1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic OPP Interface
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
30 LIST_HEAD(opp_tables);
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
42 struct opp_device *opp_dev;
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
52 mutex_unlock(&opp_table->lock);
56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
58 struct opp_table *opp_table;
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
67 return ERR_PTR(-ENODEV);
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
74 * Search OPP table for one containing matching device.
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
81 struct opp_table *_find_opp_table(struct device *dev)
83 struct opp_table *opp_table;
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
104 static bool assert_single_clk(struct opp_table *opp_table)
106 return !WARN_ON(opp_table->clk_count > 1);
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
113 * Return: voltage in micro volt corresponding to the opp, else
116 * This is useful only for devices with single power supply.
118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
120 if (IS_ERR_OR_NULL(opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
125 return opp->supplies[0].u_volt;
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
134 * Return: negative error number on failure, 0 otherwise on success after
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
158 * Return: power in micro watt corresponding to the opp, else
161 * This is useful only for devices with single power supply.
163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
165 unsigned long opp_power = 0;
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
185 * Return: frequency in hertz corresponding to the opp with specified index,
188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
195 return opp->rates[index];
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
203 * Return: level read from device tree corresponding to the opp, else
206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return 0.
226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp->opp_table))
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
245 return opp->required_opps[index]->level;
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
257 * Return: true if opp is turbo opp, else false.
259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
274 * Return: This function returns the max clock latency in nanoseconds.
276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
285 clock_latency_ns = opp_table->clock_latency_ns_max;
287 dev_pm_opp_put_opp_table(opp_table);
289 return clock_latency_ns;
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
297 * Return: This function returns the max voltage latency in nanoseconds.
299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
319 count = opp_table->regulator_count;
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
325 mutex_lock(&opp_table->lock);
327 for (i = 0; i < count; i++) {
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
342 mutex_unlock(&opp_table->lock);
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
352 latency_ns += ret * 1000;
357 dev_pm_opp_put_opp_table(opp_table);
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
366 * @dev: device for which we do this operation
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(opp_table))
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
397 dev_pm_opp_put_opp_table(opp_table);
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
403 int _get_opp_count(struct opp_table *opp_table)
405 struct dev_pm_opp *opp;
408 mutex_lock(&opp_table->lock);
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
415 mutex_unlock(&opp_table->lock);
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
427 int dev_pm_opp_get_opp_count(struct device *dev)
429 struct opp_table *opp_table;
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
447 /* Helpers to read keys */
448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
450 return opp->rates[index];
453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
460 return opp->bandwidth[index].peak;
463 /* Generic comparison helpers */
464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
467 if (opp_key == key) {
475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
478 if (opp_key >= key) {
486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
496 /* Generic key finding helpers */
497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
510 mutex_lock(&opp_table->lock);
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
519 /* Increment the reference count of OPP */
521 *key = read(opp, index);
525 mutex_unlock(&opp_table->lock);
530 static struct dev_pm_opp *
531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
544 return ERR_CAST(opp_table);
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
550 dev_pm_opp_put_opp_table(opp_table);
555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
564 return _find_key(dev, &key, index, available, read, _compare_exact,
568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 _compare_ceil, assert);
577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
582 return _find_key(dev, key, index, available, read, _compare_ceil,
586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
591 return _find_key(dev, key, index, available, read, _compare_floor,
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
666 * Search for the matching ceil *available* OPP from a starting freq
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
719 * Search for the matching floor *available* OPP from a starting freq
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
814 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
817 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
818 * @dev: device for which we do this operation
819 * @level: Start level
821 * Search for the matching floor *available* OPP from a starting level
824 * Return: matching *opp and refreshes *level accordingly, else returns
825 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
827 * EINVAL: for bad pointer
828 * ERANGE: no match found for search
829 * ENODEV: if device not found in list of registered devices
831 * The callers are required to call dev_pm_opp_put() for the returned OPP after
834 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
835 unsigned long *level)
837 return _find_key_floor(dev, level, 0, true, _read_level, NULL);
839 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
842 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
843 * @dev: device for which we do this operation
844 * @bw: start bandwidth
845 * @index: which bandwidth to compare, in case of OPPs with several values
847 * Search for the matching floor *available* OPP from a starting bandwidth
