1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h> /* for syscall_get_* */
63 * SLAB caches for signal bits.
66 static struct kmem_cache *sigqueue_cachep;
68 int print_fatal_signals __read_mostly;
70 static void __user *sig_handler(struct task_struct *t, int sig)
72 return t->sighand->action[sig - 1].sa.sa_handler;
75 static inline bool sig_handler_ignored(void __user *handler, int sig)
77 /* Is it explicitly or implicitly ignored? */
78 return handler == SIG_IGN ||
79 (handler == SIG_DFL && sig_kernel_ignore(sig));
82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
86 handler = sig_handler(t, sig);
88 /* SIGKILL and SIGSTOP may not be sent to the global init */
89 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 /* Only allow kernel generated signals to this kthread */
97 if (unlikely((t->flags & PF_KTHREAD) &&
98 (handler == SIG_KTHREAD_KERNEL) && !force))
101 return sig_handler_ignored(handler, sig);
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
107 * Blocked signals are never ignored, since the
108 * signal handler may change by the time it is
111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
115 * Tracers may want to know about even ignored signal unless it
116 * is SIGKILL which can't be reported anyway but can be ignored
117 * by SIGNAL_UNKILLABLE task.
119 if (t->ptrace && sig != SIGKILL)
122 return sig_task_ignored(t, sig, force);
126 * Re-calculate pending state from the set of locally pending
127 * signals, globally pending signals, and blocked signals.
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
134 switch (_NSIG_WORDS) {
136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 ready |= signal->sig[i] &~ blocked->sig[i];
140 case 4: ready = signal->sig[3] &~ blocked->sig[3];
141 ready |= signal->sig[2] &~ blocked->sig[2];
142 ready |= signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
146 case 2: ready = signal->sig[1] &~ blocked->sig[1];
147 ready |= signal->sig[0] &~ blocked->sig[0];
150 case 1: ready = signal->sig[0] &~ blocked->sig[0];
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
157 static bool recalc_sigpending_tsk(struct task_struct *t)
159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 PENDING(&t->pending, &t->blocked) ||
161 PENDING(&t->signal->shared_pending, &t->blocked) ||
162 cgroup_task_frozen(t)) {
163 set_tsk_thread_flag(t, TIF_SIGPENDING);
168 * We must never clear the flag in another thread, or in current
169 * when it's possible the current syscall is returning -ERESTART*.
170 * So we don't clear it here, and only callers who know they should do.
175 void recalc_sigpending(void)
177 if (!recalc_sigpending_tsk(current) && !freezing(current))
178 clear_thread_flag(TIF_SIGPENDING);
181 EXPORT_SYMBOL(recalc_sigpending);
183 void calculate_sigpending(void)
185 /* Have any signals or users of TIF_SIGPENDING been delayed
188 spin_lock_irq(¤t->sighand->siglock);
189 set_tsk_thread_flag(current, TIF_SIGPENDING);
191 spin_unlock_irq(¤t->sighand->siglock);
194 /* Given the mask, find the first available signal that should be serviced. */
196 #define SYNCHRONOUS_MASK \
197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
200 int next_signal(struct sigpending *pending, sigset_t *mask)
202 unsigned long i, *s, *m, x;
205 s = pending->signal.sig;
209 * Handle the first word specially: it contains the
210 * synchronous signals that need to be dequeued first.
214 if (x & SYNCHRONOUS_MASK)
215 x &= SYNCHRONOUS_MASK;
220 switch (_NSIG_WORDS) {
222 for (i = 1; i < _NSIG_WORDS; ++i) {
226 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 sig = ffz(~x) + _NSIG_BPW + 1;
246 static inline void print_dropped_signal(int sig)
248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
250 if (!print_fatal_signals)
253 if (!__ratelimit(&ratelimit_state))
256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 current->comm, current->pid, sig);
261 * task_set_jobctl_pending - set jobctl pending bits
263 * @mask: pending bits to set
265 * Clear @mask from @task->jobctl. @mask must be subset of
266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
268 * cleared. If @task is already being killed or exiting, this function
272 * Must be called with @task->sighand->siglock held.
275 * %true if @mask is set, %false if made noop because @task was dying.
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 if (mask & JOBCTL_STOP_SIGMASK)
287 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
289 task->jobctl |= mask;
294 * task_clear_jobctl_trapping - clear jobctl trapping bit
297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298 * Clear it and wake up the ptracer. Note that we don't need any further
299 * locking. @task->siglock guarantees that @task->parent points to the
303 * Must be called with @task->sighand->siglock held.
305 void task_clear_jobctl_trapping(struct task_struct *task)
307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 task->jobctl &= ~JOBCTL_TRAPPING;
309 smp_mb(); /* advised by wake_up_bit() */
310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
315 * task_clear_jobctl_pending - clear jobctl pending bits
317 * @mask: pending bits to clear
319 * Clear @mask from @task->jobctl. @mask must be subset of
320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
321 * STOP bits are cleared together.
323 * If clearing of @mask leaves no stop or trap pending, this function calls
324 * task_clear_jobctl_trapping().
327 * Must be called with @task->sighand->siglock held.
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
331 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
333 if (mask & JOBCTL_STOP_PENDING)
334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
336 task->jobctl &= ~mask;
338 if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 task_clear_jobctl_trapping(task);
343 * task_participate_group_stop - participate in a group stop
344 * @task: task participating in a group stop
346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347 * Group stop states are cleared and the group stop count is consumed if
348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
349 * stop, the appropriate `SIGNAL_*` flags are set.
352 * Must be called with @task->sighand->siglock held.
355 * %true if group stop completion should be notified to the parent, %false
358 static bool task_participate_group_stop(struct task_struct *task)
360 struct signal_struct *sig = task->signal;
361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
370 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 sig->group_stop_count--;
374 * Tell the caller to notify completion iff we are entering into a
375 * fresh group stop. Read comment in do_signal_stop() for details.
377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
384 void task_join_group_stop(struct task_struct *task)
386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 struct signal_struct *sig = current->signal;
389 if (sig->group_stop_count) {
390 sig->group_stop_count++;
391 mask |= JOBCTL_STOP_CONSUME;
392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 /* Have the new thread join an on-going signal group stop */
396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
400 * allocate a new signal queue record
401 * - this may be called without locks if and only if t == current, otherwise an
402 * appropriate lock must be held to stop the target task from exiting
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 int override_rlimit, const unsigned int sigqueue_flags)
408 struct sigqueue *q = NULL;
409 struct ucounts *ucounts;
413 * Protect access to @t credentials. This can go away when all
414 * callers hold rcu read lock.
416 * NOTE! A pending signal will hold on to the user refcount,
417 * and we get/put the refcount only when the sigpending count
418 * changes from/to zero.
421 ucounts = task_ucounts(t);
422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
430 print_dropped_signal(sig);
433 if (unlikely(q == NULL)) {
434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
436 INIT_LIST_HEAD(&q->list);
437 q->flags = sigqueue_flags;
438 q->ucounts = ucounts;
443 static void __sigqueue_free(struct sigqueue *q)
445 if (q->flags & SIGQUEUE_PREALLOC)
448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
451 kmem_cache_free(sigqueue_cachep, q);
454 void flush_sigqueue(struct sigpending *queue)
458 sigemptyset(&queue->signal);
459 while (!list_empty(&queue->list)) {
460 q = list_entry(queue->list.next, struct sigqueue , list);
461 list_del_init(&q->list);
467 * Flush all pending signals for this kthread.
469 void flush_signals(struct task_struct *t)
473 spin_lock_irqsave(&t->sighand->siglock, flags);
474 clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 flush_sigqueue(&t->pending);
476 flush_sigqueue(&t->signal->shared_pending);
477 spin_unlock_irqrestore(&t->sighand->siglock, flags);
479 EXPORT_SYMBOL(flush_signals);
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
484 sigset_t signal, retain;
485 struct sigqueue *q, *n;
487 signal = pending->signal;
488 sigemptyset(&retain);
490 list_for_each_entry_safe(q, n, &pending->list, list) {
491 int sig = q->info.si_signo;
493 if (likely(q->info.si_code != SI_TIMER)) {
494 sigaddset(&retain, sig);
496 sigdelset(&signal, sig);
497 list_del_init(&q->list);
502 sigorsets(&pending->signal, &signal, &retain);
505 void flush_itimer_signals(void)
507 struct task_struct *tsk = current;
510 spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 __flush_itimer_signals(&tsk->pending);
512 __flush_itimer_signals(&tsk->signal->shared_pending);
513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
517 void ignore_signals(struct task_struct *t)
521 for (i = 0; i < _NSIG; ++i)
522 t->sighand->action[i].sa.sa_handler = SIG_IGN;
528 * Flush all handlers for a task.
532 flush_signal_handlers(struct task_struct *t, int force_default)
535 struct k_sigaction *ka = &t->sighand->action[0];
536 for (i = _NSIG ; i != 0 ; i--) {
537 if (force_default || ka->sa.sa_handler != SIG_IGN)
538 ka->sa.sa_handler = SIG_DFL;
540 #ifdef __ARCH_HAS_SA_RESTORER
541 ka->sa.sa_restorer = NULL;
543 sigemptyset(&ka->sa.sa_mask);
548 bool unhandled_signal(struct task_struct *tsk, int sig)
550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 if (is_global_init(tsk))
554 if (handler != SIG_IGN && handler != SIG_DFL)
557 /* If dying, we handle all new signals by ignoring them */
558 if (fatal_signal_pending(tsk))
561 /* if ptraced, let the tracer determine */
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 struct sigqueue *q, *first = NULL;
571 * Collect the siginfo appropriate to this signal. Check if
572 * there is another siginfo for the same signal.
574 list_for_each_entry(q, &list->list, list) {
575 if (q->info.si_signo == sig) {
582 sigdelset(&list->signal, sig);
586 list_del_init(&first->list);
587 copy_siginfo(info, &first->info);
590 (first->flags & SIGQUEUE_PREALLOC) &&
591 (info->si_code == SI_TIMER) &&
592 (info->si_sys_private);
594 __sigqueue_free(first);
597 * Ok, it wasn't in the queue. This must be
598 * a fast-pathed signal or we must have been
599 * out of queue space. So zero out the info.
602 info->si_signo = sig;
604 info->si_code = SI_USER;
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 kernel_siginfo_t *info, bool *resched_timer)
613 int sig = next_signal(pending, mask);
616 collect_signal(sig, pending, info, resched_timer);
621 * Try to dequeue a signal. If a deliverable signal is found fill in the
622 * caller provided siginfo and return the signal number. Otherwise return
625 int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
627 struct task_struct *tsk = current;
628 bool resched_timer = false;
631 lockdep_assert_held(&tsk->sighand->siglock);
634 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
636 *type = PIDTYPE_TGID;
637 signr = __dequeue_signal(&tsk->signal->shared_pending,
638 mask, info, &resched_timer);
639 #ifdef CONFIG_POSIX_TIMERS
643 * itimers are process shared and we restart periodic
644 * itimers in the signal delivery path to prevent DoS
645 * attacks in the high resolution timer case. This is
646 * compliant with the old way of self-restarting
647 * itimers, as the SIGALRM is a legacy signal and only
648 * queued once. Changing the restart behaviour to
649 * restart the timer in the signal dequeue path is
650 * reducing the timer noise on heavy loaded !highres
653 if (unlikely(signr == SIGALRM)) {
654 struct hrtimer *tmr = &tsk->signal->real_timer;
656 if (!hrtimer_is_queued(tmr) &&
657 tsk->signal->it_real_incr != 0) {
658 hrtimer_forward(tmr, tmr->base->get_time(),
659 tsk->signal->it_real_incr);
660 hrtimer_restart(tmr);
670 if (unlikely(sig_kernel_stop(signr))) {
672 * Set a marker that we have dequeued a stop signal. Our
673 * caller might release the siglock and then the pending
674 * stop signal it is about to process is no longer in the
675 * pending bitmasks, but must still be cleared by a SIGCONT
676 * (and overruled by a SIGKILL). So those cases clear this
677 * shared flag after we've set it. Note that this flag may
678 * remain set after the signal we return is ignored or
679 * handled. That doesn't matter because its only purpose
680 * is to alert stop-signal processing code when another
681 * processor has come along and cleared the flag.
683 current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 #ifdef CONFIG_POSIX_TIMERS
688 * Release the siglock to ensure proper locking order
689 * of timer locks outside of siglocks. Note, we leave
690 * irqs disabled here, since the posix-timers code is
691 * about to disable them again anyway.
693 spin_unlock(&tsk->sighand->siglock);
694 posixtimer_rearm(info);
695 spin_lock(&tsk->sighand->siglock);
697 /* Don't expose the si_sys_private value to userspace */
698 info->si_sys_private = 0;
703 EXPORT_SYMBOL_GPL(dequeue_signal);
705 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 struct task_struct *tsk = current;
708 struct sigpending *pending = &tsk->pending;
709 struct sigqueue *q, *sync = NULL;
712 * Might a synchronous signal be in the queue?
714 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
718 * Return the first synchronous signal in the queue.
720 list_for_each_entry(q, &pending->list, list) {
721 /* Synchronous signals have a positive si_code */
722 if ((q->info.si_code > SI_USER) &&
723 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
731 * Check if there is another siginfo for the same signal.
