1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to segment and merge handling
5 #include <linux/kernel.h>
6 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
14 #include <trace/events/block.h>
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
23 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
28 struct bvec_iter iter = bio->bi_iter;
31 bio_get_first_bvec(bio, bv);
32 if (bv->bv_len == bio->bi_iter.bi_size)
33 return; /* this bio only has a single bvec */
35 bio_advance_iter(bio, &iter, iter.bi_size);
37 if (!iter.bi_bvec_done)
38 idx = iter.bi_idx - 1;
39 else /* in the middle of bvec */
42 *bv = bio->bi_io_vec[idx];
45 * iter.bi_bvec_done records actual length of the last bvec
46 * if this bio ends in the middle of one io vector
48 if (iter.bi_bvec_done)
49 bv->bv_len = iter.bi_bvec_done;
52 static inline bool bio_will_gap(struct request_queue *q,
53 struct request *prev_rq, struct bio *prev, struct bio *next)
55 struct bio_vec pb, nb;
57 if (!bio_has_data(prev) || !queue_virt_boundary(q))
61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 * is quite difficult to respect the sg gap limit. We work hard to
63 * merge a huge number of small single bios in case of mkfs.
66 bio_get_first_bvec(prev_rq->bio, &pb);
68 bio_get_first_bvec(prev, &pb);
69 if (pb.bv_offset & queue_virt_boundary(q))
73 * We don't need to worry about the situation that the merged segment
74 * ends in unaligned virt boundary:
76 * - if 'pb' ends aligned, the merged segment ends aligned
77 * - if 'pb' ends unaligned, the next bio must include
78 * one single bvec of 'nb', otherwise the 'nb' can't
81 bio_get_last_bvec(prev, &pb);
82 bio_get_first_bvec(next, &nb);
83 if (biovec_phys_mergeable(q, &pb, &nb))
85 return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
90 return bio_will_gap(req->q, req, req->biotail, bio);
93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
95 return bio_will_gap(req->q, NULL, bio, req->bio);
99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100 * is defined as 'unsigned int', meantime it has to be aligned to with the
101 * logical block size, which is the minimum accepted unit by hardware.
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
105 return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
108 static struct bio *bio_split_discard(struct bio *bio,
109 const struct queue_limits *lim,
110 unsigned *nsegs, struct bio_set *bs)
112 unsigned int max_discard_sectors, granularity;
114 unsigned split_sectors;
118 granularity = max(lim->discard_granularity >> 9, 1U);
120 max_discard_sectors =
121 min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
122 max_discard_sectors -= max_discard_sectors % granularity;
123 if (unlikely(!max_discard_sectors))
126 if (bio_sectors(bio) <= max_discard_sectors)
129 split_sectors = max_discard_sectors;
132 * If the next starting sector would be misaligned, stop the discard at
133 * the previous aligned sector.
135 tmp = bio->bi_iter.bi_sector + split_sectors -
136 ((lim->discard_alignment >> 9) % granularity);
137 tmp = sector_div(tmp, granularity);
139 if (split_sectors > tmp)
140 split_sectors -= tmp;
142 return bio_split(bio, split_sectors, GFP_NOIO, bs);
145 static struct bio *bio_split_write_zeroes(struct bio *bio,
146 const struct queue_limits *lim,
147 unsigned *nsegs, struct bio_set *bs)
150 if (!lim->max_write_zeroes_sectors)
152 if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
154 return bio_split(bio, lim->max_write_zeroes_sectors, GFP_NOIO, bs);
158 * Return the maximum number of sectors from the start of a bio that may be
159 * submitted as a single request to a block device. If enough sectors remain,
160 * align the end to the physical block size. Otherwise align the end to the
161 * logical block size. This approach minimizes the number of non-aligned
162 * requests that are submitted to a block device if the start of a bio is not
163 * aligned to a physical block boundary.
