]> Git Repo - linux.git/blob - drivers/spi/spi.c
spi: add defer_optimize_message controller flag
[linux.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_message *msg)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if (spi_valid_txbuf(msg, xfer))
332                 u64_stats_add(&stats->bytes_tx, xfer->len);
333         if (spi_valid_rxbuf(msg, xfer))
334                 u64_stats_add(&stats->bytes_rx, xfer->len);
335
336         u64_stats_update_end(&stats->syncp);
337         put_cpu();
338 }
339
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346         while (id->name[0]) {
347                 if (!strcmp(name, id->name))
348                         return id;
349                 id++;
350         }
351         return NULL;
352 }
353
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357
358         return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364         const void *match;
365
366         match = device_get_match_data(&sdev->dev);
367         if (match)
368                 return match;
369
370         return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373
374 static int spi_match_device(struct device *dev, struct device_driver *drv)
375 {
376         const struct spi_device *spi = to_spi_device(dev);
377         const struct spi_driver *sdrv = to_spi_driver(drv);
378
379         /* Check override first, and if set, only use the named driver */
380         if (spi->driver_override)
381                 return strcmp(spi->driver_override, drv->name) == 0;
382
383         /* Attempt an OF style match */
384         if (of_driver_match_device(dev, drv))
385                 return 1;
386
387         /* Then try ACPI */
388         if (acpi_driver_match_device(dev, drv))
389                 return 1;
390
391         if (sdrv->id_table)
392                 return !!spi_match_id(sdrv->id_table, spi->modalias);
393
394         return strcmp(spi->modalias, drv->name) == 0;
395 }
396
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399         const struct spi_device         *spi = to_spi_device(dev);
400         int rc;
401
402         rc = acpi_device_uevent_modalias(dev, env);
403         if (rc != -ENODEV)
404                 return rc;
405
406         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408
409 static int spi_probe(struct device *dev)
410 {
411         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
412         struct spi_device               *spi = to_spi_device(dev);
413         int ret;
414
415         ret = of_clk_set_defaults(dev->of_node, false);
416         if (ret)
417                 return ret;
418
419         if (dev->of_node) {
420                 spi->irq = of_irq_get(dev->of_node, 0);
421                 if (spi->irq == -EPROBE_DEFER)
422                         return -EPROBE_DEFER;
423                 if (spi->irq < 0)
424                         spi->irq = 0;
425         }
426
427         ret = dev_pm_domain_attach(dev, true);
428         if (ret)
429                 return ret;
430
431         if (sdrv->probe) {
432                 ret = sdrv->probe(spi);
433                 if (ret)
434                         dev_pm_domain_detach(dev, true);
435         }
436
437         return ret;
438 }
439
440 static void spi_remove(struct device *dev)
441 {
442         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
443
444         if (sdrv->remove)
445                 sdrv->remove(to_spi_device(dev));
446
447         dev_pm_domain_detach(dev, true);
448 }
449
450 static void spi_shutdown(struct device *dev)
451 {
452         if (dev->driver) {
453                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
454
455                 if (sdrv->shutdown)
456                         sdrv->shutdown(to_spi_device(dev));
457         }
458 }
459
460 const struct bus_type spi_bus_type = {
461         .name           = "spi",
462         .dev_groups     = spi_dev_groups,
463         .match          = spi_match_device,
464         .uevent         = spi_uevent,
465         .probe          = spi_probe,
466         .remove         = spi_remove,
467         .shutdown       = spi_shutdown,
468 };
469 EXPORT_SYMBOL_GPL(spi_bus_type);
470
471 /**
472  * __spi_register_driver - register a SPI driver
473  * @owner: owner module of the driver to register
474  * @sdrv: the driver to register
475  * Context: can sleep
476  *
477  * Return: zero on success, else a negative error code.
478  */
479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
480 {
481         sdrv->driver.owner = owner;
482         sdrv->driver.bus = &spi_bus_type;
483
484         /*
485          * For Really Good Reasons we use spi: modaliases not of:
486          * modaliases for DT so module autoloading won't work if we
487          * don't have a spi_device_id as well as a compatible string.
488          */
489         if (sdrv->driver.of_match_table) {
490                 const struct of_device_id *of_id;
491
492                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
493                      of_id++) {
494                         const char *of_name;
495
496                         /* Strip off any vendor prefix */
497                         of_name = strnchr(of_id->compatible,
498                                           sizeof(of_id->compatible), ',');
499                         if (of_name)
500                                 of_name++;
501                         else
502                                 of_name = of_id->compatible;
503
504                         if (sdrv->id_table) {
505                                 const struct spi_device_id *spi_id;
506
507                                 spi_id = spi_match_id(sdrv->id_table, of_name);
508                                 if (spi_id)
509                                         continue;
510                         } else {
511                                 if (strcmp(sdrv->driver.name, of_name) == 0)
512                                         continue;
513                         }
514
515                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
516                                 sdrv->driver.name, of_id->compatible);
517                 }
518         }
519
520         return driver_register(&sdrv->driver);
521 }
522 EXPORT_SYMBOL_GPL(__spi_register_driver);
523
524 /*-------------------------------------------------------------------------*/
525
526 /*
527  * SPI devices should normally not be created by SPI device drivers; that
528  * would make them board-specific.  Similarly with SPI controller drivers.
529  * Device registration normally goes into like arch/.../mach.../board-YYY.c
530  * with other readonly (flashable) information about mainboard devices.
531  */
532
533 struct boardinfo {
534         struct list_head        list;
535         struct spi_board_info   board_info;
536 };
537
538 static LIST_HEAD(board_list);
539 static LIST_HEAD(spi_controller_list);
540
541 /*
542  * Used to protect add/del operation for board_info list and
543  * spi_controller list, and their matching process also used
544  * to protect object of type struct idr.
545  */
546 static DEFINE_MUTEX(board_lock);
547
548 /**
549  * spi_alloc_device - Allocate a new SPI device
550  * @ctlr: Controller to which device is connected
551  * Context: can sleep
552  *
553  * Allows a driver to allocate and initialize a spi_device without
554  * registering it immediately.  This allows a driver to directly
555  * fill the spi_device with device parameters before calling
556  * spi_add_device() on it.
557  *
558  * Caller is responsible to call spi_add_device() on the returned
559  * spi_device structure to add it to the SPI controller.  If the caller
560  * needs to discard the spi_device without adding it, then it should
561  * call spi_dev_put() on it.
562  *
563  * Return: a pointer to the new device, or NULL.
564  */
565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
566 {
567         struct spi_device       *spi;
568
569         if (!spi_controller_get(ctlr))
570                 return NULL;
571
572         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
573         if (!spi) {
574                 spi_controller_put(ctlr);
575                 return NULL;
576         }
577
578         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
579         if (!spi->pcpu_statistics) {
580                 kfree(spi);
581                 spi_controller_put(ctlr);
582                 return NULL;
583         }
584
585         spi->controller = ctlr;
586         spi->dev.parent = &ctlr->dev;
587         spi->dev.bus = &spi_bus_type;
588         spi->dev.release = spidev_release;
589         spi->mode = ctlr->buswidth_override_bits;
590
591         device_initialize(&spi->dev);
592         return spi;
593 }
594 EXPORT_SYMBOL_GPL(spi_alloc_device);
595
596 static void spi_dev_set_name(struct spi_device *spi)
597 {
598         struct device *dev = &spi->dev;
599         struct fwnode_handle *fwnode = dev_fwnode(dev);
600
601         if (is_acpi_device_node(fwnode)) {
602                 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
603                 return;
604         }
605
606         if (is_software_node(fwnode)) {
607                 dev_set_name(dev, "spi-%pfwP", fwnode);
608                 return;
609         }
610
611         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
612                      spi_get_chipselect(spi, 0));
613 }
614
615 /*
616  * Zero(0) is a valid physical CS value and can be located at any
617  * logical CS in the spi->chip_select[]. If all the physical CS
618  * are initialized to 0 then It would be difficult to differentiate
619  * between a valid physical CS 0 & an unused logical CS whose physical
620  * CS can be 0. As a solution to this issue initialize all the CS to -1.
621  * Now all the unused logical CS will have -1 physical CS value & can be
622  * ignored while performing physical CS validity checks.
623  */
624 #define SPI_INVALID_CS          ((s8)-1)
625
626 static inline bool is_valid_cs(s8 chip_select)
627 {
628         return chip_select != SPI_INVALID_CS;
629 }
630
631 static inline int spi_dev_check_cs(struct device *dev,
632                                    struct spi_device *spi, u8 idx,
633                                    struct spi_device *new_spi, u8 new_idx)
634 {
635         u8 cs, cs_new;
636         u8 idx_new;
637
638         cs = spi_get_chipselect(spi, idx);
639         for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
640                 cs_new = spi_get_chipselect(new_spi, idx_new);
641                 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
642                         dev_err(dev, "chipselect %u already in use\n", cs_new);
643                         return -EBUSY;
644                 }
645         }
646         return 0;
647 }
648
649 static int spi_dev_check(struct device *dev, void *data)
650 {
651         struct spi_device *spi = to_spi_device(dev);
652         struct spi_device *new_spi = data;
653         int status, idx;
654
655         if (spi->controller == new_spi->controller) {
656                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
657                         status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
658                         if (status)
659                                 return status;
660                 }
661         }
662         return 0;
663 }
664
665 static void spi_cleanup(struct spi_device *spi)
666 {
667         if (spi->controller->cleanup)
668                 spi->controller->cleanup(spi);
669 }
670
671 static int __spi_add_device(struct spi_device *spi)
672 {
673         struct spi_controller *ctlr = spi->controller;
674         struct device *dev = ctlr->dev.parent;
675         int status, idx;
676         u8 cs;
677
678         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
679                 /* Chipselects are numbered 0..max; validate. */
680                 cs = spi_get_chipselect(spi, idx);
681                 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
682                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
683                                 ctlr->num_chipselect);
684                         return -EINVAL;
685                 }
686         }
687
688         /*
689          * Make sure that multiple logical CS doesn't map to the same physical CS.
690          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
691          */
692         if (!spi_controller_is_target(ctlr)) {
693                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
694                         status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
695                         if (status)
696                                 return status;
697                 }
698         }
699
700         /* Set the bus ID string */
701         spi_dev_set_name(spi);
702
703         /*
704          * We need to make sure there's no other device with this
705          * chipselect **BEFORE** we call setup(), else we'll trash
706          * its configuration.
707          */
708         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
709         if (status)
710                 return status;
711
712         /* Controller may unregister concurrently */
713         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714             !device_is_registered(&ctlr->dev)) {
715                 return -ENODEV;
716         }
717
718         if (ctlr->cs_gpiods) {
719                 u8 cs;
720
721                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722                         cs = spi_get_chipselect(spi, idx);
723                         if (is_valid_cs(cs))
724                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
725                 }
726         }
727
728         /*
729          * Drivers may modify this initial i/o setup, but will
730          * normally rely on the device being setup.  Devices
731          * using SPI_CS_HIGH can't coexist well otherwise...
732          */
733         status = spi_setup(spi);
734         if (status < 0) {
735                 dev_err(dev, "can't setup %s, status %d\n",
736                                 dev_name(&spi->dev), status);
737                 return status;
738         }
739
740         /* Device may be bound to an active driver when this returns */
741         status = device_add(&spi->dev);
742         if (status < 0) {
743                 dev_err(dev, "can't add %s, status %d\n",
744                                 dev_name(&spi->dev), status);
745                 spi_cleanup(spi);
746         } else {
747                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748         }
749
750         return status;
751 }
752
753 /**
754  * spi_add_device - Add spi_device allocated with spi_alloc_device
755  * @spi: spi_device to register
756  *
757  * Companion function to spi_alloc_device.  Devices allocated with
758  * spi_alloc_device can be added onto the SPI bus with this function.
759  *
760  * Return: 0 on success; negative errno on failure
761  */
762 int spi_add_device(struct spi_device *spi)
763 {
764         struct spi_controller *ctlr = spi->controller;
765         int status;
766
767         /* Set the bus ID string */
768         spi_dev_set_name(spi);
769
770         mutex_lock(&ctlr->add_lock);
771         status = __spi_add_device(spi);
772         mutex_unlock(&ctlr->add_lock);
773         return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_add_device);
776
777 static void spi_set_all_cs_unused(struct spi_device *spi)
778 {
779         u8 idx;
780
781         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782                 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
783 }
784
785 /**
786  * spi_new_device - instantiate one new SPI device
787  * @ctlr: Controller to which device is connected
788  * @chip: Describes the SPI device
789  * Context: can sleep
790  *
791  * On typical mainboards, this is purely internal; and it's not needed
792  * after board init creates the hard-wired devices.  Some development
793  * platforms may not be able to use spi_register_board_info though, and
794  * this is exported so that for example a USB or parport based adapter
795  * driver could add devices (which it would learn about out-of-band).
796  *
797  * Return: the new device, or NULL.
798  */
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800                                   struct spi_board_info *chip)
801 {
802         struct spi_device       *proxy;
803         int                     status;
804
805         /*
806          * NOTE:  caller did any chip->bus_num checks necessary.
807          *
808          * Also, unless we change the return value convention to use
809          * error-or-pointer (not NULL-or-pointer), troubleshootability
810          * suggests syslogged diagnostics are best here (ugh).
811          */
812
813         proxy = spi_alloc_device(ctlr);
814         if (!proxy)
815                 return NULL;
816
817         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
818
819         /* Use provided chip-select for proxy device */
820         spi_set_all_cs_unused(proxy);
821         spi_set_chipselect(proxy, 0, chip->chip_select);
822
823         proxy->max_speed_hz = chip->max_speed_hz;
824         proxy->mode = chip->mode;
825         proxy->irq = chip->irq;
826         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827         proxy->dev.platform_data = (void *) chip->platform_data;
828         proxy->controller_data = chip->controller_data;
829         proxy->controller_state = NULL;
830         /*
831          * By default spi->chip_select[0] will hold the physical CS number,
832          * so set bit 0 in spi->cs_index_mask.
833          */
834         proxy->cs_index_mask = BIT(0);
835
836         if (chip->swnode) {
837                 status = device_add_software_node(&proxy->dev, chip->swnode);
838                 if (status) {
839                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840                                 chip->modalias, status);
841                         goto err_dev_put;
842                 }
843         }
844
845         status = spi_add_device(proxy);
846         if (status < 0)
847                 goto err_dev_put;
848
849         return proxy;
850
851 err_dev_put:
852         device_remove_software_node(&proxy->dev);
853         spi_dev_put(proxy);
854         return NULL;
855 }
856 EXPORT_SYMBOL_GPL(spi_new_device);
857
858 /**
859  * spi_unregister_device - unregister a single SPI device
860  * @spi: spi_device to unregister
861  *
862  * Start making the passed SPI device vanish. Normally this would be handled
863  * by spi_unregister_controller().
864  */
865 void spi_unregister_device(struct spi_device *spi)
866 {
867         if (!spi)
868                 return;
869
870         if (spi->dev.of_node) {
871                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872                 of_node_put(spi->dev.of_node);
873         }
874         if (ACPI_COMPANION(&spi->dev))
875                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876         device_remove_software_node(&spi->dev);
877         device_del(&spi->dev);
878         spi_cleanup(spi);
879         put_device(&spi->dev);
880 }
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
882
883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884                                               struct spi_board_info *bi)
885 {
886         struct spi_device *dev;
887
888         if (ctlr->bus_num != bi->bus_num)
889                 return;
890
891         dev = spi_new_device(ctlr, bi);
892         if (!dev)
893                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
894                         bi->modalias);
895 }
896
897 /**
898  * spi_register_board_info - register SPI devices for a given board
899  * @info: array of chip descriptors
900  * @n: how many descriptors are provided
901  * Context: can sleep
902  *
903  * Board-specific early init code calls this (probably during arch_initcall)
904  * with segments of the SPI device table.  Any device nodes are created later,
905  * after the relevant parent SPI controller (bus_num) is defined.  We keep
906  * this table of devices forever, so that reloading a controller driver will
907  * not make Linux forget about these hard-wired devices.
908  *
909  * Other code can also call this, e.g. a particular add-on board might provide
910  * SPI devices through its expansion connector, so code initializing that board
911  * would naturally declare its SPI devices.
912  *
913  * The board info passed can safely be __initdata ... but be careful of
914  * any embedded pointers (platform_data, etc), they're copied as-is.
915  *
916  * Return: zero on success, else a negative error code.
917  */
918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
919 {
920         struct boardinfo *bi;
921         int i;
922
923         if (!n)
924                 return 0;
925
926         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
927         if (!bi)
928                 return -ENOMEM;
929
930         for (i = 0; i < n; i++, bi++, info++) {
931                 struct spi_controller *ctlr;
932
933                 memcpy(&bi->board_info, info, sizeof(*info));
934
935                 mutex_lock(&board_lock);
936                 list_add_tail(&bi->list, &board_list);
937                 list_for_each_entry(ctlr, &spi_controller_list, list)
938                         spi_match_controller_to_boardinfo(ctlr,
939                                                           &bi->board_info);
940                 mutex_unlock(&board_lock);
941         }
942
943         return 0;
944 }
945
946 /*-------------------------------------------------------------------------*/
947
948 /* Core methods for SPI resource management */
949
950 /**
951  * spi_res_alloc - allocate a spi resource that is life-cycle managed
952  *                 during the processing of a spi_message while using
953  *                 spi_transfer_one
954  * @spi:     the SPI device for which we allocate memory
955  * @release: the release code to execute for this resource
956  * @size:    size to alloc and return
957  * @gfp:     GFP allocation flags
958  *
959  * Return: the pointer to the allocated data
960  *
961  * This may get enhanced in the future to allocate from a memory pool
962  * of the @spi_device or @spi_controller to avoid repeated allocations.
