1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
87 static const char *mod_state_to_str(unsigned short mod_state)
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
100 static const char *dev_state_to_str(unsigned short dev_state)
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
121 static const char *event_to_str(unsigned short event)
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
142 static const char *sm_state_to_str(unsigned short sm_state)
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
149 static const char *gpio_names[] = {
158 static const enum gpiod_flags gpio_flags[] = {
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
187 #define N_FAULT_INIT 5
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 12
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
222 #define SFP_EEPROM_BLOCK_SIZE 16
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
279 unsigned int rate_kbd;
280 unsigned int rs_threshold_kbd;
281 unsigned int rs_state_mask;
285 const struct sfp_quirk *quirk;
287 #if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
306 static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
330 static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
336 static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
343 static void sfp_fixup_long_startup(struct sfp *sfp)
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
348 static void sfp_fixup_ignore_los(struct sfp *sfp)
350 /* This forces LOS to zero, so we ignore transitions */
351 sfp->state_ignore_mask |= SFP_F_LOS;
352 /* Make sure that LOS options are clear */
353 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
354 SFP_OPTIONS_LOS_NORMAL);
357 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
359 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
362 static void sfp_fixup_nokia(struct sfp *sfp)
364 sfp_fixup_long_startup(sfp);
365 sfp_fixup_ignore_los(sfp);
368 // For 10GBASE-T short-reach modules
369 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
371 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
372 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
375 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
377 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
378 sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
381 static void sfp_fixup_fs_10gt(struct sfp *sfp)
383 sfp_fixup_10gbaset_30m(sfp);
385 // These SFPs need 4 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, 4);
389 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
391 /* Ignore the TX_FAULT and LOS signals on this module.
392 * these are possibly used for other purposes on this
393 * module, e.g. a serial port.
395 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
398 static void sfp_fixup_rollball(struct sfp *sfp)
400 // Rollball SFPs need 25 seconds before the PHY can be accessed
401 sfp_fixup_rollball_proto(sfp, 25);
404 static void sfp_fixup_rollball_cc(struct sfp *sfp)
406 sfp_fixup_rollball(sfp);
408 /* Some RollBall SFPs may have wrong (zero) extended compliance code
409 * burned in EEPROM. For PHY probing we need the correct one.
411 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
414 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
418 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
419 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
422 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
423 unsigned long *modes,
424 unsigned long *interfaces)
426 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
429 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
430 unsigned long *modes,
431 unsigned long *interfaces)
433 /* Copper 2.5G SFP */
434 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
435 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
436 sfp_quirk_disable_autoneg(id, modes, interfaces);
439 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
440 unsigned long *modes,
441 unsigned long *interfaces)
443 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
444 * types including 10G Ethernet which is not truth. So clear all claimed
445 * modes and set only one mode which module supports: 1000baseX_Full.
447 linkmode_zero(modes);
448 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
451 #define SFP_QUIRK(_v, _p, _m, _f) \
452 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
453 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
454 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
456 static const struct sfp_quirk sfp_quirks[] = {
457 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
458 // report 2500MBd NRZ in their EEPROM
459 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
461 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
462 // NRZ in their EEPROM
463 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
466 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
467 // Rollball protocol to talk to the PHY.
468 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
470 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
471 // NRZ in their EEPROM
472 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
473 sfp_fixup_ignore_tx_fault),
475 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
477 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
478 // 2600MBd in their EERPOM
479 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
481 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
483 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
484 sfp_fixup_ignore_tx_fault),
487 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
489 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
490 // 2500MBd NRZ in their EEPROM
491 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
493 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
495 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
496 // Rollball protocol to talk to the PHY.
497 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
498 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
500 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
501 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
502 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
503 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
504 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
505 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
508 static size_t sfp_strlen(const char *str, size_t maxlen)
512 /* Trailing characters should be filled with space chars, but
513 * some manufacturers can't read SFF-8472 and use NUL.
515 for (i = 0, size = 0; i < maxlen; i++)
516 if (str[i] != ' ' && str[i] != '\0')
522 static bool sfp_match(const char *qs, const char *str, size_t len)
526 if (strlen(qs) != len)
528 return !strncmp(qs, str, len);
531 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
533 const struct sfp_quirk *q;
537 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
538 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
540 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
541 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
542 sfp_match(q->part, id->base.vendor_pn, ps))
548 static unsigned long poll_jiffies;
550 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
