1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/part_stat.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
50 #include "blk-mq-sched.h"
52 #include "blk-throttle.h"
54 struct dentry *blk_debugfs_root;
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 DEFINE_IDA(blk_queue_ida);
66 * For queue allocation
68 struct kmem_cache *blk_requestq_cachep;
69 struct kmem_cache *blk_requestq_srcu_cachep;
72 * Controlling structure to kblockd
74 static struct workqueue_struct *kblockd_workqueue;
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
83 set_bit(flag, &q->queue_flags);
85 EXPORT_SYMBOL(blk_queue_flag_set);
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
94 clear_bit(flag, &q->queue_flags);
96 EXPORT_SYMBOL(blk_queue_flag_clear);
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
108 return test_and_set_bit(flag, &q->queue_flags);
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
112 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
113 static const char *const blk_op_name[] = {
117 REQ_OP_NAME(DISCARD),
118 REQ_OP_NAME(SECURE_ERASE),
119 REQ_OP_NAME(ZONE_RESET),
120 REQ_OP_NAME(ZONE_RESET_ALL),
121 REQ_OP_NAME(ZONE_OPEN),
122 REQ_OP_NAME(ZONE_CLOSE),
123 REQ_OP_NAME(ZONE_FINISH),
124 REQ_OP_NAME(ZONE_APPEND),
125 REQ_OP_NAME(WRITE_SAME),
126 REQ_OP_NAME(WRITE_ZEROES),
128 REQ_OP_NAME(DRV_OUT),
133 * blk_op_str - Return string XXX in the REQ_OP_XXX.
136 * Description: Centralize block layer function to convert REQ_OP_XXX into
137 * string format. Useful in the debugging and tracing bio or request. For
138 * invalid REQ_OP_XXX it returns string "UNKNOWN".
140 inline const char *blk_op_str(unsigned int op)
142 const char *op_str = "UNKNOWN";
144 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
145 op_str = blk_op_name[op];
149 EXPORT_SYMBOL_GPL(blk_op_str);
151 static const struct {
155 [BLK_STS_OK] = { 0, "" },
156 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
157 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
158 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
159 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
160 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
161 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
162 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
163 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
164 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
165 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
166 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
168 /* device mapper special case, should not leak out: */
169 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
171 /* zone device specific errors */
172 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
173 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
175 /* everything else not covered above: */
176 [BLK_STS_IOERR] = { -EIO, "I/O" },
179 blk_status_t errno_to_blk_status(int errno)
183 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
184 if (blk_errors[i].errno == errno)
185 return (__force blk_status_t)i;
188 return BLK_STS_IOERR;
190 EXPORT_SYMBOL_GPL(errno_to_blk_status);
192 int blk_status_to_errno(blk_status_t status)
194 int idx = (__force int)status;
196 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
198 return blk_errors[idx].errno;
200 EXPORT_SYMBOL_GPL(blk_status_to_errno);
202 const char *blk_status_to_str(blk_status_t status)
204 int idx = (__force int)status;
206 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 return blk_errors[idx].name;
212 * blk_sync_queue - cancel any pending callbacks on a queue
216 * The block layer may perform asynchronous callback activity
217 * on a queue, such as calling the unplug function after a timeout.
218 * A block device may call blk_sync_queue to ensure that any
219 * such activity is cancelled, thus allowing it to release resources
220 * that the callbacks might use. The caller must already have made sure
221 * that its ->submit_bio will not re-add plugging prior to calling
224 * This function does not cancel any asynchronous activity arising
225 * out of elevator or throttling code. That would require elevator_exit()
226 * and blkcg_exit_queue() to be called with queue lock initialized.
229 void blk_sync_queue(struct request_queue *q)
231 del_timer_sync(&q->timeout);
232 cancel_work_sync(&q->timeout_work);
234 EXPORT_SYMBOL(blk_sync_queue);
237 * blk_set_pm_only - increment pm_only counter
238 * @q: request queue pointer
240 void blk_set_pm_only(struct request_queue *q)
242 atomic_inc(&q->pm_only);
244 EXPORT_SYMBOL_GPL(blk_set_pm_only);
246 void blk_clear_pm_only(struct request_queue *q)
250 pm_only = atomic_dec_return(&q->pm_only);
251 WARN_ON_ONCE(pm_only < 0);
253 wake_up_all(&q->mq_freeze_wq);
255 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
258 * blk_put_queue - decrement the request_queue refcount
259 * @q: the request_queue structure to decrement the refcount for
261 * Decrements the refcount of the request_queue kobject. When this reaches 0
262 * we'll have blk_release_queue() called.
