2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
29 * - Pool collects resently freed pages for reuse (and hooks up to
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #if IS_ENABLED(CONFIG_AGP)
57 #include <asm/set_memory.h>
60 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
61 #define SMALL_ALLOCATION 4
62 #define FREE_ALL_PAGES (~0U)
63 #define VADDR_FLAG_HUGE_POOL 1UL
75 * The pool structure. There are up to nine pools:
76 * - generic (not restricted to DMA32):
77 * - write combined, uncached, cached.
78 * - dma32 (up to 2^32 - so up 4GB):
79 * - write combined, uncached, cached.
80 * - huge (not restricted to DMA32):
81 * - write combined, uncached, cached.
82 * for each 'struct device'. The 'cached' is for pages that are actively used.
83 * The other ones can be shrunk by the shrinker API if neccessary.
84 * @pools: The 'struct device->dma_pools' link.
85 * @type: Type of the pool
86 * @lock: Protects the free_list from concurrnet access. Must be
87 * used with irqsave/irqrestore variants because pool allocator maybe called
89 * @free_list: Pool of pages that are free to be used. No order requirements.
90 * @dev: The device that is associated with these pools.
91 * @size: Size used during DMA allocation.
92 * @npages_free: Count of available pages for re-use.
93 * @npages_in_use: Count of pages that are in use.
94 * @nfrees: Stats when pool is shrinking.
95 * @nrefills: Stats when the pool is grown.
96 * @gfp_flags: Flags to pass for alloc_page.
97 * @name: Name of the pool.
98 * @dev_name: Name derieved from dev - similar to how dev_info works.
99 * Used during shutdown as the dev_info during release is unavailable.
102 struct list_head pools; /* The 'struct device->dma_pools link */
105 struct list_head free_list;
108 unsigned npages_free;
109 unsigned npages_in_use;
110 unsigned long nfrees; /* Stats when shrunk. */
111 unsigned long nrefills; /* Stats when grown. */
113 char name[13]; /* "cached dma32" */
114 char dev_name[64]; /* Constructed from dev */
118 * The accounting page keeping track of the allocated page along with
120 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
121 * @vaddr: The virtual address of the page and a flag if the page belongs to a
123 * @dma: The bus address of the page. If the page is not allocated
124 * via the DMA API, it will be -1.
127 struct list_head page_list;
134 * Limits for the pool. They are handled without locks because only place where
135 * they may change is in sysfs store. They won't have immediate effect anyway
136 * so forcing serialization to access them is pointless.
139 struct ttm_pool_opts {
146 * Contains the list of all of the 'struct device' and their corresponding
147 * DMA pools. Guarded by _mutex->lock.
148 * @pools: The link to 'struct ttm_pool_manager->pools'
149 * @dev: The 'struct device' associated with the 'pool'
150 * @pool: The 'struct dma_pool' associated with the 'dev'
152 struct device_pools {
153 struct list_head pools;
155 struct dma_pool *pool;
159 * struct ttm_pool_manager - Holds memory pools for fast allocation
161 * @lock: Lock used when adding/removing from pools
162 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
163 * @options: Limits for the pool.
164 * @npools: Total amount of pools in existence.