963  */
964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965                            size_t size, gfp_t gfp)
966 {
967         struct spi_res *sres;
968
969         sres = kzalloc(sizeof(*sres) + size, gfp);
970         if (!sres)
971                 return NULL;
972
973         INIT_LIST_HEAD(&sres->entry);
974         sres->release = release;
975
976         return sres->data;
977 }
978
979 /**
980  * spi_res_free - free an SPI resource
981  * @res: pointer to the custom data of a resource
982  */
983 static void spi_res_free(void *res)
984 {
985         struct spi_res *sres = container_of(res, struct spi_res, data);
986
987         if (!res)
988                 return;
989
990         WARN_ON(!list_empty(&sres->entry));
991         kfree(sres);
992 }
993
994 /**
995  * spi_res_add - add a spi_res to the spi_message
996  * @message: the SPI message
997  * @res:     the spi_resource
998  */
999 static void spi_res_add(struct spi_message *message, void *res)
1000 {
1001         struct spi_res *sres = container_of(res, struct spi_res, data);
1002
1003         WARN_ON(!list_empty(&sres->entry));
1004         list_add_tail(&sres->entry, &message->resources);
1005 }
1006
1007 /**
1008  * spi_res_release - release all SPI resources for this message
1009  * @ctlr:  the @spi_controller
1010  * @message: the @spi_message
1011  */
1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1013 {
1014         struct spi_res *res, *tmp;
1015
1016         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1017                 if (res->release)
1018                         res->release(ctlr, message, res->data);
1019
1020                 list_del(&res->entry);
1021
1022                 kfree(res);
1023         }
1024 }
1025
1026 /*-------------------------------------------------------------------------*/
1027 #define spi_for_each_valid_cs(spi, idx)                         \
1028         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)              \
1029                 if (!(spi->cs_index_mask & BIT(idx))) {} else
1030
1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1032 {
1033         u8 idx;
1034         bool last = false;
1035
1036         spi_for_each_valid_cs(spi, idx) {
1037                 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1038                         last = true;
1039         }
1040         return last;
1041 }
1042
1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1044 {
1045         /*
1046          * Historically ACPI has no means of the GPIO polarity and
1047          * thus the SPISerialBus() resource defines it on the per-chip
1048          * basis. In order to avoid a chain of negations, the GPIO
1049          * polarity is considered being Active High. Even for the cases
1050          * when _DSD() is involved (in the updated versions of ACPI)
1051          * the GPIO CS polarity must be defined Active High to avoid
1052          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1053          * into account.
1054          */
1055         if (has_acpi_companion(&spi->dev))
1056                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1057         else
1058                 /* Polarity handled by GPIO library */
1059                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1060
1061         if (activate)
1062                 spi_delay_exec(&spi->cs_setup, NULL);
1063         else
1064                 spi_delay_exec(&spi->cs_inactive, NULL);
1065 }
1066
1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1068 {
1069         bool activate = enable;
1070         u8 idx;
1071
1072         /*
1073          * Avoid calling into the driver (or doing delays) if the chip select
1074          * isn't actually changing from the last time this was called.
1075          */
1076         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077                         spi_is_last_cs(spi)) ||
1078                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079                         !spi_is_last_cs(spi))) &&
1080             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1081                 return;
1082
1083         trace_spi_set_cs(spi, activate);
1084
1085         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1086         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1087                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1088         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1089
1090         if (spi->mode & SPI_CS_HIGH)
1091                 enable = !enable;
1092
1093         /*
1094          * Handle chip select delays for GPIO based CS or controllers without
1095          * programmable chip select timing.
1096          */
1097         if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1098                 spi_delay_exec(&spi->cs_hold, NULL);
1099
1100         if (spi_is_csgpiod(spi)) {
1101                 if (!(spi->mode & SPI_NO_CS)) {
1102                         spi_for_each_valid_cs(spi, idx) {
1103                                 if (spi_get_csgpiod(spi, idx))
1104                                         spi_toggle_csgpiod(spi, idx, enable, activate);
1105                         }
1106                 }
1107                 /* Some SPI masters need both GPIO CS & slave_select */
1108                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1109                     spi->controller->set_cs)
1110                         spi->controller->set_cs(spi, !enable);
1111         } else if (spi->controller->set_cs) {
1112                 spi->controller->set_cs(spi, !enable);
1113         }
1114
1115         if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1116                 if (activate)
1117                         spi_delay_exec(&spi->cs_setup, NULL);
1118                 else
1119                         spi_delay_exec(&spi->cs_inactive, NULL);
1120         }
1121 }
1122
1123 #ifdef CONFIG_HAS_DMA
1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1125                              struct sg_table *sgt, void *buf, size_t len,
1126                              enum dma_data_direction dir, unsigned long attrs)
1127 {
1128         const bool vmalloced_buf = is_vmalloc_addr(buf);
1129         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1130 #ifdef CONFIG_HIGHMEM
1131         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1132                                 (unsigned long)buf < (PKMAP_BASE +
1133                                         (LAST_PKMAP * PAGE_SIZE)));
1134 #else
1135         const bool kmap_buf = false;
1136 #endif
1137         int desc_len;
1138         int sgs;
1139         struct page *vm_page;
1140         struct scatterlist *sg;
1141         void *sg_buf;
1142         size_t min;
1143         int i, ret;
1144
1145         if (vmalloced_buf || kmap_buf) {
1146                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1147                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1148         } else if (virt_addr_valid(buf)) {
1149                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1150                 sgs = DIV_ROUND_UP(len, desc_len);
1151         } else {
1152                 return -EINVAL;
1153         }
1154
1155         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1156         if (ret != 0)
1157                 return ret;
1158
1159         sg = &sgt->sgl[0];
1160         for (i = 0; i < sgs; i++) {
1161
1162                 if (vmalloced_buf || kmap_buf) {
1163                         /*
1164                          * Next scatterlist entry size is the minimum between
1165                          * the desc_len and the remaining buffer length that
1166                          * fits in a page.
1167                          */
1168                         min = min_t(size_t, desc_len,
1169                                     min_t(size_t, len,
1170                                           PAGE_SIZE - offset_in_page(buf)));
1171                         if (vmalloced_buf)
1172                                 vm_page = vmalloc_to_page(buf);
1173                         else
1174                                 vm_page = kmap_to_page(buf);
1175                         if (!vm_page) {
1176                                 sg_free_table(sgt);
1177                                 return -ENOMEM;
1178                         }
1179                         sg_set_page(sg, vm_page,
1180                                     min, offset_in_page(buf));
1181                 } else {
1182                         min = min_t(size_t, len, desc_len);
1183                         sg_buf = buf;
1184                         sg_set_buf(sg, sg_buf, min);
1185                 }
1186
1187                 buf += min;
1188                 len -= min;
1189                 sg = sg_next(sg);
1190         }
1191
1192         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1193         if (ret < 0) {
1194                 sg_free_table(sgt);
1195                 return ret;
1196         }
1197
1198         return 0;
1199 }
1200
1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1202                 struct sg_table *sgt, void *buf, size_t len,
1203                 enum dma_data_direction dir)
1204 {
1205         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1206 }
1207
1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1209                                 struct device *dev, struct sg_table *sgt,
1210                                 enum dma_data_direction dir,
1211                                 unsigned long attrs)
1212 {
1213         dma_unmap_sgtable(dev, sgt, dir, attrs);
1214         sg_free_table(sgt);
1215         sgt->orig_nents = 0;
1216         sgt->nents = 0;
1217 }
1218
1219 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1220                    struct sg_table *sgt, enum dma_data_direction dir)
1221 {
1222         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1223 }
1224
1225 /* Dummy SG for unidirect transfers */
1226 static struct scatterlist dummy_sg = {
1227         .page_link = SG_END,
1228 };
1229
1230 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1231 {
1232         struct device *tx_dev, *rx_dev;
1233         struct spi_transfer *xfer;
1234         int ret;
1235
1236         if (!ctlr->can_dma)
1237                 return 0;
1238
1239         if (ctlr->dma_tx)
1240                 tx_dev = ctlr->dma_tx->device->dev;
1241         else if (ctlr->dma_map_dev)
1242                 tx_dev = ctlr->dma_map_dev;
1243         else
1244                 tx_dev = ctlr->dev.parent;
1245
1246         if (ctlr->dma_rx)
1247                 rx_dev = ctlr->dma_rx->device->dev;
1248         else if (ctlr->dma_map_dev)
1249                 rx_dev = ctlr->dma_map_dev;
1250         else
1251                 rx_dev = ctlr->dev.parent;
1252
1253         ret = -ENOMSG;
1254         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1255                 /* The sync is done before each transfer. */
1256                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1257
1258                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1259                         continue;
1260
1261                 if (xfer->tx_buf != NULL) {
1262                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1263                                                 (void *)xfer->tx_buf,
1264                                                 xfer->len, DMA_TO_DEVICE,
1265                                                 attrs);
1266                         if (ret != 0)
1267                                 return ret;
1268                 } else {
1269                         xfer->tx_sg.sgl = &dummy_sg;
1270                 }
1271
1272                 if (xfer->rx_buf != NULL) {
1273                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1274                                                 xfer->rx_buf, xfer->len,
1275                                                 DMA_FROM_DEVICE, attrs);
1276                         if (ret != 0) {
1277                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1278                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1279                                                 attrs);
1280
1281                                 return ret;
1282                         }
1283                 } else {
1284                         xfer->rx_sg.sgl = &dummy_sg;
1285                 }
1286         }
1287         /* No transfer has been mapped, bail out with success */
1288         if (ret)
1289                 return 0;
1290
1291         ctlr->cur_rx_dma_dev = rx_dev;
1292         ctlr->cur_tx_dma_dev = tx_dev;
1293         ctlr->cur_msg_mapped = true;
1294
1295         return 0;
1296 }
1297
1298 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1299 {
1300         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1301         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1302         struct spi_transfer *xfer;
1303
1304         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1305                 return 0;
1306
1307         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1308                 /* The sync has already been done after each transfer. */
1309                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1310
1311                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1312                         continue;
1313
1314                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1315                                     DMA_FROM_DEVICE, attrs);
1316                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1317                                     DMA_TO_DEVICE, attrs);
1318         }
1319
1320         ctlr->cur_msg_mapped = false;
1321
1322         return 0;
1323 }
1324
1325 static void spi_dma_sync_for_device(struct spi_controller *ctlr, struct spi_message *msg,
1326                                     struct spi_transfer *xfer)
1327 {
1328         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1329         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1330
1331         if (!ctlr->cur_msg_mapped)
1332                 return;
1333
1334         if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1335                 return;
1336
1337         dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1338         dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1339 }
1340
1341 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, struct spi_message *msg,
1342                                  struct spi_transfer *xfer)
1343 {
1344         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1345         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1346
1347         if (!ctlr->cur_msg_mapped)
1348                 return;
1349
1350         if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1351                 return;
1352
1353         dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1354         dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1355 }
1356 #else /* !CONFIG_HAS_DMA */
1357 static inline int __spi_map_msg(struct spi_controller *ctlr,
1358                                 struct spi_message *msg)
1359 {
1360         return 0;
1361 }
1362
1363 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1364                                   struct spi_message *msg)
1365 {
1366         return 0;
1367 }
1368
1369 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1370                                     struct spi_message *msg,
1371                                     struct spi_transfer *xfer)
1372 {
1373 }
1374
1375 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1376                                  struct spi_message *msg,
1377                                  struct spi_transfer *xfer)
1378 {
1379 }
1380 #endif /* !CONFIG_HAS_DMA */
1381
1382 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1383                                 struct spi_message *msg)
1384 {
1385         struct spi_transfer *xfer;
1386
1387         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1388                 /*
1389                  * Restore the original value of tx_buf or rx_buf if they are
1390                  * NULL.
1391                  */
1392                 if (xfer->tx_buf == ctlr->dummy_tx)
1393                         xfer->tx_buf = NULL;
1394                 if (xfer->rx_buf == ctlr->dummy_rx)
1395                         xfer->rx_buf = NULL;
1396         }
1397
1398         return __spi_unmap_msg(ctlr, msg);
1399 }
1400
1401 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1402 {
1403         struct spi_transfer *xfer;
1404         void *tmp;
1405         unsigned int max_tx, max_rx;
1406
1407         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1408                 && !(msg->spi->mode & SPI_3WIRE)) {
1409                 max_tx = 0;
1410                 max_rx = 0;
1411
1412                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1414                             !xfer->tx_buf)
1415                                 max_tx = max(xfer->len, max_tx);
1416                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1417                             !xfer->rx_buf)
1418                                 max_rx = max(xfer->len, max_rx);
1419                 }
1420
1421                 if (max_tx) {
1422                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1423                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1424                         if (!tmp)
1425                                 return -ENOMEM;
1426                         ctlr->dummy_tx = tmp;
1427                 }
1428
1429                 if (max_rx) {
1430                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1431                                        GFP_KERNEL | GFP_DMA);
1432                         if (!tmp)
1433                                 return -ENOMEM;
1434                         ctlr->dummy_rx = tmp;
1435                 }
1436
1437                 if (max_tx || max_rx) {
1438                         list_for_each_entry(xfer, &msg->transfers,
1439                                             transfer_list) {
1440                                 if (!xfer->len)
1441                                         continue;
1442                                 if (!xfer->tx_buf)
1443                                         xfer->tx_buf = ctlr->dummy_tx;
1444                                 if (!xfer->rx_buf)
1445                                         xfer->rx_buf = ctlr->dummy_rx;
1446                         }
1447                 }
1448         }
1449
1450         return __spi_map_msg(ctlr, msg);
1451 }
1452
1453 static int spi_transfer_wait(struct spi_controller *ctlr,
1454                              struct spi_message *msg,
1455                              struct spi_transfer *xfer)
1456 {
1457         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1458         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1459         u32 speed_hz = xfer->speed_hz;
1460         unsigned long long ms;
1461
1462         if (spi_controller_is_slave(ctlr)) {
1463                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1464                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1465                         return -EINTR;
1466                 }
1467         } else {
1468                 if (!speed_hz)
1469                         speed_hz = 100000;
1470
1471                 /*
1472                  * For each byte we wait for 8 cycles of the SPI clock.
1473                  * Since speed is defined in Hz and we want milliseconds,
1474                  * use respective multiplier, but before the division,
1475                  * otherwise we may get 0 for short transfers.
1476                  */
1477                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1478                 do_div(ms, speed_hz);
1479
1480                 /*
1481                  * Increase it twice and add 200 ms tolerance, use
1482                  * predefined maximum in case of overflow.
1483                  */
1484                 ms += ms + 200;
1485                 if (ms > UINT_MAX)
1486                         ms = UINT_MAX;
1487
1488                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1489                                                  msecs_to_jiffies(ms));
1490
1491                 if (ms == 0) {
1492                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1493                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1494                         dev_err(&msg->spi->dev,
1495                                 "SPI transfer timed out\n");
1496                         return -ETIMEDOUT;
1497                 }
1498
1499                 if (xfer->error & SPI_TRANS_FAIL_IO)
1500                         return -EIO;
1501         }
1502
1503         return 0;
1504 }
1505
1506 static void _spi_transfer_delay_ns(u32 ns)
1507 {
1508         if (!ns)
1509                 return;
1510         if (ns <= NSEC_PER_USEC) {
1511                 ndelay(ns);
1512         } else {
1513                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1514
1515                 if (us <= 10)
1516                         udelay(us);
1517                 else
1518                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1519         }
1520 }
1521
1522 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1523 {
1524         u32 delay = _delay->value;
1525         u32 unit = _delay->unit;
1526         u32 hz;
1527
1528         if (!delay)
1529                 return 0;
1530
1531         switch (unit) {
1532         case SPI_DELAY_UNIT_USECS:
1533                 delay *= NSEC_PER_USEC;
1534                 break;
1535         case SPI_DELAY_UNIT_NSECS:
1536                 /* Nothing to do here */
1537                 break;
1538         case SPI_DELAY_UNIT_SCK:
1539                 /* Clock cycles need to be obtained from spi_transfer */
1540                 if (!xfer)
1541                         return -EINVAL;
1542                 /*
1543                  * If there is unknown effective speed, approximate it
1544                  * by underestimating with half of the requested Hz.