264 * Context: Any context, but the last reference must not be dropped from
267 void blk_put_queue(struct request_queue *q)
269 kobject_put(&q->kobj);
271 EXPORT_SYMBOL(blk_put_queue);
273 void blk_queue_start_drain(struct request_queue *q)
276 * When queue DYING flag is set, we need to block new req
277 * entering queue, so we call blk_freeze_queue_start() to
278 * prevent I/O from crossing blk_queue_enter().
280 blk_freeze_queue_start(q);
282 blk_mq_wake_waiters(q);
283 /* Make blk_queue_enter() reexamine the DYING flag. */
284 wake_up_all(&q->mq_freeze_wq);
288 * blk_cleanup_queue - shutdown a request queue
289 * @q: request queue to shutdown
291 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
292 * put it. All future requests will be failed immediately with -ENODEV.
296 void blk_cleanup_queue(struct request_queue *q)
298 /* cannot be called from atomic context */
301 WARN_ON_ONCE(blk_queue_registered(q));
303 /* mark @q DYING, no new request or merges will be allowed afterwards */
304 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
305 blk_queue_start_drain(q);
307 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
308 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
311 * Drain all requests queued before DYING marking. Set DEAD flag to
312 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
313 * after draining finished.
317 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
320 if (queue_is_mq(q)) {
321 blk_mq_cancel_work_sync(q);
322 blk_mq_exit_queue(q);
326 * In theory, request pool of sched_tags belongs to request queue.
327 * However, the current implementation requires tag_set for freeing
328 * requests, so free the pool now.
330 * Queue has become frozen, there can't be any in-queue requests, so
331 * it is safe to free requests now.
333 mutex_lock(&q->sysfs_lock);
335 blk_mq_sched_free_rqs(q);
336 mutex_unlock(&q->sysfs_lock);
338 percpu_ref_exit(&q->q_usage_counter);
340 /* @q is and will stay empty, shutdown and put */
343 EXPORT_SYMBOL(blk_cleanup_queue);
346 * blk_queue_enter() - try to increase q->q_usage_counter
347 * @q: request queue pointer
348 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
350 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
352 const bool pm = flags & BLK_MQ_REQ_PM;
354 while (!blk_try_enter_queue(q, pm)) {
355 if (flags & BLK_MQ_REQ_NOWAIT)
359 * read pair of barrier in blk_freeze_queue_start(), we need to
360 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
361 * reading .mq_freeze_depth or queue dying flag, otherwise the
362 * following wait may never return if the two reads are
366 wait_event(q->mq_freeze_wq,
367 (!q->mq_freeze_depth &&
368 blk_pm_resume_queue(pm, q)) ||
370 if (blk_queue_dying(q))
377 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
379 while (!blk_try_enter_queue(q, false)) {
380 struct gendisk *disk = bio->bi_bdev->bd_disk;
382 if (bio->bi_opf & REQ_NOWAIT) {
383 if (test_bit(GD_DEAD, &disk->state))
385 bio_wouldblock_error(bio);
390 * read pair of barrier in blk_freeze_queue_start(), we need to
391 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
392 * reading .mq_freeze_depth or queue dying flag, otherwise the
393 * following wait may never return if the two reads are
397 wait_event(q->mq_freeze_wq,
398 (!q->mq_freeze_depth &&
399 blk_pm_resume_queue(false, q)) ||
400 test_bit(GD_DEAD, &disk->state));
401 if (test_bit(GD_DEAD, &disk->state))
411 void blk_queue_exit(struct request_queue *q)
413 percpu_ref_put(&q->q_usage_counter);
416 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
418 struct request_queue *q =
419 container_of(ref, struct request_queue, q_usage_counter);
421 wake_up_all(&q->mq_freeze_wq);
424 static void blk_rq_timed_out_timer(struct timer_list *t)
426 struct request_queue *q = from_timer(q, t, timeout);
428 kblockd_schedule_work(&q->timeout_work);
431 static void blk_timeout_work(struct work_struct *work)
435 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
437 struct request_queue *q;
440 q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
441 GFP_KERNEL | __GFP_ZERO, node_id);
446 blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
447 if (init_srcu_struct(q->srcu) != 0)
451 q->last_merge = NULL;
453 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
457 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
461 q->stats = blk_alloc_queue_stats();
467 atomic_set(&q->nr_active_requests_shared_tags, 0);
469 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
470 INIT_WORK(&q->timeout_work, blk_timeout_work);
471 INIT_LIST_HEAD(&q->icq_list);
472 #ifdef CONFIG_BLK_CGROUP
473 INIT_LIST_HEAD(&q->blkg_list);
476 kobject_init(&q->kobj, &blk_queue_ktype);
478 mutex_init(&q->debugfs_mutex);
479 mutex_init(&q->sysfs_lock);
480 mutex_init(&q->sysfs_dir_lock);
481 spin_lock_init(&q->queue_lock);
483 init_waitqueue_head(&q->mq_freeze_wq);
484 mutex_init(&q->mq_freeze_lock);
487 * Init percpu_ref in atomic mode so that it's faster to shutdown.