165 * @shrinker: The structure used by [un|]register_shrinker
167 struct ttm_pool_manager {
169 struct list_head pools;
170 struct ttm_pool_opts options;
172 struct shrinker mm_shrink;
176 static struct ttm_pool_manager *_manager;
178 static struct attribute ttm_page_pool_max = {
179 .name = "pool_max_size",
180 .mode = S_IRUGO | S_IWUSR
182 static struct attribute ttm_page_pool_small = {
183 .name = "pool_small_allocation",
184 .mode = S_IRUGO | S_IWUSR
186 static struct attribute ttm_page_pool_alloc_size = {
187 .name = "pool_allocation_size",
188 .mode = S_IRUGO | S_IWUSR
191 static struct attribute *ttm_pool_attrs[] = {
193 &ttm_page_pool_small,
194 &ttm_page_pool_alloc_size,
198 static void ttm_pool_kobj_release(struct kobject *kobj)
200 struct ttm_pool_manager *m =
201 container_of(kobj, struct ttm_pool_manager, kobj);
205 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
206 const char *buffer, size_t size)
208 struct ttm_pool_manager *m =
209 container_of(kobj, struct ttm_pool_manager, kobj);
212 chars = sscanf(buffer, "%u", &val);
216 /* Convert kb to number of pages */
217 val = val / (PAGE_SIZE >> 10);
219 if (attr == &ttm_page_pool_max)
220 m->options.max_size = val;
221 else if (attr == &ttm_page_pool_small)
222 m->options.small = val;
223 else if (attr == &ttm_page_pool_alloc_size) {
224 if (val > NUM_PAGES_TO_ALLOC*8) {
225 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
226 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
227 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229 } else if (val > NUM_PAGES_TO_ALLOC) {
230 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
231 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
233 m->options.alloc_size = val;
239 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
242 struct ttm_pool_manager *m =
243 container_of(kobj, struct ttm_pool_manager, kobj);
246 if (attr == &ttm_page_pool_max)
247 val = m->options.max_size;
248 else if (attr == &ttm_page_pool_small)
249 val = m->options.small;
250 else if (attr == &ttm_page_pool_alloc_size)
251 val = m->options.alloc_size;
253 val = val * (PAGE_SIZE >> 10);
255 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
258 static const struct sysfs_ops ttm_pool_sysfs_ops = {
259 .show = &ttm_pool_show,
260 .store = &ttm_pool_store,
263 static struct kobj_type ttm_pool_kobj_type = {
264 .release = &ttm_pool_kobj_release,
265 .sysfs_ops = &ttm_pool_sysfs_ops,
266 .default_attrs = ttm_pool_attrs,
270 static int set_pages_array_wb(struct page **pages, int addrinarray)
272 #if IS_ENABLED(CONFIG_AGP)
275 for (i = 0; i < addrinarray; i++)
276 unmap_page_from_agp(pages[i]);
281 static int set_pages_array_wc(struct page **pages, int addrinarray)
283 #if IS_ENABLED(CONFIG_AGP)
286 for (i = 0; i < addrinarray; i++)
287 map_page_into_agp(pages[i]);
292 static int set_pages_array_uc(struct page **pages, int addrinarray)
294 #if IS_ENABLED(CONFIG_AGP)
297 for (i = 0; i < addrinarray; i++)
298 map_page_into_agp(pages[i]);
302 #endif /* for !CONFIG_X86 */
304 static int ttm_set_pages_caching(struct dma_pool *pool,
305 struct page **pages, unsigned cpages)
308 /* Set page caching */
309 if (pool->type & IS_UC) {
310 r = set_pages_array_uc(pages, cpages);
312 pr_err("%s: Failed to set %d pages to uc!\n",
313 pool->dev_name, cpages);
315 if (pool->type & IS_WC) {
316 r = set_pages_array_wc(pages, cpages);
318 pr_err("%s: Failed to set %d pages to wc!\n",
319 pool->dev_name, cpages);
324 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
326 dma_addr_t dma = d_page->dma;
327 d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
328 dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
333 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
335 struct dma_page *d_page;
338 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
342 vaddr = dma_alloc_coherent(pool->dev, pool->size, &d_page->dma,
345 if (is_vmalloc_addr(vaddr))
346 d_page->p = vmalloc_to_page(vaddr);
348 d_page->p = virt_to_page(vaddr);
349 d_page->vaddr = (unsigned long)vaddr;
350 if (pool->type & IS_HUGE)
351 d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
358 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
360 enum pool_type type = IS_UNDEFINED;
362 if (flags & TTM_PAGE_FLAG_DMA32)
364 if (cstate == tt_cached)
366 else if (cstate == tt_uncached)
374 static void ttm_pool_update_free_locked(struct dma_pool *pool,
375 unsigned freed_pages)
377 pool->npages_free -= freed_pages;
378 pool->nfrees += freed_pages;
382 /* set memory back to wb and free the pages. */
383 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
385 struct page *page = d_page->p;
386 unsigned i, num_pages;
389 /* Don't set WB on WB page pool. */
390 if (!(pool->type & IS_CACHED)) {
391 num_pages = pool->size / PAGE_SIZE;
392 for (i = 0; i < num_pages; ++i, ++page) {
393 ret = set_pages_array_wb(&page, 1);
395 pr_err("%s: Failed to set %d pages to wb!\n",
401 list_del(&d_page->page_list);
402 __ttm_dma_free_page(pool, d_page);
405 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
406 struct page *pages[], unsigned npages)
408 struct dma_page *d_page, *tmp;
410 if (pool->type & IS_HUGE) {
411 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
412 ttm_dma_page_put(pool, d_page);
417 /* Don't set WB on WB page pool. */
418 if (npages && !(pool->type & IS_CACHED) &&
419 set_pages_array_wb(pages, npages))
420 pr_err("%s: Failed to set %d pages to wb!\n",
421 pool->dev_name, npages);
423 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
424 list_del(&d_page->page_list);
425 __ttm_dma_free_page(pool, d_page);
430 * Free pages from pool.