552 unsigned int i, state, v;
554 for (i = state = 0; i < GPIO_MAX; i++) {
555 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
558 v = gpiod_get_value_cansleep(sfp->gpio[i]);
566 static unsigned int sff_gpio_get_state(struct sfp *sfp)
568 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
571 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
575 if (state & SFP_F_PRESENT)
576 /* If the module is present, drive the requested signals */
577 drive = sfp->state_hw_drive;
579 /* Otherwise, let them float to the pull-ups */
582 if (sfp->gpio[GPIO_TX_DISABLE]) {
583 if (drive & SFP_F_TX_DISABLE)
584 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
585 state & SFP_F_TX_DISABLE);
587 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
590 if (sfp->gpio[GPIO_RS0]) {
591 if (drive & SFP_F_RS0)
592 gpiod_direction_output(sfp->gpio[GPIO_RS0],
595 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
598 if (sfp->gpio[GPIO_RS1]) {
599 if (drive & SFP_F_RS1)
600 gpiod_direction_output(sfp->gpio[GPIO_RS1],
603 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
607 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
610 struct i2c_msg msgs[2];
611 u8 bus_addr = a2 ? 0x51 : 0x50;
612 size_t block_size = sfp->i2c_block_size;
616 msgs[0].addr = bus_addr;
619 msgs[0].buf = &dev_addr;
620 msgs[1].addr = bus_addr;
621 msgs[1].flags = I2C_M_RD;
627 if (this_len > block_size)
628 this_len = block_size;
630 msgs[1].len = this_len;
632 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
636 if (ret != ARRAY_SIZE(msgs))
639 msgs[1].buf += this_len;
640 dev_addr += this_len;
644 return msgs[1].buf - (u8 *)buf;
647 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
650 struct i2c_msg msgs[1];
651 u8 bus_addr = a2 ? 0x51 : 0x50;
654 msgs[0].addr = bus_addr;
656 msgs[0].len = 1 + len;
657 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
661 msgs[0].buf[0] = dev_addr;
662 memcpy(&msgs[0].buf[1], buf, len);
664 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
671 return ret == ARRAY_SIZE(msgs) ? len : 0;
674 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
676 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
680 sfp->read = sfp_i2c_read;
681 sfp->write = sfp_i2c_write;
686 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
688 struct mii_bus *i2c_mii;
691 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
693 return PTR_ERR(i2c_mii);
695 i2c_mii->name = "SFP I2C Bus";
696 i2c_mii->phy_mask = ~0;
698 ret = mdiobus_register(i2c_mii);
700 mdiobus_free(i2c_mii);
704 sfp->i2c_mii = i2c_mii;
709 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
711 mdiobus_unregister(sfp->i2c_mii);
716 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
718 return sfp->read(sfp, a2, addr, buf, len);
721 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
723 return sfp->write(sfp, a2, addr, buf, len);
726 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
731 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
732 if (ret != sizeof(old))
735 v = (old & ~mask) | (val & mask);
739 return sfp_write(sfp, a2, addr, &v, sizeof(v));
742 static unsigned int sfp_soft_get_state(struct sfp *sfp)
744 unsigned int state = 0;
748 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
749 if (ret == sizeof(status)) {
750 if (status & SFP_STATUS_RX_LOS)
752 if (status & SFP_STATUS_TX_FAULT)
753 state |= SFP_F_TX_FAULT;
755 dev_err_ratelimited(sfp->dev,
756 "failed to read SFP soft status: %pe\n",
758 /* Preserve the current state */
762 return state & sfp->state_soft_mask;
765 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
771 if (soft & SFP_F_TX_DISABLE)
772 mask |= SFP_STATUS_TX_DISABLE_FORCE;
773 if (state & SFP_F_TX_DISABLE)
774 val |= SFP_STATUS_TX_DISABLE_FORCE;
776 if (soft & SFP_F_RS0)
777 mask |= SFP_STATUS_RS0_SELECT;
778 if (state & SFP_F_RS0)
779 val |= SFP_STATUS_RS0_SELECT;
782 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
785 if (soft & SFP_F_RS1)
786 mask |= SFP_EXT_STATUS_RS1_SELECT;
787 if (state & SFP_F_RS1)
788 val |= SFP_EXT_STATUS_RS1_SELECT;
791 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
794 static void sfp_soft_start_poll(struct sfp *sfp)
796 const struct sfp_eeprom_id *id = &sfp->id;
797 unsigned int mask = 0;
799 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
800 mask |= SFP_F_TX_DISABLE;
801 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
802 mask |= SFP_F_TX_FAULT;
803 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
805 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
806 mask |= sfp->rs_state_mask;
808 mutex_lock(&sfp->st_mutex);
809 // Poll the soft state for hardware pins we want to ignore
810 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
813 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
815 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
816 mutex_unlock(&sfp->st_mutex);
819 static void sfp_soft_stop_poll(struct sfp *sfp)
821 mutex_lock(&sfp->st_mutex);
822 sfp->state_soft_mask = 0;
823 mutex_unlock(&sfp->st_mutex);
826 /* sfp_get_state() - must be called with st_mutex held, or in the
827 * initialisation path.
829 static unsigned int sfp_get_state(struct sfp *sfp)
831 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
834 state = sfp->get_state(sfp) & sfp->state_hw_mask;
835 if (state & SFP_F_PRESENT && soft)
836 state |= sfp_soft_get_state(sfp);
841 /* sfp_set_state() - must be called with st_mutex held, or in the
842 * initialisation path.
844 static void sfp_set_state(struct sfp *sfp, unsigned int state)
848 sfp->set_state(sfp, state);
850 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
851 if (state & SFP_F_PRESENT && soft)
852 sfp_soft_set_state(sfp, state, soft);
855 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
857 mutex_lock(&sfp->st_mutex);
858 sfp->state = (sfp->state & ~mask) | set;
859 sfp_set_state(sfp, sfp->state);
860 mutex_unlock(&sfp->st_mutex);
863 static unsigned int sfp_check(void *buf, size_t len)
867 for (p = buf, check = 0; len; p++, len--)
874 #if IS_ENABLED(CONFIG_HWMON)
875 static umode_t sfp_hwmon_is_visible(const void *data,
876 enum hwmon_sensor_types type,
877 u32 attr, int channel)
879 const struct sfp *sfp = data;
884 case hwmon_temp_min_alarm:
885 case hwmon_temp_max_alarm:
886 case hwmon_temp_lcrit_alarm:
887 case hwmon_temp_crit_alarm:
890 case hwmon_temp_lcrit:
891 case hwmon_temp_crit:
892 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
895 case hwmon_temp_input:
896 case hwmon_temp_label:
903 case hwmon_in_min_alarm:
904 case hwmon_in_max_alarm:
905 case hwmon_in_lcrit_alarm:
906 case hwmon_in_crit_alarm:
911 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
922 case hwmon_curr_min_alarm:
923 case hwmon_curr_max_alarm:
924 case hwmon_curr_lcrit_alarm:
925 case hwmon_curr_crit_alarm:
928 case hwmon_curr_lcrit:
929 case hwmon_curr_crit:
930 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
933 case hwmon_curr_input:
934 case hwmon_curr_label:
940 /* External calibration of receive power requires
941 * floating point arithmetic. Doing that in the kernel
942 * is not easy, so just skip it. If the module does
943 * not require external calibration, we can however
944 * show receiver power, since FP is then not needed.
