2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
36 #include <trace/events/scsi.h>
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
71 struct kmem_cache *cache;
74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
78 mutex_lock(&scsi_sense_cache_mutex);
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
88 kmem_cache_create("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 if (!scsi_sense_cache)
94 mutex_unlock(&scsi_sense_cache_mutex);
99 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100 * not change behaviour from the previous unplug mechanism, experimentation
101 * may prove this needs changing.
103 #define SCSI_QUEUE_DELAY 3
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
113 * Set the appropriate busy bit for the device/host.
115 * If the host/device isn't busy, assume that something actually
116 * completed, and that we should be able to queue a command now.
118 * Note that the prior mid-layer assumption that any host could
119 * always queue at least one command is now broken. The mid-layer
120 * will implement a user specifiable stall (see
121 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 * if a command is requeued with no other commands outstanding
123 * either for the device or for the host.
126 case SCSI_MLQUEUE_HOST_BUSY:
127 atomic_set(&host->host_blocked, host->max_host_blocked);
129 case SCSI_MLQUEUE_DEVICE_BUSY:
130 case SCSI_MLQUEUE_EH_RETRY:
131 atomic_set(&device->device_blocked,
132 device->max_device_blocked);
134 case SCSI_MLQUEUE_TARGET_BUSY:
135 atomic_set(&starget->target_blocked,
136 starget->max_target_blocked);
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 struct scsi_device *sdev = cmd->device;
145 if (cmd->request->rq_flags & RQF_DONTPREP) {
146 cmd->request->rq_flags &= ~RQF_DONTPREP;
147 scsi_mq_uninit_cmd(cmd);
151 blk_mq_requeue_request(cmd->request, true);
152 put_device(&sdev->sdev_gendev);
156 * __scsi_queue_insert - private queue insertion
157 * @cmd: The SCSI command being requeued
158 * @reason: The reason for the requeue
159 * @unbusy: Whether the queue should be unbusied
161 * This is a private queue insertion. The public interface
162 * scsi_queue_insert() always assumes the queue should be unbusied
163 * because it's always called before the completion. This function is
164 * for a requeue after completion, which should only occur in this
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
169 struct scsi_device *device = cmd->device;
170 struct request_queue *q = device->request_queue;
173 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 "Inserting command %p into mlqueue\n", cmd));
176 scsi_set_blocked(cmd, reason);
179 * Decrement the counters, since these commands are no longer
180 * active on the host/device.
183 scsi_device_unbusy(device);
186 * Requeue this command. It will go before all other commands
187 * that are already in the queue. Schedule requeue work under
188 * lock such that the kblockd_schedule_work() call happens
189 * before blk_cleanup_queue() finishes.
193 scsi_mq_requeue_cmd(cmd);
196 spin_lock_irqsave(q->queue_lock, flags);
197 blk_requeue_request(q, cmd->request);
198 kblockd_schedule_work(&device->requeue_work);
199 spin_unlock_irqrestore(q->queue_lock, flags);
203 * Function: scsi_queue_insert()
205 * Purpose: Insert a command in the midlevel queue.
207 * Arguments: cmd - command that we are adding to queue.
208 * reason - why we are inserting command to queue.
210 * Lock status: Assumed that lock is not held upon entry.
214 * Notes: We do this for one of two cases. Either the host is busy
215 * and it cannot accept any more commands for the time being,
216 * or the device returned QUEUE_FULL and can accept no more
218 * Notes: This could be called either from an interrupt context or a
219 * normal process context.
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
223 __scsi_queue_insert(cmd, reason, 1);
228 * scsi_execute - insert request and wait for the result
231 * @data_direction: data direction
232 * @buffer: data buffer
233 * @bufflen: len of buffer
234 * @sense: optional sense buffer
235 * @sshdr: optional decoded sense header
236 * @timeout: request timeout in seconds
237 * @retries: number of times to retry request
238 * @flags: flags for ->cmd_flags
239 * @rq_flags: flags for ->rq_flags
240 * @resid: optional residual length
242 * Returns the scsi_cmnd result field if a command was executed, or a negative
243 * Linux error code if we didn't get that far.
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 int data_direction, void *buffer, unsigned bufflen,
247 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 int timeout, int retries, u64 flags, req_flags_t rq_flags,
252 struct scsi_request *rq;
253 int ret = DRIVER_ERROR << 24;
255 req = blk_get_request_flags(sdev->request_queue,
256 data_direction == DMA_TO_DEVICE ?
257 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
262 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
263 buffer, bufflen, __GFP_RECLAIM))
266 rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 memcpy(rq->cmd, cmd, rq->cmd_len);
268 rq->retries = retries;
269 req->timeout = timeout;
270 req->cmd_flags |= flags;
271 req->rq_flags |= rq_flags | RQF_QUIET;
274 * head injection *required* here otherwise quiesce won't work
276 blk_execute_rq(req->q, NULL, req, 1);
279 * Some devices (USB mass-storage in particular) may transfer
280 * garbage data together with a residue indicating that the data
281 * is invalid. Prevent the garbage from being misinterpreted
282 * and prevent security leaks by zeroing out the excess data.
284 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
288 *resid = rq->resid_len;
289 if (sense && rq->sense_len)
290 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
292 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
295 blk_put_request(req);
299 EXPORT_SYMBOL(scsi_execute);
302 * Function: scsi_init_cmd_errh()
304 * Purpose: Initialize cmd fields related to error handling.
306 * Arguments: cmd - command that is ready to be queued.
308 * Notes: This function has the job of initializing a number of
309 * fields related to error handling. Typically this will
310 * be called once for each command, as required.
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 cmd->serial_number = 0;
315 scsi_set_resid(cmd, 0);
316 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 if (cmd->cmd_len == 0)
318 cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 void scsi_device_unbusy(struct scsi_device *sdev)
323 struct Scsi_Host *shost = sdev->host;
324 struct scsi_target *starget = scsi_target(sdev);
327 atomic_dec(&shost->host_busy);
328 if (starget->can_queue > 0)
329 atomic_dec(&starget->target_busy);
331 if (unlikely(scsi_host_in_recovery(shost) &&
332 (shost->host_failed || shost->host_eh_scheduled))) {
333 spin_lock_irqsave(shost->host_lock, flags);
334 scsi_eh_wakeup(shost);
335 spin_unlock_irqrestore(shost->host_lock, flags);
338 atomic_dec(&sdev->device_busy);
341 static void scsi_kick_queue(struct request_queue *q)
344 blk_mq_start_hw_queues(q);
350 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
351 * and call blk_run_queue for all the scsi_devices on the target -
352 * including current_sdev first.
354 * Called with *no* scsi locks held.
356 static void scsi_single_lun_run(struct scsi_device *current_sdev)
358 struct Scsi_Host *shost = current_sdev->host;
359 struct scsi_device *sdev, *tmp;
360 struct scsi_target *starget = scsi_target(current_sdev);
363 spin_lock_irqsave(shost->host_lock, flags);
364 starget->starget_sdev_user = NULL;
365 spin_unlock_irqrestore(shost->host_lock, flags);
368 * Call blk_run_queue for all LUNs on the target, starting with
369 * current_sdev. We race with others (to set starget_sdev_user),
370 * but in most cases, we will be first. Ideally, each LU on the
371 * target would get some limited time or requests on the target.
373 scsi_kick_queue(current_sdev->request_queue);
375 spin_lock_irqsave(shost->host_lock, flags);
376 if (starget->starget_sdev_user)
378 list_for_each_entry_safe(sdev, tmp, &starget->devices,
379 same_target_siblings) {
380 if (sdev == current_sdev)
382 if (scsi_device_get(sdev))
385 spin_unlock_irqrestore(shost->host_lock, flags);
386 scsi_kick_queue(sdev->request_queue);
387 spin_lock_irqsave(shost->host_lock, flags);
389 scsi_device_put(sdev);
392 spin_unlock_irqrestore(shost->host_lock, flags);
395 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
397 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
399 if (atomic_read(&sdev->device_blocked) > 0)
404 static inline bool scsi_target_is_busy(struct scsi_target *starget)
406 if (starget->can_queue > 0) {
407 if (atomic_read(&starget->target_busy) >= starget->can_queue)
409 if (atomic_read(&starget->target_blocked) > 0)
415 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
417 if (shost->can_queue > 0 &&
418 atomic_read(&shost->host_busy) >= shost->can_queue)
420 if (atomic_read(&shost->host_blocked) > 0)
422 if (shost->host_self_blocked)
427 static void scsi_starved_list_run(struct Scsi_Host *shost)
429 LIST_HEAD(starved_list);
430 struct scsi_device *sdev;
433 spin_lock_irqsave(shost->host_lock, flags);
434 list_splice_init(&shost->starved_list, &starved_list);
436 while (!list_empty(&starved_list)) {
437 struct request_queue *slq;
440 * As long as shost is accepting commands and we have
441 * starved queues, call blk_run_queue. scsi_request_fn
442 * drops the queue_lock and can add us back to the
445 * host_lock protects the starved_list and starved_entry.
446 * scsi_request_fn must get the host_lock before checking
447 * or modifying starved_list or starved_entry.
449 if (scsi_host_is_busy(shost))
452 sdev = list_entry(starved_list.next,
453 struct scsi_device, starved_entry);
454 list_del_init(&sdev->starved_entry);
455 if (scsi_target_is_busy(scsi_target(sdev))) {
456 list_move_tail(&sdev->starved_entry,
457 &shost->starved_list);
462 * Once we drop the host lock, a racing scsi_remove_device()
463 * call may remove the sdev from the starved list and destroy
464 * it and the queue. Mitigate by taking a reference to the
465 * queue and never touching the sdev again after we drop the
466 * host lock. Note: if __scsi_remove_device() invokes
467 * blk_cleanup_queue() before the queue is run from this
468 * function then blk_run_queue() will return immediately since
469 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
471 slq = sdev->request_queue;
472 if (!blk_get_queue(slq))
474 spin_unlock_irqrestore(shost->host_lock, flags);
476 scsi_kick_queue(slq);
479 spin_lock_irqsave(shost->host_lock, flags);
481 /* put any unprocessed entries back */
482 list_splice(&starved_list, &shost->starved_list);
483 spin_unlock_irqrestore(shost->host_lock, flags);
487 * Function: scsi_run_queue()
489 * Purpose: Select a proper request queue to serve next
491 * Arguments: q - last request's queue
495 * Notes: The previous command was completely finished, start
496 * a new one if possible.