1545                  */
1546                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1547                 if (!hz)
1548                         return -EINVAL;
1549
1550                 /* Convert delay to nanoseconds */
1551                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1552                 break;
1553         default:
1554                 return -EINVAL;
1555         }
1556
1557         return delay;
1558 }
1559 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1560
1561 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1562 {
1563         int delay;
1564
1565         might_sleep();
1566
1567         if (!_delay)
1568                 return -EINVAL;
1569
1570         delay = spi_delay_to_ns(_delay, xfer);
1571         if (delay < 0)
1572                 return delay;
1573
1574         _spi_transfer_delay_ns(delay);
1575
1576         return 0;
1577 }
1578 EXPORT_SYMBOL_GPL(spi_delay_exec);
1579
1580 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1581                                           struct spi_transfer *xfer)
1582 {
1583         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1584         u32 delay = xfer->cs_change_delay.value;
1585         u32 unit = xfer->cs_change_delay.unit;
1586         int ret;
1587
1588         /* Return early on "fast" mode - for everything but USECS */
1589         if (!delay) {
1590                 if (unit == SPI_DELAY_UNIT_USECS)
1591                         _spi_transfer_delay_ns(default_delay_ns);
1592                 return;
1593         }
1594
1595         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1596         if (ret) {
1597                 dev_err_once(&msg->spi->dev,
1598                              "Use of unsupported delay unit %i, using default of %luus\n",
1599                              unit, default_delay_ns / NSEC_PER_USEC);
1600                 _spi_transfer_delay_ns(default_delay_ns);
1601         }
1602 }
1603
1604 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1605                                                   struct spi_transfer *xfer)
1606 {
1607         _spi_transfer_cs_change_delay(msg, xfer);
1608 }
1609 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1610
1611 /*
1612  * spi_transfer_one_message - Default implementation of transfer_one_message()
1613  *
1614  * This is a standard implementation of transfer_one_message() for
1615  * drivers which implement a transfer_one() operation.  It provides
1616  * standard handling of delays and chip select management.
1617  */
1618 static int spi_transfer_one_message(struct spi_controller *ctlr,
1619                                     struct spi_message *msg)
1620 {
1621         struct spi_transfer *xfer;
1622         bool keep_cs = false;
1623         int ret = 0;
1624         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1625         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1626
1627         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1628         spi_set_cs(msg->spi, !xfer->cs_off, false);
1629
1630         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1631         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1632
1633         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1634                 trace_spi_transfer_start(msg, xfer);
1635
1636                 spi_statistics_add_transfer_stats(statm, xfer, msg);
1637                 spi_statistics_add_transfer_stats(stats, xfer, msg);
1638
1639                 if (!ctlr->ptp_sts_supported) {
1640                         xfer->ptp_sts_word_pre = 0;
1641                         ptp_read_system_prets(xfer->ptp_sts);
1642                 }
1643
1644                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1645                         reinit_completion(&ctlr->xfer_completion);
1646
1647 fallback_pio:
1648                         spi_dma_sync_for_device(ctlr, msg, xfer);
1649                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1650                         if (ret < 0) {
1651                                 spi_dma_sync_for_cpu(ctlr, msg, xfer);
1652
1653                                 if (ctlr->cur_msg_mapped &&
1654                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1655                                         __spi_unmap_msg(ctlr, msg);
1656                                         ctlr->fallback = true;
1657                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1658                                         goto fallback_pio;
1659                                 }
1660
1661                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1662                                                                errors);
1663                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1664                                                                errors);
1665                                 dev_err(&msg->spi->dev,
1666                                         "SPI transfer failed: %d\n", ret);
1667                                 goto out;
1668                         }
1669
1670                         if (ret > 0) {
1671                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1672                                 if (ret < 0)
1673                                         msg->status = ret;
1674                         }
1675
1676                         spi_dma_sync_for_cpu(ctlr, msg, xfer);
1677                 } else {
1678                         if (xfer->len)
1679                                 dev_err(&msg->spi->dev,
1680                                         "Bufferless transfer has length %u\n",
1681                                         xfer->len);
1682                 }
1683
1684                 if (!ctlr->ptp_sts_supported) {
1685                         ptp_read_system_postts(xfer->ptp_sts);
1686                         xfer->ptp_sts_word_post = xfer->len;
1687                 }
1688
1689                 trace_spi_transfer_stop(msg, xfer);
1690
1691                 if (msg->status != -EINPROGRESS)
1692                         goto out;
1693
1694                 spi_transfer_delay_exec(xfer);
1695
1696                 if (xfer->cs_change) {
1697                         if (list_is_last(&xfer->transfer_list,
1698                                          &msg->transfers)) {
1699                                 keep_cs = true;
1700                         } else {
1701                                 if (!xfer->cs_off)
1702                                         spi_set_cs(msg->spi, false, false);
1703                                 _spi_transfer_cs_change_delay(msg, xfer);
1704                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1705                                         spi_set_cs(msg->spi, true, false);
1706                         }
1707                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1708                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1709                         spi_set_cs(msg->spi, xfer->cs_off, false);
1710                 }
1711
1712                 msg->actual_length += xfer->len;
1713         }
1714
1715 out:
1716         if (ret != 0 || !keep_cs)
1717                 spi_set_cs(msg->spi, false, false);
1718
1719         if (msg->status == -EINPROGRESS)
1720                 msg->status = ret;
1721
1722         if (msg->status && ctlr->handle_err)
1723                 ctlr->handle_err(ctlr, msg);
1724
1725         spi_finalize_current_message(ctlr);
1726
1727         return ret;
1728 }
1729
1730 /**
1731  * spi_finalize_current_transfer - report completion of a transfer
1732  * @ctlr: the controller reporting completion
1733  *
1734  * Called by SPI drivers using the core transfer_one_message()
1735  * implementation to notify it that the current interrupt driven
1736  * transfer has finished and the next one may be scheduled.
1737  */
1738 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1739 {
1740         complete(&ctlr->xfer_completion);
1741 }
1742 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1743
1744 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1745 {
1746         if (ctlr->auto_runtime_pm) {
1747                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1748                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1749         }
1750 }
1751
1752 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1753                 struct spi_message *msg, bool was_busy)
1754 {
1755         struct spi_transfer *xfer;
1756         int ret;
1757
1758         if (!was_busy && ctlr->auto_runtime_pm) {
1759                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1760                 if (ret < 0) {
1761                         pm_runtime_put_noidle(ctlr->dev.parent);
1762                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1763                                 ret);
1764
1765                         msg->status = ret;
1766                         spi_finalize_current_message(ctlr);
1767
1768                         return ret;
1769                 }
1770         }
1771
1772         if (!was_busy)
1773                 trace_spi_controller_busy(ctlr);
1774
1775         if (!was_busy && ctlr->prepare_transfer_hardware) {
1776                 ret = ctlr->prepare_transfer_hardware(ctlr);
1777                 if (ret) {
1778                         dev_err(&ctlr->dev,
1779                                 "failed to prepare transfer hardware: %d\n",
1780                                 ret);
1781
1782                         if (ctlr->auto_runtime_pm)
1783                                 pm_runtime_put(ctlr->dev.parent);
1784
1785                         msg->status = ret;
1786                         spi_finalize_current_message(ctlr);
1787
1788                         return ret;
1789                 }
1790         }
1791
1792         trace_spi_message_start(msg);
1793
1794         if (ctlr->prepare_message) {
1795                 ret = ctlr->prepare_message(ctlr, msg);
1796                 if (ret) {
1797                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1798                                 ret);
1799                         msg->status = ret;
1800                         spi_finalize_current_message(ctlr);
1801                         return ret;
1802                 }
1803                 msg->prepared = true;
1804         }
1805
1806         ret = spi_map_msg(ctlr, msg);
1807         if (ret) {
1808                 msg->status = ret;
1809                 spi_finalize_current_message(ctlr);
1810                 return ret;
1811         }
1812
1813         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1814                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1815                         xfer->ptp_sts_word_pre = 0;
1816                         ptp_read_system_prets(xfer->ptp_sts);
1817                 }
1818         }
1819
1820         /*
1821          * Drivers implementation of transfer_one_message() must arrange for
1822          * spi_finalize_current_message() to get called. Most drivers will do
1823          * this in the calling context, but some don't. For those cases, a
1824          * completion is used to guarantee that this function does not return
1825          * until spi_finalize_current_message() is done accessing
1826          * ctlr->cur_msg.
1827          * Use of the following two flags enable to opportunistically skip the
1828          * use of the completion since its use involves expensive spin locks.
1829          * In case of a race with the context that calls
1830          * spi_finalize_current_message() the completion will always be used,
1831          * due to strict ordering of these flags using barriers.
1832          */
1833         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1834         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1835         reinit_completion(&ctlr->cur_msg_completion);
1836         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1837
1838         ret = ctlr->transfer_one_message(ctlr, msg);
1839         if (ret) {
1840                 dev_err(&ctlr->dev,
1841                         "failed to transfer one message from queue\n");
1842                 return ret;
1843         }
1844
1845         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1846         smp_mb(); /* See spi_finalize_current_message()... */
1847         if (READ_ONCE(ctlr->cur_msg_incomplete))
1848                 wait_for_completion(&ctlr->cur_msg_completion);
1849
1850         return 0;
1851 }
1852
1853 /**
1854  * __spi_pump_messages - function which processes SPI message queue
1855  * @ctlr: controller to process queue for
1856  * @in_kthread: true if we are in the context of the message pump thread
1857  *
1858  * This function checks if there is any SPI message in the queue that
1859  * needs processing and if so call out to the driver to initialize hardware
1860  * and transfer each message.
1861  *
1862  * Note that it is called both from the kthread itself and also from
1863  * inside spi_sync(); the queue extraction handling at the top of the
1864  * function should deal with this safely.
1865  */
1866 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1867 {
1868         struct spi_message *msg;
1869         bool was_busy = false;
1870         unsigned long flags;
1871         int ret;
1872
1873         /* Take the I/O mutex */
1874         mutex_lock(&ctlr->io_mutex);
1875
1876         /* Lock queue */
1877         spin_lock_irqsave(&ctlr->queue_lock, flags);
1878
1879         /* Make sure we are not already running a message */
1880         if (ctlr->cur_msg)
1881                 goto out_unlock;
1882
1883         /* Check if the queue is idle */
1884         if (list_empty(&ctlr->queue) || !ctlr->running) {
1885                 if (!ctlr->busy)
1886                         goto out_unlock;
1887
1888                 /* Defer any non-atomic teardown to the thread */
1889                 if (!in_kthread) {
1890                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1891                             !ctlr->unprepare_transfer_hardware) {
1892                                 spi_idle_runtime_pm(ctlr);
1893                                 ctlr->busy = false;
1894                                 ctlr->queue_empty = true;
1895                                 trace_spi_controller_idle(ctlr);
1896                         } else {
1897                                 kthread_queue_work(ctlr->kworker,
1898                                                    &ctlr->pump_messages);
1899                         }
1900                         goto out_unlock;
1901                 }
1902
1903                 ctlr->busy = false;
1904                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1905
1906                 kfree(ctlr->dummy_rx);
1907                 ctlr->dummy_rx = NULL;
1908                 kfree(ctlr->dummy_tx);
1909                 ctlr->dummy_tx = NULL;
1910                 if (ctlr->unprepare_transfer_hardware &&
1911                     ctlr->unprepare_transfer_hardware(ctlr))
1912                         dev_err(&ctlr->dev,
1913                                 "failed to unprepare transfer hardware\n");
1914                 spi_idle_runtime_pm(ctlr);
1915                 trace_spi_controller_idle(ctlr);
1916
1917                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1918                 ctlr->queue_empty = true;
1919                 goto out_unlock;
1920         }
1921
1922         /* Extract head of queue */
1923         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1924         ctlr->cur_msg = msg;
1925
1926         list_del_init(&msg->queue);
1927         if (ctlr->busy)
1928                 was_busy = true;
1929         else
1930                 ctlr->busy = true;
1931         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1932
1933         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1934         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1935
1936         ctlr->cur_msg = NULL;
1937         ctlr->fallback = false;
1938
1939         mutex_unlock(&ctlr->io_mutex);
1940
1941         /* Prod the scheduler in case transfer_one() was busy waiting */
1942         if (!ret)
1943                 cond_resched();
1944         return;
1945
1946 out_unlock:
1947         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1948         mutex_unlock(&ctlr->io_mutex);
1949 }
1950
1951 /**
1952  * spi_pump_messages - kthread work function which processes spi message queue
1953  * @work: pointer to kthread work struct contained in the controller struct
1954  */
1955 static void spi_pump_messages(struct kthread_work *work)
1956 {
1957         struct spi_controller *ctlr =
1958                 container_of(work, struct spi_controller, pump_messages);
1959
1960         __spi_pump_messages(ctlr, true);
1961 }
1962
1963 /**
1964  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1965  * @ctlr: Pointer to the spi_controller structure of the driver
1966  * @xfer: Pointer to the transfer being timestamped
1967  * @progress: How many words (not bytes) have been transferred so far
1968  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1969  *            transfer, for less jitter in time measurement. Only compatible
1970  *            with PIO drivers. If true, must follow up with
1971  *            spi_take_timestamp_post or otherwise system will crash.
1972  *            WARNING: for fully predictable results, the CPU frequency must
1973  *            also be under control (governor).
1974  *
1975  * This is a helper for drivers to collect the beginning of the TX timestamp
1976  * for the requested byte from the SPI transfer. The frequency with which this
1977  * function must be called (once per word, once for the whole transfer, once
1978  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1979  * greater than or equal to the requested byte at the time of the call. The
1980  * timestamp is only taken once, at the first such call. It is assumed that
1981  * the driver advances its @tx buffer pointer monotonically.
1982  */
1983 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1984                             struct spi_transfer *xfer,
1985                             size_t progress, bool irqs_off)
1986 {
1987         if (!xfer->ptp_sts)
1988                 return;
1989
1990         if (xfer->timestamped)
1991                 return;
1992
1993         if (progress > xfer->ptp_sts_word_pre)
1994                 return;
1995
1996         /* Capture the resolution of the timestamp */
1997         xfer->ptp_sts_word_pre = progress;
1998
1999         if (irqs_off) {
2000                 local_irq_save(ctlr->irq_flags);
2001                 preempt_disable();
2002         }
2003
2004         ptp_read_system_prets(xfer->ptp_sts);
2005 }
2006 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
2007
2008 /**
2009  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
2010  * @ctlr: Pointer to the spi_controller structure of the driver
2011  * @xfer: Pointer to the transfer being timestamped
2012  * @progress: How many words (not bytes) have been transferred so far
2013  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2014  *
2015  * This is a helper for drivers to collect the end of the TX timestamp for
2016  * the requested byte from the SPI transfer. Can be called with an arbitrary
2017  * frequency: only the first call where @tx exceeds or is equal to the
2018  * requested word will be timestamped.
2019  */
2020 void spi_take_timestamp_post(struct spi_controller *ctlr,
2021                              struct spi_transfer *xfer,
2022                              size_t progress, bool irqs_off)
2023 {
2024         if (!xfer->ptp_sts)
2025                 return;
2026
2027         if (xfer->timestamped)
2028                 return;
2029
2030         if (progress < xfer->ptp_sts_word_post)
2031                 return;
2032
2033         ptp_read_system_postts(xfer->ptp_sts);
2034
2035         if (irqs_off) {
2036                 local_irq_restore(ctlr->irq_flags);
2037                 preempt_enable();
2038         }
2039
2040         /* Capture the resolution of the timestamp */
2041         xfer->ptp_sts_word_post = progress;
2042
2043         xfer->timestamped = 1;
2044 }
2045 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2046
2047 /**
2048  * spi_set_thread_rt - set the controller to pump at realtime priority
2049  * @ctlr: controller to boost priority of
2050  *
2051  * This can be called because the controller requested realtime priority
2052  * (by setting the ->rt value before calling spi_register_controller()) or
2053  * because a device on the bus said that its transfers needed realtime
2054  * priority.
2055  *
2056  * NOTE: at the moment if any device on a bus says it needs realtime then
2057  * the thread will be at realtime priority for all transfers on that
2058  * controller.  If this eventually becomes a problem we may see if we can
2059  * find a way to boost the priority only temporarily during relevant
2060  * transfers.
2061  */
2062 static void spi_set_thread_rt(struct spi_controller *ctlr)
2063 {
2064         dev_info(&ctlr->dev,
2065                 "will run message pump with realtime priority\n");
2066         sched_set_fifo(ctlr->kworker->task);
2067 }
2068
2069 static int spi_init_queue(struct spi_controller *ctlr)
2070 {
2071         ctlr->running = false;
2072         ctlr->busy = false;
2073         ctlr->queue_empty = true;
2074
2075         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2076         if (IS_ERR(ctlr->kworker)) {
2077                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2078                 return PTR_ERR(ctlr->kworker);
2079         }
2080
2081         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2082
2083         /*
2084          * Controller config will indicate if this controller should run the
2085          * message pump with high (realtime) priority to reduce the transfer
2086          * latency on the bus by minimising the delay between a transfer
2087          * request and the scheduling of the message pump thread. Without this
2088          * setting the message pump thread will remain at default priority.