165 static inline unsigned get_max_io_size(struct bio *bio,
166 const struct queue_limits *lim)
168 unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
169 unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
170 unsigned max_sectors = lim->max_sectors, start, end;
172 if (lim->chunk_sectors) {
173 max_sectors = min(max_sectors,
174 blk_chunk_sectors_left(bio->bi_iter.bi_sector,
175 lim->chunk_sectors));
178 start = bio->bi_iter.bi_sector & (pbs - 1);
179 end = (start + max_sectors) & ~(pbs - 1);
182 return max_sectors & ~(lbs - 1);
186 * get_max_segment_size() - maximum number of bytes to add as a single segment
187 * @lim: Request queue limits.
188 * @start_page: See below.
189 * @offset: Offset from @start_page where to add a segment.
191 * Returns the maximum number of bytes that can be added as a single segment.
193 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
194 struct page *start_page, unsigned long offset)
196 unsigned long mask = lim->seg_boundary_mask;
198 offset = mask & (page_to_phys(start_page) + offset);
201 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
202 * after having calculated the minimum.
204 return min(mask - offset, (unsigned long)lim->max_segment_size - 1) + 1;
208 * bvec_split_segs - verify whether or not a bvec should be split in the middle
209 * @lim: [in] queue limits to split based on
210 * @bv: [in] bvec to examine
211 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
212 * by the number of segments from @bv that may be appended to that
213 * bio without exceeding @max_segs
214 * @bytes: [in,out] Number of bytes in the bio being built. Incremented
215 * by the number of bytes from @bv that may be appended to that
216 * bio without exceeding @max_bytes
217 * @max_segs: [in] upper bound for *@nsegs
218 * @max_bytes: [in] upper bound for *@bytes
220 * When splitting a bio, it can happen that a bvec is encountered that is too
221 * big to fit in a single segment and hence that it has to be split in the
222 * middle. This function verifies whether or not that should happen. The value
223 * %true is returned if and only if appending the entire @bv to a bio with
224 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
227 static bool bvec_split_segs(const struct queue_limits *lim,
228 const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
229 unsigned max_segs, unsigned max_bytes)
231 unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
232 unsigned len = min(bv->bv_len, max_len);
233 unsigned total_len = 0;
234 unsigned seg_size = 0;
236 while (len && *nsegs < max_segs) {
237 seg_size = get_max_segment_size(lim, bv->bv_page,
238 bv->bv_offset + total_len);
239 seg_size = min(seg_size, len);
242 total_len += seg_size;
245 if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
251 /* tell the caller to split the bvec if it is too big to fit */
252 return len > 0 || bv->bv_len > max_len;
256 * bio_split_rw - split a bio in two bios
257 * @bio: [in] bio to be split
258 * @lim: [in] queue limits to split based on
259 * @segs: [out] number of segments in the bio with the first half of the sectors
260 * @bs: [in] bio set to allocate the clone from
261 * @max_bytes: [in] maximum number of bytes per bio
263 * Clone @bio, update the bi_iter of the clone to represent the first sectors
264 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
265 * following is guaranteed for the cloned bio:
266 * - That it has at most @max_bytes worth of data
267 * - That it has at most queue_max_segments(@q) segments.
269 * Except for discard requests the cloned bio will point at the bi_io_vec of
270 * the original bio. It is the responsibility of the caller to ensure that the
271 * original bio is not freed before the cloned bio. The caller is also
272 * responsible for ensuring that @bs is only destroyed after processing of the
273 * split bio has finished.
275 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
276 unsigned *segs, struct bio_set *bs, unsigned max_bytes)
278 struct bio_vec bv, bvprv, *bvprvp = NULL;
279 struct bvec_iter iter;
280 unsigned nsegs = 0, bytes = 0;
282 bio_for_each_bvec(bv, bio, iter) {
284 * If the queue doesn't support SG gaps and adding this
285 * offset would create a gap, disallow it.
287 if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
290 if (nsegs < lim->max_segments &&
291 bytes + bv.bv_len <= max_bytes &&
292 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
296 if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
297 lim->max_segments, max_bytes))
309 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
310 * with EAGAIN if splitting is required and return an error pointer.