432 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
433 * number of pages in one go.
435 * @pool: to free the pages from
436 * @nr_free: If set to true will free all pages in pool
437 * @use_static: Safe to use static buffer
439 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
442 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
443 unsigned long irq_flags;
444 struct dma_page *dma_p, *tmp;
445 struct page **pages_to_free;
446 struct list_head d_pages;
447 unsigned freed_pages = 0,
448 npages_to_free = nr_free;
450 if (NUM_PAGES_TO_ALLOC < nr_free)
451 npages_to_free = NUM_PAGES_TO_ALLOC;
454 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
455 pool->dev_name, pool->name, current->pid,
456 npages_to_free, nr_free);
460 pages_to_free = static_buf;
462 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
465 if (!pages_to_free) {
466 pr_debug("%s: Failed to allocate memory for pool free operation\n",
470 INIT_LIST_HEAD(&d_pages);
472 spin_lock_irqsave(&pool->lock, irq_flags);
474 /* We picking the oldest ones off the list */
475 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
477 if (freed_pages >= npages_to_free)
480 /* Move the dma_page from one list to another. */
481 list_move(&dma_p->page_list, &d_pages);
483 pages_to_free[freed_pages++] = dma_p->p;
484 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
485 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
487 ttm_pool_update_free_locked(pool, freed_pages);
489 * Because changing page caching is costly
490 * we unlock the pool to prevent stalling.
492 spin_unlock_irqrestore(&pool->lock, irq_flags);
494 ttm_dma_pages_put(pool, &d_pages, pages_to_free,
497 INIT_LIST_HEAD(&d_pages);
499 if (likely(nr_free != FREE_ALL_PAGES))
500 nr_free -= freed_pages;
502 if (NUM_PAGES_TO_ALLOC >= nr_free)
503 npages_to_free = nr_free;
505 npages_to_free = NUM_PAGES_TO_ALLOC;
509 /* free all so restart the processing */
513 /* Not allowed to fall through or break because
514 * following context is inside spinlock while we are
522 /* remove range of pages from the pool */
524 ttm_pool_update_free_locked(pool, freed_pages);
525 nr_free -= freed_pages;
528 spin_unlock_irqrestore(&pool->lock, irq_flags);
531 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
533 if (pages_to_free != static_buf)
534 kfree(pages_to_free);
538 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
540 struct device_pools *p;
541 struct dma_pool *pool;
546 mutex_lock(&_manager->lock);
547 list_for_each_entry_reverse(p, &_manager->pools, pools) {
551 if (pool->type != type)
559 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
560 if (pool->type != type)
562 /* Takes a spinlock.. */
563 /* OK to use static buffer since global mutex is held. */
564 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
565 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
566 /* This code path is called after _all_ references to the
567 * struct device has been dropped - so nobody should be
568 * touching it. In case somebody is trying to _add_ we are
569 * guarded by the mutex. */
570 list_del(&pool->pools);
574 mutex_unlock(&_manager->lock);
578 * On free-ing of the 'struct device' this deconstructor is run.
579 * Albeit the pool might have already been freed earlier.