2089          */
2090         if (ctlr->rt)
2091                 spi_set_thread_rt(ctlr);
2092
2093         return 0;
2094 }
2095
2096 /**
2097  * spi_get_next_queued_message() - called by driver to check for queued
2098  * messages
2099  * @ctlr: the controller to check for queued messages
2100  *
2101  * If there are more messages in the queue, the next message is returned from
2102  * this call.
2103  *
2104  * Return: the next message in the queue, else NULL if the queue is empty.
2105  */
2106 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2107 {
2108         struct spi_message *next;
2109         unsigned long flags;
2110
2111         /* Get a pointer to the next message, if any */
2112         spin_lock_irqsave(&ctlr->queue_lock, flags);
2113         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2114                                         queue);
2115         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2116
2117         return next;
2118 }
2119 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2120
2121 /*
2122  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2123  *                            and spi_maybe_unoptimize_message()
2124  * @msg: the message to unoptimize
2125  *
2126  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2127  * core should use spi_maybe_unoptimize_message() rather than calling this
2128  * function directly.
2129  *
2130  * It is not valid to call this on a message that is not currently optimized.
2131  */
2132 static void __spi_unoptimize_message(struct spi_message *msg)
2133 {
2134         struct spi_controller *ctlr = msg->spi->controller;
2135
2136         if (ctlr->unoptimize_message)
2137                 ctlr->unoptimize_message(msg);
2138
2139         spi_res_release(ctlr, msg);
2140
2141         msg->optimized = false;
2142         msg->opt_state = NULL;
2143 }
2144
2145 /*
2146  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2147  * @msg: the message to unoptimize
2148  *
2149  * This function is used to unoptimize a message if and only if it was
2150  * optimized by the core (via spi_maybe_optimize_message()).
2151  */
2152 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2153 {
2154         if (!msg->pre_optimized && msg->optimized &&
2155             !msg->spi->controller->defer_optimize_message)
2156                 __spi_unoptimize_message(msg);
2157 }
2158
2159 /**
2160  * spi_finalize_current_message() - the current message is complete
2161  * @ctlr: the controller to return the message to
2162  *
2163  * Called by the driver to notify the core that the message in the front of the
2164  * queue is complete and can be removed from the queue.
2165  */
2166 void spi_finalize_current_message(struct spi_controller *ctlr)
2167 {
2168         struct spi_transfer *xfer;
2169         struct spi_message *mesg;
2170         int ret;
2171
2172         mesg = ctlr->cur_msg;
2173
2174         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2175                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2176                         ptp_read_system_postts(xfer->ptp_sts);
2177                         xfer->ptp_sts_word_post = xfer->len;
2178                 }
2179         }
2180
2181         if (unlikely(ctlr->ptp_sts_supported))
2182                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2183                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2184
2185         spi_unmap_msg(ctlr, mesg);
2186
2187         if (mesg->prepared && ctlr->unprepare_message) {
2188                 ret = ctlr->unprepare_message(ctlr, mesg);
2189                 if (ret) {
2190                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2191                                 ret);
2192                 }
2193         }
2194
2195         mesg->prepared = false;
2196
2197         spi_maybe_unoptimize_message(mesg);
2198
2199         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2200         smp_mb(); /* See __spi_pump_transfer_message()... */
2201         if (READ_ONCE(ctlr->cur_msg_need_completion))
2202                 complete(&ctlr->cur_msg_completion);
2203
2204         trace_spi_message_done(mesg);
2205
2206         mesg->state = NULL;
2207         if (mesg->complete)
2208                 mesg->complete(mesg->context);
2209 }
2210 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2211
2212 static int spi_start_queue(struct spi_controller *ctlr)
2213 {
2214         unsigned long flags;
2215
2216         spin_lock_irqsave(&ctlr->queue_lock, flags);
2217
2218         if (ctlr->running || ctlr->busy) {
2219                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2220                 return -EBUSY;
2221         }
2222
2223         ctlr->running = true;
2224         ctlr->cur_msg = NULL;
2225         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2226
2227         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2228
2229         return 0;
2230 }
2231
2232 static int spi_stop_queue(struct spi_controller *ctlr)
2233 {
2234         unsigned long flags;
2235         unsigned limit = 500;
2236         int ret = 0;
2237
2238         spin_lock_irqsave(&ctlr->queue_lock, flags);
2239
2240         /*
2241          * This is a bit lame, but is optimized for the common execution path.
2242          * A wait_queue on the ctlr->busy could be used, but then the common
2243          * execution path (pump_messages) would be required to call wake_up or
2244          * friends on every SPI message. Do this instead.
2245          */
2246         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2247                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2248                 usleep_range(10000, 11000);
2249                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2250         }
2251
2252         if (!list_empty(&ctlr->queue) || ctlr->busy)
2253                 ret = -EBUSY;
2254         else
2255                 ctlr->running = false;
2256
2257         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2258
2259         return ret;
2260 }
2261
2262 static int spi_destroy_queue(struct spi_controller *ctlr)
2263 {
2264         int ret;
2265
2266         ret = spi_stop_queue(ctlr);
2267
2268         /*
2269          * kthread_flush_worker will block until all work is done.
2270          * If the reason that stop_queue timed out is that the work will never
2271          * finish, then it does no good to call flush/stop thread, so
2272          * return anyway.
2273          */
2274         if (ret) {
2275                 dev_err(&ctlr->dev, "problem destroying queue\n");
2276                 return ret;
2277         }
2278
2279         kthread_destroy_worker(ctlr->kworker);
2280
2281         return 0;
2282 }
2283
2284 static int __spi_queued_transfer(struct spi_device *spi,
2285                                  struct spi_message *msg,
2286                                  bool need_pump)
2287 {
2288         struct spi_controller *ctlr = spi->controller;
2289         unsigned long flags;
2290
2291         spin_lock_irqsave(&ctlr->queue_lock, flags);
2292
2293         if (!ctlr->running) {
2294                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2295                 return -ESHUTDOWN;
2296         }
2297         msg->actual_length = 0;
2298         msg->status = -EINPROGRESS;
2299
2300         list_add_tail(&msg->queue, &ctlr->queue);
2301         ctlr->queue_empty = false;
2302         if (!ctlr->busy && need_pump)
2303                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2304
2305         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2306         return 0;
2307 }
2308
2309 /**
2310  * spi_queued_transfer - transfer function for queued transfers
2311  * @spi: SPI device which is requesting transfer
2312  * @msg: SPI message which is to handled is queued to driver queue
2313  *
2314  * Return: zero on success, else a negative error code.
2315  */
2316 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2317 {
2318         return __spi_queued_transfer(spi, msg, true);
2319 }
2320
2321 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2322 {
2323         int ret;
2324
2325         ctlr->transfer = spi_queued_transfer;
2326         if (!ctlr->transfer_one_message)
2327                 ctlr->transfer_one_message = spi_transfer_one_message;
2328
2329         /* Initialize and start queue */
2330         ret = spi_init_queue(ctlr);
2331         if (ret) {
2332                 dev_err(&ctlr->dev, "problem initializing queue\n");
2333                 goto err_init_queue;
2334         }
2335         ctlr->queued = true;
2336         ret = spi_start_queue(ctlr);
2337         if (ret) {
2338                 dev_err(&ctlr->dev, "problem starting queue\n");
2339                 goto err_start_queue;
2340         }
2341
2342         return 0;
2343
2344 err_start_queue:
2345         spi_destroy_queue(ctlr);
2346 err_init_queue:
2347         return ret;
2348 }
2349
2350 /**
2351  * spi_flush_queue - Send all pending messages in the queue from the callers'
2352  *                   context
2353  * @ctlr: controller to process queue for
2354  *
2355  * This should be used when one wants to ensure all pending messages have been
2356  * sent before doing something. Is used by the spi-mem code to make sure SPI
2357  * memory operations do not preempt regular SPI transfers that have been queued
2358  * before the spi-mem operation.
2359  */
2360 void spi_flush_queue(struct spi_controller *ctlr)
2361 {
2362         if (ctlr->transfer == spi_queued_transfer)
2363                 __spi_pump_messages(ctlr, false);
2364 }
2365
2366 /*-------------------------------------------------------------------------*/
2367
2368 #if defined(CONFIG_OF)
2369 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2370                                      struct spi_delay *delay, const char *prop)
2371 {
2372         u32 value;
2373
2374         if (!of_property_read_u32(nc, prop, &value)) {
2375                 if (value > U16_MAX) {
2376                         delay->value = DIV_ROUND_UP(value, 1000);
2377                         delay->unit = SPI_DELAY_UNIT_USECS;
2378                 } else {
2379                         delay->value = value;
2380                         delay->unit = SPI_DELAY_UNIT_NSECS;
2381                 }
2382         }
2383 }
2384
2385 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2386                            struct device_node *nc)
2387 {
2388         u32 value, cs[SPI_CS_CNT_MAX];
2389         int rc, idx;
2390
2391         /* Mode (clock phase/polarity/etc.) */
2392         if (of_property_read_bool(nc, "spi-cpha"))
2393                 spi->mode |= SPI_CPHA;
2394         if (of_property_read_bool(nc, "spi-cpol"))
2395                 spi->mode |= SPI_CPOL;
2396         if (of_property_read_bool(nc, "spi-3wire"))
2397                 spi->mode |= SPI_3WIRE;
2398         if (of_property_read_bool(nc, "spi-lsb-first"))
2399                 spi->mode |= SPI_LSB_FIRST;
2400         if (of_property_read_bool(nc, "spi-cs-high"))
2401                 spi->mode |= SPI_CS_HIGH;
2402
2403         /* Device DUAL/QUAD mode */
2404         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2405                 switch (value) {
2406                 case 0:
2407                         spi->mode |= SPI_NO_TX;
2408                         break;
2409                 case 1:
2410                         break;
2411                 case 2:
2412                         spi->mode |= SPI_TX_DUAL;
2413                         break;
2414                 case 4:
2415                         spi->mode |= SPI_TX_QUAD;
2416                         break;
2417                 case 8:
2418                         spi->mode |= SPI_TX_OCTAL;
2419                         break;
2420                 default:
2421                         dev_warn(&ctlr->dev,
2422                                 "spi-tx-bus-width %d not supported\n",
2423                                 value);
2424                         break;
2425                 }
2426         }
2427
2428         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2429                 switch (value) {
2430                 case 0:
2431                         spi->mode |= SPI_NO_RX;
2432                         break;
2433                 case 1:
2434                         break;
2435                 case 2:
2436                         spi->mode |= SPI_RX_DUAL;
2437                         break;
2438                 case 4:
2439                         spi->mode |= SPI_RX_QUAD;
2440                         break;
2441                 case 8:
2442                         spi->mode |= SPI_RX_OCTAL;
2443                         break;
2444                 default:
2445                         dev_warn(&ctlr->dev,
2446                                 "spi-rx-bus-width %d not supported\n",
2447                                 value);
2448                         break;
2449                 }
2450         }
2451
2452         if (spi_controller_is_slave(ctlr)) {
2453                 if (!of_node_name_eq(nc, "slave")) {
2454                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2455                                 nc);
2456                         return -EINVAL;
2457                 }
2458                 return 0;
2459         }
2460
2461         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2462                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2463                 return -EINVAL;
2464         }
2465
2466         spi_set_all_cs_unused(spi);
2467
2468         /* Device address */
2469         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2470                                                  SPI_CS_CNT_MAX);
2471         if (rc < 0) {
2472                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2473                         nc, rc);
2474                 return rc;
2475         }
2476         if (rc > ctlr->num_chipselect) {
2477                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2478                         nc, rc);
2479                 return rc;
2480         }
2481         if ((of_property_read_bool(nc, "parallel-memories")) &&
2482             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2483                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2484                 return -EINVAL;
2485         }
2486         for (idx = 0; idx < rc; idx++)
2487                 spi_set_chipselect(spi, idx, cs[idx]);
2488
2489         /*
2490          * By default spi->chip_select[0] will hold the physical CS number,
2491          * so set bit 0 in spi->cs_index_mask.
2492          */
2493         spi->cs_index_mask = BIT(0);
2494
2495         /* Device speed */
2496         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2497                 spi->max_speed_hz = value;
2498
2499         /* Device CS delays */
2500         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2501         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2502         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2503
2504         return 0;
2505 }
2506
2507 static struct spi_device *
2508 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2509 {
2510         struct spi_device *spi;
2511         int rc;
2512
2513         /* Alloc an spi_device */
2514         spi = spi_alloc_device(ctlr);
2515         if (!spi) {
2516                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2517                 rc = -ENOMEM;
2518                 goto err_out;
2519         }
2520
2521         /* Select device driver */
2522         rc = of_alias_from_compatible(nc, spi->modalias,
2523                                       sizeof(spi->modalias));
2524         if (rc < 0) {
2525                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2526                 goto err_out;
2527         }
2528
2529         rc = of_spi_parse_dt(ctlr, spi, nc);
2530         if (rc)
2531                 goto err_out;
2532
2533         /* Store a pointer to the node in the device structure */
2534         of_node_get(nc);
2535
2536         device_set_node(&spi->dev, of_fwnode_handle(nc));
2537
2538         /* Register the new device */
2539         rc = spi_add_device(spi);
2540         if (rc) {
2541                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2542                 goto err_of_node_put;
2543         }
2544
2545         return spi;
2546
2547 err_of_node_put:
2548         of_node_put(nc);
2549 err_out:
2550         spi_dev_put(spi);
2551         return ERR_PTR(rc);
2552 }
2553
2554 /**
2555  * of_register_spi_devices() - Register child devices onto the SPI bus
2556  * @ctlr:       Pointer to spi_controller device
2557  *
2558  * Registers an spi_device for each child node of controller node which
2559  * represents a valid SPI slave.
2560  */
2561 static void of_register_spi_devices(struct spi_controller *ctlr)
2562 {
2563         struct spi_device *spi;
2564         struct device_node *nc;
2565
2566         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2567                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2568                         continue;
2569                 spi = of_register_spi_device(ctlr, nc);
2570                 if (IS_ERR(spi)) {
2571                         dev_warn(&ctlr->dev,
2572                                  "Failed to create SPI device for %pOF\n", nc);
2573                         of_node_clear_flag(nc, OF_POPULATED);
2574                 }
2575         }
2576 }
2577 #else
2578 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2579 #endif
2580
2581 /**
2582  * spi_new_ancillary_device() - Register ancillary SPI device
2583  * @spi:         Pointer to the main SPI device registering the ancillary device
2584  * @chip_select: Chip Select of the ancillary device
2585  *
2586  * Register an ancillary SPI device; for example some chips have a chip-select
2587  * for normal device usage and another one for setup/firmware upload.
2588  *
2589  * This may only be called from main SPI device's probe routine.
2590  *
2591  * Return: 0 on success; negative errno on failure
2592  */
2593 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2594                                              u8 chip_select)
2595 {
2596         struct spi_controller *ctlr = spi->controller;
2597         struct spi_device *ancillary;
2598         int rc = 0;
2599
2600         /* Alloc an spi_device */
2601         ancillary = spi_alloc_device(ctlr);
2602         if (!ancillary) {
2603                 rc = -ENOMEM;
2604                 goto err_out;
2605         }
2606
2607         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2608
2609         /* Use provided chip-select for ancillary device */
2610         spi_set_all_cs_unused(ancillary);
2611         spi_set_chipselect(ancillary, 0, chip_select);
2612
2613         /* Take over SPI mode/speed from SPI main device */
2614         ancillary->max_speed_hz = spi->max_speed_hz;
2615         ancillary->mode = spi->mode;
2616         /*
2617          * By default spi->chip_select[0] will hold the physical CS number,
2618          * so set bit 0 in spi->cs_index_mask.
2619          */
2620         ancillary->cs_index_mask = BIT(0);
2621
2622         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2623
2624         /* Register the new device */
2625         rc = __spi_add_device(ancillary);
2626         if (rc) {
2627                 dev_err(&spi->dev, "failed to register ancillary device\n");
2628                 goto err_out;
2629         }
2630
2631         return ancillary;
2632
2633 err_out:
2634         spi_dev_put(ancillary);
2635         return ERR_PTR(rc);
2636 }
2637 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2638
2639 #ifdef CONFIG_ACPI
2640 struct acpi_spi_lookup {
2641         struct spi_controller   *ctlr;
2642         u32                     max_speed_hz;
2643         u32                     mode;
2644         int                     irq;
2645         u8                      bits_per_word;
2646         u8                      chip_select;
2647         int                     n;
2648         int                     index;
2649 };
2650
2651 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2652 {
2653         struct acpi_resource_spi_serialbus *sb;
2654         int *count = data;
2655
2656         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2657                 return 1;
2658
2659         sb = &ares->data.spi_serial_bus;
2660         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2661                 return 1;
2662
2663         *count = *count + 1;
2664
2665         return 1;
2666 }
2667
2668 /**
2669  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2670  * @adev:       ACPI device
2671  *
2672  * Return: the number of SpiSerialBus resources in the ACPI-device's
2673  * resource-list; or a negative error code.