498 static void scsi_run_queue(struct request_queue *q)
500 struct scsi_device *sdev = q->queuedata;
502 if (scsi_target(sdev)->single_lun)
503 scsi_single_lun_run(sdev);
504 if (!list_empty(&sdev->host->starved_list))
505 scsi_starved_list_run(sdev->host);
508 blk_mq_run_hw_queues(q, false);
513 void scsi_requeue_run_queue(struct work_struct *work)
515 struct scsi_device *sdev;
516 struct request_queue *q;
518 sdev = container_of(work, struct scsi_device, requeue_work);
519 q = sdev->request_queue;
524 * Function: scsi_requeue_command()
526 * Purpose: Handle post-processing of completed commands.
528 * Arguments: q - queue to operate on
529 * cmd - command that may need to be requeued.
533 * Notes: After command completion, there may be blocks left
534 * over which weren't finished by the previous command
535 * this can be for a number of reasons - the main one is
536 * I/O errors in the middle of the request, in which case
537 * we need to request the blocks that come after the bad
539 * Notes: Upon return, cmd is a stale pointer.
541 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
543 struct scsi_device *sdev = cmd->device;
544 struct request *req = cmd->request;
547 spin_lock_irqsave(q->queue_lock, flags);
548 blk_unprep_request(req);
550 scsi_put_command(cmd);
551 blk_requeue_request(q, req);
552 spin_unlock_irqrestore(q->queue_lock, flags);
556 put_device(&sdev->sdev_gendev);
559 void scsi_run_host_queues(struct Scsi_Host *shost)
561 struct scsi_device *sdev;
563 shost_for_each_device(sdev, shost)
564 scsi_run_queue(sdev->request_queue);
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
569 if (!blk_rq_is_passthrough(cmd->request)) {
570 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
572 if (drv->uninit_command)
573 drv->uninit_command(cmd);
577 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
579 struct scsi_data_buffer *sdb;
581 if (cmd->sdb.table.nents)
582 sg_free_table_chained(&cmd->sdb.table, true);
583 if (cmd->request->next_rq) {
584 sdb = cmd->request->next_rq->special;
586 sg_free_table_chained(&sdb->table, true);
588 if (scsi_prot_sg_count(cmd))
589 sg_free_table_chained(&cmd->prot_sdb->table, true);
592 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
594 scsi_mq_free_sgtables(cmd);
595 scsi_uninit_cmd(cmd);
596 scsi_del_cmd_from_list(cmd);
600 * Function: scsi_release_buffers()
602 * Purpose: Free resources allocate for a scsi_command.
604 * Arguments: cmd - command that we are bailing.
606 * Lock status: Assumed that no lock is held upon entry.
610 * Notes: In the event that an upper level driver rejects a
611 * command, we must release resources allocated during
612 * the __init_io() function. Primarily this would involve
613 * the scatter-gather table.
615 static void scsi_release_buffers(struct scsi_cmnd *cmd)
617 if (cmd->sdb.table.nents)
618 sg_free_table_chained(&cmd->sdb.table, false);
620 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
622 if (scsi_prot_sg_count(cmd))
623 sg_free_table_chained(&cmd->prot_sdb->table, false);
626 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
628 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
630 sg_free_table_chained(&bidi_sdb->table, false);
631 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
632 cmd->request->next_rq->special = NULL;
635 static bool scsi_end_request(struct request *req, blk_status_t error,
636 unsigned int bytes, unsigned int bidi_bytes)
638 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
639 struct scsi_device *sdev = cmd->device;
640 struct request_queue *q = sdev->request_queue;
642 if (blk_update_request(req, error, bytes))
645 /* Bidi request must be completed as a whole */
646 if (unlikely(bidi_bytes) &&
647 blk_update_request(req->next_rq, error, bidi_bytes))
650 if (blk_queue_add_random(q))
651 add_disk_randomness(req->rq_disk);
653 if (!blk_rq_is_scsi(req)) {
654 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
655 cmd->flags &= ~SCMD_INITIALIZED;
660 * In the MQ case the command gets freed by __blk_mq_end_request,
661 * so we have to do all cleanup that depends on it earlier.
663 * We also can't kick the queues from irq context, so we
664 * will have to defer it to a workqueue.
666 scsi_mq_uninit_cmd(cmd);
668 __blk_mq_end_request(req, error);
670 if (scsi_target(sdev)->single_lun ||
671 !list_empty(&sdev->host->starved_list))
672 kblockd_schedule_work(&sdev->requeue_work);
674 blk_mq_run_hw_queues(q, true);
679 scsi_release_bidi_buffers(cmd);
680 scsi_release_buffers(cmd);
681 scsi_put_command(cmd);
683 spin_lock_irqsave(q->queue_lock, flags);
684 blk_finish_request(req, error);
685 spin_unlock_irqrestore(q->queue_lock, flags);
690 put_device(&sdev->sdev_gendev);
695 * __scsi_error_from_host_byte - translate SCSI error code into errno
696 * @cmd: SCSI command (unused)
697 * @result: scsi error code
699 * Translate SCSI error code into block errors.
701 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
704 switch (host_byte(result)) {
705 case DID_TRANSPORT_FAILFAST:
706 return BLK_STS_TRANSPORT;
707 case DID_TARGET_FAILURE:
708 set_host_byte(cmd, DID_OK);
709 return BLK_STS_TARGET;
710 case DID_NEXUS_FAILURE:
711 return BLK_STS_NEXUS;
712 case DID_ALLOC_FAILURE:
713 set_host_byte(cmd, DID_OK);
714 return BLK_STS_NOSPC;
715 case DID_MEDIUM_ERROR:
716 set_host_byte(cmd, DID_OK);
717 return BLK_STS_MEDIUM;
719 return BLK_STS_IOERR;
724 * Function: scsi_io_completion()
726 * Purpose: Completion processing for block device I/O requests.
728 * Arguments: cmd - command that is finished.
730 * Lock status: Assumed that no lock is held upon entry.
734 * Notes: We will finish off the specified number of sectors. If we
735 * are done, the command block will be released and the queue
736 * function will be goosed. If we are not done then we have to
737 * figure out what to do next:
739 * a) We can call scsi_requeue_command(). The request
740 * will be unprepared and put back on the queue. Then
741 * a new command will be created for it. This should
742 * be used if we made forward progress, or if we want
743 * to switch from READ(10) to READ(6) for example.
745 * b) We can call __scsi_queue_insert(). The request will
746 * be put back on the queue and retried using the same
747 * command as before, possibly after a delay.
749 * c) We can call scsi_end_request() with -EIO to fail
750 * the remainder of the request.
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
754 int result = cmd->result;
755 struct request_queue *q = cmd->device->request_queue;
756 struct request *req = cmd->request;
757 blk_status_t error = BLK_STS_OK;
758 struct scsi_sense_hdr sshdr;
759 bool sense_valid = false;
760 int sense_deferred = 0, level = 0;
761 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762 ACTION_DELAYED_RETRY} action;
763 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
766 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
768 sense_deferred = scsi_sense_is_deferred(&sshdr);
771 if (blk_rq_is_passthrough(req)) {
775 * SG_IO wants current and deferred errors
777 scsi_req(req)->sense_len =
778 min(8 + cmd->sense_buffer[7],
779 SCSI_SENSE_BUFFERSIZE);
782 error = __scsi_error_from_host_byte(cmd, result);
785 * __scsi_error_from_host_byte may have reset the host_byte
787 scsi_req(req)->result = cmd->result;
788 scsi_req(req)->resid_len = scsi_get_resid(cmd);
790 if (scsi_bidi_cmnd(cmd)) {
792 * Bidi commands Must be complete as a whole,
793 * both sides at once.
795 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
796 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
797 blk_rq_bytes(req->next_rq)))
801 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
803 * Flush commands do not transfers any data, and thus cannot use
804 * good_bytes != blk_rq_bytes(req) as the signal for an error.
805 * This sets the error explicitly for the problem case.
807 error = __scsi_error_from_host_byte(cmd, result);
810 /* no bidi support for !blk_rq_is_passthrough yet */
811 BUG_ON(blk_bidi_rq(req));
814 * Next deal with any sectors which we were able to correctly
817 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
818 "%u sectors total, %d bytes done.\n",
819 blk_rq_sectors(req), good_bytes));
822 * Recovered errors need reporting, but they're always treated as
823 * success, so fiddle the result code here. For passthrough requests
824 * we already took a copy of the original into sreq->result which
825 * is what gets returned to the user
827 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829 * print since caller wants ATA registers. Only occurs on
830 * SCSI ATA PASS_THROUGH commands when CK_COND=1
832 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
834 else if (!(req->rq_flags & RQF_QUIET))
835 scsi_print_sense(cmd);
837 /* for passthrough error may be set */
842 * special case: failed zero length commands always need to
843 * drop down into the retry code. Otherwise, if we finished
844 * all bytes in the request we are done now.
846 if (!(blk_rq_bytes(req) == 0 && error) &&
847 !scsi_end_request(req, error, good_bytes, 0))
851 * Kill remainder if no retrys.
853 if (error && scsi_noretry_cmd(cmd)) {
854 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
860 * If there had been no error, but we have leftover bytes in the
861 * requeues just queue the command up again.
