Figure out the number of words to write */
395         word_gap = (-adr & (map_bankwidth(map)-1));
396         words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
397         if (!word_gap) {
398                 words--;
399         } else {
400                 word_gap = map_bankwidth(map) - word_gap;
401                 adr -= word_gap;
402                 datum = map_word_ff(map);
403         }
404         /* Write data */
405         /* Get the program buffer offset from PFOW register data first*/
406         prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
407                                 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
408         vec = *pvec;
409         vec_seek = *pvec_seek;
410         do {
411                 int n = map_bankwidth(map) - word_gap;
412
413                 if (n > vec->iov_len - vec_seek)
414                         n = vec->iov_len - vec_seek;
415                 if (n > len)
416                         n = len;
417
418                 if (!word_gap && (len < map_bankwidth(map)))
419                         datum = map_word_ff(map);
420
421                 datum = map_word_load_partial(map, datum,
422                                 vec->iov_base + vec_seek, word_gap, n);
423
424                 len -= n;
425                 word_gap += n;
426                 if (!len || word_gap == map_bankwidth(map)) {
427                         map_write(map, datum, prog_buf_ofs);
428                         prog_buf_ofs += map_bankwidth(map);
429                         word_gap = 0;
430                 }
431
432                 vec_seek += n;
433                 if (vec_seek == vec->iov_len) {
434                         vec++;
435                         vec_seek = 0;
436                 }
437         } while (len);
438         *pvec = vec;
439         *pvec_seek = vec_seek;
440
441         /* GO GO GO */
442         send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
443         chip->state = FL_WRITING;
444         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
445         if (ret)        {
446                 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
447                         map->name, ret, adr);
448                 goto out;
449         }
450
451  out:   put_chip(map, chip);
452         mutex_unlock(&chip->mutex);
453         return ret;
454 }
455
456 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
457 {
458         struct map_info *map = mtd->priv;
459         struct lpddr_private *lpddr = map->fldrv_priv;
460         int chipnum = adr >> lpddr->chipshift;
461         struct flchip *chip = &lpddr->chips[chipnum];
462         int ret;
463
464         mutex_lock(&chip->mutex);
465         ret = get_chip(map, chip, FL_ERASING);
466         if (ret) {
467                 mutex_unlock(&chip->mutex);
468                 return ret;
469         }
470         send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
471         chip->state = FL_ERASING;
472         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
473         if (ret) {
474                 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
475                         map->name, ret, adr);
476                 goto out;
477         }
478  out:   put_chip(map, chip);
479         mutex_unlock(&chip->mutex);
480         return ret;
481 }
482
483 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
484                         size_t *retlen, u_char *buf)
485 {
486         struct map_info *map = mtd->priv;
487         struct lpddr_private *lpddr = map->fldrv_priv;
488         int chipnum = adr >> lpddr->chipshift;
489         struct flchip *chip = &lpddr->chips[chipnum];
490         int ret = 0;
491
492         mutex_lock(&chip->mutex);
493         ret = get_chip(map, chip, FL_READY);
494         if (ret) {
495                 mutex_unlock(&chip->mutex);
496                 return ret;
497         }
498
499         map_copy_from(map, buf, adr, len);
500         *retlen = len;
501
502         put_chip(map, chip);
503         mutex_unlock(&chip->mutex);
504         return ret;
505 }
506
507 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
508                         size_t *retlen, void **mtdbuf, resource_size_t *phys)
509 {
510         struct map_info *map = mtd->priv;
511         struct lpddr_private *lpddr = map->fldrv_priv;
512         int chipnum = adr >> lpddr->chipshift;
513         unsigned long ofs, last_end = 0;
514         struct flchip *chip = &lpddr->chips[chipnum];
515         int ret = 0;
516
517         if (!map->virt)
518                 return -EINVAL;
519
520         /* ofs: offset within the first chip that the first read should start */
521         ofs = adr - (chipnum << lpddr->chipshift);
522         *mtdbuf = (void *)map->virt + chip->start + ofs;
523
524         while (len) {
525                 unsigned long thislen;
526
527                 if (chipnum >= lpddr->numchips)
528                         break;
529
530                 /* We cannot point across chips that are virtually disjoint */
531                 if (!last_end)
532                         last_end = chip->start;
533                 else if (chip->start != last_end)
534                         break;
535
536                 if ((len + ofs - 1) >> lpddr->chipshift)
537                         thislen = (1<<lpddr->chipshift) - ofs;
538                 else
539                         thislen = len;
540                 /* get the chip */
541                 mutex_lock(&chip->mutex);
542                 ret = get_chip(map, chip, FL_POINT);
543                 mutex_unlock(&chip->mutex);
544                 if (ret)
545                         break;
546
547                 chip->state = FL_POINT;
548                 chip->ref_point_counter++;
549                 *retlen += thislen;
550                 len -= thislen;
551
552                 ofs = 0;
553                 last_end += 1 << lpddr->chipshift;
554                 chipnum++;