488 * See blk_register_queue() for details.
490 if (percpu_ref_init(&q->q_usage_counter,
491 blk_queue_usage_counter_release,
492 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
495 if (blkcg_init_queue(q))
498 blk_queue_dma_alignment(q, 511);
499 blk_set_default_limits(&q->limits);
500 q->nr_requests = BLKDEV_DEFAULT_RQ;
505 percpu_ref_exit(&q->q_usage_counter);
507 blk_free_queue_stats(q->stats);
509 bioset_exit(&q->bio_split);
511 ida_simple_remove(&blk_queue_ida, q->id);
514 cleanup_srcu_struct(q->srcu);
516 kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
521 * blk_get_queue - increment the request_queue refcount
522 * @q: the request_queue structure to increment the refcount for
524 * Increment the refcount of the request_queue kobject.
526 * Context: Any context.
528 bool blk_get_queue(struct request_queue *q)
530 if (likely(!blk_queue_dying(q))) {
537 EXPORT_SYMBOL(blk_get_queue);
539 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
541 char b[BDEVNAME_SIZE];
543 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
544 "%s: rw=%d, want=%llu, limit=%llu\n",
546 bio_devname(bio, b), bio->bi_opf,
547 bio_end_sector(bio), maxsector);
550 #ifdef CONFIG_FAIL_MAKE_REQUEST
552 static DECLARE_FAULT_ATTR(fail_make_request);
554 static int __init setup_fail_make_request(char *str)
556 return setup_fault_attr(&fail_make_request, str);
558 __setup("fail_make_request=", setup_fail_make_request);
560 bool should_fail_request(struct block_device *part, unsigned int bytes)
562 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
565 static int __init fail_make_request_debugfs(void)
567 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
568 NULL, &fail_make_request);
570 return PTR_ERR_OR_ZERO(dir);
573 late_initcall(fail_make_request_debugfs);
574 #endif /* CONFIG_FAIL_MAKE_REQUEST */
576 static inline bool bio_check_ro(struct bio *bio)
578 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
579 char b[BDEVNAME_SIZE];
581 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
585 "Trying to write to read-only block-device %s (partno %d)\n",
586 bio_devname(bio, b), bio->bi_bdev->bd_partno);
587 /* Older lvm-tools actually trigger this */
594 static noinline int should_fail_bio(struct bio *bio)
596 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
600 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
603 * Check whether this bio extends beyond the end of the device or partition.
604 * This may well happen - the kernel calls bread() without checking the size of
605 * the device, e.g., when mounting a file system.
607 static inline int bio_check_eod(struct bio *bio)
609 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
610 unsigned int nr_sectors = bio_sectors(bio);
612 if (nr_sectors && maxsector &&
613 (nr_sectors > maxsector ||
614 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
615 handle_bad_sector(bio, maxsector);
622 * Remap block n of partition p to block n+start(p) of the disk.
624 static int blk_partition_remap(struct bio *bio)
626 struct block_device *p = bio->bi_bdev;
628 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
630 if (bio_sectors(bio)) {
631 bio->bi_iter.bi_sector += p->bd_start_sect;
632 trace_block_bio_remap(bio, p->bd_dev,
633 bio->bi_iter.bi_sector -
636 bio_set_flag(bio, BIO_REMAPPED);
641 * Check write append to a zoned block device.