946 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
950 case hwmon_power_min_alarm:
951 case hwmon_power_max_alarm:
952 case hwmon_power_lcrit_alarm:
953 case hwmon_power_crit_alarm:
954 case hwmon_power_min:
955 case hwmon_power_max:
956 case hwmon_power_lcrit:
957 case hwmon_power_crit:
958 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
961 case hwmon_power_input:
962 case hwmon_power_label:
972 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
977 err = sfp_read(sfp, true, reg, &val, sizeof(val));
981 *value = be16_to_cpu(val);
986 static void sfp_hwmon_to_rx_power(long *value)
988 *value = DIV_ROUND_CLOSEST(*value, 10);
991 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
994 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
995 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
998 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1000 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1001 be16_to_cpu(sfp->diag.cal_t_offset), value);
1003 if (*value >= 0x8000)
1006 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1009 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1011 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1012 be16_to_cpu(sfp->diag.cal_v_offset), value);
1014 *value = DIV_ROUND_CLOSEST(*value, 10);
1017 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1019 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1020 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1022 *value = DIV_ROUND_CLOSEST(*value, 500);
1025 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1027 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1028 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1030 *value = DIV_ROUND_CLOSEST(*value, 10);
1033 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1037 err = sfp_hwmon_read_sensor(sfp, reg, value);
1041 sfp_hwmon_calibrate_temp(sfp, value);
1046 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1050 err = sfp_hwmon_read_sensor(sfp, reg, value);
1054 sfp_hwmon_calibrate_vcc(sfp, value);
1059 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1063 err = sfp_hwmon_read_sensor(sfp, reg, value);
1067 sfp_hwmon_calibrate_bias(sfp, value);
1072 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1076 err = sfp_hwmon_read_sensor(sfp, reg, value);
1080 sfp_hwmon_calibrate_tx_power(sfp, value);
1085 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1089 err = sfp_hwmon_read_sensor(sfp, reg, value);
1093 sfp_hwmon_to_rx_power(value);
1098 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1104 case hwmon_temp_input:
1105 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1107 case hwmon_temp_lcrit:
1108 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1109 sfp_hwmon_calibrate_temp(sfp, value);
1112 case hwmon_temp_min:
1113 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1114 sfp_hwmon_calibrate_temp(sfp, value);
1116 case hwmon_temp_max:
1117 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1118 sfp_hwmon_calibrate_temp(sfp, value);
1121 case hwmon_temp_crit:
1122 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1123 sfp_hwmon_calibrate_temp(sfp, value);
1126 case hwmon_temp_lcrit_alarm:
1127 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1131 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1134 case hwmon_temp_min_alarm:
1135 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1139 *value = !!(status & SFP_WARN0_TEMP_LOW);
1142 case hwmon_temp_max_alarm:
1143 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1147 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1150 case hwmon_temp_crit_alarm:
1151 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1155 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1164 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1170 case hwmon_in_input:
1171 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1173 case hwmon_in_lcrit:
1174 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1175 sfp_hwmon_calibrate_vcc(sfp, value);
1179 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1180 sfp_hwmon_calibrate_vcc(sfp, value);
1184 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1185 sfp_hwmon_calibrate_vcc(sfp, value);
1189 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1190 sfp_hwmon_calibrate_vcc(sfp, value);
1193 case hwmon_in_lcrit_alarm:
1194 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1198 *value = !!(status & SFP_ALARM0_VCC_LOW);
1201 case hwmon_in_min_alarm:
1202 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1206 *value = !!(status & SFP_WARN0_VCC_LOW);
1209 case hwmon_in_max_alarm:
1210 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1214 *value = !!(status & SFP_WARN0_VCC_HIGH);
1217 case hwmon_in_crit_alarm:
1218 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1222 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1231 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1237 case hwmon_curr_input:
1238 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1240 case hwmon_curr_lcrit:
1241 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1242 sfp_hwmon_calibrate_bias(sfp, value);
1245 case hwmon_curr_min:
1246 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1247 sfp_hwmon_calibrate_bias(sfp, value);
1250 case hwmon_curr_max:
1251 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1252 sfp_hwmon_calibrate_bias(sfp, value);
1255 case hwmon_curr_crit:
1256 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1257 sfp_hwmon_calibrate_bias(sfp, value);
1260 case hwmon_curr_lcrit_alarm:
1261 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1265 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1268 case hwmon_curr_min_alarm:
1269 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1273 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1276 case hwmon_curr_max_alarm:
1277 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1281 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1284 case hwmon_curr_crit_alarm:
1285 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1289 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1298 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1304 case hwmon_power_input:
1305 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1307 case hwmon_power_lcrit:
1308 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1309 sfp_hwmon_calibrate_tx_power(sfp, value);
1312 case hwmon_power_min:
1313 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1314 sfp_hwmon_calibrate_tx_power(sfp, value);
1317 case hwmon_power_max:
1318 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1319 sfp_hwmon_calibrate_tx_power(sfp, value);
1322 case hwmon_power_crit:
1323 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1324 sfp_hwmon_calibrate_tx_power(sfp, value);
1327 case hwmon_power_lcrit_alarm:
1328 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1332 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1335 case hwmon_power_min_alarm:
1336 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1340 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1343 case hwmon_power_max_alarm:
1344 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1348 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1351 case hwmon_power_crit_alarm:
1352 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1356 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1365 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1371 case hwmon_power_input:
1372 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1374 case hwmon_power_lcrit:
1375 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1376 sfp_hwmon_to_rx_power(value);
1379 case hwmon_power_min:
1380 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1381 sfp_hwmon_to_rx_power(value);
1384 case hwmon_power_max:
1385 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1386 sfp_hwmon_to_rx_power(value);
1389 case hwmon_power_crit:
1390 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1391 sfp_hwmon_to_rx_power(value);
1394 case hwmon_power_lcrit_alarm:
1395 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1399 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1402 case hwmon_power_min_alarm:
1403 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1407 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1410 case hwmon_power_max_alarm:
1411 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1415 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1418 case hwmon_power_crit_alarm:
1419 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1423 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1432 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1433 u32 attr, int channel, long *value)
1435 struct sfp *sfp = dev_get_drvdata(dev);
1439 return sfp_hwmon_temp(sfp, attr, value);
1441 return sfp_hwmon_vcc(sfp, attr, value);
1443 return sfp_hwmon_bias(sfp, attr, value);
1447 return sfp_hwmon_tx_power(sfp, attr, value);
1449 return sfp_hwmon_rx_power(sfp, attr, value);
1458 static const char *const sfp_hwmon_power_labels[] = {
1463 static int sfp_hwmon_read_string(struct device *dev,
1464 enum hwmon_sensor_types type,
1465 u32 attr, int channel, const char **str)
1470 case hwmon_curr_label:
1479 case hwmon_temp_label:
1480 *str = "temperature";
1488 case hwmon_in_label:
1497 case hwmon_power_label:
1498 *str = sfp_hwmon_power_labels[channel];
1511 static const struct hwmon_ops sfp_hwmon_ops = {
1512 .is_visible = sfp_hwmon_is_visible,
1513 .read = sfp_hwmon_read,
1514 .read_string = sfp_hwmon_read_string,
1517 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1518 HWMON_CHANNEL_INFO(chip,
1519 HWMON_C_REGISTER_TZ),
1520 HWMON_CHANNEL_INFO(in,
1522 HWMON_I_MAX | HWMON_I_MIN |
1523 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1524 HWMON_I_CRIT | HWMON_I_LCRIT |
1525 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1527 HWMON_CHANNEL_INFO(temp,
1529 HWMON_T_MAX | HWMON_T_MIN |
1530 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1531 HWMON_T_CRIT | HWMON_T_LCRIT |
1532 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1534 HWMON_CHANNEL_INFO(curr,
1536 HWMON_C_MAX | HWMON_C_MIN |
1537 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1538 HWMON_C_CRIT | HWMON_C_LCRIT |
1539 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1541 HWMON_CHANNEL_INFO(power,
1542 /* Transmit power */
1544 HWMON_P_MAX | HWMON_P_MIN |
1545 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1546 HWMON_P_CRIT | HWMON_P_LCRIT |
1547 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1551 HWMON_P_MAX | HWMON_P_MIN |
1552 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1553 HWMON_P_CRIT | HWMON_P_LCRIT |
1554 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1559 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1560 .ops = &sfp_hwmon_ops,
1561 .info = sfp_hwmon_info,
1564 static void sfp_hwmon_probe(struct work_struct *work)
1566 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1569 /* hwmon interface needs to access 16bit registers in atomic way to
1570 * guarantee coherency of the diagnostic monitoring data. If it is not
1571 * possible to guarantee coherency because EEPROM is broken in such way
1572 * that does not support atomic 16bit read operation then we have to
1573 * skip registration of hwmon device.