866 error = __scsi_error_from_host_byte(cmd, result);
868 if (host_byte(result) == DID_RESET) {
869 /* Third party bus reset or reset for error recovery
870 * reasons. Just retry the command and see what
873 action = ACTION_RETRY;
874 } else if (sense_valid && !sense_deferred) {
875 switch (sshdr.sense_key) {
877 if (cmd->device->removable) {
878 /* Detected disc change. Set a bit
879 * and quietly refuse further access.
881 cmd->device->changed = 1;
882 action = ACTION_FAIL;
884 /* Must have been a power glitch, or a
885 * bus reset. Could not have been a
886 * media change, so we just retry the
887 * command and see what happens.
889 action = ACTION_RETRY;
892 case ILLEGAL_REQUEST:
893 /* If we had an ILLEGAL REQUEST returned, then
894 * we may have performed an unsupported
895 * command. The only thing this should be
896 * would be a ten byte read where only a six
897 * byte read was supported. Also, on a system
898 * where READ CAPACITY failed, we may have
899 * read past the end of the disk.
901 if ((cmd->device->use_10_for_rw &&
902 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
903 (cmd->cmnd[0] == READ_10 ||
904 cmd->cmnd[0] == WRITE_10)) {
905 /* This will issue a new 6-byte command. */
906 cmd->device->use_10_for_rw = 0;
907 action = ACTION_REPREP;
908 } else if (sshdr.asc == 0x10) /* DIX */ {
909 action = ACTION_FAIL;
910 error = BLK_STS_PROTECTION;
911 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
912 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
913 action = ACTION_FAIL;
914 error = BLK_STS_TARGET;
916 action = ACTION_FAIL;
918 case ABORTED_COMMAND:
919 action = ACTION_FAIL;
920 if (sshdr.asc == 0x10) /* DIF */
921 error = BLK_STS_PROTECTION;
924 /* If the device is in the process of becoming
925 * ready, or has a temporary blockage, retry.
927 if (sshdr.asc == 0x04) {
928 switch (sshdr.ascq) {
929 case 0x01: /* becoming ready */
930 case 0x04: /* format in progress */
931 case 0x05: /* rebuild in progress */
932 case 0x06: /* recalculation in progress */
933 case 0x07: /* operation in progress */
934 case 0x08: /* Long write in progress */
935 case 0x09: /* self test in progress */
936 case 0x14: /* space allocation in progress */
937 action = ACTION_DELAYED_RETRY;
940 action = ACTION_FAIL;
944 action = ACTION_FAIL;
946 case VOLUME_OVERFLOW:
947 /* See SSC3rXX or current. */
948 action = ACTION_FAIL;
951 action = ACTION_FAIL;
955 action = ACTION_FAIL;
957 if (action != ACTION_FAIL &&
958 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
959 action = ACTION_FAIL;
963 /* Give up and fail the remainder of the request */
964 if (!(req->rq_flags & RQF_QUIET)) {
965 static DEFINE_RATELIMIT_STATE(_rs,
966 DEFAULT_RATELIMIT_INTERVAL,
967 DEFAULT_RATELIMIT_BURST);
969 if (unlikely(scsi_logging_level))
970 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
971 SCSI_LOG_MLCOMPLETE_BITS);
974 * if logging is enabled the failure will be printed
975 * in scsi_log_completion(), so avoid duplicate messages
977 if (!level && __ratelimit(&_rs)) {
978 scsi_print_result(cmd, NULL, FAILED);
979 if (driver_byte(result) & DRIVER_SENSE)
980 scsi_print_sense(cmd);
981 scsi_print_command(cmd);
984 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
989 /* Unprep the request and put it back at the head of the queue.
990 * A new command will be prepared and issued.
993 scsi_mq_requeue_cmd(cmd);
995 scsi_release_buffers(cmd);
996 scsi_requeue_command(q, cmd);
1000 /* Retry the same command immediately */
1001 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1003 case ACTION_DELAYED_RETRY:
1004 /* Retry the same command after a delay */
1005 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1010 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1015 * If sg table allocation fails, requeue request later.
1017 if (unlikely(sg_alloc_table_chained(&sdb->table,
1018 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1019 return BLKPREP_DEFER;
1022 * Next, walk the list, and fill in the addresses and sizes of
1025 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1026 BUG_ON(count > sdb->table.nents);
1027 sdb->table.nents = count;
1028 sdb->length = blk_rq_payload_bytes(req);
1033 * Function: scsi_init_io()
1035 * Purpose: SCSI I/O initialize function.
1037 * Arguments: cmd - Command descriptor we wish to initialize
1039 * Returns: 0 on success
1040 * BLKPREP_DEFER if the failure is retryable
1041 * BLKPREP_KILL if the failure is fatal
1043 int scsi_init_io(struct scsi_cmnd *cmd)
1045 struct scsi_device *sdev = cmd->device;
1046 struct request *rq = cmd->request;
1047 bool is_mq = (rq->mq_ctx != NULL);
1048 int error = BLKPREP_KILL;
1050 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1053 error = scsi_init_sgtable(rq, &cmd->sdb);
1057 if (blk_bidi_rq(rq)) {
1058 if (!rq->q->mq_ops) {
1059 struct scsi_data_buffer *bidi_sdb =
1060 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1062 error = BLKPREP_DEFER;
1066 rq->next_rq->special = bidi_sdb;
1069 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1074 if (blk_integrity_rq(rq)) {
1075 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1078 if (prot_sdb == NULL) {
1080 * This can happen if someone (e.g. multipath)
1081 * queues a command to a device on an adapter
1082 * that does not support DIX.
1085 error = BLKPREP_KILL;
1089 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1091 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092 prot_sdb->table.sgl)) {
1093 error = BLKPREP_DEFER;
1097 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098 prot_sdb->table.sgl);
1099 BUG_ON(unlikely(count > ivecs));
1100 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1102 cmd->prot_sdb = prot_sdb;
1103 cmd->prot_sdb->table.nents = count;
1109 scsi_mq_free_sgtables(cmd);
1111 scsi_release_buffers(cmd);
1112 cmd->request->special = NULL;
1113 scsi_put_command(cmd);
1114 put_device(&sdev->sdev_gendev);
1118 EXPORT_SYMBOL(scsi_init_io);
1121 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1122 * @rq: Request associated with the SCSI command to be initialized.
1124 * This function initializes the members of struct scsi_cmnd that must be
1125 * initialized before request processing starts and that won't be
1126 * reinitialized if a SCSI command is requeued.
1128 * Called from inside blk_get_request() for pass-through requests and from
1129 * inside scsi_init_command() for filesystem requests.
1131 void scsi_initialize_rq(struct request *rq)
1133 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1135 scsi_req_init(&cmd->req);
1136 cmd->jiffies_at_alloc = jiffies;
1139 EXPORT_SYMBOL(scsi_initialize_rq);
1141 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1142 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1144 struct scsi_device *sdev = cmd->device;
1145 struct Scsi_Host *shost = sdev->host;
1146 unsigned long flags;
1148 if (shost->use_cmd_list) {
1149 spin_lock_irqsave(&sdev->list_lock, flags);
1150 list_add_tail(&cmd->list, &sdev->cmd_list);
1151 spin_unlock_irqrestore(&sdev->list_lock, flags);
1155 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1156 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1158 struct scsi_device *sdev = cmd->device;
1159 struct Scsi_Host *shost = sdev->host;
1160 unsigned long flags;
1162 if (shost->use_cmd_list) {
1163 spin_lock_irqsave(&sdev->list_lock, flags);
1164 BUG_ON(list_empty(&cmd->list));
1165 list_del_init(&cmd->list);
1166 spin_unlock_irqrestore(&sdev->list_lock, flags);
1170 /* Called after a request has been started. */
1171 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1173 void *buf = cmd->sense_buffer;
1174 void *prot = cmd->prot_sdb;
1175 struct request *rq = blk_mq_rq_from_pdu(cmd);
1176 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1177 unsigned long jiffies_at_alloc;
1180 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1181 flags |= SCMD_INITIALIZED;
1182 scsi_initialize_rq(rq);
1185 jiffies_at_alloc = cmd->jiffies_at_alloc;
1186 retries = cmd->retries;
1187 /* zero out the cmd, except for the embedded scsi_request */
1188 memset((char *)cmd + sizeof(cmd->req), 0,
1189 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1192 cmd->sense_buffer = buf;
1193 cmd->prot_sdb = prot;
1195 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1196 cmd->jiffies_at_alloc = jiffies_at_alloc;
1197 cmd->retries = retries;
1199 scsi_add_cmd_to_list(cmd);
1202 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1204 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1207 * Passthrough requests may transfer data, in which case they must
1208 * a bio attached to them. Or they might contain a SCSI command
1209 * that does not transfer data, in which case they may optionally
1210 * submit a request without an attached bio.
1213 int ret = scsi_init_io(cmd);
1217 BUG_ON(blk_rq_bytes(req));
1219 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1222 cmd->cmd_len = scsi_req(req)->cmd_len;
1223 cmd->cmnd = scsi_req(req)->cmd;
1224 cmd->transfersize = blk_rq_bytes(req);
1225 cmd->allowed = scsi_req(req)->retries;
1230 * Setup a normal block command. These are simple request from filesystems
1231 * that still need to be translated to SCSI CDBs from the ULD.
1233 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1235 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1237 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1238 int ret = sdev->handler->prep_fn(sdev, req);
1239 if (ret != BLKPREP_OK)
1243 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1244 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1245 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1248 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1250 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1252 if (!blk_rq_bytes(req))
1253 cmd->sc_data_direction = DMA_NONE;
1254 else if (rq_data_dir(req) == WRITE)
1255 cmd->sc_data_direction = DMA_TO_DEVICE;
1257 cmd->sc_data_direction = DMA_FROM_DEVICE;
1259 if (blk_rq_is_scsi(req))
1260 return scsi_setup_scsi_cmnd(sdev, req);
1262 return scsi_setup_fs_cmnd(sdev, req);
1266 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1268 int ret = BLKPREP_OK;
1271 * If the device is not in running state we will reject some
1274 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1275 switch (sdev->sdev_state) {
1277 case SDEV_TRANSPORT_OFFLINE:
1279 * If the device is offline we refuse to process any
1280 * commands. The device must be brought online
1281 * before trying any recovery commands.