643 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
646 sector_t pos = bio->bi_iter.bi_sector;
647 int nr_sectors = bio_sectors(bio);
649 /* Only applicable to zoned block devices */
650 if (!blk_queue_is_zoned(q))
651 return BLK_STS_NOTSUPP;
653 /* The bio sector must point to the start of a sequential zone */
654 if (pos & (blk_queue_zone_sectors(q) - 1) ||
655 !blk_queue_zone_is_seq(q, pos))
656 return BLK_STS_IOERR;
659 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
660 * split and could result in non-contiguous sectors being written in
663 if (nr_sectors > q->limits.chunk_sectors)
664 return BLK_STS_IOERR;
666 /* Make sure the BIO is small enough and will not get split */
667 if (nr_sectors > q->limits.max_zone_append_sectors)
668 return BLK_STS_IOERR;
670 bio->bi_opf |= REQ_NOMERGE;
675 noinline_for_stack bool submit_bio_checks(struct bio *bio)
677 struct block_device *bdev = bio->bi_bdev;
678 struct request_queue *q = bdev_get_queue(bdev);
679 blk_status_t status = BLK_STS_IOERR;
680 struct blk_plug *plug;
684 plug = blk_mq_plug(q, bio);
685 if (plug && plug->nowait)
686 bio->bi_opf |= REQ_NOWAIT;
689 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
690 * if queue does not support NOWAIT.
692 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
695 if (should_fail_bio(bio))
697 if (unlikely(bio_check_ro(bio)))
699 if (!bio_flagged(bio, BIO_REMAPPED)) {
700 if (unlikely(bio_check_eod(bio)))
702 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
707 * Filter flush bio's early so that bio based drivers without flush
708 * support don't have to worry about them.
710 if (op_is_flush(bio->bi_opf) &&
711 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
712 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
713 if (!bio_sectors(bio)) {
719 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
720 bio_clear_polled(bio);
722 switch (bio_op(bio)) {
724 if (!blk_queue_discard(q))
727 case REQ_OP_SECURE_ERASE:
728 if (!blk_queue_secure_erase(q))
731 case REQ_OP_WRITE_SAME:
732 if (!q->limits.max_write_same_sectors)
735 case REQ_OP_ZONE_APPEND:
736 status = blk_check_zone_append(q, bio);
737 if (status != BLK_STS_OK)
740 case REQ_OP_ZONE_RESET:
741 case REQ_OP_ZONE_OPEN:
742 case REQ_OP_ZONE_CLOSE:
743 case REQ_OP_ZONE_FINISH:
744 if (!blk_queue_is_zoned(q))
747 case REQ_OP_ZONE_RESET_ALL:
748 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
751 case REQ_OP_WRITE_ZEROES:
752 if (!q->limits.max_write_zeroes_sectors)
759 if (blk_throtl_bio(bio))
762 blk_cgroup_bio_start(bio);
763 blkcg_bio_issue_init(bio);
765 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
766 trace_block_bio_queue(bio);
767 /* Now that enqueuing has been traced, we need to trace
768 * completion as well.
770 bio_set_flag(bio, BIO_TRACE_COMPLETION);
775 status = BLK_STS_NOTSUPP;
777 bio->bi_status = status;
782 static void __submit_bio_fops(struct gendisk *disk, struct bio *bio)
784 if (blk_crypto_bio_prep(&bio)) {
785 if (likely(bio_queue_enter(bio) == 0)) {
786 disk->fops->submit_bio(bio);
787 blk_queue_exit(disk->queue);
792 static void __submit_bio(struct bio *bio)
794 struct gendisk *disk = bio->bi_bdev->bd_disk;
796 if (unlikely(!submit_bio_checks(bio)))
799 if (!disk->fops->submit_bio)
800 blk_mq_submit_bio(bio);
802 __submit_bio_fops(disk, bio);
806 * The loop in this function may be a bit non-obvious, and so deserves some
809 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
810 * that), so we have a list with a single bio.
811 * - We pretend that we have just taken it off a longer list, so we assign
812 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
813 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
814 * bios through a recursive call to submit_bio_noacct. If it did, we find a
815 * non-NULL value in bio_list and re-enter the loop from the top.
816 * - In this case we really did just take the bio of the top of the list (no
817 * pretending) and so remove it from bio_list, and call into ->submit_bio()
820 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
821 * bio_list_on_stack[1] contains bios that were submitted before the current
822 * ->submit_bio_bio, but that haven't been processed yet.