733 list_for_each_entry_continue(q, &pending->list, list) {
734 if (q->info.si_signo == sync->info.si_signo)
738 sigdelset(&pending->signal, sync->info.si_signo);
741 list_del_init(&sync->list);
742 copy_siginfo(info, &sync->info);
743 __sigqueue_free(sync);
744 return info->si_signo;
748 * Tell a process that it has a new active signal..
750 * NOTE! we rely on the previous spin_lock to
751 * lock interrupts for us! We can only be called with
752 * "siglock" held, and the local interrupt must
753 * have been disabled when that got acquired!
755 * No need to set need_resched since signal event passing
756 * goes through ->blocked
758 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 lockdep_assert_held(&t->sighand->siglock);
762 set_tsk_thread_flag(t, TIF_SIGPENDING);
765 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
766 * case. We don't check t->state here because there is a race with it
767 * executing another processor and just now entering stopped state.
768 * By using wake_up_state, we ensure the process will wake up and
769 * handle its death signal.
771 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
776 * Remove signals in mask from the pending set and queue.
777 * Returns 1 if any signals were found.
779 * All callers must be holding the siglock.
781 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
783 struct sigqueue *q, *n;
786 sigandsets(&m, mask, &s->signal);
787 if (sigisemptyset(&m))
790 sigandnsets(&s->signal, &s->signal, mask);
791 list_for_each_entry_safe(q, n, &s->list, list) {
792 if (sigismember(mask, q->info.si_signo)) {
793 list_del_init(&q->list);
799 static inline int is_si_special(const struct kernel_siginfo *info)
801 return info <= SEND_SIG_PRIV;
804 static inline bool si_fromuser(const struct kernel_siginfo *info)
806 return info == SEND_SIG_NOINFO ||
807 (!is_si_special(info) && SI_FROMUSER(info));
811 * called with RCU read lock from check_kill_permission()
813 static bool kill_ok_by_cred(struct task_struct *t)
815 const struct cred *cred = current_cred();
816 const struct cred *tcred = __task_cred(t);
818 return uid_eq(cred->euid, tcred->suid) ||
819 uid_eq(cred->euid, tcred->uid) ||
820 uid_eq(cred->uid, tcred->suid) ||
821 uid_eq(cred->uid, tcred->uid) ||
822 ns_capable(tcred->user_ns, CAP_KILL);
826 * Bad permissions for sending the signal
827 * - the caller must hold the RCU read lock
829 static int check_kill_permission(int sig, struct kernel_siginfo *info,
830 struct task_struct *t)
835 if (!valid_signal(sig))
838 if (!si_fromuser(info))
841 error = audit_signal_info(sig, t); /* Let audit system see the signal */
845 if (!same_thread_group(current, t) &&
846 !kill_ok_by_cred(t)) {
849 sid = task_session(t);
851 * We don't return the error if sid == NULL. The
852 * task was unhashed, the caller must notice this.
854 if (!sid || sid == task_session(current))
862 return security_task_kill(t, info, sig, NULL);
866 * ptrace_trap_notify - schedule trap to notify ptracer
867 * @t: tracee wanting to notify tracer
869 * This function schedules sticky ptrace trap which is cleared on the next
870 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
873 * If @t is running, STOP trap will be taken. If trapped for STOP and
874 * ptracer is listening for events, tracee is woken up so that it can
875 * re-trap for the new event. If trapped otherwise, STOP trap will be
876 * eventually taken without returning to userland after the existing traps
877 * are finished by PTRACE_CONT.
880 * Must be called with @task->sighand->siglock held.
882 static void ptrace_trap_notify(struct task_struct *t)
884 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
885 lockdep_assert_held(&t->sighand->siglock);
887 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
888 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
892 * Handle magic process-wide effects of stop/continue signals. Unlike
893 * the signal actions, these happen immediately at signal-generation
894 * time regardless of blocking, ignoring, or handling. This does the
895 * actual continuing for SIGCONT, but not the actual stopping for stop
896 * signals. The process stop is done as a signal action for SIG_DFL.
898 * Returns true if the signal should be actually delivered, otherwise
899 * it should be dropped.
901 static bool prepare_signal(int sig, struct task_struct *p, bool force)
903 struct signal_struct *signal = p->signal;
904 struct task_struct *t;
907 if (signal->flags & SIGNAL_GROUP_EXIT) {
908 if (signal->core_state)
909 return sig == SIGKILL;
911 * The process is in the middle of dying, drop the signal.
914 } else if (sig_kernel_stop(sig)) {
916 * This is a stop signal. Remove SIGCONT from all queues.
918 siginitset(&flush, sigmask(SIGCONT));
919 flush_sigqueue_mask(&flush, &signal->shared_pending);
920 for_each_thread(p, t)
921 flush_sigqueue_mask(&flush, &t->pending);
922 } else if (sig == SIGCONT) {
925 * Remove all stop signals from all queues, wake all threads.
927 siginitset(&flush, SIG_KERNEL_STOP_MASK);
928 flush_sigqueue_mask(&flush, &signal->shared_pending);
929 for_each_thread(p, t) {
930 flush_sigqueue_mask(&flush, &t->pending);
931 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
932 if (likely(!(t->ptrace & PT_SEIZED))) {
933 t->jobctl &= ~JOBCTL_STOPPED;
934 wake_up_state(t, __TASK_STOPPED);
936 ptrace_trap_notify(t);
940 * Notify the parent with CLD_CONTINUED if we were stopped.
942 * If we were in the middle of a group stop, we pretend it
943 * was already finished, and then continued. Since SIGCHLD
944 * doesn't queue we report only CLD_STOPPED, as if the next
945 * CLD_CONTINUED was dropped.
948 if (signal->flags & SIGNAL_STOP_STOPPED)
949 why |= SIGNAL_CLD_CONTINUED;
950 else if (signal->group_stop_count)
951 why |= SIGNAL_CLD_STOPPED;
955 * The first thread which returns from do_signal_stop()
956 * will take ->siglock, notice SIGNAL_CLD_MASK, and
957 * notify its parent. See get_signal().
959 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
960 signal->group_stop_count = 0;
961 signal->group_exit_code = 0;
965 return !sig_ignored(p, sig, force);
969 * Test if P wants to take SIG. After we've checked all threads with this,
970 * it's equivalent to finding no threads not blocking SIG. Any threads not
971 * blocking SIG were ruled out because they are not running and already
972 * have pending signals. Such threads will dequeue from the shared queue
973 * as soon as they're available, so putting the signal on the shared queue
974 * will be equivalent to sending it to one such thread.
976 static inline bool wants_signal(int sig, struct task_struct *p)
978 if (sigismember(&p->blocked, sig))
981 if (p->flags & PF_EXITING)
987 if (task_is_stopped_or_traced(p))
990 return task_curr(p) || !task_sigpending(p);
993 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
995 struct signal_struct *signal = p->signal;
996 struct task_struct *t;
999 * Now find a thread we can wake up to take the signal off the queue.
1001 * Try the suggested task first (may or may not be the main thread).
1003 if (wants_signal(sig, p))
1005 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1007 * There is just one thread and it does not need to be woken.
1008 * It will dequeue unblocked signals before it runs again.
1013 * Otherwise try to find a suitable thread.
1015 t = signal->curr_target;
1016 while (!wants_signal(sig, t)) {
1018 if (t == signal->curr_target)
1020 * No thread needs to be woken.
1021 * Any eligible threads will see
1022 * the signal in the queue soon.
1026 signal->curr_target = t;
1030 * Found a killable thread. If the signal will be fatal,
1031 * then start taking the whole group down immediately.
1033 if (sig_fatal(p, sig) &&
1034 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1035 !sigismember(&t->real_blocked, sig) &&
1036 (sig == SIGKILL || !p->ptrace)) {
1038 * This signal will be fatal to the whole group.
1040 if (!sig_kernel_coredump(sig)) {
1042 * Start a group exit and wake everybody up.
1043 * This way we don't have other threads
1044 * running and doing things after a slower
1045 * thread has the fatal signal pending.
1047 signal->flags = SIGNAL_GROUP_EXIT;
1048 signal->group_exit_code = sig;
1049 signal->group_stop_count = 0;
1050 __for_each_thread(signal, t) {
1051 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1052 sigaddset(&t->pending.signal, SIGKILL);
1053 signal_wake_up(t, 1);
1060 * The signal is already in the shared-pending queue.
1061 * Tell the chosen thread to wake up and dequeue it.
1063 signal_wake_up(t, sig == SIGKILL);
1067 static inline bool legacy_queue(struct sigpending *signals, int sig)
1069 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1073 struct task_struct *t, enum pid_type type, bool force)
1075 struct sigpending *pending;
1077 int override_rlimit;
1078 int ret = 0, result;
1080 lockdep_assert_held(&t->sighand->siglock);
1082 result = TRACE_SIGNAL_IGNORED;
1083 if (!prepare_signal(sig, t, force))
1086 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1088 * Short-circuit ignored signals and support queuing
1089 * exactly one non-rt signal, so that we can get more
1090 * detailed information about the cause of the signal.
1092 result = TRACE_SIGNAL_ALREADY_PENDING;
1093 if (legacy_queue(pending, sig))
1096 result = TRACE_SIGNAL_DELIVERED;
1098 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1100 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1104 * Real-time signals must be queued if sent by sigqueue, or
1105 * some other real-time mechanism. It is implementation
1106 * defined whether kill() does so. We attempt to do so, on
1107 * the principle of least surprise, but since kill is not
1108 * allowed to fail with EAGAIN when low on memory we just
1109 * make sure at least one signal gets delivered and don't
1110 * pass on the info struct.
1113 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1115 override_rlimit = 0;
1117 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120 list_add_tail(&q->list, &pending->list);
1121 switch ((unsigned long) info) {
1122 case (unsigned long) SEND_SIG_NOINFO:
1123 clear_siginfo(&q->info);
1124 q->info.si_signo = sig;
1125 q->info.si_errno = 0;
1126 q->info.si_code = SI_USER;
1127 q->info.si_pid = task_tgid_nr_ns(current,
1128 task_active_pid_ns(t));
1131 from_kuid_munged(task_cred_xxx(t, user_ns),
1135 case (unsigned long) SEND_SIG_PRIV:
1136 clear_siginfo(&q->info);
1137 q->info.si_signo = sig;
1138 q->info.si_errno = 0;
1139 q->info.si_code = SI_KERNEL;
1144 copy_siginfo(&q->info, info);
1147 } else if (!is_si_special(info) &&
1148 sig >= SIGRTMIN && info->si_code != SI_USER) {
1150 * Queue overflow, abort. We may abort if the
1151 * signal was rt and sent by user using something
1152 * other than kill().
1154 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1159 * This is a silent loss of information. We still
1160 * send the signal, but the *info bits are lost.
1162 result = TRACE_SIGNAL_LOSE_INFO;
1166 signalfd_notify(t, sig);
1167 sigaddset(&pending->signal, sig);
1169 /* Let multiprocess signals appear after on-going forks */
1170 if (type > PIDTYPE_TGID) {
1171 struct multiprocess_signals *delayed;
1172 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1173 sigset_t *signal = &delayed->signal;
1174 /* Can't queue both a stop and a continue signal */
1176 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1177 else if (sig_kernel_stop(sig))
1178 sigdelset(signal, SIGCONT);
1179 sigaddset(signal, sig);
1183 complete_signal(sig, t, type);
1185 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1189 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 switch (siginfo_layout(info->si_signo, info->si_code)) {
1201 case SIL_FAULT_TRAPNO:
1202 case SIL_FAULT_MCEERR:
1203 case SIL_FAULT_BNDERR:
1204 case SIL_FAULT_PKUERR:
1205 case SIL_FAULT_PERF_EVENT:
1213 int send_signal_locked(int sig, struct kernel_siginfo *info,
1214 struct task_struct *t, enum pid_type type)
1216 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 if (info == SEND_SIG_NOINFO) {
1220 /* Force if sent from an ancestor pid namespace */
1221 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1222 } else if (info == SEND_SIG_PRIV) {
1223 /* Don't ignore kernel generated signals */
1225 } else if (has_si_pid_and_uid(info)) {
1226 /* SIGKILL and SIGSTOP is special or has ids */
1227 struct user_namespace *t_user_ns;
1230 t_user_ns = task_cred_xxx(t, user_ns);
1231 if (current_user_ns() != t_user_ns) {
1232 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1233 info->si_uid = from_kuid_munged(t_user_ns, uid);
1237 /* A kernel generated signal? */
1238 force = (info->si_code == SI_KERNEL);
1240 /* From an ancestor pid namespace? */
1241 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1246 return __send_signal_locked(sig, info, t, type, force);
1249 static void print_fatal_signal(int signr)
1251 struct pt_regs *regs = task_pt_regs(current);
1252 struct file *exe_file;
1254 exe_file = get_task_exe_file(current);
1256 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1257 exe_file, current->comm, signr);
1260 pr_info("%s: potentially unexpected fatal signal %d.\n",
1261 current->comm, signr);
1264 #if defined(__i386__) && !defined(__arch_um__)
1265 pr_info("code at %08lx: ", regs->ip);
1268 for (i = 0; i < 16; i++) {
1271 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273 pr_cont("%02x ", insn);
1283 static int __init setup_print_fatal_signals(char *str)
1285 get_option (&str, &print_fatal_signals);
1290 __setup("print-fatal-signals=", setup_print_fatal_signals);
1292 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295 unsigned long flags;
1298 if (lock_task_sighand(p, &flags)) {
1299 ret = send_signal_locked(sig, info, p, type);
1300 unlock_task_sighand(p, &flags);
1307 HANDLER_CURRENT, /* If reachable use the current handler */
1308 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1309 HANDLER_EXIT, /* Only visible as the process exit code */
1313 * Force a signal that the process can't ignore: if necessary
1314 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1317 * since we do not want to have a signal handler that was blocked
1318 * be invoked when user space had explicitly blocked it.