1283 sdev_printk(KERN_ERR, sdev,
1284 "rejecting I/O to offline device\n");
1289 * If the device is fully deleted, we refuse to
1290 * process any commands as well.
1292 sdev_printk(KERN_ERR, sdev,
1293 "rejecting I/O to dead device\n");
1297 case SDEV_CREATED_BLOCK:
1298 ret = BLKPREP_DEFER;
1302 * If the devices is blocked we defer normal commands.
1304 if (req && !(req->rq_flags & RQF_PREEMPT))
1305 ret = BLKPREP_DEFER;
1309 * For any other not fully online state we only allow
1310 * special commands. In particular any user initiated
1311 * command is not allowed.
1313 if (req && !(req->rq_flags & RQF_PREEMPT))
1322 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1324 struct scsi_device *sdev = q->queuedata;
1328 case BLKPREP_INVALID:
1329 scsi_req(req)->result = DID_NO_CONNECT << 16;
1330 /* release the command and kill it */
1332 struct scsi_cmnd *cmd = req->special;
1333 scsi_release_buffers(cmd);
1334 scsi_put_command(cmd);
1335 put_device(&sdev->sdev_gendev);
1336 req->special = NULL;
1341 * If we defer, the blk_peek_request() returns NULL, but the
1342 * queue must be restarted, so we schedule a callback to happen
1345 if (atomic_read(&sdev->device_busy) == 0)
1346 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1349 req->rq_flags |= RQF_DONTPREP;
1355 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1357 struct scsi_device *sdev = q->queuedata;
1358 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1361 ret = scsi_prep_state_check(sdev, req);
1362 if (ret != BLKPREP_OK)
1365 if (!req->special) {
1366 /* Bail if we can't get a reference to the device */
1367 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1368 ret = BLKPREP_DEFER;
1372 scsi_init_command(sdev, cmd);
1376 cmd->tag = req->tag;
1378 cmd->prot_op = SCSI_PROT_NORMAL;
1380 ret = scsi_setup_cmnd(sdev, req);
1382 return scsi_prep_return(q, req, ret);
1385 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1387 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1391 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1394 * Called with the queue_lock held.
1396 static inline int scsi_dev_queue_ready(struct request_queue *q,
1397 struct scsi_device *sdev)
1401 busy = atomic_inc_return(&sdev->device_busy) - 1;
1402 if (atomic_read(&sdev->device_blocked)) {
1407 * unblock after device_blocked iterates to zero
1409 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1411 * For the MQ case we take care of this in the caller.
1414 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1417 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1418 "unblocking device at zero depth\n"));
1421 if (busy >= sdev->queue_depth)
1426 atomic_dec(&sdev->device_busy);
1431 * scsi_target_queue_ready: checks if there we can send commands to target
1432 * @sdev: scsi device on starget to check.
1434 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1435 struct scsi_device *sdev)
1437 struct scsi_target *starget = scsi_target(sdev);
1440 if (starget->single_lun) {
1441 spin_lock_irq(shost->host_lock);
1442 if (starget->starget_sdev_user &&
1443 starget->starget_sdev_user != sdev) {
1444 spin_unlock_irq(shost->host_lock);
1447 starget->starget_sdev_user = sdev;
1448 spin_unlock_irq(shost->host_lock);
1451 if (starget->can_queue <= 0)
1454 busy = atomic_inc_return(&starget->target_busy) - 1;
1455 if (atomic_read(&starget->target_blocked) > 0) {
1460 * unblock after target_blocked iterates to zero
1462 if (atomic_dec_return(&starget->target_blocked) > 0)
1465 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1466 "unblocking target at zero depth\n"));
1469 if (busy >= starget->can_queue)
1475 spin_lock_irq(shost->host_lock);
1476 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1477 spin_unlock_irq(shost->host_lock);
1479 if (starget->can_queue > 0)
1480 atomic_dec(&starget->target_busy);
1485 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1486 * return 0. We must end up running the queue again whenever 0 is
1487 * returned, else IO can hang.
1489 static inline int scsi_host_queue_ready(struct request_queue *q,
1490 struct Scsi_Host *shost,
1491 struct scsi_device *sdev)
1495 if (scsi_host_in_recovery(shost))
1498 busy = atomic_inc_return(&shost->host_busy) - 1;
1499 if (atomic_read(&shost->host_blocked) > 0) {
1504 * unblock after host_blocked iterates to zero
1506 if (atomic_dec_return(&shost->host_blocked) > 0)
1510 shost_printk(KERN_INFO, shost,
1511 "unblocking host at zero depth\n"));
1514 if (shost->can_queue > 0 && busy >= shost->can_queue)
1516 if (shost->host_self_blocked)
1519 /* We're OK to process the command, so we can't be starved */
1520 if (!list_empty(&sdev->starved_entry)) {
1521 spin_lock_irq(shost->host_lock);
1522 if (!list_empty(&sdev->starved_entry))
1523 list_del_init(&sdev->starved_entry);
1524 spin_unlock_irq(shost->host_lock);
1530 spin_lock_irq(shost->host_lock);
1531 if (list_empty(&sdev->starved_entry))
1532 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1533 spin_unlock_irq(shost->host_lock);
1535 atomic_dec(&shost->host_busy);
1540 * Busy state exporting function for request stacking drivers.
1542 * For efficiency, no lock is taken to check the busy state of
1543 * shost/starget/sdev, since the returned value is not guaranteed and
1544 * may be changed after request stacking drivers call the function,
1545 * regardless of taking lock or not.
1547 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1548 * needs to return 'not busy'. Otherwise, request stacking drivers
1549 * may hold requests forever.
1551 static int scsi_lld_busy(struct request_queue *q)
1553 struct scsi_device *sdev = q->queuedata;
1554 struct Scsi_Host *shost;
1556 if (blk_queue_dying(q))
1562 * Ignore host/starget busy state.
1563 * Since block layer does not have a concept of fairness across
1564 * multiple queues, congestion of host/starget needs to be handled
1567 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1574 * Kill a request for a dead device
1576 static void scsi_kill_request(struct request *req, struct request_queue *q)
1578 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1579 struct scsi_device *sdev;
1580 struct scsi_target *starget;
1581 struct Scsi_Host *shost;
1583 blk_start_request(req);
1585 scmd_printk(KERN_INFO, cmd, "killing request\n");
1588 starget = scsi_target(sdev);
1590 scsi_init_cmd_errh(cmd);
1591 cmd->result = DID_NO_CONNECT << 16;
1592 atomic_inc(&cmd->device->iorequest_cnt);
1595 * SCSI request completion path will do scsi_device_unbusy(),
1596 * bump busy counts. To bump the counters, we need to dance
1597 * with the locks as normal issue path does.
1599 atomic_inc(&sdev->device_busy);
1600 atomic_inc(&shost->host_busy);
1601 if (starget->can_queue > 0)
1602 atomic_inc(&starget->target_busy);
1604 blk_complete_request(req);
1607 static void scsi_softirq_done(struct request *rq)
1609 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1610 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1613 INIT_LIST_HEAD(&cmd->eh_entry);
1615 atomic_inc(&cmd->device->iodone_cnt);
1617 atomic_inc(&cmd->device->ioerr_cnt);
1619 disposition = scsi_decide_disposition(cmd);
1620 if (disposition != SUCCESS &&
1621 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1622 sdev_printk(KERN_ERR, cmd->device,
1623 "timing out command, waited %lus\n",
1625 disposition = SUCCESS;
1628 scsi_log_completion(cmd, disposition);
1630 switch (disposition) {
1632 scsi_finish_command(cmd);
1635 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1637 case ADD_TO_MLQUEUE:
1638 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1641 scsi_eh_scmd_add(cmd);
1647 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1648 * @cmd: command block we are dispatching.
1650 * Return: nonzero return request was rejected and device's queue needs to be
1653 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1655 struct Scsi_Host *host = cmd->device->host;
1658 atomic_inc(&cmd->device->iorequest_cnt);
1660 /* check if the device is still usable */
1661 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1662 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1663 * returns an immediate error upwards, and signals
1664 * that the device is no longer present */
1665 cmd->result = DID_NO_CONNECT << 16;
1669 /* Check to see if the scsi lld made this device blocked. */
1670 if (unlikely(scsi_device_blocked(cmd->device))) {
1672 * in blocked state, the command is just put back on
1673 * the device queue. The suspend state has already
1674 * blocked the queue so future requests should not
1675 * occur until the device transitions out of the
1678 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1679 "queuecommand : device blocked\n"));
1680 return SCSI_MLQUEUE_DEVICE_BUSY;
1683 /* Store the LUN value in cmnd, if needed. */
1684 if (cmd->device->lun_in_cdb)
1685 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1686 (cmd->device->lun << 5 & 0xe0);
1691 * Before we queue this command, check if the command
1692 * length exceeds what the host adapter can handle.
1694 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1695 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696 "queuecommand : command too long. "
1697 "cdb_size=%d host->max_cmd_len=%d\n",
1698 cmd->cmd_len, cmd->device->host->max_cmd_len));
1699 cmd->result = (DID_ABORT << 16);
1703 if (unlikely(host->shost_state == SHOST_DEL)) {
1704 cmd->result = (DID_NO_CONNECT << 16);
1709 trace_scsi_dispatch_cmd_start(cmd);
1710 rtn = host->hostt->queuecommand(host, cmd);
1712 trace_scsi_dispatch_cmd_error(cmd, rtn);
1713 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1714 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1715 rtn = SCSI_MLQUEUE_HOST_BUSY;
1717 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1718 "queuecommand : request rejected\n"));
1723 cmd->scsi_done(cmd);
1728 * scsi_done - Invoke completion on finished SCSI command.
1729 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1730 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1732 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1733 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1734 * calls blk_complete_request() for further processing.