312 if (bio->bi_opf & REQ_NOWAIT) {
313 bio->bi_status = BLK_STS_AGAIN;
315 return ERR_PTR(-EAGAIN);
321 * Individual bvecs might not be logical block aligned. Round down the
322 * split size so that each bio is properly block size aligned, even if
323 * we do not use the full hardware limits.
325 bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
328 * Bio splitting may cause subtle trouble such as hang when doing sync
329 * iopoll in direct IO routine. Given performance gain of iopoll for
330 * big IO can be trival, disable iopoll when split needed.
332 bio_clear_polled(bio);
333 return bio_split(bio, bytes >> SECTOR_SHIFT, GFP_NOIO, bs);
335 EXPORT_SYMBOL_GPL(bio_split_rw);
338 * __bio_split_to_limits - split a bio to fit the queue limits
339 * @bio: bio to be split
340 * @lim: queue limits to split based on
341 * @nr_segs: returns the number of segments in the returned bio
343 * Check if @bio needs splitting based on the queue limits, and if so split off
344 * a bio fitting the limits from the beginning of @bio and return it. @bio is
345 * shortened to the remainder and re-submitted.
347 * The split bio is allocated from @q->bio_split, which is provided by the
350 struct bio *__bio_split_to_limits(struct bio *bio,
351 const struct queue_limits *lim,
352 unsigned int *nr_segs)
354 struct bio_set *bs = &bio->bi_bdev->bd_disk->bio_split;
357 switch (bio_op(bio)) {
359 case REQ_OP_SECURE_ERASE:
360 split = bio_split_discard(bio, lim, nr_segs, bs);
362 case REQ_OP_WRITE_ZEROES:
363 split = bio_split_write_zeroes(bio, lim, nr_segs, bs);
366 split = bio_split_rw(bio, lim, nr_segs, bs,
367 get_max_io_size(bio, lim) << SECTOR_SHIFT);
374 /* there isn't chance to merge the split bio */
375 split->bi_opf |= REQ_NOMERGE;
377 blkcg_bio_issue_init(split);
378 bio_chain(split, bio);
379 trace_block_split(split, bio->bi_iter.bi_sector);
380 WARN_ON_ONCE(bio_zone_write_plugging(bio));
381 submit_bio_noacct(bio);
388 * bio_split_to_limits - split a bio to fit the queue limits
389 * @bio: bio to be split
391 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
392 * if so split off a bio fitting the limits from the beginning of @bio and
393 * return it. @bio is shortened to the remainder and re-submitted.
395 * The split bio is allocated from @q->bio_split, which is provided by the
398 struct bio *bio_split_to_limits(struct bio *bio)
400 const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
401 unsigned int nr_segs;
403 if (bio_may_exceed_limits(bio, lim))
404 return __bio_split_to_limits(bio, lim, &nr_segs);
407 EXPORT_SYMBOL(bio_split_to_limits);
409 unsigned int blk_recalc_rq_segments(struct request *rq)
411 unsigned int nr_phys_segs = 0;
412 unsigned int bytes = 0;
413 struct req_iterator iter;
419 switch (bio_op(rq->bio)) {
421 case REQ_OP_SECURE_ERASE:
422 if (queue_max_discard_segments(rq->q) > 1) {
423 struct bio *bio = rq->bio;
430 case REQ_OP_WRITE_ZEROES:
436 rq_for_each_bvec(bv, rq, iter)
437 bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
442 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
443 struct scatterlist *sglist)
449 * If the driver previously mapped a shorter list, we could see a
450 * termination bit prematurely unless it fully inits the sg table
451 * on each mapping. We KNOW that there must be more entries here
452 * or the driver would be buggy, so force clear the termination bit
453 * to avoid doing a full sg_init_table() in drivers for each command.