1320 * We don't want to have recursive SIGSEGV's etc, for example,
1321 * that is why we also clear SIGNAL_UNKILLABLE.
1324 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1325 enum sig_handler handler)
1327 unsigned long int flags;
1328 int ret, blocked, ignored;
1329 struct k_sigaction *action;
1330 int sig = info->si_signo;
1332 spin_lock_irqsave(&t->sighand->siglock, flags);
1333 action = &t->sighand->action[sig-1];
1334 ignored = action->sa.sa_handler == SIG_IGN;
1335 blocked = sigismember(&t->blocked, sig);
1336 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1337 action->sa.sa_handler = SIG_DFL;
1338 if (handler == HANDLER_EXIT)
1339 action->sa.sa_flags |= SA_IMMUTABLE;
1341 sigdelset(&t->blocked, sig);
1344 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1345 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1347 if (action->sa.sa_handler == SIG_DFL &&
1348 (!t->ptrace || (handler == HANDLER_EXIT)))
1349 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1350 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1351 /* This can happen if the signal was already pending and blocked */
1352 if (!task_sigpending(t))
1353 signal_wake_up(t, 0);
1354 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1359 int force_sig_info(struct kernel_siginfo *info)
1361 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1365 * Nuke all other threads in the group.
1367 int zap_other_threads(struct task_struct *p)
1369 struct task_struct *t;
1372 p->signal->group_stop_count = 0;
1374 for_other_threads(p, t) {
1375 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378 /* Don't bother with already dead threads */
1381 sigaddset(&t->pending.signal, SIGKILL);
1382 signal_wake_up(t, 1);
1388 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1389 unsigned long *flags)
1391 struct sighand_struct *sighand;
1395 sighand = rcu_dereference(tsk->sighand);
1396 if (unlikely(sighand == NULL))
1400 * This sighand can be already freed and even reused, but
1401 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1402 * initializes ->siglock: this slab can't go away, it has
1403 * the same object type, ->siglock can't be reinitialized.
1405 * We need to ensure that tsk->sighand is still the same
1406 * after we take the lock, we can race with de_thread() or
1407 * __exit_signal(). In the latter case the next iteration
1408 * must see ->sighand == NULL.
1410 spin_lock_irqsave(&sighand->siglock, *flags);
1411 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1413 spin_unlock_irqrestore(&sighand->siglock, *flags);
1420 #ifdef CONFIG_LOCKDEP
1421 void lockdep_assert_task_sighand_held(struct task_struct *task)
1423 struct sighand_struct *sighand;
1426 sighand = rcu_dereference(task->sighand);
1428 lockdep_assert_held(&sighand->siglock);
1436 * send signal info to all the members of a thread group or to the
1437 * individual thread if type == PIDTYPE_PID.
1439 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1440 struct task_struct *p, enum pid_type type)
1445 ret = check_kill_permission(sig, info, p);
1449 ret = do_send_sig_info(sig, info, p, type);
1455 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1456 * control characters do (^C, ^Z etc)
1457 * - the caller must hold at least a readlock on tasklist_lock
1459 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1461 struct task_struct *p = NULL;
1464 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1465 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1467 * If group_send_sig_info() succeeds at least once ret
1468 * becomes 0 and after that the code below has no effect.
1469 * Otherwise we return the last err or -ESRCH if this
1470 * process group is empty.
1474 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1480 struct pid *pid, enum pid_type type)
1483 struct task_struct *p;
1487 p = pid_task(pid, PIDTYPE_PID);
1489 error = group_send_sig_info(sig, info, p, type);
1491 if (likely(!p || error != -ESRCH))
1494 * The task was unhashed in between, try again. If it
1495 * is dead, pid_task() will return NULL, if we race with
1496 * de_thread() it will find the new leader.
1501 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1503 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1506 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1510 error = kill_pid_info(sig, info, find_vpid(pid));
1515 static inline bool kill_as_cred_perm(const struct cred *cred,
1516 struct task_struct *target)
1518 const struct cred *pcred = __task_cred(target);
1520 return uid_eq(cred->euid, pcred->suid) ||
1521 uid_eq(cred->euid, pcred->uid) ||
1522 uid_eq(cred->uid, pcred->suid) ||
1523 uid_eq(cred->uid, pcred->uid);
1527 * The usb asyncio usage of siginfo is wrong. The glibc support
1528 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1529 * AKA after the generic fields:
1530 * kernel_pid_t si_pid;
1531 * kernel_uid32_t si_uid;
1532 * sigval_t si_value;
1534 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1535 * after the generic fields is:
1536 * void __user *si_addr;
1538 * This is a practical problem when there is a 64bit big endian kernel
1539 * and a 32bit userspace. As the 32bit address will encoded in the low
1540 * 32bits of the pointer. Those low 32bits will be stored at higher
1541 * address than appear in a 32 bit pointer. So userspace will not
1542 * see the address it was expecting for it's completions.
1544 * There is nothing in the encoding that can allow
1545 * copy_siginfo_to_user32 to detect this confusion of formats, so
1546 * handle this by requiring the caller of kill_pid_usb_asyncio to
1547 * notice when this situration takes place and to store the 32bit
1548 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1551 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1552 struct pid *pid, const struct cred *cred)
1554 struct kernel_siginfo info;
1555 struct task_struct *p;
1556 unsigned long flags;
1559 if (!valid_signal(sig))
1562 clear_siginfo(&info);
1563 info.si_signo = sig;
1564 info.si_errno = errno;
1565 info.si_code = SI_ASYNCIO;
1566 *((sigval_t *)&info.si_pid) = addr;
1569 p = pid_task(pid, PIDTYPE_PID);
1574 if (!kill_as_cred_perm(cred, p)) {
1578 ret = security_task_kill(p, &info, sig, cred);
1583 if (lock_task_sighand(p, &flags)) {
1584 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1585 unlock_task_sighand(p, &flags);
1593 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1596 * kill_something_info() interprets pid in interesting ways just like kill(2).
1598 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1599 * is probably wrong. Should make it like BSD or SYSV.
1602 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607 return kill_proc_info(sig, info, pid);
1609 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1613 read_lock(&tasklist_lock);
1615 ret = __kill_pgrp_info(sig, info,
1616 pid ? find_vpid(-pid) : task_pgrp(current));
1618 int retval = 0, count = 0;
1619 struct task_struct * p;
1621 for_each_process(p) {
1622 if (task_pid_vnr(p) > 1 &&
1623 !same_thread_group(p, current)) {
1624 int err = group_send_sig_info(sig, info, p,
1631 ret = count ? retval : -ESRCH;
1633 read_unlock(&tasklist_lock);
1639 * These are for backward compatibility with the rest of the kernel source.
1642 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1645 * Make sure legacy kernel users don't send in bad values
1646 * (normal paths check this in check_kill_permission).
1648 if (!valid_signal(sig))
1651 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1653 EXPORT_SYMBOL(send_sig_info);
1655 #define __si_special(priv) \
1656 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1659 send_sig(int sig, struct task_struct *p, int priv)
1661 return send_sig_info(sig, __si_special(priv), p);
1663 EXPORT_SYMBOL(send_sig);
1665 void force_sig(int sig)
1667 struct kernel_siginfo info;
1669 clear_siginfo(&info);
1670 info.si_signo = sig;
1672 info.si_code = SI_KERNEL;
1675 force_sig_info(&info);
1677 EXPORT_SYMBOL(force_sig);
1679 void force_fatal_sig(int sig)
1681 struct kernel_siginfo info;
1683 clear_siginfo(&info);
1684 info.si_signo = sig;
1686 info.si_code = SI_KERNEL;
1689 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1692 void force_exit_sig(int sig)
1694 struct kernel_siginfo info;
1696 clear_siginfo(&info);
1697 info.si_signo = sig;
1699 info.si_code = SI_KERNEL;
1702 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1706 * When things go south during signal handling, we
1707 * will force a SIGSEGV. And if the signal that caused
1708 * the problem was already a SIGSEGV, we'll want to
1709 * make sure we don't even try to deliver the signal..
1711 void force_sigsegv(int sig)
1714 force_fatal_sig(SIGSEGV);
1719 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1720 struct task_struct *t)
1722 struct kernel_siginfo info;
1724 clear_siginfo(&info);
1725 info.si_signo = sig;
1727 info.si_code = code;
1728 info.si_addr = addr;
1729 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1732 int force_sig_fault(int sig, int code, void __user *addr)
1734 return force_sig_fault_to_task(sig, code, addr, current);
1737 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1739 struct kernel_siginfo info;
1741 clear_siginfo(&info);
1742 info.si_signo = sig;
1744 info.si_code = code;
1745 info.si_addr = addr;
1746 return send_sig_info(info.si_signo, &info, t);
1749 int force_sig_mceerr(int code, void __user *addr, short lsb)
1751 struct kernel_siginfo info;
1753 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754 clear_siginfo(&info);
1755 info.si_signo = SIGBUS;
1757 info.si_code = code;
1758 info.si_addr = addr;
1759 info.si_addr_lsb = lsb;
1760 return force_sig_info(&info);
1763 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1765 struct kernel_siginfo info;
1767 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768 clear_siginfo(&info);
1769 info.si_signo = SIGBUS;
1771 info.si_code = code;
1772 info.si_addr = addr;
1773 info.si_addr_lsb = lsb;
1774 return send_sig_info(info.si_signo, &info, t);
1776 EXPORT_SYMBOL(send_sig_mceerr);
1778 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1780 struct kernel_siginfo info;
1782 clear_siginfo(&info);
1783 info.si_signo = SIGSEGV;
1785 info.si_code = SEGV_BNDERR;
1786 info.si_addr = addr;
1787 info.si_lower = lower;
1788 info.si_upper = upper;
1789 return force_sig_info(&info);
1793 int force_sig_pkuerr(void __user *addr, u32 pkey)
1795 struct kernel_siginfo info;
1797 clear_siginfo(&info);
1798 info.si_signo = SIGSEGV;
1800 info.si_code = SEGV_PKUERR;
1801 info.si_addr = addr;
1802 info.si_pkey = pkey;
1803 return force_sig_info(&info);
1807 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1809 struct kernel_siginfo info;
1811 clear_siginfo(&info);
1812 info.si_signo = SIGTRAP;
1814 info.si_code = TRAP_PERF;
1815 info.si_addr = addr;
1816 info.si_perf_data = sig_data;
1817 info.si_perf_type = type;
1820 * Signals generated by perf events should not terminate the whole
1821 * process if SIGTRAP is blocked, however, delivering the signal
1822 * asynchronously is better than not delivering at all. But tell user
1823 * space if the signal was asynchronous, so it can clearly be
1824 * distinguished from normal synchronous ones.
1826 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1827 TRAP_PERF_FLAG_ASYNC :
1830 return send_sig_info(info.si_signo, &info, current);
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1841 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1843 struct kernel_siginfo info;
1845 clear_siginfo(&info);
1846 info.si_signo = SIGSYS;
1847 info.si_code = SYS_SECCOMP;
1848 info.si_call_addr = (void __user *)KSTK_EIP(current);
1849 info.si_errno = reason;
1850 info.si_arch = syscall_get_arch(current);
1851 info.si_syscall = syscall;
1852 return force_sig_info_to_task(&info, current,
1853 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1856 /* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1859 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1861 struct kernel_siginfo info;
1863 clear_siginfo(&info);
1864 info.si_signo = SIGTRAP;
1865 info.si_errno = errno;
1866 info.si_code = TRAP_HWBKPT;
1867 info.si_addr = addr;
1868 return force_sig_info(&info);
1871 /* For the rare architectures that include trap information using
1874 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1876 struct kernel_siginfo info;
1878 clear_siginfo(&info);
1879 info.si_signo = sig;
1881 info.si_code = code;
1882 info.si_addr = addr;
1883 info.si_trapno = trapno;
1884 return force_sig_info(&info);
1887 /* For the rare architectures that include trap information using
1890 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891 struct task_struct *t)
1893 struct kernel_siginfo info;
1895 clear_siginfo(&info);
1896 info.si_signo = sig;
1898 info.si_code = code;
1899 info.si_addr = addr;
1900 info.si_trapno = trapno;
1901 return send_sig_info(info.si_signo, &info, t);
1904 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1907 read_lock(&tasklist_lock);
1908 ret = __kill_pgrp_info(sig, info, pgrp);
1909 read_unlock(&tasklist_lock);
1913 int kill_pgrp(struct pid *pid, int sig, int priv)
1915 return kill_pgrp_info(sig, __si_special(priv), pid);
1917 EXPORT_SYMBOL(kill_pgrp);
1919 int kill_pid(struct pid *pid, int sig, int priv)
1921 return kill_pid_info(sig, __si_special(priv), pid);
1923 EXPORT_SYMBOL(kill_pid);
1926 * These functions support sending signals using preallocated sigqueue
1927 * structures. This is needed "because realtime applications cannot
1928 * afford to lose notifications of asynchronous events, like timer
1929 * expirations or I/O completions". In the case of POSIX Timers
1930 * we allocate the sigqueue structure from the timer_create. If this
1931 * allocation fails we are able to report the failure to the application
1932 * with an EAGAIN error.