1736 * This function is interrupt context safe.
1738 static void scsi_done(struct scsi_cmnd *cmd)
1740 trace_scsi_dispatch_cmd_done(cmd);
1741 blk_complete_request(cmd->request);
1745 * Function: scsi_request_fn()
1747 * Purpose: Main strategy routine for SCSI.
1749 * Arguments: q - Pointer to actual queue.
1753 * Lock status: request queue lock assumed to be held when called.
1755 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1756 * protection for ZBC disks.
1758 static void scsi_request_fn(struct request_queue *q)
1759 __releases(q->queue_lock)
1760 __acquires(q->queue_lock)
1762 struct scsi_device *sdev = q->queuedata;
1763 struct Scsi_Host *shost;
1764 struct scsi_cmnd *cmd;
1765 struct request *req;
1768 * To start with, we keep looping until the queue is empty, or until
1769 * the host is no longer able to accept any more requests.
1775 * get next queueable request. We do this early to make sure
1776 * that the request is fully prepared even if we cannot
1779 req = blk_peek_request(q);
1783 if (unlikely(!scsi_device_online(sdev))) {
1784 sdev_printk(KERN_ERR, sdev,
1785 "rejecting I/O to offline device\n");
1786 scsi_kill_request(req, q);
1790 if (!scsi_dev_queue_ready(q, sdev))
1794 * Remove the request from the request list.
1796 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1797 blk_start_request(req);
1799 spin_unlock_irq(q->queue_lock);
1800 cmd = blk_mq_rq_to_pdu(req);
1801 if (cmd != req->special) {
1802 printk(KERN_CRIT "impossible request in %s.\n"
1803 "please mail a stack trace to "
1806 blk_dump_rq_flags(req, "foo");
1811 * We hit this when the driver is using a host wide
1812 * tag map. For device level tag maps the queue_depth check
1813 * in the device ready fn would prevent us from trying
1814 * to allocate a tag. Since the map is a shared host resource
1815 * we add the dev to the starved list so it eventually gets
1816 * a run when a tag is freed.
1818 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1819 spin_lock_irq(shost->host_lock);
1820 if (list_empty(&sdev->starved_entry))
1821 list_add_tail(&sdev->starved_entry,
1822 &shost->starved_list);
1823 spin_unlock_irq(shost->host_lock);
1827 if (!scsi_target_queue_ready(shost, sdev))
1830 if (!scsi_host_queue_ready(q, shost, sdev))
1831 goto host_not_ready;
1833 if (sdev->simple_tags)
1834 cmd->flags |= SCMD_TAGGED;
1836 cmd->flags &= ~SCMD_TAGGED;
1839 * Finally, initialize any error handling parameters, and set up
1840 * the timers for timeouts.
1842 scsi_init_cmd_errh(cmd);
1845 * Dispatch the command to the low-level driver.
1847 cmd->scsi_done = scsi_done;
1848 rtn = scsi_dispatch_cmd(cmd);
1850 scsi_queue_insert(cmd, rtn);
1851 spin_lock_irq(q->queue_lock);
1854 spin_lock_irq(q->queue_lock);
1860 if (scsi_target(sdev)->can_queue > 0)
1861 atomic_dec(&scsi_target(sdev)->target_busy);
1864 * lock q, handle tag, requeue req, and decrement device_busy. We
1865 * must return with queue_lock held.
1867 * Decrementing device_busy without checking it is OK, as all such
1868 * cases (host limits or settings) should run the queue at some
1871 spin_lock_irq(q->queue_lock);
1872 blk_requeue_request(q, req);
1873 atomic_dec(&sdev->device_busy);
1875 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1876 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1879 static inline blk_status_t prep_to_mq(int ret)
1885 return BLK_STS_RESOURCE;
1887 return BLK_STS_IOERR;
1891 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1892 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1894 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1895 sizeof(struct scatterlist);
1898 static int scsi_mq_prep_fn(struct request *req)
1900 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1901 struct scsi_device *sdev = req->q->queuedata;
1902 struct Scsi_Host *shost = sdev->host;
1903 struct scatterlist *sg;
1905 scsi_init_command(sdev, cmd);
1911 cmd->tag = req->tag;
1912 cmd->prot_op = SCSI_PROT_NORMAL;
1914 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1915 cmd->sdb.table.sgl = sg;
1917 if (scsi_host_get_prot(shost)) {
1918 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1920 cmd->prot_sdb->table.sgl =
1921 (struct scatterlist *)(cmd->prot_sdb + 1);
1924 if (blk_bidi_rq(req)) {
1925 struct request *next_rq = req->next_rq;
1926 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1928 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1929 bidi_sdb->table.sgl =
1930 (struct scatterlist *)(bidi_sdb + 1);
1932 next_rq->special = bidi_sdb;
1935 blk_mq_start_request(req);
1937 return scsi_setup_cmnd(sdev, req);
1940 static void scsi_mq_done(struct scsi_cmnd *cmd)
1942 trace_scsi_dispatch_cmd_done(cmd);
1943 blk_mq_complete_request(cmd->request);
1946 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1948 struct request_queue *q = hctx->queue;
1949 struct scsi_device *sdev = q->queuedata;
1951 atomic_dec(&sdev->device_busy);
1952 put_device(&sdev->sdev_gendev);
1955 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1957 struct request_queue *q = hctx->queue;
1958 struct scsi_device *sdev = q->queuedata;
1960 if (!get_device(&sdev->sdev_gendev))
1962 if (!scsi_dev_queue_ready(q, sdev))
1963 goto out_put_device;
1968 put_device(&sdev->sdev_gendev);
1973 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1974 const struct blk_mq_queue_data *bd)
1976 struct request *req = bd->rq;
1977 struct request_queue *q = req->q;
1978 struct scsi_device *sdev = q->queuedata;
1979 struct Scsi_Host *shost = sdev->host;
1980 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1984 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1985 if (ret != BLK_STS_OK)
1986 goto out_put_budget;
1988 ret = BLK_STS_RESOURCE;
1989 if (!scsi_target_queue_ready(shost, sdev))
1990 goto out_put_budget;
1991 if (!scsi_host_queue_ready(q, shost, sdev))
1992 goto out_dec_target_busy;
1994 if (!(req->rq_flags & RQF_DONTPREP)) {
1995 ret = prep_to_mq(scsi_mq_prep_fn(req));
1996 if (ret != BLK_STS_OK)
1997 goto out_dec_host_busy;
1998 req->rq_flags |= RQF_DONTPREP;
2000 blk_mq_start_request(req);
2003 if (sdev->simple_tags)
2004 cmd->flags |= SCMD_TAGGED;
2006 cmd->flags &= ~SCMD_TAGGED;
2008 scsi_init_cmd_errh(cmd);
2009 cmd->scsi_done = scsi_mq_done;
2011 reason = scsi_dispatch_cmd(cmd);
2013 scsi_set_blocked(cmd, reason);
2014 ret = BLK_STS_RESOURCE;
2015 goto out_dec_host_busy;
2021 atomic_dec(&shost->host_busy);
2022 out_dec_target_busy:
2023 if (scsi_target(sdev)->can_queue > 0)
2024 atomic_dec(&scsi_target(sdev)->target_busy);
2026 scsi_mq_put_budget(hctx);
2030 case BLK_STS_RESOURCE:
2031 if (atomic_read(&sdev->device_busy) == 0 &&
2032 !scsi_device_blocked(sdev))
2033 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2037 * Make sure to release all allocated ressources when
2038 * we hit an error, as we will never see this command
2041 if (req->rq_flags & RQF_DONTPREP)
2042 scsi_mq_uninit_cmd(cmd);
2048 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2052 return BLK_EH_RESET_TIMER;
2053 return scsi_times_out(req);
2056 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2057 unsigned int hctx_idx, unsigned int numa_node)
2059 struct Scsi_Host *shost = set->driver_data;
2060 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2061 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2062 struct scatterlist *sg;
2064 if (unchecked_isa_dma)
2065 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2066 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2067 GFP_KERNEL, numa_node);
2068 if (!cmd->sense_buffer)
2070 cmd->req.sense = cmd->sense_buffer;
2072 if (scsi_host_get_prot(shost)) {
2073 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2074 shost->hostt->cmd_size;
2075 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2081 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2082 unsigned int hctx_idx)
2084 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2086 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2090 static int scsi_map_queues(struct blk_mq_tag_set *set)
2092 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2094 if (shost->hostt->map_queues)
2095 return shost->hostt->map_queues(shost);
2096 return blk_mq_map_queues(set);
2099 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2101 struct device *host_dev;
2102 u64 bounce_limit = 0xffffffff;
2104 if (shost->unchecked_isa_dma)
2105 return BLK_BOUNCE_ISA;
2107 * Platforms with virtual-DMA translation
2108 * hardware have no practical limit.
2110 if (!PCI_DMA_BUS_IS_PHYS)
2111 return BLK_BOUNCE_ANY;
2113 host_dev = scsi_get_device(shost);
2114 if (host_dev && host_dev->dma_mask)
2115 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2117 return bounce_limit;
2120 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2122 struct device *dev = shost->dma_dev;
2124 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2127 * this limit is imposed by hardware restrictions
2129 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2132 if (scsi_host_prot_dma(shost)) {
2133 shost->sg_prot_tablesize =
2134 min_not_zero(shost->sg_prot_tablesize,
2135 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2136 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2137 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2140 blk_queue_max_hw_sectors(q, shost->max_sectors);
2141 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2142 blk_queue_segment_boundary(q, shost->dma_boundary);
2143 dma_set_seg_boundary(dev, shost->dma_boundary);
2145 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2147 if (!shost->use_clustering)
2148 q->limits.cluster = 0;
2151 * set a reasonable default alignment on word boundaries: the
2152 * host and device may alter it using
2153 * blk_queue_update_dma_alignment() later.