459 static unsigned blk_bvec_map_sg(struct request_queue *q,
460 struct bio_vec *bvec, struct scatterlist *sglist,
461 struct scatterlist **sg)
463 unsigned nbytes = bvec->bv_len;
464 unsigned nsegs = 0, total = 0;
467 unsigned offset = bvec->bv_offset + total;
468 unsigned len = min(get_max_segment_size(&q->limits,
469 bvec->bv_page, offset), nbytes);
470 struct page *page = bvec->bv_page;
473 * Unfortunately a fair number of drivers barf on scatterlists
474 * that have an offset larger than PAGE_SIZE, despite other
475 * subsystems dealing with that invariant just fine. For now
476 * stick to the legacy format where we never present those from
477 * the block layer, but the code below should be removed once
478 * these offenders (mostly MMC/SD drivers) are fixed.
480 page += (offset >> PAGE_SHIFT);
481 offset &= ~PAGE_MASK;
483 *sg = blk_next_sg(sg, sglist);
484 sg_set_page(*sg, page, len, offset);
494 static inline int __blk_bvec_map_sg(struct bio_vec bv,
495 struct scatterlist *sglist, struct scatterlist **sg)
497 *sg = blk_next_sg(sg, sglist);
498 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
502 /* only try to merge bvecs into one sg if they are from two bios */
504 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
505 struct bio_vec *bvprv, struct scatterlist **sg)
508 int nbytes = bvec->bv_len;
513 if ((*sg)->length + nbytes > queue_max_segment_size(q))
516 if (!biovec_phys_mergeable(q, bvprv, bvec))
519 (*sg)->length += nbytes;
524 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
525 struct scatterlist *sglist,
526 struct scatterlist **sg)
528 struct bio_vec bvec, bvprv = { NULL };
529 struct bvec_iter iter;
531 bool new_bio = false;
534 bio_for_each_bvec(bvec, bio, iter) {
536 * Only try to merge bvecs from two bios given we
537 * have done bio internal merge when adding pages
541 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
544 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
545 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
547 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
551 if (likely(bio->bi_iter.bi_size)) {
561 * map a request to scatterlist, return number of sg entries setup. Caller
562 * must make sure sg can hold rq->nr_phys_segments entries
564 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
565 struct scatterlist *sglist, struct scatterlist **last_sg)
569 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
570 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
572 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
575 sg_mark_end(*last_sg);
578 * Something must have been wrong if the figured number of
579 * segment is bigger than number of req's physical segments
581 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
585 EXPORT_SYMBOL(__blk_rq_map_sg);
587 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
590 struct request_queue *q = rq->q;
591 unsigned int max_sectors;
593 if (blk_rq_is_passthrough(rq))
594 return q->limits.max_hw_sectors;
596 max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
597 if (!q->limits.chunk_sectors ||
598 req_op(rq) == REQ_OP_DISCARD ||
599 req_op(rq) == REQ_OP_SECURE_ERASE)
601 return min(max_sectors,
602 blk_chunk_sectors_left(offset, q->limits.chunk_sectors));
605 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
606 unsigned int nr_phys_segs)
608 if (!blk_cgroup_mergeable(req, bio))
611 if (blk_integrity_merge_bio(req->q, req, bio) == false)
614 /* discard request merge won't add new segment */
615 if (req_op(req) == REQ_OP_DISCARD)
618 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
622 * This will form the start of a new hw segment. Bump both
625 req->nr_phys_segments += nr_phys_segs;
629 req_set_nomerge(req->q, req);
633 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
635 if (req_gap_back_merge(req, bio))
637 if (blk_integrity_rq(req) &&
638 integrity_req_gap_back_merge(req, bio))
640 if (!bio_crypt_ctx_back_mergeable(req, bio))
642 if (blk_rq_sectors(req) + bio_sectors(bio) >
643 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
644 req_set_nomerge(req->q, req);
648 return ll_new_hw_segment(req, bio, nr_segs);
651 static int ll_front_merge_fn(struct request *req, struct bio *bio,
652 unsigned int nr_segs)
654 if (req_gap_front_merge(req, bio))
656 if (blk_integrity_rq(req) &&
657 integrity_req_gap_front_merge(req, bio))
659 if (!bio_crypt_ctx_front_mergeable(req, bio))
661 if (blk_rq_sectors(req) + bio_sectors(bio) >
662 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
663 req_set_nomerge(req->q, req);
667 return ll_new_hw_segment(req, bio, nr_segs);
670 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
671 struct request *next)
673 unsigned short segments = blk_rq_nr_discard_segments(req);
675 if (segments >= queue_max_discard_segments(q))
677 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
678 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
681 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
684 req_set_nomerge(q, req);
688 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
689 struct request *next)
691 int total_phys_segments;
693 if (req_gap_back_merge(req, next->bio))
697 * Will it become too large?