1575 if (sfp->i2c_block_size < 2) {
1577 "skipping hwmon device registration due to broken EEPROM\n");
1579 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1583 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1585 if (sfp->hwmon_tries--) {
1586 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1587 T_PROBE_RETRY_SLOW);
1589 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1595 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1596 if (IS_ERR(sfp->hwmon_name)) {
1597 dev_err(sfp->dev, "out of memory for hwmon name\n");
1601 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1602 sfp->hwmon_name, sfp,
1603 &sfp_hwmon_chip_info,
1605 if (IS_ERR(sfp->hwmon_dev))
1606 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1607 PTR_ERR(sfp->hwmon_dev));
1610 static int sfp_hwmon_insert(struct sfp *sfp)
1612 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1613 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1614 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1620 static void sfp_hwmon_remove(struct sfp *sfp)
1622 cancel_delayed_work_sync(&sfp->hwmon_probe);
1623 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1624 hwmon_device_unregister(sfp->hwmon_dev);
1625 sfp->hwmon_dev = NULL;
1626 kfree(sfp->hwmon_name);
1630 static int sfp_hwmon_init(struct sfp *sfp)
1632 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1637 static void sfp_hwmon_exit(struct sfp *sfp)
1639 cancel_delayed_work_sync(&sfp->hwmon_probe);
1642 static int sfp_hwmon_insert(struct sfp *sfp)
1647 static void sfp_hwmon_remove(struct sfp *sfp)
1651 static int sfp_hwmon_init(struct sfp *sfp)
1656 static void sfp_hwmon_exit(struct sfp *sfp)
1662 static void sfp_module_tx_disable(struct sfp *sfp)
1664 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1665 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1666 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1669 static void sfp_module_tx_enable(struct sfp *sfp)
1671 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1672 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1673 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1676 #if IS_ENABLED(CONFIG_DEBUG_FS)
1677 static int sfp_debug_state_show(struct seq_file *s, void *data)
1679 struct sfp *sfp = s->private;
1681 seq_printf(s, "Module state: %s\n",
1682 mod_state_to_str(sfp->sm_mod_state));
1683 seq_printf(s, "Module probe attempts: %d %d\n",
1684 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1685 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1686 seq_printf(s, "Device state: %s\n",
1687 dev_state_to_str(sfp->sm_dev_state));
1688 seq_printf(s, "Main state: %s\n",
1689 sm_state_to_str(sfp->sm_state));
1690 seq_printf(s, "Fault recovery remaining retries: %d\n",
1691 sfp->sm_fault_retries);
1692 seq_printf(s, "PHY probe remaining retries: %d\n",
1693 sfp->sm_phy_retries);
1694 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1695 seq_printf(s, "Rate select threshold: %u kBd\n",
1696 sfp->rs_threshold_kbd);
1697 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1698 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1699 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1700 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1701 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1702 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1705 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1707 static void sfp_debugfs_init(struct sfp *sfp)
1709 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1711 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1712 &sfp_debug_state_fops);
1715 static void sfp_debugfs_exit(struct sfp *sfp)
1717 debugfs_remove_recursive(sfp->debugfs_dir);
1720 static void sfp_debugfs_init(struct sfp *sfp)
1724 static void sfp_debugfs_exit(struct sfp *sfp)
1729 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1733 mutex_lock(&sfp->st_mutex);
1735 if (!(state & SFP_F_TX_DISABLE)) {
1736 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1740 sfp_set_state(sfp, state);
1742 mutex_unlock(&sfp->st_mutex);
1745 /* SFP state machine */
1746 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1749 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1752 cancel_delayed_work(&sfp->timeout);
1755 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1756 unsigned int timeout)
1758 sfp->sm_state = state;
1759 sfp_sm_set_timer(sfp, timeout);
1762 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1763 unsigned int timeout)
1765 sfp->sm_mod_state = state;
1766 sfp_sm_set_timer(sfp, timeout);
1769 static void sfp_sm_phy_detach(struct sfp *sfp)
1771 sfp_remove_phy(sfp->sfp_bus);
1772 phy_device_remove(sfp->mod_phy);
1773 phy_device_free(sfp->mod_phy);
1774 sfp->mod_phy = NULL;
1777 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1779 struct phy_device *phy;
1782 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1783 if (phy == ERR_PTR(-ENODEV))
1784 return PTR_ERR(phy);
1786 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1787 return PTR_ERR(phy);
1790 /* Mark this PHY as being on a SFP module */
1791 phy->is_on_sfp_module = true;
1793 err = phy_device_register(phy);
1795 phy_device_free(phy);
1796 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1801 err = sfp_add_phy(sfp->sfp_bus, phy);
1803 phy_device_remove(phy);
1804 phy_device_free(phy);
1805 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1814 static void sfp_sm_link_up(struct sfp *sfp)
1816 sfp_link_up(sfp->sfp_bus);
1817 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1820 static void sfp_sm_link_down(struct sfp *sfp)
1822 sfp_link_down(sfp->sfp_bus);
1825 static void sfp_sm_link_check_los(struct sfp *sfp)
1827 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1828 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1829 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1832 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1833 * are set, we assume that no LOS signal is available. If both are
1834 * set, we assume LOS is not implemented (and is meaningless.)
1836 if (los_options == los_inverted)
1837 los = !(sfp->state & SFP_F_LOS);
1838 else if (los_options == los_normal)
1839 los = !!(sfp->state & SFP_F_LOS);
1842 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1844 sfp_sm_link_up(sfp);
1847 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1849 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1850 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1851 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1853 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1854 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1857 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1859 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1860 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1861 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1863 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1864 (los_options == los_normal && event == SFP_E_LOS_LOW);
1867 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1869 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1871 "module persistently indicates fault, disabling\n");
1872 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1875 dev_err(sfp->dev, "module transmit fault indicated\n");
1877 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1881 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1883 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1884 return sfp_i2c_mdiobus_create(sfp);
1889 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1890 * normally sits at I2C bus address 0x56, and may either be a clause 22
1893 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1894 * negotiation enabled, but some may be in 1000base-X - which is for the
1895 * PHY driver to determine.