824 static void __submit_bio_noacct(struct bio *bio)
826 struct bio_list bio_list_on_stack[2];
828 BUG_ON(bio->bi_next);
830 bio_list_init(&bio_list_on_stack[0]);
831 current->bio_list = bio_list_on_stack;
834 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
835 struct bio_list lower, same;
838 * Create a fresh bio_list for all subordinate requests.
840 bio_list_on_stack[1] = bio_list_on_stack[0];
841 bio_list_init(&bio_list_on_stack[0]);
846 * Sort new bios into those for a lower level and those for the
849 bio_list_init(&lower);
850 bio_list_init(&same);
851 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
852 if (q == bdev_get_queue(bio->bi_bdev))
853 bio_list_add(&same, bio);
855 bio_list_add(&lower, bio);
858 * Now assemble so we handle the lowest level first.
860 bio_list_merge(&bio_list_on_stack[0], &lower);
861 bio_list_merge(&bio_list_on_stack[0], &same);
862 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
863 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
865 current->bio_list = NULL;
868 static void __submit_bio_noacct_mq(struct bio *bio)
870 struct bio_list bio_list[2] = { };
872 current->bio_list = bio_list;
876 } while ((bio = bio_list_pop(&bio_list[0])));
878 current->bio_list = NULL;
882 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
883 * @bio: The bio describing the location in memory and on the device.
885 * This is a version of submit_bio() that shall only be used for I/O that is
886 * resubmitted to lower level drivers by stacking block drivers. All file
887 * systems and other upper level users of the block layer should use
888 * submit_bio() instead.
890 void submit_bio_noacct(struct bio *bio)
893 * We only want one ->submit_bio to be active at a time, else stack
894 * usage with stacked devices could be a problem. Use current->bio_list
895 * to collect a list of requests submited by a ->submit_bio method while
896 * it is active, and then process them after it returned.
898 if (current->bio_list)
899 bio_list_add(¤t->bio_list[0], bio);
900 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
901 __submit_bio_noacct_mq(bio);
903 __submit_bio_noacct(bio);
905 EXPORT_SYMBOL(submit_bio_noacct);
908 * submit_bio - submit a bio to the block device layer for I/O
909 * @bio: The &struct bio which describes the I/O
911 * submit_bio() is used to submit I/O requests to block devices. It is passed a
912 * fully set up &struct bio that describes the I/O that needs to be done. The
913 * bio will be send to the device described by the bi_bdev field.
915 * The success/failure status of the request, along with notification of
916 * completion, is delivered asynchronously through the ->bi_end_io() callback
917 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
920 void submit_bio(struct bio *bio)
922 if (blkcg_punt_bio_submit(bio))
926 * If it's a regular read/write or a barrier with data attached,
927 * go through the normal accounting stuff before submission.
929 if (bio_has_data(bio)) {
932 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
933 count = queue_logical_block_size(
934 bdev_get_queue(bio->bi_bdev)) >> 9;
936 count = bio_sectors(bio);
938 if (op_is_write(bio_op(bio))) {
939 count_vm_events(PGPGOUT, count);
941 task_io_account_read(bio->bi_iter.bi_size);
942 count_vm_events(PGPGIN, count);
947 * If we're reading data that is part of the userspace workingset, count
948 * submission time as memory stall. When the device is congested, or
949 * the submitting cgroup IO-throttled, submission can be a significant
950 * part of overall IO time.
952 if (unlikely(bio_op(bio) == REQ_OP_READ &&
953 bio_flagged(bio, BIO_WORKINGSET))) {
954 unsigned long pflags;
956 psi_memstall_enter(&pflags);
957 submit_bio_noacct(bio);
958 psi_memstall_leave(&pflags);
962 submit_bio_noacct(bio);
964 EXPORT_SYMBOL(submit_bio);
967 * bio_poll - poll for BIO completions
968 * @bio: bio to poll for
969 * @iob: batches of IO
970 * @flags: BLK_POLL_* flags that control the behavior
972 * Poll for completions on queue associated with the bio. Returns number of
973 * completed entries found.
975 * Note: the caller must either be the context that submitted @bio, or
976 * be in a RCU critical section to prevent freeing of @bio.