699 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
700 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
703 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
704 if (total_phys_segments > blk_rq_get_max_segments(req))
707 if (!blk_cgroup_mergeable(req, next->bio))
710 if (blk_integrity_merge_rq(q, req, next) == false)
713 if (!bio_crypt_ctx_merge_rq(req, next))
717 req->nr_phys_segments = total_phys_segments;
722 * blk_rq_set_mixed_merge - mark a request as mixed merge
723 * @rq: request to mark as mixed merge
726 * @rq is about to be mixed merged. Make sure the attributes
727 * which can be mixed are set in each bio and mark @rq as mixed
730 static void blk_rq_set_mixed_merge(struct request *rq)
732 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
735 if (rq->rq_flags & RQF_MIXED_MERGE)
739 * @rq will no longer represent mixable attributes for all the
740 * contained bios. It will just track those of the first one.
741 * Distributes the attributs to each bio.
743 for (bio = rq->bio; bio; bio = bio->bi_next) {
744 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
745 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
748 rq->rq_flags |= RQF_MIXED_MERGE;
751 static inline blk_opf_t bio_failfast(const struct bio *bio)
753 if (bio->bi_opf & REQ_RAHEAD)
754 return REQ_FAILFAST_MASK;
756 return bio->bi_opf & REQ_FAILFAST_MASK;
760 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
761 * as failfast, and request's failfast has to be updated in case of
764 static inline void blk_update_mixed_merge(struct request *req,
765 struct bio *bio, bool front_merge)
767 if (req->rq_flags & RQF_MIXED_MERGE) {
768 if (bio->bi_opf & REQ_RAHEAD)
769 bio->bi_opf |= REQ_FAILFAST_MASK;
772 req->cmd_flags &= ~REQ_FAILFAST_MASK;
773 req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
778 static void blk_account_io_merge_request(struct request *req)
780 if (blk_do_io_stat(req)) {
782 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
783 part_stat_local_dec(req->part,
784 in_flight[op_is_write(req_op(req))]);
789 static enum elv_merge blk_try_req_merge(struct request *req,
790 struct request *next)
792 if (blk_discard_mergable(req))
793 return ELEVATOR_DISCARD_MERGE;
794 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
795 return ELEVATOR_BACK_MERGE;
797 return ELEVATOR_NO_MERGE;
801 * For non-mq, this has to be called with the request spinlock acquired.
802 * For mq with scheduling, the appropriate queue wide lock should be held.
804 static struct request *attempt_merge(struct request_queue *q,
805 struct request *req, struct request *next)
807 if (!rq_mergeable(req) || !rq_mergeable(next))
810 if (req_op(req) != req_op(next))
813 if (rq_data_dir(req) != rq_data_dir(next))
816 /* Don't merge requests with different write hints. */
817 if (req->write_hint != next->write_hint)
820 if (req->ioprio != next->ioprio)
824 * If we are allowed to merge, then append bio list
825 * from next to rq and release next. merge_requests_fn
826 * will have updated segment counts, update sector
827 * counts here. Handle DISCARDs separately, as they
828 * have separate settings.
831 switch (blk_try_req_merge(req, next)) {
832 case ELEVATOR_DISCARD_MERGE:
833 if (!req_attempt_discard_merge(q, req, next))
836 case ELEVATOR_BACK_MERGE:
837 if (!ll_merge_requests_fn(q, req, next))
845 * If failfast settings disagree or any of the two is already
846 * a mixed merge, mark both as mixed before proceeding. This
847 * makes sure that all involved bios have mixable attributes
850 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
851 (req->cmd_flags & REQ_FAILFAST_MASK) !=
852 (next->cmd_flags & REQ_FAILFAST_MASK)) {
853 blk_rq_set_mixed_merge(req);
854 blk_rq_set_mixed_merge(next);
858 * At this point we have either done a back merge or front merge. We
859 * need the smaller start_time_ns of the merged requests to be the
860 * current request for accounting purposes.