2155 blk_queue_dma_alignment(q, 0x03);
2157 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2159 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2162 struct Scsi_Host *shost = q->rq_alloc_data;
2163 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2164 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2166 memset(cmd, 0, sizeof(*cmd));
2168 if (unchecked_isa_dma)
2169 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2170 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2172 if (!cmd->sense_buffer)
2174 cmd->req.sense = cmd->sense_buffer;
2176 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2177 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2179 goto fail_free_sense;
2185 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2190 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2192 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2195 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2196 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2200 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2202 struct Scsi_Host *shost = sdev->host;
2203 struct request_queue *q;
2205 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2208 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2209 q->rq_alloc_data = shost;
2210 q->request_fn = scsi_request_fn;
2211 q->init_rq_fn = scsi_old_init_rq;
2212 q->exit_rq_fn = scsi_old_exit_rq;
2213 q->initialize_rq_fn = scsi_initialize_rq;
2215 if (blk_init_allocated_queue(q) < 0) {
2216 blk_cleanup_queue(q);
2220 __scsi_init_queue(shost, q);
2221 blk_queue_prep_rq(q, scsi_prep_fn);
2222 blk_queue_unprep_rq(q, scsi_unprep_fn);
2223 blk_queue_softirq_done(q, scsi_softirq_done);
2224 blk_queue_rq_timed_out(q, scsi_times_out);
2225 blk_queue_lld_busy(q, scsi_lld_busy);
2229 static const struct blk_mq_ops scsi_mq_ops = {
2230 .get_budget = scsi_mq_get_budget,
2231 .put_budget = scsi_mq_put_budget,
2232 .queue_rq = scsi_queue_rq,
2233 .complete = scsi_softirq_done,
2234 .timeout = scsi_timeout,
2235 #ifdef CONFIG_BLK_DEBUG_FS
2236 .show_rq = scsi_show_rq,
2238 .init_request = scsi_mq_init_request,
2239 .exit_request = scsi_mq_exit_request,
2240 .initialize_rq_fn = scsi_initialize_rq,
2241 .map_queues = scsi_map_queues,
2244 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2246 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2247 if (IS_ERR(sdev->request_queue))
2250 sdev->request_queue->queuedata = sdev;
2251 __scsi_init_queue(sdev->host, sdev->request_queue);
2252 return sdev->request_queue;
2255 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2257 unsigned int cmd_size, sgl_size;
2259 sgl_size = scsi_mq_sgl_size(shost);
2260 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2261 if (scsi_host_get_prot(shost))
2262 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2264 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2265 shost->tag_set.ops = &scsi_mq_ops;
2266 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2267 shost->tag_set.queue_depth = shost->can_queue;
2268 shost->tag_set.cmd_size = cmd_size;
2269 shost->tag_set.numa_node = NUMA_NO_NODE;
2270 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2271 shost->tag_set.flags |=
2272 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2273 shost->tag_set.driver_data = shost;
2275 return blk_mq_alloc_tag_set(&shost->tag_set);
2278 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2280 blk_mq_free_tag_set(&shost->tag_set);
2284 * scsi_device_from_queue - return sdev associated with a request_queue
2285 * @q: The request queue to return the sdev from
2287 * Return the sdev associated with a request queue or NULL if the
2288 * request_queue does not reference a SCSI device.
2290 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2292 struct scsi_device *sdev = NULL;
2295 if (q->mq_ops == &scsi_mq_ops)
2296 sdev = q->queuedata;
2297 } else if (q->request_fn == scsi_request_fn)
2298 sdev = q->queuedata;
2299 if (!sdev || !get_device(&sdev->sdev_gendev))
2304 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2307 * Function: scsi_block_requests()
2309 * Purpose: Utility function used by low-level drivers to prevent further
2310 * commands from being queued to the device.
2312 * Arguments: shost - Host in question
2316 * Lock status: No locks are assumed held.
2318 * Notes: There is no timer nor any other means by which the requests
2319 * get unblocked other than the low-level driver calling
2320 * scsi_unblock_requests().
2322 void scsi_block_requests(struct Scsi_Host *shost)
2324 shost->host_self_blocked = 1;
2326 EXPORT_SYMBOL(scsi_block_requests);
2329 * Function: scsi_unblock_requests()
2331 * Purpose: Utility function used by low-level drivers to allow further
2332 * commands from being queued to the device.
2334 * Arguments: shost - Host in question
2338 * Lock status: No locks are assumed held.
2340 * Notes: There is no timer nor any other means by which the requests
2341 * get unblocked other than the low-level driver calling
2342 * scsi_unblock_requests().
2344 * This is done as an API function so that changes to the
2345 * internals of the scsi mid-layer won't require wholesale
2346 * changes to drivers that use this feature.
2348 void scsi_unblock_requests(struct Scsi_Host *shost)
2350 shost->host_self_blocked = 0;
2351 scsi_run_host_queues(shost);
2353 EXPORT_SYMBOL(scsi_unblock_requests);
2355 int __init scsi_init_queue(void)
2357 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2358 sizeof(struct scsi_data_buffer),
2360 if (!scsi_sdb_cache) {
2361 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2368 void scsi_exit_queue(void)
2370 kmem_cache_destroy(scsi_sense_cache);
2371 kmem_cache_destroy(scsi_sense_isadma_cache);
2372 kmem_cache_destroy(scsi_sdb_cache);
2376 * scsi_mode_select - issue a mode select
2377 * @sdev: SCSI device to be queried
2378 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2379 * @sp: Save page bit (0 == don't save, 1 == save)
2380 * @modepage: mode page being requested
2381 * @buffer: request buffer (may not be smaller than eight bytes)
2382 * @len: length of request buffer.
2383 * @timeout: command timeout
2384 * @retries: number of retries before failing
2385 * @data: returns a structure abstracting the mode header data
2386 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2387 * must be SCSI_SENSE_BUFFERSIZE big.
2389 * Returns zero if successful; negative error number or scsi
2394 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2395 unsigned char *buffer, int len, int timeout, int retries,
2396 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2398 unsigned char cmd[10];
2399 unsigned char *real_buffer;
2402 memset(cmd, 0, sizeof(cmd));
2403 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2405 if (sdev->use_10_for_ms) {
2408 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2411 memcpy(real_buffer + 8, buffer, len);
2415 real_buffer[2] = data->medium_type;
2416 real_buffer[3] = data->device_specific;
2417 real_buffer[4] = data->longlba ? 0x01 : 0;
2419 real_buffer[6] = data->block_descriptor_length >> 8;
2420 real_buffer[7] = data->block_descriptor_length;
2422 cmd[0] = MODE_SELECT_10;
2426 if (len > 255 || data->block_descriptor_length > 255 ||
2430 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2433 memcpy(real_buffer + 4, buffer, len);
2436 real_buffer[1] = data->medium_type;
2437 real_buffer[2] = data->device_specific;
2438 real_buffer[3] = data->block_descriptor_length;
2441 cmd[0] = MODE_SELECT;
2445 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2446 sshdr, timeout, retries, NULL);
2450 EXPORT_SYMBOL_GPL(scsi_mode_select);
2453 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2454 * @sdev: SCSI device to be queried
2455 * @dbd: set if mode sense will allow block descriptors to be returned
2456 * @modepage: mode page being requested
2457 * @buffer: request buffer (may not be smaller than eight bytes)
2458 * @len: length of request buffer.
2459 * @timeout: command timeout
2460 * @retries: number of retries before failing
2461 * @data: returns a structure abstracting the mode header data
2462 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2463 * must be SCSI_SENSE_BUFFERSIZE big.
2465 * Returns zero if unsuccessful, or the header offset (either 4
2466 * or 8 depending on whether a six or ten byte command was
2467 * issued) if successful.
2470 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2471 unsigned char *buffer, int len, int timeout, int retries,
2472 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2474 unsigned char cmd[12];
2477 int result, retry_count = retries;
2478 struct scsi_sense_hdr my_sshdr;
2480 memset(data, 0, sizeof(*data));
2481 memset(&cmd[0], 0, 12);
2482 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2485 /* caller might not be interested in sense, but we need it */
2490 use_10_for_ms = sdev->use_10_for_ms;
2492 if (use_10_for_ms) {
2496 cmd[0] = MODE_SENSE_10;
2503 cmd[0] = MODE_SENSE;
2508 memset(buffer, 0, len);
2510 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2511 sshdr, timeout, retries, NULL);
2513 /* This code looks awful: what it's doing is making sure an
2514 * ILLEGAL REQUEST sense return identifies the actual command
2515 * byte as the problem. MODE_SENSE commands can return
2516 * ILLEGAL REQUEST if the code page isn't supported */
2518 if (use_10_for_ms && !scsi_status_is_good(result) &&
2519 (driver_byte(result) & DRIVER_SENSE)) {
2520 if (scsi_sense_valid(sshdr)) {
2521 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2522 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2524 * Invalid command operation code
2526 sdev->use_10_for_ms = 0;
2532 if(scsi_status_is_good(result)) {
2533 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2534 (modepage == 6 || modepage == 8))) {
2535 /* Initio breakage? */
2538 data->medium_type = 0;
2539 data->device_specific = 0;
2541 data->block_descriptor_length = 0;
2542 } else if(use_10_for_ms) {
2543 data->length = buffer[0]*256 + buffer[1] + 2;
2544 data->medium_type = buffer[2];
2545 data->device_specific = buffer[3];
2546 data->longlba = buffer[4] & 0x01;
2547 data->block_descriptor_length = buffer[6]*256
2550 data->length = buffer[0] + 1;
2551 data->medium_type = buffer[1];
2552 data->device_specific = buffer[2];
2553 data->block_descriptor_length = buffer[3];
2555 data->header_length = header_length;
2556 } else if ((status_byte(result) == CHECK_CONDITION) &&
2557 scsi_sense_valid(sshdr) &&
2558 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2565 EXPORT_SYMBOL(scsi_mode_sense);
2568 * scsi_test_unit_ready - test if unit is ready
2569 * @sdev: scsi device to change the state of.