2674  */
2675 int acpi_spi_count_resources(struct acpi_device *adev)
2676 {
2677         LIST_HEAD(r);
2678         int count = 0;
2679         int ret;
2680
2681         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2682         if (ret < 0)
2683                 return ret;
2684
2685         acpi_dev_free_resource_list(&r);
2686
2687         return count;
2688 }
2689 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2690
2691 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2692                                             struct acpi_spi_lookup *lookup)
2693 {
2694         const union acpi_object *obj;
2695
2696         if (!x86_apple_machine)
2697                 return;
2698
2699         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2700             && obj->buffer.length >= 4)
2701                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2702
2703         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2704             && obj->buffer.length == 8)
2705                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2706
2707         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2708             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2709                 lookup->mode |= SPI_LSB_FIRST;
2710
2711         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2712             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2713                 lookup->mode |= SPI_CPOL;
2714
2715         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2716             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2717                 lookup->mode |= SPI_CPHA;
2718 }
2719
2720 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2721 {
2722         struct acpi_spi_lookup *lookup = data;
2723         struct spi_controller *ctlr = lookup->ctlr;
2724
2725         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2726                 struct acpi_resource_spi_serialbus *sb;
2727                 acpi_handle parent_handle;
2728                 acpi_status status;
2729
2730                 sb = &ares->data.spi_serial_bus;
2731                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2732
2733                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2734                                 return 1;
2735
2736                         status = acpi_get_handle(NULL,
2737                                                  sb->resource_source.string_ptr,
2738                                                  &parent_handle);
2739
2740                         if (ACPI_FAILURE(status))
2741                                 return -ENODEV;
2742
2743                         if (ctlr) {
2744                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2745                                         return -ENODEV;
2746                         } else {
2747                                 struct acpi_device *adev;
2748
2749                                 adev = acpi_fetch_acpi_dev(parent_handle);
2750                                 if (!adev)
2751                                         return -ENODEV;
2752
2753                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2754                                 if (!ctlr)
2755                                         return -EPROBE_DEFER;
2756
2757                                 lookup->ctlr = ctlr;
2758                         }
2759
2760                         /*
2761                          * ACPI DeviceSelection numbering is handled by the
2762                          * host controller driver in Windows and can vary
2763                          * from driver to driver. In Linux we always expect
2764                          * 0 .. max - 1 so we need to ask the driver to
2765                          * translate between the two schemes.
2766                          */
2767                         if (ctlr->fw_translate_cs) {
2768                                 int cs = ctlr->fw_translate_cs(ctlr,
2769                                                 sb->device_selection);
2770                                 if (cs < 0)
2771                                         return cs;
2772                                 lookup->chip_select = cs;
2773                         } else {
2774                                 lookup->chip_select = sb->device_selection;
2775                         }
2776
2777                         lookup->max_speed_hz = sb->connection_speed;
2778                         lookup->bits_per_word = sb->data_bit_length;
2779
2780                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2781                                 lookup->mode |= SPI_CPHA;
2782                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2783                                 lookup->mode |= SPI_CPOL;
2784                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2785                                 lookup->mode |= SPI_CS_HIGH;
2786                 }
2787         } else if (lookup->irq < 0) {
2788                 struct resource r;
2789
2790                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2791                         lookup->irq = r.start;
2792         }
2793
2794         /* Always tell the ACPI core to skip this resource */
2795         return 1;
2796 }
2797
2798 /**
2799  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2800  * @ctlr: controller to which the spi device belongs
2801  * @adev: ACPI Device for the spi device
2802  * @index: Index of the spi resource inside the ACPI Node
2803  *
2804  * This should be used to allocate a new SPI device from and ACPI Device node.
2805  * The caller is responsible for calling spi_add_device to register the SPI device.
2806  *
2807  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2808  * using the resource.
2809  * If index is set to -1, index is not used.
2810  * Note: If index is -1, ctlr must be set.
2811  *
2812  * Return: a pointer to the new device, or ERR_PTR on error.
2813  */
2814 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2815                                          struct acpi_device *adev,
2816                                          int index)
2817 {
2818         acpi_handle parent_handle = NULL;
2819         struct list_head resource_list;
2820         struct acpi_spi_lookup lookup = {};
2821         struct spi_device *spi;
2822         int ret;
2823
2824         if (!ctlr && index == -1)
2825                 return ERR_PTR(-EINVAL);
2826
2827         lookup.ctlr             = ctlr;
2828         lookup.irq              = -1;
2829         lookup.index            = index;
2830         lookup.n                = 0;
2831
2832         INIT_LIST_HEAD(&resource_list);
2833         ret = acpi_dev_get_resources(adev, &resource_list,
2834                                      acpi_spi_add_resource, &lookup);
2835         acpi_dev_free_resource_list(&resource_list);
2836
2837         if (ret < 0)
2838                 /* Found SPI in _CRS but it points to another controller */
2839                 return ERR_PTR(ret);
2840
2841         if (!lookup.max_speed_hz &&
2842             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2843             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2844                 /* Apple does not use _CRS but nested devices for SPI slaves */
2845                 acpi_spi_parse_apple_properties(adev, &lookup);
2846         }
2847
2848         if (!lookup.max_speed_hz)
2849                 return ERR_PTR(-ENODEV);
2850
2851         spi = spi_alloc_device(lookup.ctlr);
2852         if (!spi) {
2853                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2854                         dev_name(&adev->dev));
2855                 return ERR_PTR(-ENOMEM);
2856         }
2857
2858         spi_set_all_cs_unused(spi);
2859         spi_set_chipselect(spi, 0, lookup.chip_select);
2860
2861         ACPI_COMPANION_SET(&spi->dev, adev);
2862         spi->max_speed_hz       = lookup.max_speed_hz;
2863         spi->mode               |= lookup.mode;
2864         spi->irq                = lookup.irq;
2865         spi->bits_per_word      = lookup.bits_per_word;
2866         /*
2867          * By default spi->chip_select[0] will hold the physical CS number,
2868          * so set bit 0 in spi->cs_index_mask.
2869          */
2870         spi->cs_index_mask      = BIT(0);
2871
2872         return spi;
2873 }
2874 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2875
2876 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2877                                             struct acpi_device *adev)
2878 {
2879         struct spi_device *spi;
2880
2881         if (acpi_bus_get_status(adev) || !adev->status.present ||
2882             acpi_device_enumerated(adev))
2883                 return AE_OK;
2884
2885         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2886         if (IS_ERR(spi)) {
2887                 if (PTR_ERR(spi) == -ENOMEM)
2888                         return AE_NO_MEMORY;
2889                 else
2890                         return AE_OK;
2891         }
2892
2893         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2894                           sizeof(spi->modalias));
2895
2896         if (spi->irq < 0)
2897                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2898
2899         acpi_device_set_enumerated(adev);
2900
2901         adev->power.flags.ignore_parent = true;
2902         if (spi_add_device(spi)) {
2903                 adev->power.flags.ignore_parent = false;
2904                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2905                         dev_name(&adev->dev));
2906                 spi_dev_put(spi);
2907         }
2908
2909         return AE_OK;
2910 }
2911
2912 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2913                                        void *data, void **return_value)
2914 {
2915         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2916         struct spi_controller *ctlr = data;
2917
2918         if (!adev)
2919                 return AE_OK;
2920
2921         return acpi_register_spi_device(ctlr, adev);
2922 }
2923
2924 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2925
2926 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2927 {
2928         acpi_status status;
2929         acpi_handle handle;
2930
2931         handle = ACPI_HANDLE(ctlr->dev.parent);
2932         if (!handle)
2933                 return;
2934
2935         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2936                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2937                                      acpi_spi_add_device, NULL, ctlr, NULL);
2938         if (ACPI_FAILURE(status))
2939                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2940 }
2941 #else
2942 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2943 #endif /* CONFIG_ACPI */
2944
2945 static void spi_controller_release(struct device *dev)
2946 {
2947         struct spi_controller *ctlr;
2948
2949         ctlr = container_of(dev, struct spi_controller, dev);
2950         kfree(ctlr);
2951 }
2952
2953 static struct class spi_master_class = {
2954         .name           = "spi_master",
2955         .dev_release    = spi_controller_release,
2956         .dev_groups     = spi_master_groups,
2957 };
2958
2959 #ifdef CONFIG_SPI_SLAVE
2960 /**
2961  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2962  *                   controller
2963  * @spi: device used for the current transfer
2964  */
2965 int spi_slave_abort(struct spi_device *spi)
2966 {
2967         struct spi_controller *ctlr = spi->controller;
2968
2969         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2970                 return ctlr->slave_abort(ctlr);
2971
2972         return -ENOTSUPP;
2973 }
2974 EXPORT_SYMBOL_GPL(spi_slave_abort);
2975
2976 int spi_target_abort(struct spi_device *spi)
2977 {
2978         struct spi_controller *ctlr = spi->controller;
2979
2980         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2981                 return ctlr->target_abort(ctlr);
2982
2983         return -ENOTSUPP;
2984 }
2985 EXPORT_SYMBOL_GPL(spi_target_abort);
2986
2987 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2988                           char *buf)
2989 {
2990         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2991                                                    dev);
2992         struct device *child;
2993
2994         child = device_find_any_child(&ctlr->dev);
2995         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2996 }
2997
2998 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2999                            const char *buf, size_t count)
3000 {
3001         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
3002                                                    dev);
3003         struct spi_device *spi;
3004         struct device *child;
3005         char name[32];
3006         int rc;
3007
3008         rc = sscanf(buf, "%31s", name);
3009         if (rc != 1 || !name[0])
3010                 return -EINVAL;
3011
3012         child = device_find_any_child(&ctlr->dev);
3013         if (child) {
3014                 /* Remove registered slave */
3015                 device_unregister(child);
3016                 put_device(child);
3017         }
3018
3019         if (strcmp(name, "(null)")) {
3020                 /* Register new slave */
3021                 spi = spi_alloc_device(ctlr);
3022                 if (!spi)
3023                         return -ENOMEM;
3024
3025                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3026
3027                 rc = spi_add_device(spi);
3028                 if (rc) {
3029                         spi_dev_put(spi);
3030                         return rc;
3031                 }
3032         }
3033
3034         return count;
3035 }
3036
3037 static DEVICE_ATTR_RW(slave);
3038
3039 static struct attribute *spi_slave_attrs[] = {
3040         &dev_attr_slave.attr,
3041         NULL,
3042 };
3043
3044 static const struct attribute_group spi_slave_group = {
3045         .attrs = spi_slave_attrs,
3046 };
3047
3048 static const struct attribute_group *spi_slave_groups[] = {
3049         &spi_controller_statistics_group,
3050         &spi_slave_group,
3051         NULL,
3052 };
3053
3054 static struct class spi_slave_class = {
3055         .name           = "spi_slave",
3056         .dev_release    = spi_controller_release,
3057         .dev_groups     = spi_slave_groups,
3058 };
3059 #else
3060 extern struct class spi_slave_class;    /* dummy */
3061 #endif
3062
3063 /**
3064  * __spi_alloc_controller - allocate an SPI master or slave controller
3065  * @dev: the controller, possibly using the platform_bus
3066  * @size: how much zeroed driver-private data to allocate; the pointer to this
3067  *      memory is in the driver_data field of the returned device, accessible
3068  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3069  *      drivers granting DMA access to portions of their private data need to
3070  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3071  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3072  *      slave (true) controller
3073  * Context: can sleep
3074  *
3075  * This call is used only by SPI controller drivers, which are the
3076  * only ones directly touching chip registers.  It's how they allocate
3077  * an spi_controller structure, prior to calling spi_register_controller().
3078  *
3079  * This must be called from context that can sleep.
3080  *
3081  * The caller is responsible for assigning the bus number and initializing the
3082  * controller's methods before calling spi_register_controller(); and (after
3083  * errors adding the device) calling spi_controller_put() to prevent a memory
3084  * leak.
3085  *
3086  * Return: the SPI controller structure on success, else NULL.
3087  */
3088 struct spi_controller *__spi_alloc_controller(struct device *dev,
3089                                               unsigned int size, bool slave)
3090 {
3091         struct spi_controller   *ctlr;
3092         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3093
3094         if (!dev)
3095                 return NULL;
3096
3097         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3098         if (!ctlr)
3099                 return NULL;
3100
3101         device_initialize(&ctlr->dev);
3102         INIT_LIST_HEAD(&ctlr->queue);
3103         spin_lock_init(&ctlr->queue_lock);
3104         spin_lock_init(&ctlr->bus_lock_spinlock);
3105         mutex_init(&ctlr->bus_lock_mutex);
3106         mutex_init(&ctlr->io_mutex);
3107         mutex_init(&ctlr->add_lock);
3108         ctlr->bus_num = -1;
3109         ctlr->num_chipselect = 1;
3110         ctlr->slave = slave;
3111         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3112                 ctlr->dev.class = &spi_slave_class;
3113         else
3114                 ctlr->dev.class = &spi_master_class;
3115         ctlr->dev.parent = dev;
3116         pm_suspend_ignore_children(&ctlr->dev, true);
3117         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3118
3119         return ctlr;
3120 }
3121 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3122
3123 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3124 {
3125         spi_controller_put(*(struct spi_controller **)ctlr);
3126 }
3127
3128 /**
3129  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3130  * @dev: physical device of SPI controller
3131  * @size: how much zeroed driver-private data to allocate
3132  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3133  * Context: can sleep
3134  *
3135  * Allocate an SPI controller and automatically release a reference on it
3136  * when @dev is unbound from its driver.  Drivers are thus relieved from
3137  * having to call spi_controller_put().
3138  *
3139  * The arguments to this function are identical to __spi_alloc_controller().
3140  *
3141  * Return: the SPI controller structure on success, else NULL.
3142  */
3143 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3144                                                    unsigned int size,
3145                                                    bool slave)
3146 {
3147         struct spi_controller **ptr, *ctlr;
3148
3149         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3150                            GFP_KERNEL);
3151         if (!ptr)
3152                 return NULL;
3153
3154         ctlr = __spi_alloc_controller(dev, size, slave);
3155         if (ctlr) {
3156                 ctlr->devm_allocated = true;
3157                 *ptr = ctlr;
3158                 devres_add(dev, ptr);
3159         } else {
3160                 devres_free(ptr);
3161         }
3162
3163         return ctlr;
3164 }
3165 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3166
3167 /**
3168  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3169  * @ctlr: The SPI master to grab GPIO descriptors for
3170  */
3171 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3172 {
3173         int nb, i;
3174         struct gpio_desc **cs;
3175         struct device *dev = &ctlr->dev;
3176         unsigned long native_cs_mask = 0;
3177         unsigned int num_cs_gpios = 0;
3178
3179         nb = gpiod_count(dev, "cs");
3180         if (nb < 0) {
3181                 /* No GPIOs at all is fine, else return the error */
3182                 if (nb == -ENOENT)
3183                         return 0;
3184                 return nb;
3185         }
3186
3187         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3188
3189         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3190                           GFP_KERNEL);
3191         if (!cs)
3192                 return -ENOMEM;
3193         ctlr->cs_gpiods = cs;
3194
3195         for (i = 0; i < nb; i++) {
3196                 /*
3197                  * Most chipselects are active low, the inverted
3198                  * semantics are handled by special quirks in gpiolib,
3199                  * so initializing them GPIOD_OUT_LOW here means
3200                  * "unasserted", in most cases this will drive the physical
3201                  * line high.
3202                  */
3203                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3204                                                       GPIOD_OUT_LOW);
3205                 if (IS_ERR(cs[i]))
3206                         return PTR_ERR(cs[i]);
3207
3208                 if (cs[i]) {
3209                         /*
3210                          * If we find a CS GPIO, name it after the device and
3211                          * chip select line.
3212                          */
3213                         char *gpioname;
3214
3215                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3216                                                   dev_name(dev), i);
3217                         if (!gpioname)
3218                                 return -ENOMEM;
3219                         gpiod_set_consumer_name(cs[i], gpioname);
3220                         num_cs_gpios++;
3221                         continue;
3222                 }
3223
3224                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3225                         dev_err(dev, "Invalid native chip select %d\n", i);
3226                         return -EINVAL;
3227                 }
3228                 native_cs_mask |= BIT(i);
3229         }
3230
3231         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3232
3233         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3234             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3235                 dev_err(dev, "No unused native chip select available\n");
3236                 return -EINVAL;
3237         }
3238
3239         return 0;
3240 }
3241
3242 static int spi_controller_check_ops(struct spi_controller *ctlr)
3243 {
3244         /*
3245          * The controller may implement only the high-level SPI-memory like
3246          * operations if it does not support regular SPI transfers, and this is
3247          * valid use case.
3248          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3249          * one of the ->transfer_xxx() method be implemented.
3250          */
3251         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3252                 if (!ctlr->transfer && !ctlr->transfer_one &&
3253                    !ctlr->transfer_one_message) {
3254                         return -EINVAL;
3255                 }
3256         }
3257
3258         return 0;
3259 }
3260
3261 /* Allocate dynamic bus number using Linux idr */
3262 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3263 {
3264         int id;
3265
3266         mutex_lock(&board_lock);
3267         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3268         mutex_unlock(&board_lock);
3269         if (WARN(id < 0, "couldn't get idr"))
3270                 return id == -ENOSPC ? -EBUSY : id;
3271         ctlr->bus_num = id;
3272         return 0;
3273 }
3274
3275 /**
3276  * spi_register_controller - register SPI master or slave controller
3277  * @ctlr: initialized master, originally from spi_alloc_master() or
3278  *      spi_alloc_slave()
3279  * Context: can sleep
3280  *
3281  * SPI controllers connect to their drivers using some non-SPI bus,
3282  * such as the platform bus.  The final stage of probe() in that code
3283  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3284  *
3285  * SPI controllers use board specific (often SOC specific) bus numbers,
3286  * and board-specific addressing for SPI devices combines those numbers
3287  * with chip select numbers.  Since SPI does not directly support dynamic
3288  * device identification, boards need configuration tables telling which
3289  * chip is at which address.