1934 struct sigqueue *sigqueue_alloc(void)
1936 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1939 void sigqueue_free(struct sigqueue *q)
1941 spinlock_t *lock = ¤t->sighand->siglock;
1942 unsigned long flags;
1944 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
1947 * We must hold ->siglock while testing q->list
1948 * to serialize with collect_signal() or with
1949 * __exit_signal()->flush_sigqueue().
1951 spin_lock_irqsave(lock, flags);
1952 q->flags &= ~SIGQUEUE_PREALLOC;
1954 * If it is queued it will be freed when dequeued,
1955 * like the "regular" sigqueue.
1957 if (!list_empty(&q->list))
1959 spin_unlock_irqrestore(lock, flags);
1965 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1967 int sig = q->info.si_signo;
1968 struct sigpending *pending;
1969 struct task_struct *t;
1970 unsigned long flags;
1973 if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
1975 if (WARN_ON_ONCE(q->info.si_code != SI_TIMER))
1982 * This function is used by POSIX timers to deliver a timer signal.
1983 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984 * set), the signal must be delivered to the specific thread (queues
1987 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988 * process. In this case, prefer to deliver to current if it is in
1989 * the same thread group as the target process, which avoids
1990 * unnecessarily waking up a potentially idle task.
1992 t = pid_task(pid, type);
1995 if (type != PIDTYPE_PID && same_thread_group(t, current))
1997 if (!likely(lock_task_sighand(t, &flags)))
2000 ret = 1; /* the signal is ignored */
2001 result = TRACE_SIGNAL_IGNORED;
2002 if (!prepare_signal(sig, t, false))
2006 if (unlikely(!list_empty(&q->list))) {
2008 * If an SI_TIMER entry is already queue just increment
2009 * the overrun count.
2011 q->info.si_overrun++;
2012 result = TRACE_SIGNAL_ALREADY_PENDING;
2015 q->info.si_overrun = 0;
2017 signalfd_notify(t, sig);
2018 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2019 list_add_tail(&q->list, &pending->list);
2020 sigaddset(&pending->signal, sig);
2021 complete_signal(sig, t, type);
2022 result = TRACE_SIGNAL_DELIVERED;
2024 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2025 unlock_task_sighand(t, &flags);
2031 void do_notify_pidfd(struct task_struct *task)
2033 struct pid *pid = task_pid(task);
2035 WARN_ON(task->exit_state == 0);
2037 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2038 poll_to_key(EPOLLIN | EPOLLRDNORM));
2042 * Let a parent know about the death of a child.
2043 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045 * Returns true if our parent ignored us and so we've switched to
2048 bool do_notify_parent(struct task_struct *tsk, int sig)
2050 struct kernel_siginfo info;
2051 unsigned long flags;
2052 struct sighand_struct *psig;
2053 bool autoreap = false;
2056 WARN_ON_ONCE(sig == -1);
2058 /* do_notify_parent_cldstop should have been called instead. */
2059 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061 WARN_ON_ONCE(!tsk->ptrace &&
2062 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064 * tsk is a group leader and has no threads, wake up the
2065 * non-PIDFD_THREAD waiters.
2067 if (thread_group_empty(tsk))
2068 do_notify_pidfd(tsk);
2070 if (sig != SIGCHLD) {
2072 * This is only possible if parent == real_parent.
2073 * Check if it has changed security domain.
2075 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2079 clear_siginfo(&info);
2080 info.si_signo = sig;
2083 * We are under tasklist_lock here so our parent is tied to
2084 * us and cannot change.
2086 * task_active_pid_ns will always return the same pid namespace
2087 * until a task passes through release_task.
2089 * write_lock() currently calls preempt_disable() which is the
2090 * same as rcu_read_lock(), but according to Oleg, this is not
2091 * correct to rely on this
2094 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2095 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2099 task_cputime(tsk, &utime, &stime);
2100 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2101 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103 info.si_status = tsk->exit_code & 0x7f;
2104 if (tsk->exit_code & 0x80)
2105 info.si_code = CLD_DUMPED;
2106 else if (tsk->exit_code & 0x7f)
2107 info.si_code = CLD_KILLED;
2109 info.si_code = CLD_EXITED;
2110 info.si_status = tsk->exit_code >> 8;
2113 psig = tsk->parent->sighand;
2114 spin_lock_irqsave(&psig->siglock, flags);
2115 if (!tsk->ptrace && sig == SIGCHLD &&
2116 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2117 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119 * We are exiting and our parent doesn't care. POSIX.1
2120 * defines special semantics for setting SIGCHLD to SIG_IGN
2121 * or setting the SA_NOCLDWAIT flag: we should be reaped
2122 * automatically and not left for our parent's wait4 call.
2123 * Rather than having the parent do it as a magic kind of
2124 * signal handler, we just set this to tell do_exit that we
2125 * can be cleaned up without becoming a zombie. Note that
2126 * we still call __wake_up_parent in this case, because a
2127 * blocked sys_wait4 might now return -ECHILD.
2129 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2130 * is implementation-defined: we do (if you don't want
2131 * it, just use SIG_IGN instead).
2134 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2138 * Send with __send_signal as si_pid and si_uid are in the
2139 * parent's namespaces.
2141 if (valid_signal(sig) && sig)
2142 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2143 __wake_up_parent(tsk, tsk->parent);
2144 spin_unlock_irqrestore(&psig->siglock, flags);
2150 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2151 * @tsk: task reporting the state change
2152 * @for_ptracer: the notification is for ptracer
2153 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155 * Notify @tsk's parent that the stopped/continued state has changed. If
2156 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2157 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2160 * Must be called with tasklist_lock at least read locked.
2162 static void do_notify_parent_cldstop(struct task_struct *tsk,
2163 bool for_ptracer, int why)
2165 struct kernel_siginfo info;
2166 unsigned long flags;
2167 struct task_struct *parent;
2168 struct sighand_struct *sighand;
2172 parent = tsk->parent;
2174 tsk = tsk->group_leader;
2175 parent = tsk->real_parent;
2178 clear_siginfo(&info);
2179 info.si_signo = SIGCHLD;
2182 * see comment in do_notify_parent() about the following 4 lines
2185 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2186 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2189 task_cputime(tsk, &utime, &stime);
2190 info.si_utime = nsec_to_clock_t(utime);
2191 info.si_stime = nsec_to_clock_t(stime);
2196 info.si_status = SIGCONT;
2199 info.si_status = tsk->signal->group_exit_code & 0x7f;
2202 info.si_status = tsk->exit_code & 0x7f;
2208 sighand = parent->sighand;
2209 spin_lock_irqsave(&sighand->siglock, flags);
2210 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2211 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2212 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216 __wake_up_parent(tsk, parent);
2217 spin_unlock_irqrestore(&sighand->siglock, flags);
2221 * This must be called with current->sighand->siglock held.
2223 * This should be the path for all ptrace stops.
2224 * We always set current->last_siginfo while stopped here.
2225 * That makes it a way to test a stopped process for
2226 * being ptrace-stopped vs being job-control-stopped.
2228 * Returns the signal the ptracer requested the code resume
2229 * with. If the code did not stop because the tracer is gone,
2230 * the stop signal remains unchanged unless clear_code.
2232 static int ptrace_stop(int exit_code, int why, unsigned long message,
2233 kernel_siginfo_t *info)
2234 __releases(¤t->sighand->siglock)
2235 __acquires(¤t->sighand->siglock)
2237 bool gstop_done = false;
2239 if (arch_ptrace_stop_needed()) {
2241 * The arch code has something special to do before a
2242 * ptrace stop. This is allowed to block, e.g. for faults
2243 * on user stack pages. We can't keep the siglock while
2244 * calling arch_ptrace_stop, so we must release it now.
2245 * To preserve proper semantics, we must do this before
2246 * any signal bookkeeping like checking group_stop_count.
2248 spin_unlock_irq(¤t->sighand->siglock);
2250 spin_lock_irq(¤t->sighand->siglock);
2254 * After this point ptrace_signal_wake_up or signal_wake_up
2255 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2256 * signal comes in. Handle previous ptrace_unlinks and fatal
2257 * signals here to prevent ptrace_stop sleeping in schedule.
2259 if (!current->ptrace || __fatal_signal_pending(current))
2262 set_special_state(TASK_TRACED);
2263 current->jobctl |= JOBCTL_TRACED;
2266 * We're committing to trapping. TRACED should be visible before
2267 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2268 * Also, transition to TRACED and updates to ->jobctl should be
2269 * atomic with respect to siglock and should be done after the arch
2270 * hook as siglock is released and regrabbed across it.
2275 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2277 * set_current_state() smp_wmb();
2279 * wait_task_stopped()
2280 * task_stopped_code()
2281 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2285 current->ptrace_message = message;
2286 current->last_siginfo = info;
2287 current->exit_code = exit_code;
2290 * If @why is CLD_STOPPED, we're trapping to participate in a group
2291 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2292 * across siglock relocks since INTERRUPT was scheduled, PENDING
2293 * could be clear now. We act as if SIGCONT is received after
2294 * TASK_TRACED is entered - ignore it.
2296 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2297 gstop_done = task_participate_group_stop(current);
2299 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2300 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2301 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2302 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304 /* entering a trap, clear TRAPPING */
2305 task_clear_jobctl_trapping(current);
2307 spin_unlock_irq(¤t->sighand->siglock);
2308 read_lock(&tasklist_lock);
2310 * Notify parents of the stop.
2312 * While ptraced, there are two parents - the ptracer and
2313 * the real_parent of the group_leader. The ptracer should
2314 * know about every stop while the real parent is only
2315 * interested in the completion of group stop. The states
2316 * for the two don't interact with each other. Notify
2317 * separately unless they're gonna be duplicates.
2319 if (current->ptrace)
2320 do_notify_parent_cldstop(current, true, why);
2321 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2322 do_notify_parent_cldstop(current, false, why);
2325 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2326 * One a PREEMPTION kernel this can result in preemption requirement
2327 * which will be fulfilled after read_unlock() and the ptracer will be
2329 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2330 * this task wait in schedule(). If this task gets preempted then it
2331 * remains enqueued on the runqueue. The ptracer will observe this and
2332 * then sleep for a delay of one HZ tick. In the meantime this task
2333 * gets scheduled, enters schedule() and will wait for the ptracer.
2335 * This preemption point is not bad from a correctness point of
2336 * view but extends the runtime by one HZ tick time due to the
2337 * ptracer's sleep. The preempt-disable section ensures that there
2338 * will be no preemption between unlock and schedule() and so
2339 * improving the performance since the ptracer will observe that
2340 * the tracee is scheduled out once it gets on the CPU.
2342 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2343 * Therefore the task can be preempted after do_notify_parent_cldstop()
2344 * before unlocking tasklist_lock so there is no benefit in doing this.
2346 * In fact disabling preemption is harmful on PREEMPT_RT because
2347 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2348 * with preemption disabled due to the 'sleeping' spinlock
2349 * substitution of RT.
2351 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353 read_unlock(&tasklist_lock);
2354 cgroup_enter_frozen();
2355 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2356 preempt_enable_no_resched();
2358 cgroup_leave_frozen(true);
2361 * We are back. Now reacquire the siglock before touching
2362 * last_siginfo, so that we are sure to have synchronized with
2363 * any signal-sending on another CPU that wants to examine it.
2365 spin_lock_irq(¤t->sighand->siglock);
2366 exit_code = current->exit_code;
2367 current->last_siginfo = NULL;
2368 current->ptrace_message = 0;
2369 current->exit_code = 0;
2371 /* LISTENING can be set only during STOP traps, clear it */
2372 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2375 * Queued signals ignored us while we were stopped for tracing.
2376 * So check for any that we should take before resuming user mode.
2377 * This sets TIF_SIGPENDING, but never clears it.
2379 recalc_sigpending_tsk(current);
2383 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385 kernel_siginfo_t info;
2387 clear_siginfo(&info);
2388 info.si_signo = signr;
2389 info.si_code = exit_code;
2390 info.si_pid = task_pid_vnr(current);
2391 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393 /* Let the debugger run. */
2394 return ptrace_stop(exit_code, why, message, &info);
2397 int ptrace_notify(int exit_code, unsigned long message)
2401 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2402 if (unlikely(task_work_pending(current)))
2405 spin_lock_irq(¤t->sighand->siglock);
2406 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2407 spin_unlock_irq(¤t->sighand->siglock);
2412 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2413 * @signr: signr causing group stop if initiating
2415 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2416 * and participate in it. If already set, participate in the existing
2417 * group stop. If participated in a group stop (and thus slept), %true is
2418 * returned with siglock released.
2420 * If ptraced, this function doesn't handle stop itself. Instead,
2421 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2422 * untouched. The caller must ensure that INTERRUPT trap handling takes
2423 * places afterwards.
2426 * Must be called with @current->sighand->siglock held, which is released
2430 * %false if group stop is already cancelled or ptrace trap is scheduled.
2431 * %true if participated in group stop.
2433 static bool do_signal_stop(int signr)
2434 __releases(¤t->sighand->siglock)
2436 struct signal_struct *sig = current->signal;
2438 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2439 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2440 struct task_struct *t;
2442 /* signr will be recorded in task->jobctl for retries */
2443 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2446 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2447 unlikely(sig->group_exec_task))
2450 * There is no group stop already in progress. We must
2453 * While ptraced, a task may be resumed while group stop is
2454 * still in effect and then receive a stop signal and
2455 * initiate another group stop. This deviates from the
2456 * usual behavior as two consecutive stop signals can't
2457 * cause two group stops when !ptraced. That is why we
2458 * also check !task_is_stopped(t) below.