850 * Return: matching *opp and refreshes *bw accordingly, else returns
851 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
853 * EINVAL: for bad pointer
854 * ERANGE: no match found for search
855 * ENODEV: if device not found in list of registered devices
857 * The callers are required to call dev_pm_opp_put() for the returned OPP after
860 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
863 unsigned long temp = *bw;
864 struct dev_pm_opp *opp;
866 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
870 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
873 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
874 * @dev: device for which we do this operation
875 * @bw: start bandwidth
876 * @index: which bandwidth to compare, in case of OPPs with several values
878 * Search for the matching floor *available* OPP from a starting bandwidth
881 * Return: matching *opp and refreshes *bw accordingly, else returns
882 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
884 * EINVAL: for bad pointer
885 * ERANGE: no match found for search
886 * ENODEV: if device not found in list of registered devices
888 * The callers are required to call dev_pm_opp_put() for the returned OPP after
891 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
892 unsigned int *bw, int index)
894 unsigned long temp = *bw;
895 struct dev_pm_opp *opp;
897 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
901 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
903 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
904 struct dev_pm_opp_supply *supply)
908 /* Regulator not available for device */
910 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
915 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
916 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
918 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
919 supply->u_volt, supply->u_volt_max);
921 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
922 __func__, supply->u_volt_min, supply->u_volt,
923 supply->u_volt_max, ret);
929 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
930 struct dev_pm_opp *opp, void *data, bool scaling_down)
932 unsigned long *target = data;
936 /* One of target and opp must be available */
940 freq = opp->rates[0];
946 ret = clk_set_rate(opp_table->clk, freq);
948 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
951 opp_table->rate_clk_single = freq;
958 * Simple implementation for configuring multiple clocks. Configure clocks in
959 * the order in which they are present in the array while scaling up.
961 int dev_pm_opp_config_clks_simple(struct device *dev,
962 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
968 for (i = opp_table->clk_count - 1; i >= 0; i--) {
969 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
971 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
977 for (i = 0; i < opp_table->clk_count; i++) {
978 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
980 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
989 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
991 static int _opp_config_regulator_single(struct device *dev,
992 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
993 struct regulator **regulators, unsigned int count)
995 struct regulator *reg = regulators[0];
998 /* This function only supports single regulator per device */
999 if (WARN_ON(count > 1)) {
1000 dev_err(dev, "multiple regulators are not supported\n");
1004 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1009 * Enable the regulator after setting its voltages, otherwise it breaks
1010 * some boot-enabled regulators.
1012 if (unlikely(!new_opp->opp_table->enabled)) {
1013 ret = regulator_enable(reg);
1015 dev_warn(dev, "Failed to enable regulator: %d", ret);
1021 static int _set_opp_bw(const struct opp_table *opp_table,
1022 struct dev_pm_opp *opp, struct device *dev)
1027 if (!opp_table->paths)
1030 for (i = 0; i < opp_table->path_count; i++) {
1035 avg = opp->bandwidth[i].avg;
1036 peak = opp->bandwidth[i].peak;
1038 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1040 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1041 opp ? "set" : "remove", i, ret);
1049 static int _set_performance_state(struct device *dev, struct device *pd_dev,
1050 struct dev_pm_opp *opp, int i)
1052 unsigned int pstate = likely(opp) ? opp->required_opps[i]->level: 0;
1058 ret = dev_pm_domain_set_performance_state(pd_dev, pstate);
1060 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
1061 dev_name(pd_dev), pstate, ret);
1067 static int _opp_set_required_opps_generic(struct device *dev,
1068 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1070 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
1074 static int _opp_set_required_opps_genpd(struct device *dev,
1075 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
1077 struct device **genpd_virt_devs =
1078 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
1079 int index, target, delta, ret;
1081 /* Scaling up? Set required OPPs in normal order, else reverse */
1082 if (!scaling_down) {
1084 target = opp_table->required_opp_count;
1087 index = opp_table->required_opp_count - 1;
1092 while (index != target) {
1093 ret = _set_performance_state(dev, genpd_virt_devs[index], opp, index);
1103 /* This is only called for PM domain for now */
1104 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1105 struct dev_pm_opp *opp, bool up)
1107 /* required-opps not fully initialized yet */
1108 if (lazy_linking_pending(opp_table))
1111 if (opp_table->set_required_opps)
1112 return opp_table->set_required_opps(dev, opp_table, opp, up);
1117 /* Update set_required_opps handler */
1118 void _update_set_required_opps(struct opp_table *opp_table)
1121 if (opp_table->set_required_opps)
1124 /* All required OPPs will belong to genpd or none */
1125 if (opp_table->required_opp_tables[0]->is_genpd)
1126 opp_table->set_required_opps = _opp_set_required_opps_genpd;
1128 opp_table->set_required_opps = _opp_set_required_opps_generic;
1131 static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1132 struct dev_pm_opp *opp)
1134 unsigned int level = 0;
1144 /* Request a new performance state through the device's PM domain. */
1145 ret = dev_pm_domain_set_performance_state(dev, level);
1147 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1153 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1155 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1158 if (!IS_ERR(opp_table->clk)) {
1159 freq = clk_get_rate(opp_table->clk);
1160 opp = _find_freq_ceil(opp_table, &freq);
1164 * Unable to find the current OPP ? Pick the first from the list since
1165 * it is in ascending order, otherwise rest of the code will need to
1166 * make special checks to validate current_opp.