862 if (next->start_time_ns < req->start_time_ns)
863 req->start_time_ns = next->start_time_ns;
865 req->biotail->bi_next = next->bio;
866 req->biotail = next->biotail;
868 req->__data_len += blk_rq_bytes(next);
870 if (!blk_discard_mergable(req))
871 elv_merge_requests(q, req, next);
873 blk_crypto_rq_put_keyslot(next);
876 * 'next' is going away, so update stats accordingly
878 blk_account_io_merge_request(next);
880 trace_block_rq_merge(next);
883 * ownership of bio passed from next to req, return 'next' for
890 static struct request *attempt_back_merge(struct request_queue *q,
893 struct request *next = elv_latter_request(q, rq);
896 return attempt_merge(q, rq, next);
901 static struct request *attempt_front_merge(struct request_queue *q,
904 struct request *prev = elv_former_request(q, rq);
907 return attempt_merge(q, prev, rq);
913 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
914 * otherwise. The caller is responsible for freeing 'next' if the merge
917 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
918 struct request *next)
920 return attempt_merge(q, rq, next);
923 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
925 if (!rq_mergeable(rq) || !bio_mergeable(bio))
928 if (req_op(rq) != bio_op(bio))
931 /* different data direction or already started, don't merge */
932 if (bio_data_dir(bio) != rq_data_dir(rq))
935 /* don't merge across cgroup boundaries */
936 if (!blk_cgroup_mergeable(rq, bio))
939 /* only merge integrity protected bio into ditto rq */
940 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
943 /* Only merge if the crypt contexts are compatible */
944 if (!bio_crypt_rq_ctx_compatible(rq, bio))
947 /* Don't merge requests with different write hints. */
948 if (rq->write_hint != bio->bi_write_hint)
951 if (rq->ioprio != bio_prio(bio))
957 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
959 if (blk_discard_mergable(rq))
960 return ELEVATOR_DISCARD_MERGE;
961 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
962 return ELEVATOR_BACK_MERGE;
963 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
964 return ELEVATOR_FRONT_MERGE;
965 return ELEVATOR_NO_MERGE;
968 static void blk_account_io_merge_bio(struct request *req)
970 if (!blk_do_io_stat(req))
974 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
978 enum bio_merge_status bio_attempt_back_merge(struct request *req,
979 struct bio *bio, unsigned int nr_segs)
981 const blk_opf_t ff = bio_failfast(bio);
983 if (!ll_back_merge_fn(req, bio, nr_segs))
984 return BIO_MERGE_FAILED;
986 trace_block_bio_backmerge(bio);
987 rq_qos_merge(req->q, req, bio);
989 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
990 blk_rq_set_mixed_merge(req);
992 blk_update_mixed_merge(req, bio, false);
994 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
995 blk_zone_write_plug_bio_merged(bio);
997 req->biotail->bi_next = bio;
999 req->__data_len += bio->bi_iter.bi_size;
1001 bio_crypt_free_ctx(bio);
1003 blk_account_io_merge_bio(req);
1004 return BIO_MERGE_OK;
1007 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1008 struct bio *bio, unsigned int nr_segs)
1010 const blk_opf_t ff = bio_failfast(bio);
1013 * A front merge for writes to sequential zones of a zoned block device
1014 * can happen only if the user submitted writes out of order. Do not
1015 * merge such write to let it fail.