581 static void ttm_dma_pool_release(struct device *dev, void *res)
583 struct dma_pool *pool = *(struct dma_pool **)res;
586 ttm_dma_free_pool(dev, pool->type);
589 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
591 return *(struct dma_pool **)res == match_data;
594 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
597 const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
598 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
599 struct device_pools *sec_pool = NULL;
600 struct dma_pool *pool = NULL, **ptr;
608 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
614 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
619 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
624 INIT_LIST_HEAD(&sec_pool->pools);
626 sec_pool->pool = pool;
628 INIT_LIST_HEAD(&pool->free_list);
629 INIT_LIST_HEAD(&pool->pools);
630 spin_lock_init(&pool->lock);
632 pool->npages_free = pool->npages_in_use = 0;
634 pool->gfp_flags = flags;
636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
637 pool->size = HPAGE_PMD_SIZE;
642 pool->size = PAGE_SIZE;
646 for (i = 0; i < ARRAY_SIZE(t); i++) {
648 p += snprintf(p, sizeof(pool->name) - (p - pool->name),
653 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
654 * - the kobj->name has already been deallocated.*/
655 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
656 dev_driver_string(dev), dev_name(dev));
657 mutex_lock(&_manager->lock);
658 /* You can get the dma_pool from either the global: */
659 list_add(&sec_pool->pools, &_manager->pools);
661 /* or from 'struct device': */
662 list_add(&pool->pools, &dev->dma_pools);
663 mutex_unlock(&_manager->lock);
666 devres_add(dev, ptr);
676 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
679 struct dma_pool *pool, *tmp, *found = NULL;
681 if (type == IS_UNDEFINED)
684 /* NB: We iterate on the 'struct dev' which has no spinlock, but
685 * it does have a kref which we have taken. The kref is taken during
686 * graphic driver loading - in the drm_pci_init it calls either
687 * pci_dev_get or pci_register_driver which both end up taking a kref
688 * on 'struct device'.
690 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
691 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
692 * thing is at that point of time there are no pages associated with the
693 * driver so this function will not be called.
695 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
696 if (pool->type != type)
705 * Free pages the pages that failed to change the caching state. If there
706 * are pages that have changed their caching state already put them to the
709 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
710 struct list_head *d_pages,
711 struct page **failed_pages,
714 struct dma_page *d_page, *tmp;
721 /* Find the failed page. */
722 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
725 /* .. and then progress over the full list. */
726 list_del(&d_page->page_list);
727 __ttm_dma_free_page(pool, d_page);
737 * Allocate 'count' pages, and put 'need' number of them on the
738 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
739 * The full list of pages should also be on 'd_pages'.
740 * We return zero for success, and negative numbers as errors.
742 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
743 struct list_head *d_pages,
746 struct page **caching_array;
747 struct dma_page *dma_p;
750 unsigned i, j, npages, cpages;
751 unsigned max_cpages = min(count,
752 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
754 /* allocate array for page caching change */
755 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
757 if (!caching_array) {
758 pr_debug("%s: Unable to allocate table for new pages\n",
764 pr_debug("%s: (%s:%d) Getting %d pages\n",
765 pool->dev_name, pool->name, current->pid, count);
768 for (i = 0, cpages = 0; i < count; ++i) {
769 dma_p = __ttm_dma_alloc_page(pool);
771 pr_debug("%s: Unable to get page %u\n",
774 /* store already allocated pages in the pool after
775 * setting the caching state */
777 r = ttm_set_pages_caching(pool, caching_array,
780 ttm_dma_handle_caching_state_failure(
781 pool, d_pages, caching_array,
788 list_add(&dma_p->page_list, d_pages);
790 #ifdef CONFIG_HIGHMEM
791 /* gfp flags of highmem page should never be dma32 so we
792 * we should be fine in such case
798 npages = pool->size / PAGE_SIZE;
799 for (j = 0; j < npages; ++j) {
800 caching_array[cpages++] = p + j;
801 if (cpages == max_cpages) {
802 /* Note: Cannot hold the spinlock */
803 r = ttm_set_pages_caching(pool, caching_array,
806 ttm_dma_handle_caching_state_failure(
807 pool, d_pages, caching_array,
817 r = ttm_set_pages_caching(pool, caching_array, cpages);
819 ttm_dma_handle_caching_state_failure(pool, d_pages,
820 caching_array, cpages);
823 kfree(caching_array);
828 * @return count of pages still required to fulfill the request.
830 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
831 unsigned long *irq_flags)
833 unsigned count = _manager->options.small;
834 int r = pool->npages_free;
836 if (count > pool->npages_free) {
837 struct list_head d_pages;
839 INIT_LIST_HEAD(&d_pages);
841 spin_unlock_irqrestore(&pool->lock, *irq_flags);
843 /* Returns how many more are neccessary to fulfill the
845 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
847 spin_lock_irqsave(&pool->lock, *irq_flags);
849 /* Add the fresh to the end.. */
850 list_splice(&d_pages, &pool->free_list);
852 pool->npages_free += count;
855 struct dma_page *d_page;
858 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
859 pool->dev_name, pool->name, r);
861 list_for_each_entry(d_page, &d_pages, page_list) {
864 list_splice_tail(&d_pages, &pool->free_list);
865 pool->npages_free += cpages;
873 * @return count of pages still required to fulfill the request.