1169 mutex_lock(&opp_table->lock);
1170 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1171 dev_pm_opp_get(opp);
1172 mutex_unlock(&opp_table->lock);
1175 opp_table->current_opp = opp;
1178 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1182 if (!opp_table->enabled)
1186 * Some drivers need to support cases where some platforms may
1187 * have OPP table for the device, while others don't and
1188 * opp_set_rate() just needs to behave like clk_set_rate().
1190 if (!_get_opp_count(opp_table))
1193 ret = _set_opp_bw(opp_table, NULL, dev);
1197 if (opp_table->regulators)
1198 regulator_disable(opp_table->regulators[0]);
1200 ret = _set_opp_level(dev, opp_table, NULL);
1204 ret = _set_required_opps(dev, opp_table, NULL, false);
1207 opp_table->enabled = false;
1211 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1212 struct dev_pm_opp *opp, void *clk_data, bool forced)
1214 struct dev_pm_opp *old_opp;
1215 int scaling_down, ret;
1218 return _disable_opp_table(dev, opp_table);
1220 /* Find the currently set OPP if we don't know already */
1221 if (unlikely(!opp_table->current_opp))
1222 _find_current_opp(dev, opp_table);
1224 old_opp = opp_table->current_opp;
1226 /* Return early if nothing to do */
1227 if (!forced && old_opp == opp && opp_table->enabled) {
1228 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1232 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1233 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1234 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1235 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1237 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1238 if (scaling_down == -1)
1241 /* Scaling up? Configure required OPPs before frequency */
1242 if (!scaling_down) {
1243 ret = _set_required_opps(dev, opp_table, opp, true);
1245 dev_err(dev, "Failed to set required opps: %d\n", ret);
1249 ret = _set_opp_level(dev, opp_table, opp);
1253 ret = _set_opp_bw(opp_table, opp, dev);
1255 dev_err(dev, "Failed to set bw: %d\n", ret);
1259 if (opp_table->config_regulators) {
1260 ret = opp_table->config_regulators(dev, old_opp, opp,
1261 opp_table->regulators,
1262 opp_table->regulator_count);
1264 dev_err(dev, "Failed to set regulator voltages: %d\n",
1271 if (opp_table->config_clks) {
1272 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1277 /* Scaling down? Configure required OPPs after frequency */
1279 if (opp_table->config_regulators) {
1280 ret = opp_table->config_regulators(dev, old_opp, opp,
1281 opp_table->regulators,
1282 opp_table->regulator_count);
1284 dev_err(dev, "Failed to set regulator voltages: %d\n",
1290 ret = _set_opp_bw(opp_table, opp, dev);
1292 dev_err(dev, "Failed to set bw: %d\n", ret);
1296 ret = _set_opp_level(dev, opp_table, opp);
1300 ret = _set_required_opps(dev, opp_table, opp, false);
1302 dev_err(dev, "Failed to set required opps: %d\n", ret);
1307 opp_table->enabled = true;
1308 dev_pm_opp_put(old_opp);
1310 /* Make sure current_opp doesn't get freed */
1311 dev_pm_opp_get(opp);
1312 opp_table->current_opp = opp;
1318 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1319 * @dev: device for which we do this operation
1320 * @target_freq: frequency to achieve
1322 * This configures the power-supplies to the levels specified by the OPP
1323 * corresponding to the target_freq, and programs the clock to a value <=
1324 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1325 * provided by the opp, should have already rounded to the target OPP's
1328 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1330 struct opp_table *opp_table;
1331 unsigned long freq = 0, temp_freq;