1897 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1898 * mode according to the negotiated line speed.
1900 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1904 switch (sfp->mdio_protocol) {
1908 case MDIO_I2C_MARVELL_C22:
1909 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1913 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1916 case MDIO_I2C_ROLLBALL:
1917 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1924 static int sfp_module_parse_power(struct sfp *sfp)
1926 u32 power_mW = 1000;
1929 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1930 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1932 /* Added in Rev 11.9, but there is no compliance code for this */
1933 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1934 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1937 /* Power level 1 modules (max. 1W) are always supported. */
1938 if (power_mW <= 1000) {
1939 sfp->module_power_mW = power_mW;
1943 supports_a2 = sfp->id.ext.sff8472_compliance !=
1944 SFP_SFF8472_COMPLIANCE_NONE ||
1945 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1947 if (power_mW > sfp->max_power_mW) {
1948 /* Module power specification exceeds the allowed maximum. */
1950 /* The module appears not to implement bus address
1951 * 0xa2, so assume that the module powers up in the
1955 "Host does not support %u.%uW modules\n",
1956 power_mW / 1000, (power_mW / 100) % 10);
1960 "Host does not support %u.%uW modules, module left in power mode 1\n",
1961 power_mW / 1000, (power_mW / 100) % 10);
1967 /* The module power level is below the host maximum and the
1968 * module appears not to implement bus address 0xa2, so assume
1969 * that the module powers up in the indicated mode.
1974 /* If the module requires a higher power mode, but also requires
1975 * an address change sequence, warn the user that the module may
1976 * not be functional.
1978 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1980 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1981 power_mW / 1000, (power_mW / 100) % 10);
1985 sfp->module_power_mW = power_mW;
1990 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1994 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1995 SFP_EXT_STATUS_PWRLVL_SELECT,
1996 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1997 if (err != sizeof(u8)) {
1998 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1999 enable ? "en" : "dis", ERR_PTR(err));
2004 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2005 sfp->module_power_mW / 1000,
2006 (sfp->module_power_mW / 100) % 10);
2011 static void sfp_module_parse_rate_select(struct sfp *sfp)
2015 sfp->rs_threshold_kbd = 0;
2016 sfp->rs_state_mask = 0;
2018 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2019 /* No support for RateSelect */
2022 /* Default to INF-8074 RateSelect operation. The signalling threshold
2023 * rate is not well specified, so always select "Full Bandwidth", but
2024 * SFF-8079 reveals that it is understood that RS0 will be low for
2025 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2026 * This method exists prior to SFF-8472.
2028 sfp->rs_state_mask = SFP_F_RS0;
2029 sfp->rs_threshold_kbd = 1594;
2031 /* Parse the rate identifier, which is complicated due to history:
2032 * SFF-8472 rev 9.5 marks this field as reserved.
2033 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2034 * compliance is not required.
2035 * SFF-8472 rev 10.2 defines this field using values 0..4
2036 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2039 rate_id = sfp->id.base.rate_id;
2044 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2045 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2046 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2048 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2049 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2051 rate_id = SFF_RID_8431;
2053 if (rate_id & SFF_RID_8079) {
2054 /* SFF-8079 RateSelect / Application Select in conjunction with
2055 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2056 * with only bit 0 used, which takes precedence over SFF-8472.
2058 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2059 /* SFF-8079 Part 1 - rate selection between Fibre
2060 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2061 * is high for 2125, so we have to subtract 1 to
2064 sfp->rs_threshold_kbd = 2125 - 1;
2065 sfp->rs_state_mask = SFP_F_RS0;
2070 /* SFF-8472 rev 9.5 does not define the rate identifier */
2071 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2074 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2075 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2078 case SFF_RID_8431_RX_ONLY:
2079 sfp->rs_threshold_kbd = 4250;
2080 sfp->rs_state_mask = SFP_F_RS0;
2083 case SFF_RID_8431_TX_ONLY:
2084 sfp->rs_threshold_kbd = 4250;
2085 sfp->rs_state_mask = SFP_F_RS1;
2089 sfp->rs_threshold_kbd = 4250;
2090 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2094 sfp->rs_threshold_kbd = 9000;
2095 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2100 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2101 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2102 * not support multibyte reads from the EEPROM. Each multi-byte read
2103 * operation returns just one byte of EEPROM followed by zeros. There is
2104 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2105 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2106 * name and vendor id into EEPROM, so there is even no way to detect if
2107 * module is V-SOL V2801F. Therefore check for those zeros in the read
2108 * data and then based on check switch to reading EEPROM to one byte
2111 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2113 size_t i, block_size = sfp->i2c_block_size;
2115 /* Already using byte IO */
2116 if (block_size == 1)
2119 for (i = 1; i < len; i += block_size) {
2120 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2126 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2131 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2132 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2133 id->base.connector != SFF8024_CONNECTOR_LC) {
2134 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2135 id->base.phys_id = SFF8024_ID_SFF_8472;
2136 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2137 id->base.connector = SFF8024_CONNECTOR_LC;
2138 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2141 "Failed to rewrite module EEPROM: %pe\n",
2146 /* Cotsworks modules have been found to require a delay between write operations. */
2149 /* Update base structure checksum */
2150 check = sfp_check(&id->base, sizeof(id->base) - 1);
2151 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2154 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2162 static int sfp_module_parse_sff8472(struct sfp *sfp)
2164 /* If the module requires address swap mode, warn about it */
2165 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2167 "module address swap to access page 0xA2 is not supported.\n");
2169 sfp->have_a2 = true;
2174 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2176 /* SFP module inserted - read I2C data */
2177 struct sfp_eeprom_id id;
2178 bool cotsworks_sfbg;
2184 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2186 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2189 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2194 if (ret != sizeof(id.base)) {
2195 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2199 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2200 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2201 * that EEPROM supports atomic 16bit read operation for diagnostic
2202 * fields, so do not switch to one byte reading at a time unless it
2203 * is really required and we have no other option.
2205 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2207 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2209 "Switching to reading EEPROM to one byte at a time\n");
2210 sfp->i2c_block_size = 1;
2212 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2216 "failed to read EEPROM: %pe\n",
2221 if (ret != sizeof(id.base)) {
2222 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2228 /* Cotsworks do not seem to update the checksums when they
2229 * do the final programming with the final module part number,
2230 * serial number and date code.