3290  *
3291  * This must be called from context that can sleep.  It returns zero on
3292  * success, else a negative error code (dropping the controller's refcount).
3293  * After a successful return, the caller is responsible for calling
3294  * spi_unregister_controller().
3295  *
3296  * Return: zero on success, else a negative error code.
3297  */
3298 int spi_register_controller(struct spi_controller *ctlr)
3299 {
3300         struct device           *dev = ctlr->dev.parent;
3301         struct boardinfo        *bi;
3302         int                     first_dynamic;
3303         int                     status;
3304         int                     idx;
3305
3306         if (!dev)
3307                 return -ENODEV;
3308
3309         /*
3310          * Make sure all necessary hooks are implemented before registering
3311          * the SPI controller.
3312          */
3313         status = spi_controller_check_ops(ctlr);
3314         if (status)
3315                 return status;
3316
3317         if (ctlr->bus_num < 0)
3318                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3319         if (ctlr->bus_num >= 0) {
3320                 /* Devices with a fixed bus num must check-in with the num */
3321                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3322                 if (status)
3323                         return status;
3324         }
3325         if (ctlr->bus_num < 0) {
3326                 first_dynamic = of_alias_get_highest_id("spi");
3327                 if (first_dynamic < 0)
3328                         first_dynamic = 0;
3329                 else
3330                         first_dynamic++;
3331
3332                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3333                 if (status)
3334                         return status;
3335         }
3336         ctlr->bus_lock_flag = 0;
3337         init_completion(&ctlr->xfer_completion);
3338         init_completion(&ctlr->cur_msg_completion);
3339         if (!ctlr->max_dma_len)
3340                 ctlr->max_dma_len = INT_MAX;
3341
3342         /*
3343          * Register the device, then userspace will see it.
3344          * Registration fails if the bus ID is in use.
3345          */
3346         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3347
3348         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3349                 status = spi_get_gpio_descs(ctlr);
3350                 if (status)
3351                         goto free_bus_id;
3352                 /*
3353                  * A controller using GPIO descriptors always
3354                  * supports SPI_CS_HIGH if need be.
3355                  */
3356                 ctlr->mode_bits |= SPI_CS_HIGH;
3357         }
3358
3359         /*
3360          * Even if it's just one always-selected device, there must
3361          * be at least one chipselect.
3362          */
3363         if (!ctlr->num_chipselect) {
3364                 status = -EINVAL;
3365                 goto free_bus_id;
3366         }
3367
3368         /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3369         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3370                 ctlr->last_cs[idx] = SPI_INVALID_CS;
3371
3372         status = device_add(&ctlr->dev);
3373         if (status < 0)
3374                 goto free_bus_id;
3375         dev_dbg(dev, "registered %s %s\n",
3376                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3377                         dev_name(&ctlr->dev));
3378
3379         /*
3380          * If we're using a queued driver, start the queue. Note that we don't
3381          * need the queueing logic if the driver is only supporting high-level
3382          * memory operations.
3383          */
3384         if (ctlr->transfer) {
3385                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3386         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3387                 status = spi_controller_initialize_queue(ctlr);
3388                 if (status) {
3389                         device_del(&ctlr->dev);
3390                         goto free_bus_id;
3391                 }
3392         }
3393         /* Add statistics */
3394         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3395         if (!ctlr->pcpu_statistics) {
3396                 dev_err(dev, "Error allocating per-cpu statistics\n");
3397                 status = -ENOMEM;
3398                 goto destroy_queue;
3399         }
3400
3401         mutex_lock(&board_lock);
3402         list_add_tail(&ctlr->list, &spi_controller_list);
3403         list_for_each_entry(bi, &board_list, list)
3404                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3405         mutex_unlock(&board_lock);
3406
3407         /* Register devices from the device tree and ACPI */
3408         of_register_spi_devices(ctlr);
3409         acpi_register_spi_devices(ctlr);
3410         return status;
3411
3412 destroy_queue:
3413         spi_destroy_queue(ctlr);
3414 free_bus_id:
3415         mutex_lock(&board_lock);
3416         idr_remove(&spi_master_idr, ctlr->bus_num);
3417         mutex_unlock(&board_lock);
3418         return status;
3419 }
3420 EXPORT_SYMBOL_GPL(spi_register_controller);
3421
3422 static void devm_spi_unregister(struct device *dev, void *res)
3423 {
3424         spi_unregister_controller(*(struct spi_controller **)res);
3425 }
3426
3427 /**
3428  * devm_spi_register_controller - register managed SPI master or slave
3429  *      controller
3430  * @dev:    device managing SPI controller
3431  * @ctlr: initialized controller, originally from spi_alloc_master() or
3432  *      spi_alloc_slave()
3433  * Context: can sleep
3434  *
3435  * Register a SPI device as with spi_register_controller() which will
3436  * automatically be unregistered and freed.
3437  *
3438  * Return: zero on success, else a negative error code.
3439  */
3440 int devm_spi_register_controller(struct device *dev,
3441                                  struct spi_controller *ctlr)
3442 {
3443         struct spi_controller **ptr;
3444         int ret;
3445
3446         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3447         if (!ptr)
3448                 return -ENOMEM;
3449
3450         ret = spi_register_controller(ctlr);
3451         if (!ret) {
3452                 *ptr = ctlr;
3453                 devres_add(dev, ptr);
3454         } else {
3455                 devres_free(ptr);
3456         }
3457
3458         return ret;
3459 }
3460 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3461
3462 static int __unregister(struct device *dev, void *null)
3463 {
3464         spi_unregister_device(to_spi_device(dev));
3465         return 0;
3466 }
3467
3468 /**
3469  * spi_unregister_controller - unregister SPI master or slave controller
3470  * @ctlr: the controller being unregistered
3471  * Context: can sleep
3472  *
3473  * This call is used only by SPI controller drivers, which are the
3474  * only ones directly touching chip registers.
3475  *
3476  * This must be called from context that can sleep.
3477  *
3478  * Note that this function also drops a reference to the controller.
3479  */
3480 void spi_unregister_controller(struct spi_controller *ctlr)
3481 {
3482         struct spi_controller *found;
3483         int id = ctlr->bus_num;
3484
3485         /* Prevent addition of new devices, unregister existing ones */
3486         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3487                 mutex_lock(&ctlr->add_lock);
3488
3489         device_for_each_child(&ctlr->dev, NULL, __unregister);
3490
3491         /* First make sure that this controller was ever added */
3492         mutex_lock(&board_lock);
3493         found = idr_find(&spi_master_idr, id);
3494         mutex_unlock(&board_lock);
3495         if (ctlr->queued) {
3496                 if (spi_destroy_queue(ctlr))
3497                         dev_err(&ctlr->dev, "queue remove failed\n");
3498         }
3499         mutex_lock(&board_lock);
3500         list_del(&ctlr->list);
3501         mutex_unlock(&board_lock);
3502
3503         device_del(&ctlr->dev);
3504
3505         /* Free bus id */
3506         mutex_lock(&board_lock);
3507         if (found == ctlr)
3508                 idr_remove(&spi_master_idr, id);
3509         mutex_unlock(&board_lock);
3510
3511         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3512                 mutex_unlock(&ctlr->add_lock);
3513
3514         /*
3515          * Release the last reference on the controller if its driver
3516          * has not yet been converted to devm_spi_alloc_master/slave().
3517          */
3518         if (!ctlr->devm_allocated)
3519                 put_device(&ctlr->dev);
3520 }
3521 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3522
3523 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3524 {
3525         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3526 }
3527
3528 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3529 {
3530         mutex_lock(&ctlr->bus_lock_mutex);
3531         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3532         mutex_unlock(&ctlr->bus_lock_mutex);
3533 }
3534
3535 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3536 {
3537         mutex_lock(&ctlr->bus_lock_mutex);
3538         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3539         mutex_unlock(&ctlr->bus_lock_mutex);
3540 }
3541
3542 int spi_controller_suspend(struct spi_controller *ctlr)
3543 {
3544         int ret = 0;
3545
3546         /* Basically no-ops for non-queued controllers */
3547         if (ctlr->queued) {
3548                 ret = spi_stop_queue(ctlr);
3549                 if (ret)
3550                         dev_err(&ctlr->dev, "queue stop failed\n");
3551         }
3552
3553         __spi_mark_suspended(ctlr);
3554         return ret;
3555 }
3556 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3557
3558 int spi_controller_resume(struct spi_controller *ctlr)
3559 {
3560         int ret = 0;
3561
3562         __spi_mark_resumed(ctlr);
3563
3564         if (ctlr->queued) {
3565                 ret = spi_start_queue(ctlr);
3566                 if (ret)
3567                         dev_err(&ctlr->dev, "queue restart failed\n");
3568         }
3569         return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(spi_controller_resume);
3572
3573 /*-------------------------------------------------------------------------*/
3574
3575 /* Core methods for spi_message alterations */
3576
3577 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3578                                             struct spi_message *msg,
3579                                             void *res)
3580 {
3581         struct spi_replaced_transfers *rxfer = res;
3582         size_t i;
3583
3584         /* Call extra callback if requested */
3585         if (rxfer->release)
3586                 rxfer->release(ctlr, msg, res);
3587
3588         /* Insert replaced transfers back into the message */
3589         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3590
3591         /* Remove the formerly inserted entries */
3592         for (i = 0; i < rxfer->inserted; i++)
3593                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3594 }
3595
3596 /**
3597  * spi_replace_transfers - replace transfers with several transfers
3598  *                         and register change with spi_message.resources
3599  * @msg:           the spi_message we work upon
3600  * @xfer_first:    the first spi_transfer we want to replace
3601  * @remove:        number of transfers to remove
3602  * @insert:        the number of transfers we want to insert instead
3603  * @release:       extra release code necessary in some circumstances
3604  * @extradatasize: extra data to allocate (with alignment guarantees
3605  *                 of struct @spi_transfer)
3606  * @gfp:           gfp flags
3607  *
3608  * Returns: pointer to @spi_replaced_transfers,
3609  *          PTR_ERR(...) in case of errors.
3610  */
3611 static struct spi_replaced_transfers *spi_replace_transfers(
3612         struct spi_message *msg,
3613         struct spi_transfer *xfer_first,
3614         size_t remove,
3615         size_t insert,
3616         spi_replaced_release_t release,
3617         size_t extradatasize,
3618         gfp_t gfp)
3619 {
3620         struct spi_replaced_transfers *rxfer;
3621         struct spi_transfer *xfer;
3622         size_t i;
3623
3624         /* Allocate the structure using spi_res */
3625         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3626                               struct_size(rxfer, inserted_transfers, insert)
3627                               + extradatasize,
3628                               gfp);
3629         if (!rxfer)
3630                 return ERR_PTR(-ENOMEM);
3631
3632         /* The release code to invoke before running the generic release */
3633         rxfer->release = release;
3634
3635         /* Assign extradata */
3636         if (extradatasize)
3637                 rxfer->extradata =
3638                         &rxfer->inserted_transfers[insert];
3639
3640         /* Init the replaced_transfers list */
3641         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3642
3643         /*
3644          * Assign the list_entry after which we should reinsert
3645          * the @replaced_transfers - it may be spi_message.messages!
3646          */
3647         rxfer->replaced_after = xfer_first->transfer_list.prev;
3648
3649         /* Remove the requested number of transfers */
3650         for (i = 0; i < remove; i++) {
3651                 /*
3652                  * If the entry after replaced_after it is msg->transfers
3653                  * then we have been requested to remove more transfers
3654                  * than are in the list.
3655                  */
3656                 if (rxfer->replaced_after->next == &msg->transfers) {
3657                         dev_err(&msg->spi->dev,
3658                                 "requested to remove more spi_transfers than are available\n");
3659                         /* Insert replaced transfers back into the message */
3660                         list_splice(&rxfer->replaced_transfers,
3661                                     rxfer->replaced_after);
3662
3663                         /* Free the spi_replace_transfer structure... */
3664                         spi_res_free(rxfer);
3665
3666                         /* ...and return with an error */
3667                         return ERR_PTR(-EINVAL);
3668                 }
3669
3670                 /*
3671                  * Remove the entry after replaced_after from list of
3672                  * transfers and add it to list of replaced_transfers.
3673                  */
3674                 list_move_tail(rxfer->replaced_after->next,
3675                                &rxfer->replaced_transfers);
3676         }
3677
3678         /*
3679          * Create copy of the given xfer with identical settings
3680          * based on the first transfer to get removed.
3681          */
3682         for (i = 0; i < insert; i++) {
3683                 /* We need to run in reverse order */
3684                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3685
3686                 /* Copy all spi_transfer data */
3687                 memcpy(xfer, xfer_first, sizeof(*xfer));
3688
3689                 /* Add to list */
3690                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3691
3692                 /* Clear cs_change and delay for all but the last */
3693                 if (i) {
3694                         xfer->cs_change = false;
3695                         xfer->delay.value = 0;
3696                 }
3697         }
3698
3699         /* Set up inserted... */
3700         rxfer->inserted = insert;
3701
3702         /* ...and register it with spi_res/spi_message */
3703         spi_res_add(msg, rxfer);
3704
3705         return rxfer;
3706 }
3707
3708 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3709                                         struct spi_message *msg,
3710                                         struct spi_transfer **xferp,
3711                                         size_t maxsize)
3712 {
3713         struct spi_transfer *xfer = *xferp, *xfers;
3714         struct spi_replaced_transfers *srt;
3715         size_t offset;
3716         size_t count, i;
3717
3718         /* Calculate how many we have to replace */
3719         count = DIV_ROUND_UP(xfer->len, maxsize);
3720
3721         /* Create replacement */
3722         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3723         if (IS_ERR(srt))
3724                 return PTR_ERR(srt);
3725         xfers = srt->inserted_transfers;
3726
3727         /*
3728          * Now handle each of those newly inserted spi_transfers.
3729          * Note that the replacements spi_transfers all are preset
3730          * to the same values as *xferp, so tx_buf, rx_buf and len
3731          * are all identical (as well as most others)
3732          * so we just have to fix up len and the pointers.
3733          */
3734
3735         /*
3736          * The first transfer just needs the length modified, so we
3737          * run it outside the loop.
3738          */
3739         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3740
3741         /* All the others need rx_buf/tx_buf also set */
3742         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3743                 /* Update rx_buf, tx_buf and DMA */
3744                 if (xfers[i].rx_buf)
3745                         xfers[i].rx_buf += offset;
3746                 if (xfers[i].tx_buf)
3747                         xfers[i].tx_buf += offset;
3748
3749                 /* Update length */
3750                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3751         }
3752
3753         /*
3754          * We set up xferp to the last entry we have inserted,
3755          * so that we skip those already split transfers.
3756          */
3757         *xferp = &xfers[count - 1];
3758
3759         /* Increment statistics counters */
3760         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3761                                        transfers_split_maxsize);
3762         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3763                                        transfers_split_maxsize);
3764
3765         return 0;
3766 }
3767
3768 /**
3769  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3770  *                               when an individual transfer exceeds a
3771  *                               certain size
3772  * @ctlr:    the @spi_controller for this transfer
3773  * @msg:   the @spi_message to transform
3774  * @maxsize:  the maximum when to apply this
3775  *
3776  * This function allocates resources that are automatically freed during the
3777  * spi message unoptimize phase so this function should only be called from
3778  * optimize_message callbacks.
3779  *
3780  * Return: status of transformation
3781  */
3782 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3783                                 struct spi_message *msg,
3784                                 size_t maxsize)
3785 {
3786         struct spi_transfer *xfer;
3787         int ret;
3788
3789         /*
3790          * Iterate over the transfer_list,
3791          * but note that xfer is advanced to the last transfer inserted
3792          * to avoid checking sizes again unnecessarily (also xfer does
3793          * potentially belong to a different list by the time the
3794          * replacement has happened).
3795          */
3796         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3797                 if (xfer->len > maxsize) {
3798                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3799                                                            maxsize);
3800                         if (ret)
3801                                 return ret;
3802                 }
3803         }
3804
3805         return 0;
3806 }
3807 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3808
3809
3810 /**
3811  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3812  *                                when an individual transfer exceeds a
3813  *                                certain number of SPI words
3814  * @ctlr:     the @spi_controller for this transfer
3815  * @msg:      the @spi_message to transform
3816  * @maxwords: the number of words to limit each transfer to
3817  *
3818  * This function allocates resources that are automatically freed during the
3819  * spi message unoptimize phase so this function should only be called from
3820  * optimize_message callbacks.