2570 * @timeout: command timeout
2571 * @retries: number of retries before failing
2572 * @sshdr: outpout pointer for decoded sense information.
2574 * Returns zero if unsuccessful or an error if TUR failed. For
2575 * removable media, UNIT_ATTENTION sets ->changed flag.
2578 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2579 struct scsi_sense_hdr *sshdr)
2582 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2586 /* try to eat the UNIT_ATTENTION if there are enough retries */
2588 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2589 timeout, retries, NULL);
2590 if (sdev->removable && scsi_sense_valid(sshdr) &&
2591 sshdr->sense_key == UNIT_ATTENTION)
2593 } while (scsi_sense_valid(sshdr) &&
2594 sshdr->sense_key == UNIT_ATTENTION && --retries);
2598 EXPORT_SYMBOL(scsi_test_unit_ready);
2601 * scsi_device_set_state - Take the given device through the device state model.
2602 * @sdev: scsi device to change the state of.
2603 * @state: state to change to.
2605 * Returns zero if successful or an error if the requested
2606 * transition is illegal.
2609 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2611 enum scsi_device_state oldstate = sdev->sdev_state;
2613 if (state == oldstate)
2619 case SDEV_CREATED_BLOCK:
2630 case SDEV_TRANSPORT_OFFLINE:
2643 case SDEV_TRANSPORT_OFFLINE:
2651 case SDEV_TRANSPORT_OFFLINE:
2666 case SDEV_CREATED_BLOCK:
2673 case SDEV_CREATED_BLOCK:
2688 case SDEV_TRANSPORT_OFFLINE:
2700 case SDEV_TRANSPORT_OFFLINE:
2703 case SDEV_CREATED_BLOCK:
2711 sdev->sdev_state = state;
2715 SCSI_LOG_ERROR_RECOVERY(1,
2716 sdev_printk(KERN_ERR, sdev,
2717 "Illegal state transition %s->%s",
2718 scsi_device_state_name(oldstate),
2719 scsi_device_state_name(state))
2723 EXPORT_SYMBOL(scsi_device_set_state);
2726 * sdev_evt_emit - emit a single SCSI device uevent
2727 * @sdev: associated SCSI device
2728 * @evt: event to emit
2730 * Send a single uevent (scsi_event) to the associated scsi_device.
2732 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2737 switch (evt->evt_type) {
2738 case SDEV_EVT_MEDIA_CHANGE:
2739 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2741 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2742 scsi_rescan_device(&sdev->sdev_gendev);
2743 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2745 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2746 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2748 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2749 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2751 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2752 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2754 case SDEV_EVT_LUN_CHANGE_REPORTED:
2755 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2757 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2758 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2760 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2761 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2770 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2774 * sdev_evt_thread - send a uevent for each scsi event
2775 * @work: work struct for scsi_device
2777 * Dispatch queued events to their associated scsi_device kobjects
2780 void scsi_evt_thread(struct work_struct *work)
2782 struct scsi_device *sdev;
2783 enum scsi_device_event evt_type;
2784 LIST_HEAD(event_list);
2786 sdev = container_of(work, struct scsi_device, event_work);
2788 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2789 if (test_and_clear_bit(evt_type, sdev->pending_events))
2790 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2793 struct scsi_event *evt;
2794 struct list_head *this, *tmp;
2795 unsigned long flags;
2797 spin_lock_irqsave(&sdev->list_lock, flags);
2798 list_splice_init(&sdev->event_list, &event_list);
2799 spin_unlock_irqrestore(&sdev->list_lock, flags);
2801 if (list_empty(&event_list))
2804 list_for_each_safe(this, tmp, &event_list) {
2805 evt = list_entry(this, struct scsi_event, node);
2806 list_del(&evt->node);
2807 scsi_evt_emit(sdev, evt);
2814 * sdev_evt_send - send asserted event to uevent thread
2815 * @sdev: scsi_device event occurred on
2816 * @evt: event to send
2818 * Assert scsi device event asynchronously.
2820 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2822 unsigned long flags;
2825 /* FIXME: currently this check eliminates all media change events
2826 * for polled devices. Need to update to discriminate between AN
2827 * and polled events */
2828 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2834 spin_lock_irqsave(&sdev->list_lock, flags);
2835 list_add_tail(&evt->node, &sdev->event_list);
2836 schedule_work(&sdev->event_work);
2837 spin_unlock_irqrestore(&sdev->list_lock, flags);
2839 EXPORT_SYMBOL_GPL(sdev_evt_send);
2842 * sdev_evt_alloc - allocate a new scsi event
2843 * @evt_type: type of event to allocate
2844 * @gfpflags: GFP flags for allocation
2846 * Allocates and returns a new scsi_event.
2848 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2851 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2855 evt->evt_type = evt_type;
2856 INIT_LIST_HEAD(&evt->node);
2858 /* evt_type-specific initialization, if any */
2860 case SDEV_EVT_MEDIA_CHANGE:
2861 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2862 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2863 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2864 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2865 case SDEV_EVT_LUN_CHANGE_REPORTED:
2866 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2867 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2875 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2878 * sdev_evt_send_simple - send asserted event to uevent thread
2879 * @sdev: scsi_device event occurred on
2880 * @evt_type: type of event to send
2881 * @gfpflags: GFP flags for allocation
2883 * Assert scsi device event asynchronously, given an event type.
2885 void sdev_evt_send_simple(struct scsi_device *sdev,
2886 enum scsi_device_event evt_type, gfp_t gfpflags)
2888 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2890 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2895 sdev_evt_send(sdev, evt);
2897 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2900 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2901 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2903 static int scsi_request_fn_active(struct scsi_device *sdev)
2905 struct request_queue *q = sdev->request_queue;
2906 int request_fn_active;
2908 WARN_ON_ONCE(sdev->host->use_blk_mq);
2910 spin_lock_irq(q->queue_lock);
2911 request_fn_active = q->request_fn_active;
2912 spin_unlock_irq(q->queue_lock);
2914 return request_fn_active;
2918 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2919 * @sdev: SCSI device pointer.
2921 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2922 * invoked from scsi_request_fn() have finished.
2924 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2926 WARN_ON_ONCE(sdev->host->use_blk_mq);
2928 while (scsi_request_fn_active(sdev))
2933 * scsi_device_quiesce - Block user issued commands.
2934 * @sdev: scsi device to quiesce.
2936 * This works by trying to transition to the SDEV_QUIESCE state
2937 * (which must be a legal transition). When the device is in this
2938 * state, only special requests will be accepted, all others will
2939 * be deferred. Since special requests may also be requeued requests,
2940 * a successful return doesn't guarantee the device will be
2941 * totally quiescent.
2943 * Must be called with user context, may sleep.
2945 * Returns zero if unsuccessful or an error if not.
2948 scsi_device_quiesce(struct scsi_device *sdev)
2950 struct request_queue *q = sdev->request_queue;
2954 * It is allowed to call scsi_device_quiesce() multiple times from
2955 * the same context but concurrent scsi_device_quiesce() calls are
2958 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2960 blk_set_preempt_only(q);
2962 blk_mq_freeze_queue(q);
2964 * Ensure that the effect of blk_set_preempt_only() will be visible
2965 * for percpu_ref_tryget() callers that occur after the queue
2966 * unfreeze even if the queue was already frozen before this function
2967 * was called. See also https://lwn.net/Articles/573497/.
2970 blk_mq_unfreeze_queue(q);
2972 mutex_lock(&sdev->state_mutex);
2973 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2975 sdev->quiesced_by = current;
2977 blk_clear_preempt_only(q);
2978 mutex_unlock(&sdev->state_mutex);
2982 EXPORT_SYMBOL(scsi_device_quiesce);
2985 * scsi_device_resume - Restart user issued commands to a quiesced device.
2986 * @sdev: scsi device to resume.
2988 * Moves the device from quiesced back to running and restarts the
2991 * Must be called with user context, may sleep.
2993 void scsi_device_resume(struct scsi_device *sdev)
2995 /* check if the device state was mutated prior to resume, and if
2996 * so assume the state is being managed elsewhere (for example
2997 * device deleted during suspend)
2999 mutex_lock(&sdev->state_mutex);
3000 WARN_ON_ONCE(!sdev->quiesced_by);
3001 sdev->quiesced_by = NULL;
3002 blk_clear_preempt_only(sdev->request_queue);
3003 if (sdev->sdev_state == SDEV_QUIESCE)
3004 scsi_device_set_state(sdev, SDEV_RUNNING);
3005 mutex_unlock(&sdev->state_mutex);
3007 EXPORT_SYMBOL(scsi_device_resume);
3010 device_quiesce_fn(struct scsi_device *sdev, void *data)
3012 scsi_device_quiesce(sdev);
3016 scsi_target_quiesce(struct scsi_target *starget)
3018 starget_for_each_device(starget, NULL, device_quiesce_fn);
3020 EXPORT_SYMBOL(scsi_target_quiesce);
3023 device_resume_fn(struct scsi_device *sdev, void *data)
3025 scsi_device_resume(sdev);
3029 scsi_target_resume(struct scsi_target *starget)
3031 starget_for_each_device(starget, NULL, device_resume_fn);
3033 EXPORT_SYMBOL(scsi_target_resume);
3036 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3037 * @sdev: device to block
3039 * Pause SCSI command processing on the specified device. Does not sleep.
3041 * Returns zero if successful or a negative error code upon failure.
3044 * This routine transitions the device to the SDEV_BLOCK state (which must be
3045 * a legal transition). When the device is in this state, command processing
3046 * is paused until the device leaves the SDEV_BLOCK state. See also
3047 * scsi_internal_device_unblock_nowait().