874 * The populate list is actually a stack (not that is matters as TTM
875 * allocates one page at a time.
877 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
878 struct ttm_dma_tt *ttm_dma,
881 struct dma_page *d_page;
882 struct ttm_tt *ttm = &ttm_dma->ttm;
883 unsigned long irq_flags;
884 int count, r = -ENOMEM;
886 spin_lock_irqsave(&pool->lock, irq_flags);
887 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
889 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
890 ttm->pages[index] = d_page->p;
891 ttm_dma->dma_address[index] = d_page->dma;
892 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
894 pool->npages_in_use += 1;
895 pool->npages_free -= 1;
897 spin_unlock_irqrestore(&pool->lock, irq_flags);
901 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
903 struct ttm_tt *ttm = &ttm_dma->ttm;
906 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
907 gfp_flags = GFP_USER | GFP_DMA32;
909 gfp_flags = GFP_HIGHUSER;
910 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
911 gfp_flags |= __GFP_ZERO;
914 gfp_flags |= GFP_TRANSHUGE;
915 gfp_flags &= ~__GFP_MOVABLE;
916 gfp_flags &= ~__GFP_COMP;
923 * On success pages list will hold count number of correctly
924 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
926 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
928 struct ttm_tt *ttm = &ttm_dma->ttm;
929 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
930 unsigned long num_pages = ttm->num_pages;
931 struct dma_pool *pool;
936 if (ttm->state != tt_unpopulated)
939 INIT_LIST_HEAD(&ttm_dma->pages_list);
942 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
945 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
948 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
950 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
952 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
953 if (IS_ERR_OR_NULL(pool))
957 while (num_pages >= HPAGE_PMD_NR) {
960 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
964 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
966 if (unlikely(ret != 0)) {
967 ttm_dma_unpopulate(ttm_dma, dev);
971 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
972 ttm->pages[j] = ttm->pages[j - 1] + 1;
973 ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
978 num_pages -= HPAGE_PMD_NR;
984 pool = ttm_dma_find_pool(dev, type);
986 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
988 pool = ttm_dma_pool_init(dev, gfp_flags, type);
989 if (IS_ERR_OR_NULL(pool))
994 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
996 ttm_dma_unpopulate(ttm_dma, dev);
1000 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1002 if (unlikely(ret != 0)) {
1003 ttm_dma_unpopulate(ttm_dma, dev);
1011 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1012 ret = ttm_tt_swapin(ttm);
1013 if (unlikely(ret != 0)) {
1014 ttm_dma_unpopulate(ttm_dma, dev);
1019 ttm->state = tt_unbound;
1022 EXPORT_SYMBOL_GPL(ttm_dma_populate);
1024 /* Put all pages in pages list to correct pool to wait for reuse */
1025 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
1027 struct ttm_tt *ttm = &ttm_dma->ttm;
1028 struct dma_pool *pool;
1029 struct dma_page *d_page, *next;
1030 enum pool_type type;
1031 bool is_cached = false;
1032 unsigned count, i, npages = 0;
1033 unsigned long irq_flags;
1035 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1037 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1038 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1041 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1043 if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1047 ttm_mem_global_free_page(ttm->glob->mem_glob,
1048 d_page->p, pool->size);
1049 ttm_dma_page_put(pool, d_page);
1052 spin_lock_irqsave(&pool->lock, irq_flags);
1053 pool->npages_in_use -= count;
1054 pool->nfrees += count;
1055 spin_unlock_irqrestore(&pool->lock, irq_flags);
1059 pool = ttm_dma_find_pool(dev, type);
1063 is_cached = (ttm_dma_find_pool(pool->dev,
1064 ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1066 /* make sure pages array match list and count number of pages */
1068 list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
1069 ttm->pages[count] = d_page->p;
1073 spin_lock_irqsave(&pool->lock, irq_flags);
1074 pool->npages_in_use -= count;
1076 pool->nfrees += count;
1078 pool->npages_free += count;
1079 list_splice(&ttm_dma->pages_list, &pool->free_list);
1081 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1082 * to free in order to minimize calls to set_memory_wb().