3821  *
3822  * Return: status of transformation
3823  */
3824 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3825                                  struct spi_message *msg,
3826                                  size_t maxwords)
3827 {
3828         struct spi_transfer *xfer;
3829
3830         /*
3831          * Iterate over the transfer_list,
3832          * but note that xfer is advanced to the last transfer inserted
3833          * to avoid checking sizes again unnecessarily (also xfer does
3834          * potentially belong to a different list by the time the
3835          * replacement has happened).
3836          */
3837         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3838                 size_t maxsize;
3839                 int ret;
3840
3841                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3842                 if (xfer->len > maxsize) {
3843                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3844                                                            maxsize);
3845                         if (ret)
3846                                 return ret;
3847                 }
3848         }
3849
3850         return 0;
3851 }
3852 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3853
3854 /*-------------------------------------------------------------------------*/
3855
3856 /*
3857  * Core methods for SPI controller protocol drivers. Some of the
3858  * other core methods are currently defined as inline functions.
3859  */
3860
3861 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3862                                         u8 bits_per_word)
3863 {
3864         if (ctlr->bits_per_word_mask) {
3865                 /* Only 32 bits fit in the mask */
3866                 if (bits_per_word > 32)
3867                         return -EINVAL;
3868                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3869                         return -EINVAL;
3870         }
3871
3872         return 0;
3873 }
3874
3875 /**
3876  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3877  * @spi: the device that requires specific CS timing configuration
3878  *
3879  * Return: zero on success, else a negative error code.
3880  */
3881 static int spi_set_cs_timing(struct spi_device *spi)
3882 {
3883         struct device *parent = spi->controller->dev.parent;
3884         int status = 0;
3885
3886         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3887                 if (spi->controller->auto_runtime_pm) {
3888                         status = pm_runtime_get_sync(parent);
3889                         if (status < 0) {
3890                                 pm_runtime_put_noidle(parent);
3891                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3892                                         status);
3893                                 return status;
3894                         }
3895
3896                         status = spi->controller->set_cs_timing(spi);
3897                         pm_runtime_mark_last_busy(parent);
3898                         pm_runtime_put_autosuspend(parent);
3899                 } else {
3900                         status = spi->controller->set_cs_timing(spi);
3901                 }
3902         }
3903         return status;
3904 }
3905
3906 /**
3907  * spi_setup - setup SPI mode and clock rate
3908  * @spi: the device whose settings are being modified
3909  * Context: can sleep, and no requests are queued to the device
3910  *
3911  * SPI protocol drivers may need to update the transfer mode if the
3912  * device doesn't work with its default.  They may likewise need
3913  * to update clock rates or word sizes from initial values.  This function
3914  * changes those settings, and must be called from a context that can sleep.
3915  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3916  * effect the next time the device is selected and data is transferred to
3917  * or from it.  When this function returns, the SPI device is deselected.
3918  *
3919  * Note that this call will fail if the protocol driver specifies an option
3920  * that the underlying controller or its driver does not support.  For
3921  * example, not all hardware supports wire transfers using nine bit words,
3922  * LSB-first wire encoding, or active-high chipselects.
3923  *
3924  * Return: zero on success, else a negative error code.
3925  */
3926 int spi_setup(struct spi_device *spi)
3927 {
3928         unsigned        bad_bits, ugly_bits;
3929         int             status = 0;
3930
3931         /*
3932          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3933          * are set at the same time.
3934          */
3935         if ((hweight_long(spi->mode &
3936                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3937             (hweight_long(spi->mode &
3938                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3939                 dev_err(&spi->dev,
3940                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3941                 return -EINVAL;
3942         }
3943         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3944         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3945                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3946                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3947                 return -EINVAL;
3948         /*
3949          * Help drivers fail *cleanly* when they need options
3950          * that aren't supported with their current controller.
3951          * SPI_CS_WORD has a fallback software implementation,
3952          * so it is ignored here.
3953          */
3954         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3955                                  SPI_NO_TX | SPI_NO_RX);
3956         ugly_bits = bad_bits &
3957                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3958                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3959         if (ugly_bits) {
3960                 dev_warn(&spi->dev,
3961                          "setup: ignoring unsupported mode bits %x\n",
3962                          ugly_bits);
3963                 spi->mode &= ~ugly_bits;
3964                 bad_bits &= ~ugly_bits;
3965         }
3966         if (bad_bits) {
3967                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3968                         bad_bits);
3969                 return -EINVAL;
3970         }
3971
3972         if (!spi->bits_per_word) {
3973                 spi->bits_per_word = 8;
3974         } else {
3975                 /*
3976                  * Some controllers may not support the default 8 bits-per-word
3977                  * so only perform the check when this is explicitly provided.
3978                  */
3979                 status = __spi_validate_bits_per_word(spi->controller,
3980                                                       spi->bits_per_word);
3981                 if (status)
3982                         return status;
3983         }
3984
3985         if (spi->controller->max_speed_hz &&
3986             (!spi->max_speed_hz ||
3987              spi->max_speed_hz > spi->controller->max_speed_hz))
3988                 spi->max_speed_hz = spi->controller->max_speed_hz;
3989
3990         mutex_lock(&spi->controller->io_mutex);
3991
3992         if (spi->controller->setup) {
3993                 status = spi->controller->setup(spi);
3994                 if (status) {
3995                         mutex_unlock(&spi->controller->io_mutex);
3996                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3997                                 status);
3998                         return status;
3999                 }
4000         }
4001
4002         status = spi_set_cs_timing(spi);
4003         if (status) {
4004                 mutex_unlock(&spi->controller->io_mutex);
4005                 return status;
4006         }
4007
4008         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
4009                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4010                 if (status < 0) {
4011                         mutex_unlock(&spi->controller->io_mutex);
4012                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4013                                 status);
4014                         return status;
4015                 }
4016
4017                 /*
4018                  * We do not want to return positive value from pm_runtime_get,
4019                  * there are many instances of devices calling spi_setup() and
4020                  * checking for a non-zero return value instead of a negative
4021                  * return value.
4022                  */
4023                 status = 0;
4024
4025                 spi_set_cs(spi, false, true);
4026                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4027                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4028         } else {
4029                 spi_set_cs(spi, false, true);
4030         }
4031
4032         mutex_unlock(&spi->controller->io_mutex);
4033
4034         if (spi->rt && !spi->controller->rt) {
4035                 spi->controller->rt = true;
4036                 spi_set_thread_rt(spi->controller);
4037         }
4038
4039         trace_spi_setup(spi, status);
4040
4041         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4042                         spi->mode & SPI_MODE_X_MASK,
4043                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4044                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4045                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4046                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4047                         spi->bits_per_word, spi->max_speed_hz,
4048                         status);
4049
4050         return status;
4051 }
4052 EXPORT_SYMBOL_GPL(spi_setup);
4053
4054 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4055                                        struct spi_device *spi)
4056 {
4057         int delay1, delay2;
4058
4059         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4060         if (delay1 < 0)
4061                 return delay1;
4062
4063         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4064         if (delay2 < 0)
4065                 return delay2;
4066
4067         if (delay1 < delay2)
4068                 memcpy(&xfer->word_delay, &spi->word_delay,
4069                        sizeof(xfer->word_delay));
4070
4071         return 0;
4072 }
4073
4074 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4075 {
4076         struct spi_controller *ctlr = spi->controller;
4077         struct spi_transfer *xfer;
4078         int w_size;
4079
4080         if (list_empty(&message->transfers))
4081                 return -EINVAL;
4082
4083         message->spi = spi;
4084
4085         /*
4086          * Half-duplex links include original MicroWire, and ones with
4087          * only one data pin like SPI_3WIRE (switches direction) or where
4088          * either MOSI or MISO is missing.  They can also be caused by
4089          * software limitations.
4090          */
4091         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4092             (spi->mode & SPI_3WIRE)) {
4093                 unsigned flags = ctlr->flags;
4094
4095                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4096                         if (xfer->rx_buf && xfer->tx_buf)
4097                                 return -EINVAL;
4098                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4099                                 return -EINVAL;
4100                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4101                                 return -EINVAL;
4102                 }
4103         }
4104
4105         /*
4106          * Set transfer bits_per_word and max speed as spi device default if
4107          * it is not set for this transfer.
4108          * Set transfer tx_nbits and rx_nbits as single transfer default
4109          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4110          * Ensure transfer word_delay is at least as long as that required by
4111          * device itself.
4112          */
4113         message->frame_length = 0;
4114         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4115                 xfer->effective_speed_hz = 0;
4116                 message->frame_length += xfer->len;
4117                 if (!xfer->bits_per_word)
4118                         xfer->bits_per_word = spi->bits_per_word;
4119
4120                 if (!xfer->speed_hz)
4121                         xfer->speed_hz = spi->max_speed_hz;
4122
4123                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4124                         xfer->speed_hz = ctlr->max_speed_hz;
4125
4126                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4127                         return -EINVAL;
4128
4129                 /*
4130                  * SPI transfer length should be multiple of SPI word size
4131                  * where SPI word size should be power-of-two multiple.
4132                  */
4133                 if (xfer->bits_per_word <= 8)
4134                         w_size = 1;
4135                 else if (xfer->bits_per_word <= 16)
4136                         w_size = 2;
4137                 else
4138                         w_size = 4;
4139
4140                 /* No partial transfers accepted */
4141                 if (xfer->len % w_size)
4142                         return -EINVAL;
4143
4144                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4145                     xfer->speed_hz < ctlr->min_speed_hz)
4146                         return -EINVAL;
4147
4148                 if (xfer->tx_buf && !xfer->tx_nbits)
4149                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4150                 if (xfer->rx_buf && !xfer->rx_nbits)
4151                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4152                 /*
4153                  * Check transfer tx/rx_nbits:
4154                  * 1. check the value matches one of single, dual and quad
4155                  * 2. check tx/rx_nbits match the mode in spi_device
4156                  */
4157                 if (xfer->tx_buf) {
4158                         if (spi->mode & SPI_NO_TX)
4159                                 return -EINVAL;
4160                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4161                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4162                                 xfer->tx_nbits != SPI_NBITS_QUAD &&
4163                                 xfer->tx_nbits != SPI_NBITS_OCTAL)
4164                                 return -EINVAL;
4165                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4166                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4167                                 return -EINVAL;
4168                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4169                                 !(spi->mode & SPI_TX_QUAD))
4170                                 return -EINVAL;
4171                 }
4172                 /* Check transfer rx_nbits */
4173                 if (xfer->rx_buf) {
4174                         if (spi->mode & SPI_NO_RX)
4175                                 return -EINVAL;
4176                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4177                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4178                                 xfer->rx_nbits != SPI_NBITS_QUAD &&
4179                                 xfer->rx_nbits != SPI_NBITS_OCTAL)
4180                                 return -EINVAL;
4181                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4182                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4183                                 return -EINVAL;
4184                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4185                                 !(spi->mode & SPI_RX_QUAD))
4186                                 return -EINVAL;
4187                 }
4188
4189                 if (_spi_xfer_word_delay_update(xfer, spi))
4190                         return -EINVAL;
4191         }
4192
4193         message->status = -EINPROGRESS;
4194
4195         return 0;
4196 }
4197
4198 /*
4199  * spi_split_transfers - generic handling of transfer splitting
4200  * @msg: the message to split
4201  *
4202  * Under certain conditions, a SPI controller may not support arbitrary
4203  * transfer sizes or other features required by a peripheral. This function
4204  * will split the transfers in the message into smaller transfers that are
4205  * supported by the controller.
4206  *
4207  * Controllers with special requirements not covered here can also split
4208  * transfers in the optimize_message() callback.
4209  *
4210  * Context: can sleep
4211  * Return: zero on success, else a negative error code
4212  */
4213 static int spi_split_transfers(struct spi_message *msg)
4214 {
4215         struct spi_controller *ctlr = msg->spi->controller;
4216         struct spi_transfer *xfer;
4217         int ret;
4218
4219         /*
4220          * If an SPI controller does not support toggling the CS line on each
4221          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4222          * for the CS line, we can emulate the CS-per-word hardware function by
4223          * splitting transfers into one-word transfers and ensuring that
4224          * cs_change is set for each transfer.
4225          */
4226         if ((msg->spi->mode & SPI_CS_WORD) &&
4227             (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4228                 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4229                 if (ret)
4230                         return ret;
4231
4232                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4233                         /* Don't change cs_change on the last entry in the list */
4234                         if (list_is_last(&xfer->transfer_list, &msg->transfers))
4235                                 break;
4236
4237                         xfer->cs_change = 1;
4238                 }
4239         } else {
4240                 ret = spi_split_transfers_maxsize(ctlr, msg,
4241                                                   spi_max_transfer_size(msg->spi));
4242                 if (ret)
4243                         return ret;
4244         }
4245
4246         return 0;
4247 }
4248
4249 /*
4250  * __spi_optimize_message - shared implementation for spi_optimize_message()
4251  *                          and spi_maybe_optimize_message()
4252  * @spi: the device that will be used for the message
4253  * @msg: the message to optimize
4254  *
4255  * Peripheral drivers will call spi_optimize_message() and the spi core will
4256  * call spi_maybe_optimize_message() instead of calling this directly.
4257  *
4258  * It is not valid to call this on a message that has already been optimized.
4259  *
4260  * Return: zero on success, else a negative error code
4261  */
4262 static int __spi_optimize_message(struct spi_device *spi,
4263                                   struct spi_message *msg)
4264 {
4265         struct spi_controller *ctlr = spi->controller;
4266         int ret;
4267
4268         ret = __spi_validate(spi, msg);
4269         if (ret)
4270                 return ret;
4271
4272         ret = spi_split_transfers(msg);
4273         if (ret)
4274                 return ret;
4275
4276         if (ctlr->optimize_message) {
4277                 ret = ctlr->optimize_message(msg);
4278                 if (ret) {
4279                         spi_res_release(ctlr, msg);
4280                         return ret;
4281                 }
4282         }
4283
4284         msg->optimized = true;
4285
4286         return 0;
4287 }
4288
4289 /*
4290  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4291  * @spi: the device that will be used for the message
4292  * @msg: the message to optimize
4293  * Return: zero on success, else a negative error code
4294  */
4295 static int spi_maybe_optimize_message(struct spi_device *spi,
4296                                       struct spi_message *msg)
4297 {
4298         if (spi->controller->defer_optimize_message) {
4299                 msg->spi = spi;
4300                 return 0;
4301         }
4302
4303         if (msg->pre_optimized)
4304                 return 0;
4305
4306         return __spi_optimize_message(spi, msg);
4307 }
4308
4309 /**
4310  * spi_optimize_message - do any one-time validation and setup for a SPI message
4311  * @spi: the device that will be used for the message
4312  * @msg: the message to optimize
4313  *
4314  * Peripheral drivers that reuse the same message repeatedly may call this to
4315  * perform as much message prep as possible once, rather than repeating it each
4316  * time a message transfer is performed to improve throughput and reduce CPU
4317  * usage.
4318  *
4319  * Once a message has been optimized, it cannot be modified with the exception
4320  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4321  * only the data in the memory it points to).
4322  *
4323  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4324  * to avoid leaking resources.
4325  *
4326  * Context: can sleep
4327  * Return: zero on success, else a negative error code
4328  */
4329 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4330 {
4331         int ret;
4332
4333         /*
4334          * Pre-optimization is not supported and optimization is deferred e.g.
4335          * when using spi-mux.
4336          */
4337         if (spi->controller->defer_optimize_message)
4338                 return 0;
4339
4340         ret = __spi_optimize_message(spi, msg);
4341         if (ret)
4342                 return ret;
4343
4344         /*
4345          * This flag indicates that the peripheral driver called spi_optimize_message()
4346          * and therefore we shouldn't unoptimize message automatically when finalizing
4347          * the message but rather wait until spi_unoptimize_message() is called
4348          * by the peripheral driver.
4349          */
4350         msg->pre_optimized = true;
4351
4352         return 0;
4353 }
4354 EXPORT_SYMBOL_GPL(spi_optimize_message);
4355
4356 /**
4357  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4358  * @msg: the message to unoptimize
4359  *
4360  * Calls to this function must be balanced with calls to spi_optimize_message().
4361  *
4362  * Context: can sleep
4363  */
4364 void spi_unoptimize_message(struct spi_message *msg)
4365 {
4366         if (msg->spi->controller->defer_optimize_message)
4367                 return;
4368
4369         __spi_unoptimize_message(msg);
4370         msg->pre_optimized = false;
4371 }
4372 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4373
4374 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4375 {
4376         struct spi_controller *ctlr = spi->controller;
4377         struct spi_transfer *xfer;
4378
4379         /*
4380          * Some controllers do not support doing regular SPI transfers. Return
4381          * ENOTSUPP when this is the case.