2460 * The condition can be distinguished by testing whether
2461 * SIGNAL_STOP_STOPPED is already set. Don't generate
2462 * group_exit_code in such case.
2464 * This is not necessary for SIGNAL_STOP_CONTINUED because
2465 * an intervening stop signal is required to cause two
2466 * continued events regardless of ptrace.
2468 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2469 sig->group_exit_code = signr;
2471 sig->group_stop_count = 0;
2472 if (task_set_jobctl_pending(current, signr | gstop))
2473 sig->group_stop_count++;
2475 for_other_threads(current, t) {
2477 * Setting state to TASK_STOPPED for a group
2478 * stop is always done with the siglock held,
2479 * so this check has no races.
2481 if (!task_is_stopped(t) &&
2482 task_set_jobctl_pending(t, signr | gstop)) {
2483 sig->group_stop_count++;
2484 if (likely(!(t->ptrace & PT_SEIZED)))
2485 signal_wake_up(t, 0);
2487 ptrace_trap_notify(t);
2492 if (likely(!current->ptrace)) {
2496 * If there are no other threads in the group, or if there
2497 * is a group stop in progress and we are the last to stop,
2498 * report to the parent.
2500 if (task_participate_group_stop(current))
2501 notify = CLD_STOPPED;
2503 current->jobctl |= JOBCTL_STOPPED;
2504 set_special_state(TASK_STOPPED);
2505 spin_unlock_irq(¤t->sighand->siglock);
2508 * Notify the parent of the group stop completion. Because
2509 * we're not holding either the siglock or tasklist_lock
2510 * here, ptracer may attach inbetween; however, this is for
2511 * group stop and should always be delivered to the real
2512 * parent of the group leader. The new ptracer will get
2513 * its notification when this task transitions into
2517 read_lock(&tasklist_lock);
2518 do_notify_parent_cldstop(current, false, notify);
2519 read_unlock(&tasklist_lock);
2522 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2523 cgroup_enter_frozen();
2528 * While ptraced, group stop is handled by STOP trap.
2529 * Schedule it and let the caller deal with it.
2531 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2537 * do_jobctl_trap - take care of ptrace jobctl traps
2539 * When PT_SEIZED, it's used for both group stop and explicit
2540 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2541 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2542 * the stop signal; otherwise, %SIGTRAP.
2544 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2545 * number as exit_code and no siginfo.
2548 * Must be called with @current->sighand->siglock held, which may be
2549 * released and re-acquired before returning with intervening sleep.
2551 static void do_jobctl_trap(void)
2553 struct signal_struct *signal = current->signal;
2554 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556 if (current->ptrace & PT_SEIZED) {
2557 if (!signal->group_stop_count &&
2558 !(signal->flags & SIGNAL_STOP_STOPPED))
2560 WARN_ON_ONCE(!signr);
2561 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2564 WARN_ON_ONCE(!signr);
2565 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2570 * do_freezer_trap - handle the freezer jobctl trap
2572 * Puts the task into frozen state, if only the task is not about to quit.
2573 * In this case it drops JOBCTL_TRAP_FREEZE.
2576 * Must be called with @current->sighand->siglock held,
2577 * which is always released before returning.
2579 static void do_freezer_trap(void)
2580 __releases(¤t->sighand->siglock)
2583 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2584 * let's make another loop to give it a chance to be handled.
2585 * In any case, we'll return back.
2587 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2588 JOBCTL_TRAP_FREEZE) {
2589 spin_unlock_irq(¤t->sighand->siglock);
2594 * Now we're sure that there is no pending fatal signal and no
2595 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2596 * immediately (if there is a non-fatal signal pending), and
2597 * put the task into sleep.
2599 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2600 clear_thread_flag(TIF_SIGPENDING);
2601 spin_unlock_irq(¤t->sighand->siglock);
2602 cgroup_enter_frozen();
2606 * We could've been woken by task_work, run it to clear
2607 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2609 clear_notify_signal();
2610 if (unlikely(task_work_pending(current)))
2614 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2617 * We do not check sig_kernel_stop(signr) but set this marker
2618 * unconditionally because we do not know whether debugger will
2619 * change signr. This flag has no meaning unless we are going
2620 * to stop after return from ptrace_stop(). In this case it will
2621 * be checked in do_signal_stop(), we should only stop if it was
2622 * not cleared by SIGCONT while we were sleeping. See also the
2623 * comment in dequeue_signal().
2625 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2626 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2628 /* We're back. Did the debugger cancel the sig? */
2633 * Update the siginfo structure if the signal has
2634 * changed. If the debugger wanted something
2635 * specific in the siginfo structure then it should
2636 * have updated *info via PTRACE_SETSIGINFO.
2638 if (signr != info->si_signo) {
2639 clear_siginfo(info);
2640 info->si_signo = signr;
2642 info->si_code = SI_USER;
2644 info->si_pid = task_pid_vnr(current->parent);
2645 info->si_uid = from_kuid_munged(current_user_ns(),
2646 task_uid(current->parent));
2650 /* If the (new) signal is now blocked, requeue it. */
2651 if (sigismember(¤t->blocked, signr) ||
2652 fatal_signal_pending(current)) {
2653 send_signal_locked(signr, info, current, type);
2660 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2662 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2664 case SIL_FAULT_TRAPNO:
2665 case SIL_FAULT_MCEERR:
2666 case SIL_FAULT_BNDERR:
2667 case SIL_FAULT_PKUERR:
2668 case SIL_FAULT_PERF_EVENT:
2669 ksig->info.si_addr = arch_untagged_si_addr(
2670 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2682 bool get_signal(struct ksignal *ksig)
2684 struct sighand_struct *sighand = current->sighand;
2685 struct signal_struct *signal = current->signal;
2688 clear_notify_signal();
2689 if (unlikely(task_work_pending(current)))
2692 if (!task_sigpending(current))
2695 if (unlikely(uprobe_deny_signal()))
2699 * Do this once, we can't return to user-mode if freezing() == T.
2700 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2701 * thus do not need another check after return.
2706 spin_lock_irq(&sighand->siglock);
2709 * Every stopped thread goes here after wakeup. Check to see if
2710 * we should notify the parent, prepare_signal(SIGCONT) encodes
2711 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2713 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2716 if (signal->flags & SIGNAL_CLD_CONTINUED)
2717 why = CLD_CONTINUED;
2721 signal->flags &= ~SIGNAL_CLD_MASK;
2723 spin_unlock_irq(&sighand->siglock);
2726 * Notify the parent that we're continuing. This event is
2727 * always per-process and doesn't make whole lot of sense
2728 * for ptracers, who shouldn't consume the state via
2729 * wait(2) either, but, for backward compatibility, notify
2730 * the ptracer of the group leader too unless it's gonna be
2733 read_lock(&tasklist_lock);
2734 do_notify_parent_cldstop(current, false, why);
2736 if (ptrace_reparented(current->group_leader))
2737 do_notify_parent_cldstop(current->group_leader,
2739 read_unlock(&tasklist_lock);
2745 struct k_sigaction *ka;
2748 /* Has this task already been marked for death? */
2749 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2750 signal->group_exec_task) {
2752 sigdelset(¤t->pending.signal, SIGKILL);
2753 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2754 &sighand->action[SIGKILL-1]);
2755 recalc_sigpending();
2757 * implies do_group_exit() or return to PF_USER_WORKER,
2758 * no need to initialize ksig->info/etc.
2763 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2767 if (unlikely(current->jobctl &
2768 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2769 if (current->jobctl & JOBCTL_TRAP_MASK) {
2771 spin_unlock_irq(&sighand->siglock);
2772 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2779 * If the task is leaving the frozen state, let's update
2780 * cgroup counters and reset the frozen bit.
2782 if (unlikely(cgroup_task_frozen(current))) {
2783 spin_unlock_irq(&sighand->siglock);
2784 cgroup_leave_frozen(false);
2789 * Signals generated by the execution of an instruction
2790 * need to be delivered before any other pending signals
2791 * so that the instruction pointer in the signal stack
2792 * frame points to the faulting instruction.
2795 signr = dequeue_synchronous_signal(&ksig->info);
2797 signr = dequeue_signal(¤t->blocked, &ksig->info, &type);
2800 break; /* will return 0 */
2802 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2803 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2804 signr = ptrace_signal(signr, &ksig->info, type);
2809 ka = &sighand->action[signr-1];
2811 /* Trace actually delivered signals. */
2812 trace_signal_deliver(signr, &ksig->info, ka);
2814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2816 if (ka->sa.sa_handler != SIG_DFL) {
2817 /* Run the handler. */
2820 if (ka->sa.sa_flags & SA_ONESHOT)
2821 ka->sa.sa_handler = SIG_DFL;
2823 break; /* will return non-zero "signr" value */
2827 * Now we are doing the default action for this signal.
2829 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2833 * Global init gets no signals it doesn't want.
2834 * Container-init gets no signals it doesn't want from same
2837 * Note that if global/container-init sees a sig_kernel_only()
2838 * signal here, the signal must have been generated internally
2839 * or must have come from an ancestor namespace. In either
2840 * case, the signal cannot be dropped.
2842 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2843 !sig_kernel_only(signr))
2846 if (sig_kernel_stop(signr)) {
2848 * The default action is to stop all threads in
2849 * the thread group. The job control signals
2850 * do nothing in an orphaned pgrp, but SIGSTOP
2851 * always works. Note that siglock needs to be
2852 * dropped during the call to is_orphaned_pgrp()
2853 * because of lock ordering with tasklist_lock.
2854 * This allows an intervening SIGCONT to be posted.
2855 * We need to check for that and bail out if necessary.
2857 if (signr != SIGSTOP) {
2858 spin_unlock_irq(&sighand->siglock);
2860 /* signals can be posted during this window */
2862 if (is_current_pgrp_orphaned())
2865 spin_lock_irq(&sighand->siglock);
2868 if (likely(do_signal_stop(signr))) {
2869 /* It released the siglock. */
2874 * We didn't actually stop, due to a race
2875 * with SIGCONT or something like that.
2881 spin_unlock_irq(&sighand->siglock);
2882 if (unlikely(cgroup_task_frozen(current)))
2883 cgroup_leave_frozen(true);
2886 * Anything else is fatal, maybe with a core dump.
2888 current->flags |= PF_SIGNALED;
2890 if (sig_kernel_coredump(signr)) {
2893 if (print_fatal_signals)
2894 print_fatal_signal(signr);
2895 proc_coredump_connector(current);
2897 * If it was able to dump core, this kills all
2898 * other threads in the group and synchronizes with
2899 * their demise. If we lost the race with another
2900 * thread getting here, it set group_exit_code
2901 * first and our do_group_exit call below will use
2902 * that value and ignore the one we pass it.
2904 ret = do_coredump(&ksig->info);
2906 coredump_report_failure("coredump has not been created, error %d",
2908 else if (!IS_ENABLED(CONFIG_COREDUMP)) {
2910 * Coredumps are not available, can't fail collecting
2913 * Leave a note though that the coredump is going to be
2914 * not created. This is not an error or a warning as disabling
2915 * support in the kernel for coredumps isn't commonplace, and
2916 * the user must've built the kernel with the custom config so
2917 * let them know all works as desired.
2919 coredump_report("no coredump collected as "
2920 "that is disabled in the kernel configuration");
2925 * PF_USER_WORKER threads will catch and exit on fatal signals
2926 * themselves. They have cleanup that must be performed, so we
2927 * cannot call do_exit() on their behalf. Note that ksig won't
2928 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2930 if (current->flags & PF_USER_WORKER)
2934 * Death signals, no core dump.
2936 do_group_exit(signr);
2939 spin_unlock_irq(&sighand->siglock);
2943 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2944 hide_si_addr_tag_bits(ksig);
2950 * signal_delivered - called after signal delivery to update blocked signals
2951 * @ksig: kernel signal struct
2952 * @stepping: nonzero if debugger single-step or block-step in use
2954 * This function should be called when a signal has successfully been
2955 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2956 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2957 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2959 static void signal_delivered(struct ksignal *ksig, int stepping)
2963 /* A signal was successfully delivered, and the
2964 saved sigmask was stored on the signal frame,
2965 and will be restored by sigreturn. So we can
2966 simply clear the restore sigmask flag. */
2967 clear_restore_sigmask();
2969 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2970 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2971 sigaddset(&blocked, ksig->sig);
2972 set_current_blocked(&blocked);
2973 if (current->sas_ss_flags & SS_AUTODISARM)
2974 sas_ss_reset(current);
2976 ptrace_notify(SIGTRAP, 0);
2979 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2982 force_sigsegv(ksig->sig);
2984 signal_delivered(ksig, stepping);
2988 * It could be that complete_signal() picked us to notify about the
2989 * group-wide signal. Other threads should be notified now to take
2990 * the shared signals in @which since we will not.
2992 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2995 struct task_struct *t;
2997 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2998 if (sigisemptyset(&retarget))
3001 for_other_threads(tsk, t) {
3002 if (t->flags & PF_EXITING)
3005 if (!has_pending_signals(&retarget, &t->blocked))
3007 /* Remove the signals this thread can handle. */
3008 sigandsets(&retarget, &retarget, &t->blocked);
3010 if (!task_sigpending(t))
3011 signal_wake_up(t, 0);
3013 if (sigisemptyset(&retarget))
3018 void exit_signals(struct task_struct *tsk)
3024 * @tsk is about to have PF_EXITING set - lock out users which
3025 * expect stable threadgroup.