1017 if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1018 return BIO_MERGE_FAILED;
1020 if (!ll_front_merge_fn(req, bio, nr_segs))
1021 return BIO_MERGE_FAILED;
1023 trace_block_bio_frontmerge(bio);
1024 rq_qos_merge(req->q, req, bio);
1026 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1027 blk_rq_set_mixed_merge(req);
1029 blk_update_mixed_merge(req, bio, true);
1031 bio->bi_next = req->bio;
1034 req->__sector = bio->bi_iter.bi_sector;
1035 req->__data_len += bio->bi_iter.bi_size;
1037 bio_crypt_do_front_merge(req, bio);
1039 blk_account_io_merge_bio(req);
1040 return BIO_MERGE_OK;
1043 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1044 struct request *req, struct bio *bio)
1046 unsigned short segments = blk_rq_nr_discard_segments(req);
1048 if (segments >= queue_max_discard_segments(q))
1050 if (blk_rq_sectors(req) + bio_sectors(bio) >
1051 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1054 rq_qos_merge(q, req, bio);
1056 req->biotail->bi_next = bio;
1058 req->__data_len += bio->bi_iter.bi_size;
1059 req->nr_phys_segments = segments + 1;
1061 blk_account_io_merge_bio(req);
1062 return BIO_MERGE_OK;
1064 req_set_nomerge(q, req);
1065 return BIO_MERGE_FAILED;
1068 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1071 unsigned int nr_segs,
1072 bool sched_allow_merge)
1074 if (!blk_rq_merge_ok(rq, bio))
1075 return BIO_MERGE_NONE;
1077 switch (blk_try_merge(rq, bio)) {
1078 case ELEVATOR_BACK_MERGE:
1079 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1080 return bio_attempt_back_merge(rq, bio, nr_segs);
1082 case ELEVATOR_FRONT_MERGE:
1083 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1084 return bio_attempt_front_merge(rq, bio, nr_segs);
1086 case ELEVATOR_DISCARD_MERGE:
1087 return bio_attempt_discard_merge(q, rq, bio);
1089 return BIO_MERGE_NONE;
1092 return BIO_MERGE_FAILED;
1096 * blk_attempt_plug_merge - try to merge with %current's plugged list
1097 * @q: request_queue new bio is being queued at
1098 * @bio: new bio being queued
1099 * @nr_segs: number of segments in @bio
1100 * from the passed in @q already in the plug list
1102 * Determine whether @bio being queued on @q can be merged with the previous
1103 * request on %current's plugged list. Returns %true if merge was successful,
1106 * Plugging coalesces IOs from the same issuer for the same purpose without
1107 * going through @q->queue_lock. As such it's more of an issuing mechanism
1108 * than scheduling, and the request, while may have elvpriv data, is not
1109 * added on the elevator at this point. In addition, we don't have
1110 * reliable access to the elevator outside queue lock. Only check basic
1111 * merging parameters without querying the elevator.
1113 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1115 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1116 unsigned int nr_segs)
1118 struct blk_plug *plug = current->plug;
1121 if (!plug || rq_list_empty(plug->mq_list))
1124 rq_list_for_each(&plug->mq_list, rq) {
1126 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1133 * Only keep iterating plug list for merges if we have multiple
1136 if (!plug->multiple_queues)
1143 * Iterate list of requests and see if we can merge this bio with any
1146 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1147 struct bio *bio, unsigned int nr_segs)
1152 list_for_each_entry_reverse(rq, list, queuelist) {
1156 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1157 case BIO_MERGE_NONE:
1161 case BIO_MERGE_FAILED:
1169 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1171 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1172 unsigned int nr_segs, struct request **merged_request)
1176 switch (elv_merge(q, &rq, bio)) {
1177 case ELEVATOR_BACK_MERGE:
1178 if (!blk_mq_sched_allow_merge(q, rq, bio))
1180 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1182 *merged_request = attempt_back_merge(q, rq);
1183 if (!*merged_request)
1184 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1186 case ELEVATOR_FRONT_MERGE:
1187 if (!blk_mq_sched_allow_merge(q, rq, bio))
1189 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1191 *merged_request = attempt_front_merge(q, rq);
1192 if (!*merged_request)
1193 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1195 case ELEVATOR_DISCARD_MERGE:
1196 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1201 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);