2232 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2233 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2235 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2236 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2237 * Cotsworks PN matches and bytes are not correct.
2239 if (cotsworks && cotsworks_sfbg) {
2240 ret = sfp_cotsworks_fixup_check(sfp, &id);
2245 /* Validate the checksum over the base structure */
2246 check = sfp_check(&id.base, sizeof(id.base) - 1);
2247 if (check != id.base.cc_base) {
2250 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2251 check, id.base.cc_base);
2254 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2255 check, id.base.cc_base);
2256 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2257 16, 1, &id, sizeof(id), true);
2262 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2265 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2270 if (ret != sizeof(id.ext)) {
2271 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2275 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2276 if (check != id.ext.cc_ext) {
2279 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2280 check, id.ext.cc_ext);
2283 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2284 check, id.ext.cc_ext);
2285 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2286 16, 1, &id, sizeof(id), true);
2287 memset(&id.ext, 0, sizeof(id.ext));
2293 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2294 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2295 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2296 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2297 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2298 (int)sizeof(id.ext.datecode), id.ext.datecode);
2300 /* Check whether we support this module */
2301 if (!sfp->type->module_supported(&id)) {
2303 "module is not supported - phys id 0x%02x 0x%02x\n",
2304 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2308 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2309 ret = sfp_module_parse_sff8472(sfp);
2314 /* Parse the module power requirement */
2315 ret = sfp_module_parse_power(sfp);
2319 sfp_module_parse_rate_select(sfp);
2321 mask = SFP_F_PRESENT;
2322 if (sfp->gpio[GPIO_TX_DISABLE])
2323 mask |= SFP_F_TX_DISABLE;
2324 if (sfp->gpio[GPIO_TX_FAULT])
2325 mask |= SFP_F_TX_FAULT;
2326 if (sfp->gpio[GPIO_LOS])
2328 if (sfp->gpio[GPIO_RS0])
2330 if (sfp->gpio[GPIO_RS1])
2333 sfp->module_t_start_up = T_START_UP;
2334 sfp->module_t_wait = T_WAIT;
2336 sfp->state_ignore_mask = 0;
2338 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2339 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2340 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2341 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2342 sfp->mdio_protocol = MDIO_I2C_C45;
2343 else if (sfp->id.base.e1000_base_t)
2344 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2346 sfp->mdio_protocol = MDIO_I2C_NONE;
2348 sfp->quirk = sfp_lookup_quirk(&id);
2350 mutex_lock(&sfp->st_mutex);
2351 /* Initialise state bits to use from hardware */
2352 sfp->state_hw_mask = mask;
2354 /* We want to drive the rate select pins that the module is using */
2355 sfp->state_hw_drive |= sfp->rs_state_mask;
2357 if (sfp->quirk && sfp->quirk->fixup)
2358 sfp->quirk->fixup(sfp);
2360 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2361 mutex_unlock(&sfp->st_mutex);
2366 static void sfp_sm_mod_remove(struct sfp *sfp)
2368 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2369 sfp_module_remove(sfp->sfp_bus);
2371 sfp_hwmon_remove(sfp);
2373 memset(&sfp->id, 0, sizeof(sfp->id));
2374 sfp->module_power_mW = 0;
2375 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2376 sfp->have_a2 = false;
2378 dev_info(sfp->dev, "module removed\n");
2381 /* This state machine tracks the upstream's state */
2382 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2384 switch (sfp->sm_dev_state) {
2386 if (event == SFP_E_DEV_ATTACH)
2387 sfp->sm_dev_state = SFP_DEV_DOWN;
2391 if (event == SFP_E_DEV_DETACH)
2392 sfp->sm_dev_state = SFP_DEV_DETACHED;
2393 else if (event == SFP_E_DEV_UP)
2394 sfp->sm_dev_state = SFP_DEV_UP;
2398 if (event == SFP_E_DEV_DETACH)
2399 sfp->sm_dev_state = SFP_DEV_DETACHED;
2400 else if (event == SFP_E_DEV_DOWN)
2401 sfp->sm_dev_state = SFP_DEV_DOWN;
2406 /* This state machine tracks the insert/remove state of the module, probes
2407 * the on-board EEPROM, and sets up the power level.
2409 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2413 /* Handle remove event globally, it resets this state machine */
2414 if (event == SFP_E_REMOVE) {
2415 if (sfp->sm_mod_state > SFP_MOD_PROBE)
2416 sfp_sm_mod_remove(sfp);
2417 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2421 /* Handle device detach globally */
2422 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2423 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2424 if (sfp->module_power_mW > 1000 &&
2425 sfp->sm_mod_state > SFP_MOD_HPOWER)
2426 sfp_sm_mod_hpower(sfp, false);
2427 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2431 switch (sfp->sm_mod_state) {
2433 if (event == SFP_E_INSERT) {
2434 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2435 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2436 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2441 /* Wait for T_PROBE_INIT to time out */
2442 if (event != SFP_E_TIMEOUT)
2445 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2446 if (err == -EAGAIN) {
2447 if (sfp->sm_mod_tries_init &&
2448 --sfp->sm_mod_tries_init) {
2449 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2451 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2452 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2454 "please wait, module slow to respond\n");
2455 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2460 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2464 /* Force a poll to re-read the hardware signal state after
2465 * sfp_sm_mod_probe() changed state_hw_mask.