3027 cgroup_threadgroup_change_begin(tsk);
3029 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3030 sched_mm_cid_exit_signals(tsk);
3031 tsk->flags |= PF_EXITING;
3032 cgroup_threadgroup_change_end(tsk);
3036 spin_lock_irq(&tsk->sighand->siglock);
3038 * From now this task is not visible for group-wide signals,
3039 * see wants_signal(), do_signal_stop().
3041 sched_mm_cid_exit_signals(tsk);
3042 tsk->flags |= PF_EXITING;
3044 cgroup_threadgroup_change_end(tsk);
3046 if (!task_sigpending(tsk))
3049 unblocked = tsk->blocked;
3050 signotset(&unblocked);
3051 retarget_shared_pending(tsk, &unblocked);
3053 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3054 task_participate_group_stop(tsk))
3055 group_stop = CLD_STOPPED;
3057 spin_unlock_irq(&tsk->sighand->siglock);
3060 * If group stop has completed, deliver the notification. This
3061 * should always go to the real parent of the group leader.
3063 if (unlikely(group_stop)) {
3064 read_lock(&tasklist_lock);
3065 do_notify_parent_cldstop(tsk, false, group_stop);
3066 read_unlock(&tasklist_lock);
3071 * System call entry points.
3075 * sys_restart_syscall - restart a system call
3077 SYSCALL_DEFINE0(restart_syscall)
3079 struct restart_block *restart = ¤t->restart_block;
3080 return restart->fn(restart);
3083 long do_no_restart_syscall(struct restart_block *param)
3088 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3090 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3091 sigset_t newblocked;
3092 /* A set of now blocked but previously unblocked signals. */
3093 sigandnsets(&newblocked, newset, ¤t->blocked);
3094 retarget_shared_pending(tsk, &newblocked);
3096 tsk->blocked = *newset;
3097 recalc_sigpending();
3101 * set_current_blocked - change current->blocked mask
3104 * It is wrong to change ->blocked directly, this helper should be used
3105 * to ensure the process can't miss a shared signal we are going to block.
3107 void set_current_blocked(sigset_t *newset)
3109 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3110 __set_current_blocked(newset);
3113 void __set_current_blocked(const sigset_t *newset)
3115 struct task_struct *tsk = current;
3118 * In case the signal mask hasn't changed, there is nothing we need
3119 * to do. The current->blocked shouldn't be modified by other task.
3121 if (sigequalsets(&tsk->blocked, newset))
3124 spin_lock_irq(&tsk->sighand->siglock);
3125 __set_task_blocked(tsk, newset);
3126 spin_unlock_irq(&tsk->sighand->siglock);
3130 * This is also useful for kernel threads that want to temporarily
3131 * (or permanently) block certain signals.
3133 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3134 * interface happily blocks "unblockable" signals like SIGKILL
3137 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3139 struct task_struct *tsk = current;
3142 /* Lockless, only current can change ->blocked, never from irq */
3144 *oldset = tsk->blocked;
3148 sigorsets(&newset, &tsk->blocked, set);
3151 sigandnsets(&newset, &tsk->blocked, set);
3160 __set_current_blocked(&newset);
3163 EXPORT_SYMBOL(sigprocmask);
3166 * The api helps set app-provided sigmasks.
3168 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3169 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3171 * Note that it does set_restore_sigmask() in advance, so it must be always
3172 * paired with restore_saved_sigmask_unless() before return from syscall.
3174 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3180 if (sigsetsize != sizeof(sigset_t))
3182 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3185 set_restore_sigmask();
3186 current->saved_sigmask = current->blocked;
3187 set_current_blocked(&kmask);
3192 #ifdef CONFIG_COMPAT
3193 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3200 if (sigsetsize != sizeof(compat_sigset_t))
3202 if (get_compat_sigset(&kmask, umask))
3205 set_restore_sigmask();
3206 current->saved_sigmask = current->blocked;
3207 set_current_blocked(&kmask);
3214 * sys_rt_sigprocmask - change the list of currently blocked signals
3215 * @how: whether to add, remove, or set signals
3216 * @nset: stores pending signals
3217 * @oset: previous value of signal mask if non-null
3218 * @sigsetsize: size of sigset_t type
3220 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3221 sigset_t __user *, oset, size_t, sigsetsize)
3223 sigset_t old_set, new_set;
3226 /* XXX: Don't preclude handling different sized sigset_t's. */
3227 if (sigsetsize != sizeof(sigset_t))
3230 old_set = current->blocked;
3233 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3235 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3237 error = sigprocmask(how, &new_set, NULL);
3243 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3250 #ifdef CONFIG_COMPAT
3251 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3252 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3254 sigset_t old_set = current->blocked;
3256 /* XXX: Don't preclude handling different sized sigset_t's. */
3257 if (sigsetsize != sizeof(sigset_t))
3263 if (get_compat_sigset(&new_set, nset))
3265 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3267 error = sigprocmask(how, &new_set, NULL);
3271 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3275 static void do_sigpending(sigset_t *set)
3277 spin_lock_irq(¤t->sighand->siglock);
3278 sigorsets(set, ¤t->pending.signal,
3279 ¤t->signal->shared_pending.signal);
3280 spin_unlock_irq(¤t->sighand->siglock);
3282 /* Outside the lock because only this thread touches it. */
3283 sigandsets(set, ¤t->blocked, set);
3287 * sys_rt_sigpending - examine a pending signal that has been raised
3289 * @uset: stores pending signals
3290 * @sigsetsize: size of sigset_t type or larger
3292 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3296 if (sigsetsize > sizeof(*uset))
3299 do_sigpending(&set);
3301 if (copy_to_user(uset, &set, sigsetsize))
3307 #ifdef CONFIG_COMPAT
3308 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3309 compat_size_t, sigsetsize)
3313 if (sigsetsize > sizeof(*uset))
3316 do_sigpending(&set);
3318 return put_compat_sigset(uset, &set, sigsetsize);
3322 static const struct {
3323 unsigned char limit, layout;
3325 [SIGILL] = { NSIGILL, SIL_FAULT },
3326 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3327 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3328 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3329 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3331 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3333 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3334 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3335 [SIGSYS] = { NSIGSYS, SIL_SYS },
3338 static bool known_siginfo_layout(unsigned sig, int si_code)
3340 if (si_code == SI_KERNEL)
3342 else if ((si_code > SI_USER)) {
3343 if (sig_specific_sicodes(sig)) {
3344 if (si_code <= sig_sicodes[sig].limit)
3347 else if (si_code <= NSIGPOLL)
3350 else if (si_code >= SI_DETHREAD)
3352 else if (si_code == SI_ASYNCNL)
3357 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3359 enum siginfo_layout layout = SIL_KILL;
3360 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3361 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3362 (si_code <= sig_sicodes[sig].limit)) {
3363 layout = sig_sicodes[sig].layout;
3364 /* Handle the exceptions */
3365 if ((sig == SIGBUS) &&
3366 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3367 layout = SIL_FAULT_MCEERR;
3368 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3369 layout = SIL_FAULT_BNDERR;
3371 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3372 layout = SIL_FAULT_PKUERR;
3374 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3375 layout = SIL_FAULT_PERF_EVENT;
3376 else if (IS_ENABLED(CONFIG_SPARC) &&
3377 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3378 layout = SIL_FAULT_TRAPNO;
3379 else if (IS_ENABLED(CONFIG_ALPHA) &&
3381 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3382 layout = SIL_FAULT_TRAPNO;
3384 else if (si_code <= NSIGPOLL)
3387 if (si_code == SI_TIMER)
3389 else if (si_code == SI_SIGIO)
3391 else if (si_code < 0)
3397 static inline char __user *si_expansion(const siginfo_t __user *info)
3399 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3402 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3404 char __user *expansion = si_expansion(to);
3405 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3407 if (clear_user(expansion, SI_EXPANSION_SIZE))
3412 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3413 const siginfo_t __user *from)
3415 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3416 char __user *expansion = si_expansion(from);
3417 char buf[SI_EXPANSION_SIZE];
3420 * An unknown si_code might need more than
3421 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3422 * extra bytes are 0. This guarantees copy_siginfo_to_user
3423 * will return this data to userspace exactly.
3425 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3427 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3435 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3436 const siginfo_t __user *from)
3438 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3440 to->si_signo = signo;
3441 return post_copy_siginfo_from_user(to, from);
3444 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3446 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3448 return post_copy_siginfo_from_user(to, from);
3451 #ifdef CONFIG_COMPAT
3453 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3454 * @to: compat siginfo destination
3455 * @from: kernel siginfo source
3457 * Note: This function does not work properly for the SIGCHLD on x32, but
3458 * fortunately it doesn't have to. The only valid callers for this function are
3459 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3460 * The latter does not care because SIGCHLD will never cause a coredump.
3462 void copy_siginfo_to_external32(struct compat_siginfo *to,
3463 const struct kernel_siginfo *from)
3465 memset(to, 0, sizeof(*to));
3467 to->si_signo = from->si_signo;
3468 to->si_errno = from->si_errno;
3469 to->si_code = from->si_code;
3470 switch(siginfo_layout(from->si_signo, from->si_code)) {
3472 to->si_pid = from->si_pid;
3473 to->si_uid = from->si_uid;
3476 to->si_tid = from->si_tid;
3477 to->si_overrun = from->si_overrun;
3478 to->si_int = from->si_int;
3481 to->si_band = from->si_band;
3482 to->si_fd = from->si_fd;
3485 to->si_addr = ptr_to_compat(from->si_addr);
3487 case SIL_FAULT_TRAPNO:
3488 to->si_addr = ptr_to_compat(from->si_addr);
3489 to->si_trapno = from->si_trapno;
3491 case SIL_FAULT_MCEERR:
3492 to->si_addr = ptr_to_compat(from->si_addr);
3493 to->si_addr_lsb = from->si_addr_lsb;
3495 case SIL_FAULT_BNDERR:
3496 to->si_addr = ptr_to_compat(from->si_addr);
3497 to->si_lower = ptr_to_compat(from->si_lower);
3498 to->si_upper = ptr_to_compat(from->si_upper);
3500 case SIL_FAULT_PKUERR:
3501 to->si_addr = ptr_to_compat(from->si_addr);
3502 to->si_pkey = from->si_pkey;
3504 case SIL_FAULT_PERF_EVENT:
3505 to->si_addr = ptr_to_compat(from->si_addr);
3506 to->si_perf_data = from->si_perf_data;
3507 to->si_perf_type = from->si_perf_type;
3508 to->si_perf_flags = from->si_perf_flags;
3511 to->si_pid = from->si_pid;
3512 to->si_uid = from->si_uid;
3513 to->si_status = from->si_status;
3514 to->si_utime = from->si_utime;
3515 to->si_stime = from->si_stime;
3518 to->si_pid = from->si_pid;
3519 to->si_uid = from->si_uid;
3520 to->si_int = from->si_int;
3523 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3524 to->si_syscall = from->si_syscall;
3525 to->si_arch = from->si_arch;
3530 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3531 const struct kernel_siginfo *from)
3533 struct compat_siginfo new;
3535 copy_siginfo_to_external32(&new, from);
3536 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3541 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3542 const struct compat_siginfo *from)
3545 to->si_signo = from->si_signo;
3546 to->si_errno = from->si_errno;
3547 to->si_code = from->si_code;
3548 switch(siginfo_layout(from->si_signo, from->si_code)) {
3550 to->si_pid = from->si_pid;
3551 to->si_uid = from->si_uid;
3554 to->si_tid = from->si_tid;
3555 to->si_overrun = from->si_overrun;
3556 to->si_int = from->si_int;
3559 to->si_band = from->si_band;
3560 to->si_fd = from->si_fd;
3563 to->si_addr = compat_ptr(from->si_addr);
3565 case SIL_FAULT_TRAPNO:
3566 to->si_addr = compat_ptr(from->si_addr);
3567 to->si_trapno = from->si_trapno;
3569 case SIL_FAULT_MCEERR:
3570 to->si_addr = compat_ptr(from->si_addr);
3571 to->si_addr_lsb = from->si_addr_lsb;
3573 case SIL_FAULT_BNDERR:
3574 to->si_addr = compat_ptr(from->si_addr);
3575 to->si_lower = compat_ptr(from->si_lower);
3576 to->si_upper = compat_ptr(from->si_upper);
3578 case SIL_FAULT_PKUERR:
3579 to->si_addr = compat_ptr(from->si_addr);
3580 to->si_pkey = from->si_pkey;
3582 case SIL_FAULT_PERF_EVENT:
3583 to->si_addr = compat_ptr(from->si_addr);
3584 to->si_perf_data = from->si_perf_data;
3585 to->si_perf_type = from->si_perf_type;
3586 to->si_perf_flags = from->si_perf_flags;
3589 to->si_pid = from->si_pid;
3590 to->si_uid = from->si_uid;
3591 to->si_status = from->si_status;
3592 #ifdef CONFIG_X86_X32_ABI
3593 if (in_x32_syscall()) {
3594 to->si_utime = from->_sifields._sigchld_x32._utime;
3595 to->si_stime = from->_sifields._sigchld_x32._stime;
3599 to->si_utime = from->si_utime;
3600 to->si_stime = from->si_stime;
3604 to->si_pid = from->si_pid;
3605 to->si_uid = from->si_uid;
3606 to->si_int = from->si_int;
3609 to->si_call_addr = compat_ptr(from->si_call_addr);
3610 to->si_syscall = from->si_syscall;
3611 to->si_arch = from->si_arch;
3617 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3618 const struct compat_siginfo __user *ufrom)
3620 struct compat_siginfo from;
3622 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3625 from.si_signo = signo;
3626 return post_copy_siginfo_from_user32(to, &from);
3629 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3630 const struct compat_siginfo __user *ufrom)
3632 struct compat_siginfo from;
3634 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3637 return post_copy_siginfo_from_user32(to, &from);
3639 #endif /* CONFIG_COMPAT */
3642 * do_sigtimedwait - wait for queued signals specified in @which
3643 * @which: queued signals to wait for
3644 * @info: if non-null, the signal's siginfo is returned here
3645 * @ts: upper bound on process time suspension
3647 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3648 const struct timespec64 *ts)
3650 ktime_t *to = NULL, timeout = KTIME_MAX;
3651 struct task_struct *tsk = current;
3652 sigset_t mask = *which;
3657 if (!timespec64_valid(ts))
3659 timeout = timespec64_to_ktime(*ts);
3664 * Invert the set of allowed signals to get those we want to block.