555                 chip = &lpddr->chips[chipnum];
556         }
557         return 0;
558 }
559
560 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
561 {
562         struct map_info *map = mtd->priv;
563         struct lpddr_private *lpddr = map->fldrv_priv;
564         int chipnum = adr >> lpddr->chipshift, err = 0;
565         unsigned long ofs;
566
567         /* ofs: offset within the first chip that the first read should start */
568         ofs = adr - (chipnum << lpddr->chipshift);
569
570         while (len) {
571                 unsigned long thislen;
572                 struct flchip *chip;
573
574                 chip = &lpddr->chips[chipnum];
575                 if (chipnum >= lpddr->numchips)
576                         break;
577
578                 if ((len + ofs - 1) >> lpddr->chipshift)
579                         thislen = (1<<lpddr->chipshift) - ofs;
580                 else
581                         thislen = len;
582
583                 mutex_lock(&chip->mutex);
584                 if (chip->state == FL_POINT) {
585                         chip->ref_point_counter--;
586                         if (chip->ref_point_counter == 0)
587                                 chip->state = FL_READY;
588                 } else {
589                         printk(KERN_WARNING "%s: Warning: unpoint called on non"
590                                         "pointed region\n", map->name);
591                         err = -EINVAL;
592                 }
593
594                 put_chip(map, chip);
595                 mutex_unlock(&chip->mutex);
596
597                 len -= thislen;
598                 ofs = 0;
599                 chipnum++;
600         }
601
602         return err;
603 }
604
605 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
606                                 size_t *retlen, const u_char *buf)
607 {
608         struct kvec vec;
609
610         vec.iov_base = (void *) buf;
611         vec.iov_len = len;
612
613         return lpddr_writev(mtd, &vec, 1, to, retlen);
614 }
615
616
617 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
618                                 unsigned long count, loff_t to, size_t *retlen)
619 {
620         struct map_info *map = mtd->priv;
621         struct lpddr_private *lpddr = map->fldrv_priv;
622         int ret = 0;
623         int chipnum;
624         unsigned long ofs, vec_seek, i;
625         int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
626         size_t len = 0;
627
628         for (i = 0; i < count; i++)
629                 len += vecs[i].iov_len;
630
631         if (!len)
632                 return 0;
633
634         chipnum = to >> lpddr->chipshift;
635
636         ofs = to;
637         vec_seek = 0;
638
639         do {
640                 /* We must not cross write block boundaries */
641                 int size = wbufsize - (ofs & (wbufsize-1));
642
643                 if (size > len)
644                         size = len;
645
646                 ret = do_write_buffer(map, &lpddr->chips[chipnum],
647                                           ofs, &vecs, &vec_seek, size);
648                 if (ret)
649                         return ret;
650
651                 ofs += size;
652                 (*retlen) += size;
653                 len -= size;
654
655                 /* Be nice and reschedule with the chip in a usable
656                  * state for other processes */
657                 cond_resched();
658
659         } while (len);
660
661         return 0;
662 }
663
664 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
665 {
666         unsigned long ofs, len;
667         int ret;
668         struct map_info *map = mtd->priv;
669         struct lpddr_private *lpddr = map->fldrv_priv;
670         int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
671
672         ofs = instr->addr;
673         len = instr->len;
674
675         while (len > 0) {
676                 ret = do_erase_oneblock(mtd, ofs);
677                 if (ret)
678                         return ret;
679                 ofs += size;
680                 len -= size;
681         }
682
683         return 0;
684 }
685
686 #define DO_XXLOCK_LOCK          1
687 #define DO_XXLOCK_UNLOCK        2
688 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
689 {
690         int ret = 0;
691         struct map_info *map = mtd->priv;
692         struct lpddr_private *lpddr = map->fldrv_priv;
693         int chipnum = adr >> lpddr->chipshift;
694         struct flchip *chip = &lpddr->chips[chipnum];
695
696         mutex_lock(&chip->mutex);
697         ret = get_chip(map, chip, FL_LOCKING);
698         if (ret) {
699                 mutex_unlock(&chip->mutex);
700                 return ret;
701         }
702
703         if (thunk == DO_XXLOCK_LOCK) {
704                 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
705                 chip->state = FL_LOCKING;
706         } else if (thunk == DO_XXLOCK_UNLOCK) {
707                 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
708                 chip->state = FL_UNLOCKING;
709         } else
710                 BUG();
711
712         ret = wait_for_ready(map, chip, 1);
713         if (ret)        {
714                 printk(KERN_ERR "%s: block unlock error status %d \n",
715                                 map->name, ret);
716                 goto out;
717         }
718 out:    put_chip(map, chip);
719         mutex_unlock(&chip->mutex);
720         return ret;
721 }
722
723 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
724 {
725         return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
726 }
727
728 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
729 {
730         return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
731 }
732
733 MODULE_LICENSE("GPL");
734 MODULE_AUTHOR("Alexey Korolev <[email protected]>");
735 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
This page took 0.081365 seconds and 4 git commands to generate.