3049 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3051 struct request_queue *q = sdev->request_queue;
3052 unsigned long flags;
3055 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3057 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3064 * The device has transitioned to SDEV_BLOCK. Stop the
3065 * block layer from calling the midlayer with this device's
3069 blk_mq_quiesce_queue_nowait(q);
3071 spin_lock_irqsave(q->queue_lock, flags);
3073 spin_unlock_irqrestore(q->queue_lock, flags);
3078 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3081 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3082 * @sdev: device to block
3084 * Pause SCSI command processing on the specified device and wait until all
3085 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3087 * Returns zero if successful or a negative error code upon failure.
3090 * This routine transitions the device to the SDEV_BLOCK state (which must be
3091 * a legal transition). When the device is in this state, command processing
3092 * is paused until the device leaves the SDEV_BLOCK state. See also
3093 * scsi_internal_device_unblock().
3095 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3096 * scsi_internal_device_block() has blocked a SCSI device and also
3097 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3099 static int scsi_internal_device_block(struct scsi_device *sdev)
3101 struct request_queue *q = sdev->request_queue;
3104 mutex_lock(&sdev->state_mutex);
3105 err = scsi_internal_device_block_nowait(sdev);
3108 blk_mq_quiesce_queue(q);
3110 scsi_wait_for_queuecommand(sdev);
3112 mutex_unlock(&sdev->state_mutex);
3117 void scsi_start_queue(struct scsi_device *sdev)
3119 struct request_queue *q = sdev->request_queue;
3120 unsigned long flags;
3123 blk_mq_unquiesce_queue(q);
3125 spin_lock_irqsave(q->queue_lock, flags);
3127 spin_unlock_irqrestore(q->queue_lock, flags);
3132 * scsi_internal_device_unblock_nowait - resume a device after a block request
3133 * @sdev: device to resume
3134 * @new_state: state to set the device to after unblocking
3136 * Restart the device queue for a previously suspended SCSI device. Does not
3139 * Returns zero if successful or a negative error code upon failure.
3142 * This routine transitions the device to the SDEV_RUNNING state or to one of
3143 * the offline states (which must be a legal transition) allowing the midlayer
3144 * to goose the queue for this device.
3146 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3147 enum scsi_device_state new_state)
3150 * Try to transition the scsi device to SDEV_RUNNING or one of the
3151 * offlined states and goose the device queue if successful.
3153 switch (sdev->sdev_state) {
3155 case SDEV_TRANSPORT_OFFLINE:
3156 sdev->sdev_state = new_state;
3158 case SDEV_CREATED_BLOCK:
3159 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3160 new_state == SDEV_OFFLINE)
3161 sdev->sdev_state = new_state;
3163 sdev->sdev_state = SDEV_CREATED;
3171 scsi_start_queue(sdev);
3175 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3178 * scsi_internal_device_unblock - resume a device after a block request
3179 * @sdev: device to resume
3180 * @new_state: state to set the device to after unblocking
3182 * Restart the device queue for a previously suspended SCSI device. May sleep.
3184 * Returns zero if successful or a negative error code upon failure.
3187 * This routine transitions the device to the SDEV_RUNNING state or to one of
3188 * the offline states (which must be a legal transition) allowing the midlayer
3189 * to goose the queue for this device.
3191 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3192 enum scsi_device_state new_state)
3196 mutex_lock(&sdev->state_mutex);
3197 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3198 mutex_unlock(&sdev->state_mutex);
3204 device_block(struct scsi_device *sdev, void *data)
3206 scsi_internal_device_block(sdev);
3210 target_block(struct device *dev, void *data)
3212 if (scsi_is_target_device(dev))
3213 starget_for_each_device(to_scsi_target(dev), NULL,
3219 scsi_target_block(struct device *dev)
3221 if (scsi_is_target_device(dev))
3222 starget_for_each_device(to_scsi_target(dev), NULL,
3225 device_for_each_child(dev, NULL, target_block);
3227 EXPORT_SYMBOL_GPL(scsi_target_block);
3230 device_unblock(struct scsi_device *sdev, void *data)
3232 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3236 target_unblock(struct device *dev, void *data)
3238 if (scsi_is_target_device(dev))
3239 starget_for_each_device(to_scsi_target(dev), data,
3245 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3247 if (scsi_is_target_device(dev))
3248 starget_for_each_device(to_scsi_target(dev), &new_state,
3251 device_for_each_child(dev, &new_state, target_unblock);
3253 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3256 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3257 * @sgl: scatter-gather list
3258 * @sg_count: number of segments in sg
3259 * @offset: offset in bytes into sg, on return offset into the mapped area
3260 * @len: bytes to map, on return number of bytes mapped
3262 * Returns virtual address of the start of the mapped page
3264 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3265 size_t *offset, size_t *len)
3268 size_t sg_len = 0, len_complete = 0;
3269 struct scatterlist *sg;
3272 WARN_ON(!irqs_disabled());
3274 for_each_sg(sgl, sg, sg_count, i) {
3275 len_complete = sg_len; /* Complete sg-entries */
3276 sg_len += sg->length;
3277 if (sg_len > *offset)
3281 if (unlikely(i == sg_count)) {
3282 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3284 __func__, sg_len, *offset, sg_count);
3289 /* Offset starting from the beginning of first page in this sg-entry */
3290 *offset = *offset - len_complete + sg->offset;
3292 /* Assumption: contiguous pages can be accessed as "page + i" */
3293 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3294 *offset &= ~PAGE_MASK;
3296 /* Bytes in this sg-entry from *offset to the end of the page */
3297 sg_len = PAGE_SIZE - *offset;
3301 return kmap_atomic(page);
3303 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3306 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3307 * @virt: virtual address to be unmapped
3309 void scsi_kunmap_atomic_sg(void *virt)
3311 kunmap_atomic(virt);
3313 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3315 void sdev_disable_disk_events(struct scsi_device *sdev)
3317 atomic_inc(&sdev->disk_events_disable_depth);
3319 EXPORT_SYMBOL(sdev_disable_disk_events);
3321 void sdev_enable_disk_events(struct scsi_device *sdev)
3323 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3325 atomic_dec(&sdev->disk_events_disable_depth);
3327 EXPORT_SYMBOL(sdev_enable_disk_events);
3330 * scsi_vpd_lun_id - return a unique device identification
3331 * @sdev: SCSI device
3332 * @id: buffer for the identification
3333 * @id_len: length of the buffer
3335 * Copies a unique device identification into @id based
3336 * on the information in the VPD page 0x83 of the device.
3337 * The string will be formatted as a SCSI name string.
3339 * Returns the length of the identification or error on failure.
3340 * If the identifier is longer than the supplied buffer the actual
3341 * identifier length is returned and the buffer is not zero-padded.
3343 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3345 u8 cur_id_type = 0xff;
3347 const unsigned char *d, *cur_id_str;
3348 const struct scsi_vpd *vpd_pg83;
3349 int id_size = -EINVAL;
3352 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3359 * Look for the correct descriptor.
3360 * Order of preference for lun descriptor:
3361 * - SCSI name string
3362 * - NAA IEEE Registered Extended
3363 * - EUI-64 based 16-byte
3364 * - EUI-64 based 12-byte
3365 * - NAA IEEE Registered
3366 * - NAA IEEE Extended
3368 * as longer descriptors reduce the likelyhood
3369 * of identification clashes.
3372 /* The id string must be at least 20 bytes + terminating NULL byte */
3378 memset(id, 0, id_len);
3379 d = vpd_pg83->data + 4;
3380 while (d < vpd_pg83->data + vpd_pg83->len) {
3381 /* Skip designators not referring to the LUN */
3382 if ((d[1] & 0x30) != 0x00)
3385 switch (d[1] & 0xf) {
3388 if (cur_id_size > d[3])
3390 /* Prefer anything */
3391 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3394 if (cur_id_size + 4 > id_len)
3395 cur_id_size = id_len - 4;
3397 cur_id_type = d[1] & 0xf;
3398 id_size = snprintf(id, id_len, "t10.%*pE",
3399 cur_id_size, cur_id_str);
3403 if (cur_id_size > d[3])
3405 /* Prefer NAA IEEE Registered Extended */
3406 if (cur_id_type == 0x3 &&
3407 cur_id_size == d[3])
3411 cur_id_type = d[1] & 0xf;
3412 switch (cur_id_size) {
3414 id_size = snprintf(id, id_len,
3419 id_size = snprintf(id, id_len,
3424 id_size = snprintf(id, id_len,
3435 if (cur_id_size > d[3])
3439 cur_id_type = d[1] & 0xf;
3440 switch (cur_id_size) {
3442 id_size = snprintf(id, id_len,
3447 id_size = snprintf(id, id_len,
3457 /* SCSI name string */
3458 if (cur_id_size + 4 > d[3])
3460 /* Prefer others for truncated descriptor */
3461 if (cur_id_size && d[3] > id_len)
3463 cur_id_size = id_size = d[3];
3465 cur_id_type = d[1] & 0xf;
3466 if (cur_id_size >= id_len)
3467 cur_id_size = id_len - 1;
3468 memcpy(id, cur_id_str, cur_id_size);
3469 /* Decrease priority for truncated descriptor */
3470 if (cur_id_size != id_size)
3483 EXPORT_SYMBOL(scsi_vpd_lun_id);
3486 * scsi_vpd_tpg_id - return a target port group identifier
3487 * @sdev: SCSI device
3489 * Returns the Target Port Group identifier from the information
3490 * froom VPD page 0x83 of the device.
3492 * Returns the identifier or error on failure.
3494 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3496 const unsigned char *d;
3497 const struct scsi_vpd *vpd_pg83;
3498 int group_id = -EAGAIN, rel_port = -1;
3501 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3507 d = vpd_pg83->data + 4;
3508 while (d < vpd_pg83->data + vpd_pg83->len) {
3509 switch (d[1] & 0xf) {
3511 /* Relative target port */
3512 rel_port = get_unaligned_be16(&d[6]);
3515 /* Target port group */
3516 group_id = get_unaligned_be16(&d[6]);
3525 if (group_id >= 0 && rel_id && rel_port != -1)
3530 EXPORT_SYMBOL(scsi_vpd_tpg_id);