3666 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3669 spin_lock_irq(&tsk->sighand->siglock);
3670 sig = dequeue_signal(&mask, info, &type);
3671 if (!sig && timeout) {
3673 * None ready, temporarily unblock those we're interested
3674 * while we are sleeping in so that we'll be awakened when
3675 * they arrive. Unblocking is always fine, we can avoid
3676 * set_current_blocked().
3678 tsk->real_blocked = tsk->blocked;
3679 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3680 recalc_sigpending();
3681 spin_unlock_irq(&tsk->sighand->siglock);
3683 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3684 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3686 spin_lock_irq(&tsk->sighand->siglock);
3687 __set_task_blocked(tsk, &tsk->real_blocked);
3688 sigemptyset(&tsk->real_blocked);
3689 sig = dequeue_signal(&mask, info, &type);
3691 spin_unlock_irq(&tsk->sighand->siglock);
3695 return ret ? -EINTR : -EAGAIN;
3699 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3701 * @uthese: queued signals to wait for
3702 * @uinfo: if non-null, the signal's siginfo is returned here
3703 * @uts: upper bound on process time suspension
3704 * @sigsetsize: size of sigset_t type
3706 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3707 siginfo_t __user *, uinfo,
3708 const struct __kernel_timespec __user *, uts,
3712 struct timespec64 ts;
3713 kernel_siginfo_t info;
3716 /* XXX: Don't preclude handling different sized sigset_t's. */
3717 if (sigsetsize != sizeof(sigset_t))
3720 if (copy_from_user(&these, uthese, sizeof(these)))
3724 if (get_timespec64(&ts, uts))
3728 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3730 if (ret > 0 && uinfo) {
3731 if (copy_siginfo_to_user(uinfo, &info))
3738 #ifdef CONFIG_COMPAT_32BIT_TIME
3739 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3740 siginfo_t __user *, uinfo,
3741 const struct old_timespec32 __user *, uts,
3745 struct timespec64 ts;
3746 kernel_siginfo_t info;
3749 if (sigsetsize != sizeof(sigset_t))
3752 if (copy_from_user(&these, uthese, sizeof(these)))
3756 if (get_old_timespec32(&ts, uts))
3760 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3762 if (ret > 0 && uinfo) {
3763 if (copy_siginfo_to_user(uinfo, &info))
3771 #ifdef CONFIG_COMPAT
3772 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3773 struct compat_siginfo __user *, uinfo,
3774 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3777 struct timespec64 t;
3778 kernel_siginfo_t info;
3781 if (sigsetsize != sizeof(sigset_t))
3784 if (get_compat_sigset(&s, uthese))
3788 if (get_timespec64(&t, uts))
3792 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3794 if (ret > 0 && uinfo) {
3795 if (copy_siginfo_to_user32(uinfo, &info))
3802 #ifdef CONFIG_COMPAT_32BIT_TIME
3803 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3804 struct compat_siginfo __user *, uinfo,
3805 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3808 struct timespec64 t;
3809 kernel_siginfo_t info;
3812 if (sigsetsize != sizeof(sigset_t))
3815 if (get_compat_sigset(&s, uthese))
3819 if (get_old_timespec32(&t, uts))
3823 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3825 if (ret > 0 && uinfo) {
3826 if (copy_siginfo_to_user32(uinfo, &info))
3835 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3838 clear_siginfo(info);
3839 info->si_signo = sig;
3841 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3842 info->si_pid = task_tgid_vnr(current);
3843 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3847 * sys_kill - send a signal to a process
3848 * @pid: the PID of the process
3849 * @sig: signal to be sent
3851 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3853 struct kernel_siginfo info;
3855 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3857 return kill_something_info(sig, &info, pid);
3861 * Verify that the signaler and signalee either are in the same pid namespace
3862 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3865 static bool access_pidfd_pidns(struct pid *pid)
3867 struct pid_namespace *active = task_active_pid_ns(current);
3868 struct pid_namespace *p = ns_of_pid(pid);
3881 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3882 siginfo_t __user *info)
3884 #ifdef CONFIG_COMPAT
3886 * Avoid hooking up compat syscalls and instead handle necessary
3887 * conversions here. Note, this is a stop-gap measure and should not be
3888 * considered a generic solution.
3890 if (in_compat_syscall())
3891 return copy_siginfo_from_user32(
3892 kinfo, (struct compat_siginfo __user *)info);
3894 return copy_siginfo_from_user(kinfo, info);
3897 static struct pid *pidfd_to_pid(const struct file *file)
3901 pid = pidfd_pid(file);
3905 return tgid_pidfd_to_pid(file);
3908 #define PIDFD_SEND_SIGNAL_FLAGS \
3909 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3910 PIDFD_SIGNAL_PROCESS_GROUP)
3913 * sys_pidfd_send_signal - Signal a process through a pidfd
3914 * @pidfd: file descriptor of the process
3915 * @sig: signal to send
3916 * @info: signal info
3917 * @flags: future flags
3919 * Send the signal to the thread group or to the individual thread depending
3921 * In the future extension to @flags may be used to override the default scope
3924 * Return: 0 on success, negative errno on failure
3926 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3927 siginfo_t __user *, info, unsigned int, flags)
3932 kernel_siginfo_t kinfo;
3935 /* Enforce flags be set to 0 until we add an extension. */
3936 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3939 /* Ensure that only a single signal scope determining flag is set. */
3940 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3947 /* Is this a pidfd? */
3948 pid = pidfd_to_pid(fd_file(f));
3955 if (!access_pidfd_pidns(pid))
3960 /* Infer scope from the type of pidfd. */
3961 if (fd_file(f)->f_flags & PIDFD_THREAD)
3964 type = PIDTYPE_TGID;
3966 case PIDFD_SIGNAL_THREAD:
3969 case PIDFD_SIGNAL_THREAD_GROUP:
3970 type = PIDTYPE_TGID;
3972 case PIDFD_SIGNAL_PROCESS_GROUP:
3973 type = PIDTYPE_PGID;
3978 ret = copy_siginfo_from_user_any(&kinfo, info);
3983 if (unlikely(sig != kinfo.si_signo))
3986 /* Only allow sending arbitrary signals to yourself. */
3988 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3989 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3992 prepare_kill_siginfo(sig, &kinfo, type);
3995 if (type == PIDTYPE_PGID)
3996 ret = kill_pgrp_info(sig, &kinfo, pid);
3998 ret = kill_pid_info_type(sig, &kinfo, pid, type);
4005 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4007 struct task_struct *p;
4011 p = find_task_by_vpid(pid);
4012 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4013 error = check_kill_permission(sig, info, p);
4015 * The null signal is a permissions and process existence
4016 * probe. No signal is actually delivered.
4018 if (!error && sig) {
4019 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4021 * If lock_task_sighand() failed we pretend the task
4022 * dies after receiving the signal. The window is tiny,
4023 * and the signal is private anyway.
4025 if (unlikely(error == -ESRCH))
4034 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4036 struct kernel_siginfo info;
4038 prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4040 return do_send_specific(tgid, pid, sig, &info);
4044 * sys_tgkill - send signal to one specific thread
4045 * @tgid: the thread group ID of the thread
4046 * @pid: the PID of the thread
4047 * @sig: signal to be sent
4049 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4050 * exists but it's not belonging to the target process anymore. This
4051 * method solves the problem of threads exiting and PIDs getting reused.
4053 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4055 /* This is only valid for single tasks */
4056 if (pid <= 0 || tgid <= 0)
4059 return do_tkill(tgid, pid, sig);
4063 * sys_tkill - send signal to one specific task
4064 * @pid: the PID of the task
4065 * @sig: signal to be sent
4067 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4069 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4071 /* This is only valid for single tasks */
4075 return do_tkill(0, pid, sig);
4078 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4080 /* Not even root can pretend to send signals from the kernel.
4081 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4083 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4084 (task_pid_vnr(current) != pid))
4087 /* POSIX.1b doesn't mention process groups. */
4088 return kill_proc_info(sig, info, pid);
4092 * sys_rt_sigqueueinfo - send signal information to a signal
4093 * @pid: the PID of the thread
4094 * @sig: signal to be sent
4095 * @uinfo: signal info to be sent
4097 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4098 siginfo_t __user *, uinfo)
4100 kernel_siginfo_t info;
4101 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4104 return do_rt_sigqueueinfo(pid, sig, &info);
4107 #ifdef CONFIG_COMPAT
4108 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4111 struct compat_siginfo __user *, uinfo)
4113 kernel_siginfo_t info;
4114 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4117 return do_rt_sigqueueinfo(pid, sig, &info);
4121 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4123 /* This is only valid for single tasks */
4124 if (pid <= 0 || tgid <= 0)
4127 /* Not even root can pretend to send signals from the kernel.
4128 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4130 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4131 (task_pid_vnr(current) != pid))
4134 return do_send_specific(tgid, pid, sig, info);
4137 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4138 siginfo_t __user *, uinfo)
4140 kernel_siginfo_t info;
4141 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4144 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4147 #ifdef CONFIG_COMPAT
4148 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4152 struct compat_siginfo __user *, uinfo)
4154 kernel_siginfo_t info;
4155 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4158 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4163 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4165 void kernel_sigaction(int sig, __sighandler_t action)
4167 spin_lock_irq(¤t->sighand->siglock);
4168 current->sighand->action[sig - 1].sa.sa_handler = action;
4169 if (action == SIG_IGN) {
4173 sigaddset(&mask, sig);
4175 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4176 flush_sigqueue_mask(&mask, ¤t->pending);
4177 recalc_sigpending();
4179 spin_unlock_irq(¤t->sighand->siglock);
4181 EXPORT_SYMBOL(kernel_sigaction);
4183 void __weak sigaction_compat_abi(struct k_sigaction *act,
4184 struct k_sigaction *oact)
4188 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4190 struct task_struct *p = current, *t;
4191 struct k_sigaction *k;
4194 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4197 k = &p->sighand->action[sig-1];
4199 spin_lock_irq(&p->sighand->siglock);
4200 if (k->sa.sa_flags & SA_IMMUTABLE) {
4201 spin_unlock_irq(&p->sighand->siglock);
4208 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4209 * e.g. by having an architecture use the bit in their uapi.
4211 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4214 * Clear unknown flag bits in order to allow userspace to detect missing
4215 * support for flag bits and to allow the kernel to use non-uapi bits
4219 act->sa.sa_flags &= UAPI_SA_FLAGS;
4221 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4223 sigaction_compat_abi(act, oact);
4226 sigdelsetmask(&act->sa.sa_mask,
4227 sigmask(SIGKILL) | sigmask(SIGSTOP));
4231 * "Setting a signal action to SIG_IGN for a signal that is
4232 * pending shall cause the pending signal to be discarded,
4233 * whether or not it is blocked."
4235 * "Setting a signal action to SIG_DFL for a signal that is
4236 * pending and whose default action is to ignore the signal
4237 * (for example, SIGCHLD), shall cause the pending signal to
4238 * be discarded, whether or not it is blocked"
4240 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4242 sigaddset(&mask, sig);
4243 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4244 for_each_thread(p, t)
4245 flush_sigqueue_mask(&mask, &t->pending);
4249 spin_unlock_irq(&p->sighand->siglock);
4253 #ifdef CONFIG_DYNAMIC_SIGFRAME
4254 static inline void sigaltstack_lock(void)
4255 __acquires(¤t->sighand->siglock)
4257 spin_lock_irq(¤t->sighand->siglock);
4260 static inline void sigaltstack_unlock(void)
4261 __releases(¤t->sighand->siglock)
4263 spin_unlock_irq(¤t->sighand->siglock);
4266 static inline void sigaltstack_lock(void) { }
4267 static inline void sigaltstack_unlock(void) { }
4271 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4274 struct task_struct *t = current;
4278 memset(oss, 0, sizeof(stack_t));
4279 oss->ss_sp = (void __user *) t->sas_ss_sp;
4280 oss->ss_size = t->sas_ss_size;
4281 oss->ss_flags = sas_ss_flags(sp) |
4282 (current->sas_ss_flags & SS_FLAG_BITS);
4286 void __user *ss_sp = ss->ss_sp;
4287 size_t ss_size = ss->ss_size;
4288 unsigned ss_flags = ss->ss_flags;
4291 if (unlikely(on_sig_stack(sp)))
4294 ss_mode = ss_flags & ~SS_FLAG_BITS;
4295 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4300 * Return before taking any locks if no actual
4301 * sigaltstack changes were requested.