978 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
980 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
981 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
984 if (cookie == BLK_QC_T_NONE ||
985 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
989 blk_flush_plug(current->plug, false);
991 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
993 if (WARN_ON_ONCE(!queue_is_mq(q)))
994 ret = 0; /* not yet implemented, should not happen */
996 ret = blk_mq_poll(q, cookie, iob, flags);
1000 EXPORT_SYMBOL_GPL(bio_poll);
1003 * Helper to implement file_operations.iopoll. Requires the bio to be stored
1004 * in iocb->private, and cleared before freeing the bio.
1006 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1013 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1014 * point to a freshly allocated bio at this point. If that happens
1015 * we have a few cases to consider:
1017 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
1018 * simply nothing in this case
1019 * 2) the bio points to a not poll enabled device. bio_poll will catch
1021 * 3) the bio points to a poll capable device, including but not
1022 * limited to the one that the original bio pointed to. In this
1023 * case we will call into the actual poll method and poll for I/O,
1024 * even if we don't need to, but it won't cause harm either.
1026 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1027 * is still allocated. Because partitions hold a reference to the whole
1028 * device bdev and thus disk, the disk is also still valid. Grabbing
1029 * a reference to the queue in bio_poll() ensures the hctxs and requests
1030 * are still valid as well.
1033 bio = READ_ONCE(kiocb->private);
1034 if (bio && bio->bi_bdev)
1035 ret = bio_poll(bio, iob, flags);
1040 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1042 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1044 unsigned long stamp;
1046 stamp = READ_ONCE(part->bd_stamp);
1047 if (unlikely(time_after(now, stamp))) {
1048 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1049 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1051 if (part->bd_partno) {
1052 part = bdev_whole(part);
1057 static unsigned long __part_start_io_acct(struct block_device *part,
1058 unsigned int sectors, unsigned int op,
1059 unsigned long start_time)
1061 const int sgrp = op_stat_group(op);
1064 update_io_ticks(part, start_time, false);
1065 part_stat_inc(part, ios[sgrp]);
1066 part_stat_add(part, sectors[sgrp], sectors);
1067 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1074 * bio_start_io_acct_time - start I/O accounting for bio based drivers
1075 * @bio: bio to start account for
1076 * @start_time: start time that should be passed back to bio_end_io_acct().
1078 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1080 __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1081 bio_op(bio), start_time);
1083 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1086 * bio_start_io_acct - start I/O accounting for bio based drivers
1087 * @bio: bio to start account for
1089 * Returns the start time that should be passed back to bio_end_io_acct().
1091 unsigned long bio_start_io_acct(struct bio *bio)
1093 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1094 bio_op(bio), jiffies);
1096 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1098 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1101 return __part_start_io_acct(disk->part0, sectors, op, jiffies);
1103 EXPORT_SYMBOL(disk_start_io_acct);
1105 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1106 unsigned long start_time)
1108 const int sgrp = op_stat_group(op);
1109 unsigned long now = READ_ONCE(jiffies);
1110 unsigned long duration = now - start_time;
1113 update_io_ticks(part, now, true);
1114 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1115 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1119 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1120 struct block_device *orig_bdev)
1122 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1124 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1126 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1127 unsigned long start_time)
1129 __part_end_io_acct(disk->part0, op, start_time);
1131 EXPORT_SYMBOL(disk_end_io_acct);
1134 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1135 * @q : the queue of the device being checked
1138 * Check if underlying low-level drivers of a device are busy.
1139 * If the drivers want to export their busy state, they must set own
1140 * exporting function using blk_queue_lld_busy() first.
1142 * Basically, this function is used only by request stacking drivers
1143 * to stop dispatching requests to underlying devices when underlying
1144 * devices are busy. This behavior helps more I/O merging on the queue
1145 * of the request stacking driver and prevents I/O throughput regression
1146 * on burst I/O load.
1149 * 0 - Not busy (The request stacking driver should dispatch request)
1150 * 1 - Busy (The request stacking driver should stop dispatching request)
1152 int blk_lld_busy(struct request_queue *q)
1154 if (queue_is_mq(q) && q->mq_ops->busy)
1155 return q->mq_ops->busy(q);
1159 EXPORT_SYMBOL_GPL(blk_lld_busy);
1161 int kblockd_schedule_work(struct work_struct *work)
1163 return queue_work(kblockd_workqueue, work);
1165 EXPORT_SYMBOL(kblockd_schedule_work);
1167 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1168 unsigned long delay)
1170 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1172 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1174 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1176 struct task_struct *tsk = current;
1179 * If this is a nested plug, don't actually assign it.