1084 if (pool->npages_free >= (_manager->options.max_size +
1085 NUM_PAGES_TO_ALLOC))
1086 npages = pool->npages_free - _manager->options.max_size;
1088 spin_unlock_irqrestore(&pool->lock, irq_flags);
1091 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
1092 ttm_mem_global_free_page(ttm->glob->mem_glob,
1093 d_page->p, pool->size);
1094 ttm_dma_page_put(pool, d_page);
1097 for (i = 0; i < count; i++) {
1098 ttm_mem_global_free_page(ttm->glob->mem_glob,
1099 ttm->pages[i], pool->size);
1103 INIT_LIST_HEAD(&ttm_dma->pages_list);
1104 for (i = 0; i < ttm->num_pages; i++) {
1105 ttm->pages[i] = NULL;
1106 ttm_dma->dma_address[i] = 0;
1109 /* shrink pool if necessary (only on !is_cached pools)*/
1111 ttm_dma_page_pool_free(pool, npages, false);
1112 ttm->state = tt_unpopulated;
1114 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1117 * Callback for mm to request pool to reduce number of page held.
1119 * XXX: (dchinner) Deadlock warning!
1121 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1124 static unsigned long
1125 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1127 static unsigned start_pool;
1129 unsigned pool_offset;
1130 unsigned shrink_pages = sc->nr_to_scan;
1131 struct device_pools *p;
1132 unsigned long freed = 0;
1134 if (list_empty(&_manager->pools))
1137 if (!mutex_trylock(&_manager->lock))
1139 if (!_manager->npools)
1141 pool_offset = ++start_pool % _manager->npools;
1142 list_for_each_entry(p, &_manager->pools, pools) {
1147 if (shrink_pages == 0)
1149 /* Do it in round-robin fashion. */
1150 if (++idx < pool_offset)
1152 nr_free = shrink_pages;
1153 /* OK to use static buffer since global mutex is held. */
1154 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1155 freed += nr_free - shrink_pages;
1157 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1158 p->pool->dev_name, p->pool->name, current->pid,
1159 nr_free, shrink_pages);
1162 mutex_unlock(&_manager->lock);
1166 static unsigned long
1167 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1169 struct device_pools *p;
1170 unsigned long count = 0;
1172 if (!mutex_trylock(&_manager->lock))
1174 list_for_each_entry(p, &_manager->pools, pools)
1175 count += p->pool->npages_free;
1176 mutex_unlock(&_manager->lock);
1180 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1182 manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1183 manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1184 manager->mm_shrink.seeks = 1;
1185 register_shrinker(&manager->mm_shrink);
1188 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1190 unregister_shrinker(&manager->mm_shrink);
1193 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1199 pr_info("Initializing DMA pool allocator\n");
1201 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1205 mutex_init(&_manager->lock);
1206 INIT_LIST_HEAD(&_manager->pools);
1208 _manager->options.max_size = max_pages;
1209 _manager->options.small = SMALL_ALLOCATION;
1210 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1212 /* This takes care of auto-freeing the _manager */
1213 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1214 &glob->kobj, "dma_pool");
1215 if (unlikely(ret != 0)) {
1216 kobject_put(&_manager->kobj);
1219 ttm_dma_pool_mm_shrink_init(_manager);
1225 void ttm_dma_page_alloc_fini(void)
1227 struct device_pools *p, *t;
1229 pr_info("Finalizing DMA pool allocator\n");
1230 ttm_dma_pool_mm_shrink_fini(_manager);
1232 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1233 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1235 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1236 ttm_dma_pool_match, p->pool));
1237 ttm_dma_free_pool(p->dev, p->pool->type);
1239 kobject_put(&_manager->kobj);
1243 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1245 struct device_pools *p;
1246 struct dma_pool *pool = NULL;
1247 char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1248 "name", "virt", "busaddr"};
1251 seq_printf(m, "No pool allocator running.\n");
1254 seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1255 h[0], h[1], h[2], h[3], h[4], h[5]);
1256 mutex_lock(&_manager->lock);
1257 list_for_each_entry(p, &_manager->pools, pools) {
1258 struct device *dev = p->dev;
1262 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1263 pool->name, pool->nrefills,
1264 pool->nfrees, pool->npages_in_use,
1268 mutex_unlock(&_manager->lock);
1271 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);