2467 mod_delayed_work(system_wq, &sfp->poll, 1);
2469 err = sfp_hwmon_insert(sfp);
2471 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2474 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2476 case SFP_MOD_WAITDEV:
2477 /* Ensure that the device is attached before proceeding */
2478 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2481 /* Report the module insertion to the upstream device */
2482 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2485 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2489 /* If this is a power level 1 module, we are done */
2490 if (sfp->module_power_mW <= 1000)
2493 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2495 case SFP_MOD_HPOWER:
2496 /* Enable high power mode */
2497 err = sfp_sm_mod_hpower(sfp, true);
2499 if (err != -EAGAIN) {
2500 sfp_module_remove(sfp->sfp_bus);
2501 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2503 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2508 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2511 case SFP_MOD_WAITPWR:
2512 /* Wait for T_HPOWER_LEVEL to time out */
2513 if (event != SFP_E_TIMEOUT)
2517 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2520 case SFP_MOD_PRESENT:
2526 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2528 unsigned long timeout;
2531 /* Some events are global */
2532 if (sfp->sm_state != SFP_S_DOWN &&
2533 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2534 sfp->sm_dev_state != SFP_DEV_UP)) {
2535 if (sfp->sm_state == SFP_S_LINK_UP &&
2536 sfp->sm_dev_state == SFP_DEV_UP)
2537 sfp_sm_link_down(sfp);
2538 if (sfp->sm_state > SFP_S_INIT)
2539 sfp_module_stop(sfp->sfp_bus);
2541 sfp_sm_phy_detach(sfp);
2543 sfp_i2c_mdiobus_destroy(sfp);
2544 sfp_module_tx_disable(sfp);
2545 sfp_soft_stop_poll(sfp);
2546 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2550 /* The main state machine */
2551 switch (sfp->sm_state) {
2553 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2554 sfp->sm_dev_state != SFP_DEV_UP)
2557 /* Only use the soft state bits if we have access to the A2h
2558 * memory, which implies that we have some level of SFF-8472
2562 sfp_soft_start_poll(sfp);
2564 sfp_module_tx_enable(sfp);
2566 /* Initialise the fault clearance retries */
2567 sfp->sm_fault_retries = N_FAULT_INIT;
2569 /* We need to check the TX_FAULT state, which is not defined
2570 * while TX_DISABLE is asserted. The earliest we want to do
2571 * anything (such as probe for a PHY) is 50ms (or more on
2572 * specific modules).
2574 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2578 if (event != SFP_E_TIMEOUT)
2581 if (sfp->state & SFP_F_TX_FAULT) {
2582 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2583 * from the TX_DISABLE deassertion for the module to
2584 * initialise, which is indicated by TX_FAULT
2587 timeout = sfp->module_t_start_up;
2588 if (timeout > sfp->module_t_wait)
2589 timeout -= sfp->module_t_wait;
2593 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2595 /* TX_FAULT is not asserted, assume the module has
2596 * finished initialising.
2603 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2604 /* TX_FAULT is still asserted after t_init
2605 * or t_start_up, so assume there is a fault.
2607 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2608 sfp->sm_fault_retries == N_FAULT_INIT);
2609 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2611 /* Create mdiobus and start trying for PHY */
2612 ret = sfp_sm_add_mdio_bus(sfp);
2614 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2617 sfp->sm_phy_retries = R_PHY_RETRY;
2622 case SFP_S_INIT_PHY:
2623 if (event != SFP_E_TIMEOUT)
2626 /* TX_FAULT deasserted or we timed out with TX_FAULT
2627 * clear. Probe for the PHY and check the LOS state.
2629 ret = sfp_sm_probe_for_phy(sfp);
2630 if (ret == -ENODEV) {
2631 if (--sfp->sm_phy_retries) {
2632 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2635 dev_info(sfp->dev, "no PHY detected\n");
2638 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2641 if (sfp_module_start(sfp->sfp_bus)) {
2642 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2645 sfp_sm_link_check_los(sfp);
2647 /* Reset the fault retry count */
2648 sfp->sm_fault_retries = N_FAULT;
2651 case SFP_S_INIT_TX_FAULT:
2652 if (event == SFP_E_TIMEOUT) {
2653 sfp_module_tx_fault_reset(sfp);
2654 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2658 case SFP_S_WAIT_LOS:
2659 if (event == SFP_E_TX_FAULT)
2660 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2661 else if (sfp_los_event_inactive(sfp, event))
2662 sfp_sm_link_up(sfp);
2666 if (event == SFP_E_TX_FAULT) {
2667 sfp_sm_link_down(sfp);
2668 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2669 } else if (sfp_los_event_active(sfp, event)) {
2670 sfp_sm_link_down(sfp);
2671 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2675 case SFP_S_TX_FAULT:
2676 if (event == SFP_E_TIMEOUT) {
2677 sfp_module_tx_fault_reset(sfp);
2678 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2683 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2684 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2685 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2686 dev_info(sfp->dev, "module transmit fault recovered\n");
2687 sfp_sm_link_check_los(sfp);
2691 case SFP_S_TX_DISABLE:
2696 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2698 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2699 mod_state_to_str(sfp->sm_mod_state),
2700 dev_state_to_str(sfp->sm_dev_state),
2701 sm_state_to_str(sfp->sm_state),
2702 event_to_str(event));
2704 sfp_sm_device(sfp, event);
2705 sfp_sm_module(sfp, event);
2706 sfp_sm_main(sfp, event);
2708 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2709 mod_state_to_str(sfp->sm_mod_state),
2710 dev_state_to_str(sfp->sm_dev_state),
2711 sm_state_to_str(sfp->sm_state));
2714 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2716 mutex_lock(&sfp->sm_mutex);
2717 __sfp_sm_event(sfp, event);
2718 mutex_unlock(&sfp->sm_mutex);
2721 static void sfp_attach(struct sfp *sfp)
2723 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2726 static void sfp_detach(struct sfp *sfp)
2728 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2731 static void sfp_start(struct sfp *sfp)
2733 sfp_sm_event(sfp, SFP_E_DEV_UP);
2736 static void sfp_stop(struct sfp *sfp)
2738 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2741 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2745 sfp->rate_kbd = rate_kbd;
2747 if (rate_kbd > sfp->rs_threshold_kbd)
2748 set = sfp->rs_state_mask;
2752 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2755 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2757 /* locking... and check module is present */
2759 if (sfp->id.ext.sff8472_compliance &&
2760 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2761 modinfo->type = ETH_MODULE_SFF_8472;
2762 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2764 modinfo->type = ETH_MODULE_SFF_8079;
2765 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2770 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2773 unsigned int first, last, len;
2776 if (!(sfp->state & SFP_F_PRESENT))
2783 last = ee->offset + ee->len;
2784 if (first < ETH_MODULE_SFF_8079_LEN) {
2785 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2788 ret = sfp_read(sfp, false, first, data, len);
2795 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2796 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2798 first -= ETH_MODULE_SFF_8079_LEN;
2800 ret = sfp_read(sfp, true, first, data, len);
2807 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2808 const struct ethtool_module_eeprom *page,
2809 struct netlink_ext_ack *extack)
2811 if (!(sfp->state & SFP_F_PRESENT))
2815 NL_SET_ERR_MSG(extack, "Banks not supported");
2820 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2824 if (page->i2c_address != 0x50 &&
2825 page->i2c_address != 0x51) {
2826 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2830 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2831 page->data, page->length);
2834 static const struct sfp_socket_ops sfp_module_ops = {
2835 .attach = sfp_attach,
2836 .detach = sfp_detach,
2839 .set_signal_rate = sfp_set_signal_rate,
2840 .module_info = sfp_module_info,
2841 .module_eeprom = sfp_module_eeprom,
2842 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2845 static void sfp_timeout(struct work_struct *work)
2847 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2850 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2854 static void sfp_check_state(struct sfp *sfp)
2856 unsigned int state, i, changed;
2859 mutex_lock(&sfp->st_mutex);
2860 state = sfp_get_state(sfp);
2861 changed = state ^ sfp->state;
2862 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2864 for (i = 0; i < GPIO_MAX; i++)
2865 if (changed & BIT(i))
2866 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2867 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2869 state |= sfp->state & SFP_F_OUTPUTS;
2871 mutex_unlock(&sfp->st_mutex);
2873 mutex_lock(&sfp->sm_mutex);
2874 if (changed & SFP_F_PRESENT)
2875 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2876 SFP_E_INSERT : SFP_E_REMOVE);
2878 if (changed & SFP_F_TX_FAULT)
2879 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2880 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2882 if (changed & SFP_F_LOS)
2883 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2884 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2885 mutex_unlock(&sfp->sm_mutex);
2889 static irqreturn_t sfp_irq(int irq, void *data)
2891 struct sfp *sfp = data;
2893 sfp_check_state(sfp);
2898 static void sfp_poll(struct work_struct *work)
2900 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2902 sfp_check_state(sfp);
2904 // st_mutex doesn't need to be held here for state_soft_mask,
2905 // it's unimportant if we race while reading this.