4303 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4304 t->sas_ss_size == ss_size &&
4305 t->sas_ss_flags == ss_flags)
4309 if (ss_mode == SS_DISABLE) {
4313 if (unlikely(ss_size < min_ss_size))
4315 if (!sigaltstack_size_valid(ss_size))
4319 t->sas_ss_sp = (unsigned long) ss_sp;
4320 t->sas_ss_size = ss_size;
4321 t->sas_ss_flags = ss_flags;
4323 sigaltstack_unlock();
4328 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4332 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4334 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4335 current_user_stack_pointer(),
4337 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4342 int restore_altstack(const stack_t __user *uss)
4345 if (copy_from_user(&new, uss, sizeof(stack_t)))
4347 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4349 /* squash all but EFAULT for now */
4353 int __save_altstack(stack_t __user *uss, unsigned long sp)
4355 struct task_struct *t = current;
4356 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4357 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4358 __put_user(t->sas_ss_size, &uss->ss_size);
4362 #ifdef CONFIG_COMPAT
4363 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4364 compat_stack_t __user *uoss_ptr)
4370 compat_stack_t uss32;
4371 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4373 uss.ss_sp = compat_ptr(uss32.ss_sp);
4374 uss.ss_flags = uss32.ss_flags;
4375 uss.ss_size = uss32.ss_size;
4377 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4378 compat_user_stack_pointer(),
4379 COMPAT_MINSIGSTKSZ);
4380 if (ret >= 0 && uoss_ptr) {
4382 memset(&old, 0, sizeof(old));
4383 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4384 old.ss_flags = uoss.ss_flags;
4385 old.ss_size = uoss.ss_size;
4386 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4392 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4393 const compat_stack_t __user *, uss_ptr,
4394 compat_stack_t __user *, uoss_ptr)
4396 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4399 int compat_restore_altstack(const compat_stack_t __user *uss)
4401 int err = do_compat_sigaltstack(uss, NULL);
4402 /* squash all but -EFAULT for now */
4403 return err == -EFAULT ? err : 0;
4406 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4409 struct task_struct *t = current;
4410 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4412 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4413 __put_user(t->sas_ss_size, &uss->ss_size);
4418 #ifdef __ARCH_WANT_SYS_SIGPENDING
4421 * sys_sigpending - examine pending signals
4422 * @uset: where mask of pending signal is returned
4424 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4428 if (sizeof(old_sigset_t) > sizeof(*uset))
4431 do_sigpending(&set);
4433 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4439 #ifdef CONFIG_COMPAT
4440 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4444 do_sigpending(&set);
4446 return put_user(set.sig[0], set32);
4452 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4454 * sys_sigprocmask - examine and change blocked signals
4455 * @how: whether to add, remove, or set signals
4456 * @nset: signals to add or remove (if non-null)
4457 * @oset: previous value of signal mask if non-null
4459 * Some platforms have their own version with special arguments;
4460 * others support only sys_rt_sigprocmask.
4463 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4464 old_sigset_t __user *, oset)
4466 old_sigset_t old_set, new_set;
4467 sigset_t new_blocked;
4469 old_set = current->blocked.sig[0];
4472 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4475 new_blocked = current->blocked;
4479 sigaddsetmask(&new_blocked, new_set);
4482 sigdelsetmask(&new_blocked, new_set);
4485 new_blocked.sig[0] = new_set;
4491 set_current_blocked(&new_blocked);
4495 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4501 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4503 #ifndef CONFIG_ODD_RT_SIGACTION
4505 * sys_rt_sigaction - alter an action taken by a process
4506 * @sig: signal to be sent
4507 * @act: new sigaction
4508 * @oact: used to save the previous sigaction
4509 * @sigsetsize: size of sigset_t type
4511 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4512 const struct sigaction __user *, act,
4513 struct sigaction __user *, oact,
4516 struct k_sigaction new_sa, old_sa;
4519 /* XXX: Don't preclude handling different sized sigset_t's. */
4520 if (sigsetsize != sizeof(sigset_t))
4523 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4526 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4530 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4535 #ifdef CONFIG_COMPAT
4536 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4537 const struct compat_sigaction __user *, act,
4538 struct compat_sigaction __user *, oact,
4539 compat_size_t, sigsetsize)
4541 struct k_sigaction new_ka, old_ka;
4542 #ifdef __ARCH_HAS_SA_RESTORER
4543 compat_uptr_t restorer;
4547 /* XXX: Don't preclude handling different sized sigset_t's. */
4548 if (sigsetsize != sizeof(compat_sigset_t))
4552 compat_uptr_t handler;
4553 ret = get_user(handler, &act->sa_handler);
4554 new_ka.sa.sa_handler = compat_ptr(handler);
4555 #ifdef __ARCH_HAS_SA_RESTORER
4556 ret |= get_user(restorer, &act->sa_restorer);
4557 new_ka.sa.sa_restorer = compat_ptr(restorer);
4559 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4560 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4565 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4567 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4569 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4570 sizeof(oact->sa_mask));
4571 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4572 #ifdef __ARCH_HAS_SA_RESTORER
4573 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4574 &oact->sa_restorer);
4580 #endif /* !CONFIG_ODD_RT_SIGACTION */
4582 #ifdef CONFIG_OLD_SIGACTION
4583 SYSCALL_DEFINE3(sigaction, int, sig,
4584 const struct old_sigaction __user *, act,
4585 struct old_sigaction __user *, oact)
4587 struct k_sigaction new_ka, old_ka;
4592 if (!access_ok(act, sizeof(*act)) ||
4593 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4594 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4595 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4596 __get_user(mask, &act->sa_mask))
4598 #ifdef __ARCH_HAS_KA_RESTORER
4599 new_ka.ka_restorer = NULL;
4601 siginitset(&new_ka.sa.sa_mask, mask);
4604 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4607 if (!access_ok(oact, sizeof(*oact)) ||
4608 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4609 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4610 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4611 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4618 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4619 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4620 const struct compat_old_sigaction __user *, act,
4621 struct compat_old_sigaction __user *, oact)
4623 struct k_sigaction new_ka, old_ka;
4625 compat_old_sigset_t mask;
4626 compat_uptr_t handler, restorer;
4629 if (!access_ok(act, sizeof(*act)) ||
4630 __get_user(handler, &act->sa_handler) ||
4631 __get_user(restorer, &act->sa_restorer) ||
4632 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4633 __get_user(mask, &act->sa_mask))
4636 #ifdef __ARCH_HAS_KA_RESTORER
4637 new_ka.ka_restorer = NULL;
4639 new_ka.sa.sa_handler = compat_ptr(handler);
4640 new_ka.sa.sa_restorer = compat_ptr(restorer);
4641 siginitset(&new_ka.sa.sa_mask, mask);
4644 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4647 if (!access_ok(oact, sizeof(*oact)) ||
4648 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4649 &oact->sa_handler) ||
4650 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4651 &oact->sa_restorer) ||
4652 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4653 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4660 #ifdef CONFIG_SGETMASK_SYSCALL
4663 * For backwards compatibility. Functionality superseded by sigprocmask.
4665 SYSCALL_DEFINE0(sgetmask)
4668 return current->blocked.sig[0];
4671 SYSCALL_DEFINE1(ssetmask, int, newmask)
4673 int old = current->blocked.sig[0];
4676 siginitset(&newset, newmask);
4677 set_current_blocked(&newset);
4681 #endif /* CONFIG_SGETMASK_SYSCALL */
4683 #ifdef __ARCH_WANT_SYS_SIGNAL
4685 * For backwards compatibility. Functionality superseded by sigaction.
4687 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4689 struct k_sigaction new_sa, old_sa;
4692 new_sa.sa.sa_handler = handler;
4693 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4694 sigemptyset(&new_sa.sa.sa_mask);
4696 ret = do_sigaction(sig, &new_sa, &old_sa);
4698 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4700 #endif /* __ARCH_WANT_SYS_SIGNAL */
4702 #ifdef __ARCH_WANT_SYS_PAUSE
4704 SYSCALL_DEFINE0(pause)
4706 while (!signal_pending(current)) {
4707 __set_current_state(TASK_INTERRUPTIBLE);
4710 return -ERESTARTNOHAND;
4715 static int sigsuspend(sigset_t *set)
4717 current->saved_sigmask = current->blocked;
4718 set_current_blocked(set);
4720 while (!signal_pending(current)) {
4721 __set_current_state(TASK_INTERRUPTIBLE);
4724 set_restore_sigmask();
4725 return -ERESTARTNOHAND;
4729 * sys_rt_sigsuspend - replace the signal mask for a value with the
4730 * @unewset value until a signal is received
4731 * @unewset: new signal mask value
4732 * @sigsetsize: size of sigset_t type
4734 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4738 /* XXX: Don't preclude handling different sized sigset_t's. */
4739 if (sigsetsize != sizeof(sigset_t))
4742 if (copy_from_user(&newset, unewset, sizeof(newset)))
4744 return sigsuspend(&newset);
4747 #ifdef CONFIG_COMPAT
4748 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4752 /* XXX: Don't preclude handling different sized sigset_t's. */
4753 if (sigsetsize != sizeof(sigset_t))
4756 if (get_compat_sigset(&newset, unewset))
4758 return sigsuspend(&newset);
4762 #ifdef CONFIG_OLD_SIGSUSPEND
4763 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4766 siginitset(&blocked, mask);
4767 return sigsuspend(&blocked);
4770 #ifdef CONFIG_OLD_SIGSUSPEND3
4771 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4774 siginitset(&blocked, mask);
4775 return sigsuspend(&blocked);
4779 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4784 static inline void siginfo_buildtime_checks(void)
4786 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4788 /* Verify the offsets in the two siginfos match */
4789 #define CHECK_OFFSET(field) \
4790 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4793 CHECK_OFFSET(si_pid);
4794 CHECK_OFFSET(si_uid);
4797 CHECK_OFFSET(si_tid);
4798 CHECK_OFFSET(si_overrun);
4799 CHECK_OFFSET(si_value);
4802 CHECK_OFFSET(si_pid);
4803 CHECK_OFFSET(si_uid);
4804 CHECK_OFFSET(si_value);
4807 CHECK_OFFSET(si_pid);
4808 CHECK_OFFSET(si_uid);
4809 CHECK_OFFSET(si_status);
4810 CHECK_OFFSET(si_utime);
4811 CHECK_OFFSET(si_stime);
4814 CHECK_OFFSET(si_addr);
4815 CHECK_OFFSET(si_trapno);
4816 CHECK_OFFSET(si_addr_lsb);
4817 CHECK_OFFSET(si_lower);
4818 CHECK_OFFSET(si_upper);
4819 CHECK_OFFSET(si_pkey);
4820 CHECK_OFFSET(si_perf_data);
4821 CHECK_OFFSET(si_perf_type);
4822 CHECK_OFFSET(si_perf_flags);
4825 CHECK_OFFSET(si_band);
4826 CHECK_OFFSET(si_fd);
4829 CHECK_OFFSET(si_call_addr);
4830 CHECK_OFFSET(si_syscall);
4831 CHECK_OFFSET(si_arch);
4835 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4836 offsetof(struct siginfo, si_addr));
4837 if (sizeof(int) == sizeof(void __user *)) {
4838 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4839 sizeof(void __user *));
4841 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4842 sizeof_field(struct siginfo, si_uid)) !=
4843 sizeof(void __user *));
4844 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4845 offsetof(struct siginfo, si_uid));
4847 #ifdef CONFIG_COMPAT
4848 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4849 offsetof(struct compat_siginfo, si_addr));
4850 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4851 sizeof(compat_uptr_t));
4852 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4853 sizeof_field(struct siginfo, si_pid));
4857 #if defined(CONFIG_SYSCTL)
4858 static struct ctl_table signal_debug_table[] = {
4859 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4861 .procname = "exception-trace",
4862 .data = &show_unhandled_signals,
4863 .maxlen = sizeof(int),
4865 .proc_handler = proc_dointvec
4870 static int __init init_signal_sysctls(void)
4872 register_sysctl_init("debug", signal_debug_table);
4875 early_initcall(init_signal_sysctls);
4876 #endif /* CONFIG_SYSCTL */
4878 void __init signals_init(void)
4880 siginfo_buildtime_checks();
4882 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4885 #ifdef CONFIG_KGDB_KDB
4886 #include <linux/kdb.h>
4888 * kdb_send_sig - Allows kdb to send signals without exposing
4889 * signal internals. This function checks if the required locks are
4890 * available before calling the main signal code, to avoid kdb
4893 void kdb_send_sig(struct task_struct *t, int sig)
4895 static struct task_struct *kdb_prev_t;
4897 if (!spin_trylock(&t->sighand->siglock)) {
4898 kdb_printf("Can't do kill command now.\n"
4899 "The sigmask lock is held somewhere else in "
4900 "kernel, try again later\n");
4903 new_t = kdb_prev_t != t;
4905 if (!task_is_running(t) && new_t) {
4906 spin_unlock(&t->sighand->siglock);
4907 kdb_printf("Process is not RUNNING, sending a signal from "
4908 "kdb risks deadlock\n"
4909 "on the run queue locks. "
4910 "The signal has _not_ been sent.\n"
4911 "Reissue the kill command if you want to risk "
4915 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4916 spin_unlock(&t->sighand->siglock);
4918 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4921 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4923 #endif /* CONFIG_KGDB_KDB */