4382          */
4383         if (!ctlr->transfer)
4384                 return -ENOTSUPP;
4385
4386         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4387         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4388
4389         trace_spi_message_submit(message);
4390
4391         if (!ctlr->ptp_sts_supported) {
4392                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4393                         xfer->ptp_sts_word_pre = 0;
4394                         ptp_read_system_prets(xfer->ptp_sts);
4395                 }
4396         }
4397
4398         return ctlr->transfer(spi, message);
4399 }
4400
4401 /**
4402  * spi_async - asynchronous SPI transfer
4403  * @spi: device with which data will be exchanged
4404  * @message: describes the data transfers, including completion callback
4405  * Context: any (IRQs may be blocked, etc)
4406  *
4407  * This call may be used in_irq and other contexts which can't sleep,
4408  * as well as from task contexts which can sleep.
4409  *
4410  * The completion callback is invoked in a context which can't sleep.
4411  * Before that invocation, the value of message->status is undefined.
4412  * When the callback is issued, message->status holds either zero (to
4413  * indicate complete success) or a negative error code.  After that
4414  * callback returns, the driver which issued the transfer request may
4415  * deallocate the associated memory; it's no longer in use by any SPI
4416  * core or controller driver code.
4417  *
4418  * Note that although all messages to a spi_device are handled in
4419  * FIFO order, messages may go to different devices in other orders.
4420  * Some device might be higher priority, or have various "hard" access
4421  * time requirements, for example.
4422  *
4423  * On detection of any fault during the transfer, processing of
4424  * the entire message is aborted, and the device is deselected.
4425  * Until returning from the associated message completion callback,
4426  * no other spi_message queued to that device will be processed.
4427  * (This rule applies equally to all the synchronous transfer calls,
4428  * which are wrappers around this core asynchronous primitive.)
4429  *
4430  * Return: zero on success, else a negative error code.
4431  */
4432 int spi_async(struct spi_device *spi, struct spi_message *message)
4433 {
4434         struct spi_controller *ctlr = spi->controller;
4435         int ret;
4436         unsigned long flags;
4437
4438         ret = spi_maybe_optimize_message(spi, message);
4439         if (ret)
4440                 return ret;
4441
4442         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4443
4444         if (ctlr->bus_lock_flag)
4445                 ret = -EBUSY;
4446         else
4447                 ret = __spi_async(spi, message);
4448
4449         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4450
4451         return ret;
4452 }
4453 EXPORT_SYMBOL_GPL(spi_async);
4454
4455 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4456 {
4457         bool was_busy;
4458         int ret;
4459
4460         mutex_lock(&ctlr->io_mutex);
4461
4462         was_busy = ctlr->busy;
4463
4464         ctlr->cur_msg = msg;
4465         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4466         if (ret)
4467                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4468         ctlr->cur_msg = NULL;
4469         ctlr->fallback = false;
4470
4471         if (!was_busy) {
4472                 kfree(ctlr->dummy_rx);
4473                 ctlr->dummy_rx = NULL;
4474                 kfree(ctlr->dummy_tx);
4475                 ctlr->dummy_tx = NULL;
4476                 if (ctlr->unprepare_transfer_hardware &&
4477                     ctlr->unprepare_transfer_hardware(ctlr))
4478                         dev_err(&ctlr->dev,
4479                                 "failed to unprepare transfer hardware\n");
4480                 spi_idle_runtime_pm(ctlr);
4481         }
4482
4483         mutex_unlock(&ctlr->io_mutex);
4484 }
4485
4486 /*-------------------------------------------------------------------------*/
4487
4488 /*
4489  * Utility methods for SPI protocol drivers, layered on
4490  * top of the core.  Some other utility methods are defined as
4491  * inline functions.
4492  */
4493
4494 static void spi_complete(void *arg)
4495 {
4496         complete(arg);
4497 }
4498
4499 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4500 {
4501         DECLARE_COMPLETION_ONSTACK(done);
4502         unsigned long flags;
4503         int status;
4504         struct spi_controller *ctlr = spi->controller;
4505
4506         if (__spi_check_suspended(ctlr)) {
4507                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4508                 return -ESHUTDOWN;
4509         }
4510
4511         status = spi_maybe_optimize_message(spi, message);
4512         if (status)
4513                 return status;
4514
4515         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4516         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4517
4518         /*
4519          * Checking queue_empty here only guarantees async/sync message
4520          * ordering when coming from the same context. It does not need to
4521          * guard against reentrancy from a different context. The io_mutex
4522          * will catch those cases.
4523          */
4524         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4525                 message->actual_length = 0;
4526                 message->status = -EINPROGRESS;
4527
4528                 trace_spi_message_submit(message);
4529
4530                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4531                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4532
4533                 __spi_transfer_message_noqueue(ctlr, message);
4534
4535                 return message->status;
4536         }
4537
4538         /*
4539          * There are messages in the async queue that could have originated
4540          * from the same context, so we need to preserve ordering.
4541          * Therefor we send the message to the async queue and wait until they
4542          * are completed.
4543          */
4544         message->complete = spi_complete;
4545         message->context = &done;
4546
4547         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4548         status = __spi_async(spi, message);
4549         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4550
4551         if (status == 0) {
4552                 wait_for_completion(&done);
4553                 status = message->status;
4554         }
4555         message->complete = NULL;
4556         message->context = NULL;
4557
4558         return status;
4559 }
4560
4561 /**
4562  * spi_sync - blocking/synchronous SPI data transfers
4563  * @spi: device with which data will be exchanged
4564  * @message: describes the data transfers
4565  * Context: can sleep
4566  *
4567  * This call may only be used from a context that may sleep.  The sleep
4568  * is non-interruptible, and has no timeout.  Low-overhead controller
4569  * drivers may DMA directly into and out of the message buffers.
4570  *
4571  * Note that the SPI device's chip select is active during the message,
4572  * and then is normally disabled between messages.  Drivers for some
4573  * frequently-used devices may want to minimize costs of selecting a chip,
4574  * by leaving it selected in anticipation that the next message will go
4575  * to the same chip.  (That may increase power usage.)
4576  *
4577  * Also, the caller is guaranteeing that the memory associated with the
4578  * message will not be freed before this call returns.
4579  *
4580  * Return: zero on success, else a negative error code.
4581  */
4582 int spi_sync(struct spi_device *spi, struct spi_message *message)
4583 {
4584         int ret;
4585
4586         mutex_lock(&spi->controller->bus_lock_mutex);
4587         ret = __spi_sync(spi, message);
4588         mutex_unlock(&spi->controller->bus_lock_mutex);
4589
4590         return ret;
4591 }
4592 EXPORT_SYMBOL_GPL(spi_sync);
4593
4594 /**
4595  * spi_sync_locked - version of spi_sync with exclusive bus usage
4596  * @spi: device with which data will be exchanged
4597  * @message: describes the data transfers
4598  * Context: can sleep
4599  *
4600  * This call may only be used from a context that may sleep.  The sleep
4601  * is non-interruptible, and has no timeout.  Low-overhead controller
4602  * drivers may DMA directly into and out of the message buffers.
4603  *
4604  * This call should be used by drivers that require exclusive access to the
4605  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4606  * be released by a spi_bus_unlock call when the exclusive access is over.
4607  *
4608  * Return: zero on success, else a negative error code.
4609  */
4610 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4611 {
4612         return __spi_sync(spi, message);
4613 }
4614 EXPORT_SYMBOL_GPL(spi_sync_locked);
4615
4616 /**
4617  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4618  * @ctlr: SPI bus master that should be locked for exclusive bus access
4619  * Context: can sleep
4620  *
4621  * This call may only be used from a context that may sleep.  The sleep
4622  * is non-interruptible, and has no timeout.
4623  *
4624  * This call should be used by drivers that require exclusive access to the
4625  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4626  * exclusive access is over. Data transfer must be done by spi_sync_locked
4627  * and spi_async_locked calls when the SPI bus lock is held.
4628  *
4629  * Return: always zero.
4630  */
4631 int spi_bus_lock(struct spi_controller *ctlr)
4632 {
4633         unsigned long flags;
4634
4635         mutex_lock(&ctlr->bus_lock_mutex);
4636
4637         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4638         ctlr->bus_lock_flag = 1;
4639         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4640
4641         /* Mutex remains locked until spi_bus_unlock() is called */
4642
4643         return 0;
4644 }
4645 EXPORT_SYMBOL_GPL(spi_bus_lock);
4646
4647 /**
4648  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4649  * @ctlr: SPI bus master that was locked for exclusive bus access
4650  * Context: can sleep
4651  *
4652  * This call may only be used from a context that may sleep.  The sleep
4653  * is non-interruptible, and has no timeout.
4654  *
4655  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4656  * call.
4657  *
4658  * Return: always zero.
4659  */
4660 int spi_bus_unlock(struct spi_controller *ctlr)
4661 {
4662         ctlr->bus_lock_flag = 0;
4663
4664         mutex_unlock(&ctlr->bus_lock_mutex);
4665
4666         return 0;
4667 }
4668 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4669
4670 /* Portable code must never pass more than 32 bytes */
4671 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4672
4673 static u8       *buf;
4674
4675 /**
4676  * spi_write_then_read - SPI synchronous write followed by read
4677  * @spi: device with which data will be exchanged
4678  * @txbuf: data to be written (need not be DMA-safe)
4679  * @n_tx: size of txbuf, in bytes
4680  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4681  * @n_rx: size of rxbuf, in bytes
4682  * Context: can sleep
4683  *
4684  * This performs a half duplex MicroWire style transaction with the
4685  * device, sending txbuf and then reading rxbuf.  The return value
4686  * is zero for success, else a negative errno status code.
4687  * This call may only be used from a context that may sleep.
4688  *
4689  * Parameters to this routine are always copied using a small buffer.
4690  * Performance-sensitive or bulk transfer code should instead use
4691  * spi_{async,sync}() calls with DMA-safe buffers.
4692  *
4693  * Return: zero on success, else a negative error code.
4694  */
4695 int spi_write_then_read(struct spi_device *spi,
4696                 const void *txbuf, unsigned n_tx,
4697                 void *rxbuf, unsigned n_rx)
4698 {
4699         static DEFINE_MUTEX(lock);
4700
4701         int                     status;
4702         struct spi_message      message;
4703         struct spi_transfer     x[2];
4704         u8                      *local_buf;
4705
4706         /*
4707          * Use preallocated DMA-safe buffer if we can. We can't avoid
4708          * copying here, (as a pure convenience thing), but we can
4709          * keep heap costs out of the hot path unless someone else is
4710          * using the pre-allocated buffer or the transfer is too large.
4711          */
4712         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4713                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4714                                     GFP_KERNEL | GFP_DMA);
4715                 if (!local_buf)
4716                         return -ENOMEM;
4717         } else {
4718                 local_buf = buf;
4719         }
4720
4721         spi_message_init(&message);
4722         memset(x, 0, sizeof(x));
4723         if (n_tx) {
4724                 x[0].len = n_tx;
4725                 spi_message_add_tail(&x[0], &message);
4726         }
4727         if (n_rx) {
4728                 x[1].len = n_rx;
4729                 spi_message_add_tail(&x[1], &message);
4730         }
4731
4732         memcpy(local_buf, txbuf, n_tx);
4733         x[0].tx_buf = local_buf;
4734         x[1].rx_buf = local_buf + n_tx;
4735
4736         /* Do the I/O */
4737         status = spi_sync(spi, &message);
4738         if (status == 0)
4739                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4740
4741         if (x[0].tx_buf == buf)
4742                 mutex_unlock(&lock);
4743         else
4744                 kfree(local_buf);
4745
4746         return status;
4747 }
4748 EXPORT_SYMBOL_GPL(spi_write_then_read);
4749
4750 /*-------------------------------------------------------------------------*/
4751
4752 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4753 /* Must call put_device() when done with returned spi_device device */
4754 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4755 {
4756         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4757
4758         return dev ? to_spi_device(dev) : NULL;
4759 }
4760
4761 /* The spi controllers are not using spi_bus, so we find it with another way */
4762 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4763 {
4764         struct device *dev;
4765
4766         dev = class_find_device_by_of_node(&spi_master_class, node);
4767         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4768                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4769         if (!dev)
4770                 return NULL;
4771
4772         /* Reference got in class_find_device */
4773         return container_of(dev, struct spi_controller, dev);
4774 }
4775
4776 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4777                          void *arg)
4778 {
4779         struct of_reconfig_data *rd = arg;
4780         struct spi_controller *ctlr;
4781         struct spi_device *spi;
4782
4783         switch (of_reconfig_get_state_change(action, arg)) {
4784         case OF_RECONFIG_CHANGE_ADD:
4785                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4786                 if (ctlr == NULL)
4787                         return NOTIFY_OK;       /* Not for us */
4788
4789                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4790                         put_device(&ctlr->dev);
4791                         return NOTIFY_OK;
4792                 }
4793
4794                 /*
4795                  * Clear the flag before adding the device so that fw_devlink
4796                  * doesn't skip adding consumers to this device.
4797                  */
4798                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4799                 spi = of_register_spi_device(ctlr, rd->dn);
4800                 put_device(&ctlr->dev);
4801
4802                 if (IS_ERR(spi)) {
4803                         pr_err("%s: failed to create for '%pOF'\n",
4804                                         __func__, rd->dn);
4805                         of_node_clear_flag(rd->dn, OF_POPULATED);
4806                         return notifier_from_errno(PTR_ERR(spi));
4807                 }
4808                 break;
4809
4810         case OF_RECONFIG_CHANGE_REMOVE:
4811                 /* Already depopulated? */
4812                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4813                         return NOTIFY_OK;
4814
4815                 /* Find our device by node */
4816                 spi = of_find_spi_device_by_node(rd->dn);
4817                 if (spi == NULL)
4818                         return NOTIFY_OK;       /* No? not meant for us */
4819
4820                 /* Unregister takes one ref away */
4821                 spi_unregister_device(spi);
4822
4823                 /* And put the reference of the find */
4824                 put_device(&spi->dev);
4825                 break;
4826         }
4827
4828         return NOTIFY_OK;
4829 }
4830
4831 static struct notifier_block spi_of_notifier = {
4832         .notifier_call = of_spi_notify,
4833 };
4834 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4835 extern struct notifier_block spi_of_notifier;
4836 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4837
4838 #if IS_ENABLED(CONFIG_ACPI)
4839 static int spi_acpi_controller_match(struct device *dev, const void *data)
4840 {
4841         return ACPI_COMPANION(dev->parent) == data;
4842 }
4843
4844 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4845 {
4846         struct device *dev;
4847
4848         dev = class_find_device(&spi_master_class, NULL, adev,
4849                                 spi_acpi_controller_match);
4850         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4851                 dev = class_find_device(&spi_slave_class, NULL, adev,
4852                                         spi_acpi_controller_match);
4853         if (!dev)
4854                 return NULL;
4855
4856         return container_of(dev, struct spi_controller, dev);
4857 }
4858 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4859
4860 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4861 {
4862         struct device *dev;
4863
4864         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4865         return to_spi_device(dev);
4866 }
4867
4868 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4869                            void *arg)
4870 {
4871         struct acpi_device *adev = arg;
4872         struct spi_controller *ctlr;
4873         struct spi_device *spi;
4874
4875         switch (value) {
4876         case ACPI_RECONFIG_DEVICE_ADD:
4877                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4878                 if (!ctlr)
4879                         break;
4880
4881                 acpi_register_spi_device(ctlr, adev);
4882                 put_device(&ctlr->dev);
4883                 break;
4884         case ACPI_RECONFIG_DEVICE_REMOVE:
4885                 if (!acpi_device_enumerated(adev))
4886                         break;
4887
4888                 spi = acpi_spi_find_device_by_adev(adev);
4889                 if (!spi)
4890                         break;
4891
4892                 spi_unregister_device(spi);
4893                 put_device(&spi->dev);
4894                 break;
4895         }
4896
4897         return NOTIFY_OK;
4898 }
4899
4900 static struct notifier_block spi_acpi_notifier = {
4901         .notifier_call = acpi_spi_notify,
4902 };
4903 #else
4904 extern struct notifier_block spi_acpi_notifier;
4905 #endif
4906
4907 static int __init spi_init(void)
4908 {
4909         int     status;
4910
4911         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4912         if (!buf) {
4913                 status = -ENOMEM;
4914                 goto err0;
4915         }
4916
4917         status = bus_register(&spi_bus_type);
4918         if (status < 0)
4919                 goto err1;
4920
4921         status = class_register(&spi_master_class);
4922         if (status < 0)
4923                 goto err2;
4924
4925         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4926                 status = class_register(&spi_slave_class);
4927                 if (status < 0)
4928                         goto err3;
4929         }
4930
4931         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4932                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4933         if (IS_ENABLED(CONFIG_ACPI))
4934                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4935
4936         return 0;
4937
4938 err3:
4939         class_unregister(&spi_master_class);
4940 err2:
4941         bus_unregister(&spi_bus_type);
4942 err1:
4943         kfree(buf);
4944         buf = NULL;
4945 err0:
4946         return status;
4947 }
4948
4949 /*
4950  * A board_info is normally registered in arch_initcall(),
4951  * but even essential drivers wait till later.
4952  *
4953  * REVISIT only boardinfo really needs static linking. The rest (device and
4954  * driver registration) _could_ be dynamically linked (modular) ... Costs
4955  * include needing to have boardinfo data structures be much more public.
4956  */
4957 postcore_initcall(spi_init);
This page took 0.316065 seconds and 4 git commands to generate.