1184 plug->mq_list = NULL;
1185 plug->cached_rq = NULL;
1186 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1188 plug->multiple_queues = false;
1189 plug->has_elevator = false;
1190 plug->nowait = false;
1191 INIT_LIST_HEAD(&plug->cb_list);
1194 * Store ordering should not be needed here, since a potential
1195 * preempt will imply a full memory barrier
1201 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1202 * @plug: The &struct blk_plug that needs to be initialized
1205 * blk_start_plug() indicates to the block layer an intent by the caller
1206 * to submit multiple I/O requests in a batch. The block layer may use
1207 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1208 * is called. However, the block layer may choose to submit requests
1209 * before a call to blk_finish_plug() if the number of queued I/Os
1210 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1211 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1212 * the task schedules (see below).
1214 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1215 * pending I/O should the task end up blocking between blk_start_plug() and
1216 * blk_finish_plug(). This is important from a performance perspective, but
1217 * also ensures that we don't deadlock. For instance, if the task is blocking
1218 * for a memory allocation, memory reclaim could end up wanting to free a
1219 * page belonging to that request that is currently residing in our private
1220 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1221 * this kind of deadlock.
1223 void blk_start_plug(struct blk_plug *plug)
1225 blk_start_plug_nr_ios(plug, 1);
1227 EXPORT_SYMBOL(blk_start_plug);
1229 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1231 LIST_HEAD(callbacks);
1233 while (!list_empty(&plug->cb_list)) {
1234 list_splice_init(&plug->cb_list, &callbacks);
1236 while (!list_empty(&callbacks)) {
1237 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1240 list_del(&cb->list);
1241 cb->callback(cb, from_schedule);
1246 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1249 struct blk_plug *plug = current->plug;
1250 struct blk_plug_cb *cb;
1255 list_for_each_entry(cb, &plug->cb_list, list)
1256 if (cb->callback == unplug && cb->data == data)
1259 /* Not currently on the callback list */
1260 BUG_ON(size < sizeof(*cb));
1261 cb = kzalloc(size, GFP_ATOMIC);
1264 cb->callback = unplug;
1265 list_add(&cb->list, &plug->cb_list);
1269 EXPORT_SYMBOL(blk_check_plugged);
1271 void blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1273 if (!list_empty(&plug->cb_list))
1274 flush_plug_callbacks(plug, from_schedule);
1275 if (!rq_list_empty(plug->mq_list))
1276 blk_mq_flush_plug_list(plug, from_schedule);
1278 * Unconditionally flush out cached requests, even if the unplug
1279 * event came from schedule. Since we know hold references to the
1280 * queue for cached requests, we don't want a blocked task holding
1281 * up a queue freeze/quiesce event.
1283 if (unlikely(!rq_list_empty(plug->cached_rq)))
1284 blk_mq_free_plug_rqs(plug);
1288 * blk_finish_plug - mark the end of a batch of submitted I/O
1289 * @plug: The &struct blk_plug passed to blk_start_plug()
1292 * Indicate that a batch of I/O submissions is complete. This function
1293 * must be paired with an initial call to blk_start_plug(). The intent
1294 * is to allow the block layer to optimize I/O submission. See the
1295 * documentation for blk_start_plug() for more information.
1297 void blk_finish_plug(struct blk_plug *plug)
1299 if (plug == current->plug) {
1300 blk_flush_plug(plug, false);
1301 current->plug = NULL;
1304 EXPORT_SYMBOL(blk_finish_plug);
1306 void blk_io_schedule(void)
1308 /* Prevent hang_check timer from firing at us during very long I/O */
1309 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1312 io_schedule_timeout(timeout);
1316 EXPORT_SYMBOL_GPL(blk_io_schedule);
1318 int __init blk_dev_init(void)
1320 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1321 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1322 sizeof_field(struct request, cmd_flags));
1323 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1324 sizeof_field(struct bio, bi_opf));
1325 BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1326 __alignof__(struct request_queue)) !=
1327 sizeof(struct request_queue));
1329 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1330 kblockd_workqueue = alloc_workqueue("kblockd",
1331 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1332 if (!kblockd_workqueue)
1333 panic("Failed to create kblockd\n");
1335 blk_requestq_cachep = kmem_cache_create("request_queue",
1336 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1338 blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1339 sizeof(struct request_queue) +
1340 sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1342 blk_debugfs_root = debugfs_create_dir("block", NULL);