2906 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2908 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2911 static struct sfp *sfp_alloc(struct device *dev)
2915 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2917 return ERR_PTR(-ENOMEM);
2920 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2922 mutex_init(&sfp->sm_mutex);
2923 mutex_init(&sfp->st_mutex);
2924 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2925 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2927 sfp_hwmon_init(sfp);
2932 static void sfp_cleanup(void *data)
2934 struct sfp *sfp = data;
2936 sfp_hwmon_exit(sfp);
2938 cancel_delayed_work_sync(&sfp->poll);
2939 cancel_delayed_work_sync(&sfp->timeout);
2941 mdiobus_unregister(sfp->i2c_mii);
2942 mdiobus_free(sfp->i2c_mii);
2945 i2c_put_adapter(sfp->i2c);
2949 static int sfp_i2c_get(struct sfp *sfp)
2951 struct fwnode_handle *h;
2952 struct i2c_adapter *i2c;
2955 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2957 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2961 i2c = i2c_get_adapter_by_fwnode(h);
2963 err = -EPROBE_DEFER;
2967 err = sfp_i2c_configure(sfp, i2c);
2969 i2c_put_adapter(i2c);
2971 fwnode_handle_put(h);
2975 static int sfp_probe(struct platform_device *pdev)
2977 const struct sff_data *sff;
2982 sfp = sfp_alloc(&pdev->dev);
2984 return PTR_ERR(sfp);
2986 platform_set_drvdata(pdev, sfp);
2988 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2992 sff = device_get_match_data(sfp->dev);
2998 err = sfp_i2c_get(sfp);
3002 for (i = 0; i < GPIO_MAX; i++)
3003 if (sff->gpios & BIT(i)) {
3004 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3005 gpio_names[i], gpio_flags[i]);
3006 if (IS_ERR(sfp->gpio[i]))
3007 return PTR_ERR(sfp->gpio[i]);
3010 sfp->state_hw_mask = SFP_F_PRESENT;
3011 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3013 sfp->get_state = sfp_gpio_get_state;
3014 sfp->set_state = sfp_gpio_set_state;
3016 /* Modules that have no detect signal are always present */
3017 if (!(sfp->gpio[GPIO_MODDEF0]))
3018 sfp->get_state = sff_gpio_get_state;
3020 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3021 &sfp->max_power_mW);
3022 if (sfp->max_power_mW < 1000) {
3023 if (sfp->max_power_mW)
3025 "Firmware bug: host maximum power should be at least 1W\n");
3026 sfp->max_power_mW = 1000;
3029 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3030 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3032 /* Get the initial state, and always signal TX disable,
3033 * since the network interface will not be up.
3035 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3037 if (sfp->gpio[GPIO_RS0] &&
3038 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3039 sfp->state |= SFP_F_RS0;
3040 sfp_set_state(sfp, sfp->state);
3041 sfp_module_tx_disable(sfp);
3042 if (sfp->state & SFP_F_PRESENT) {
3044 sfp_sm_event(sfp, SFP_E_INSERT);
3048 for (i = 0; i < GPIO_MAX; i++) {
3049 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3052 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3053 if (sfp->gpio_irq[i] < 0) {
3054 sfp->gpio_irq[i] = 0;
3055 sfp->need_poll = true;
3059 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3060 "%s-%s", dev_name(sfp->dev),
3066 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3069 IRQF_TRIGGER_RISING |
3070 IRQF_TRIGGER_FALLING,
3073 sfp->gpio_irq[i] = 0;
3074 sfp->need_poll = true;
3079 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3081 /* We could have an issue in cases no Tx disable pin is available or
3082 * wired as modules using a laser as their light source will continue to
3083 * be active when the fiber is removed. This could be a safety issue and
3084 * we should at least warn the user about that.
3086 if (!sfp->gpio[GPIO_TX_DISABLE])
3088 "No tx_disable pin: SFP modules will always be emitting.\n");
3090 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3094 sfp_debugfs_init(sfp);
3099 static int sfp_remove(struct platform_device *pdev)
3101 struct sfp *sfp = platform_get_drvdata(pdev);
3103 sfp_debugfs_exit(sfp);
3104 sfp_unregister_socket(sfp->sfp_bus);
3107 sfp_sm_event(sfp, SFP_E_REMOVE);
3113 static void sfp_shutdown(struct platform_device *pdev)
3115 struct sfp *sfp = platform_get_drvdata(pdev);
3118 for (i = 0; i < GPIO_MAX; i++) {
3119 if (!sfp->gpio_irq[i])
3122 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3125 cancel_delayed_work_sync(&sfp->poll);
3126 cancel_delayed_work_sync(&sfp->timeout);
3129 static struct platform_driver sfp_driver = {
3131 .remove = sfp_remove,
3132 .shutdown = sfp_shutdown,
3135 .of_match_table = sfp_of_match,
3139 static int sfp_init(void)
3141 poll_jiffies = msecs_to_jiffies(100);
3143 return platform_driver_register(&sfp_driver);
3145 module_init(sfp_init);
3147 static void sfp_exit(void)
3149 platform_driver_unregister(&sfp_driver);
3151 module_exit(sfp_exit);
3153 MODULE_ALIAS("platform:sfp");
3154 MODULE_AUTHOR("Russell King");
3155 MODULE_LICENSE("GPL v2");