1332 struct dev_pm_opp *opp = NULL;
1333 bool forced = false;
1336 opp_table = _find_opp_table(dev);
1337 if (IS_ERR(opp_table)) {
1338 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1339 return PTR_ERR(opp_table);
1344 * For IO devices which require an OPP on some platforms/SoCs
1345 * while just needing to scale the clock on some others
1346 * we look for empty OPP tables with just a clock handle and
1347 * scale only the clk. This makes dev_pm_opp_set_rate()
1348 * equivalent to a clk_set_rate()
1350 if (!_get_opp_count(opp_table)) {
1351 ret = opp_table->config_clks(dev, opp_table, NULL,
1352 &target_freq, false);
1356 freq = clk_round_rate(opp_table->clk, target_freq);
1357 if ((long)freq <= 0)
1361 * The clock driver may support finer resolution of the
1362 * frequencies than the OPP table, don't update the frequency we
1363 * pass to clk_set_rate() here.
1366 opp = _find_freq_ceil(opp_table, &temp_freq);
1369 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1370 __func__, freq, ret);
1375 * An OPP entry specifies the highest frequency at which other
1376 * properties of the OPP entry apply. Even if the new OPP is
1377 * same as the old one, we may still reach here for a different
1378 * value of the frequency. In such a case, do not abort but
1379 * configure the hardware to the desired frequency forcefully.
1381 forced = opp_table->rate_clk_single != target_freq;
1384 ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1387 dev_pm_opp_put(opp);
1390 dev_pm_opp_put_opp_table(opp_table);
1393 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1396 * dev_pm_opp_set_opp() - Configure device for OPP
1397 * @dev: device for which we do this operation
1398 * @opp: OPP to set to
1400 * This configures the device based on the properties of the OPP passed to this
1403 * Return: 0 on success, a negative error number otherwise.
1405 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1407 struct opp_table *opp_table;
1410 opp_table = _find_opp_table(dev);
1411 if (IS_ERR(opp_table)) {
1412 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1413 return PTR_ERR(opp_table);
1416 ret = _set_opp(dev, opp_table, opp, NULL, false);
1417 dev_pm_opp_put_opp_table(opp_table);
1421 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1423 /* OPP-dev Helpers */
1424 static void _remove_opp_dev(struct opp_device *opp_dev,
1425 struct opp_table *opp_table)
1427 opp_debug_unregister(opp_dev, opp_table);
1428 list_del(&opp_dev->node);
1432 struct opp_device *_add_opp_dev(const struct device *dev,
1433 struct opp_table *opp_table)
1435 struct opp_device *opp_dev;
1437 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1441 /* Initialize opp-dev */
1444 mutex_lock(&opp_table->lock);
1445 list_add(&opp_dev->node, &opp_table->dev_list);
1446 mutex_unlock(&opp_table->lock);
1448 /* Create debugfs entries for the opp_table */
1449 opp_debug_register(opp_dev, opp_table);
1454 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1456 struct opp_table *opp_table;
1457 struct opp_device *opp_dev;
1461 * Allocate a new OPP table. In the infrequent case where a new
1462 * device is needed to be added, we pay this penalty.
1464 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1466 return ERR_PTR(-ENOMEM);
1468 mutex_init(&opp_table->lock);
1469 INIT_LIST_HEAD(&opp_table->dev_list);
1470 INIT_LIST_HEAD(&opp_table->lazy);
1472 opp_table->clk = ERR_PTR(-ENODEV);
1474 /* Mark regulator count uninitialized */
1475 opp_table->regulator_count = -1;
1477 opp_dev = _add_opp_dev(dev, opp_table);
1483 _of_init_opp_table(opp_table, dev, index);
1485 /* Find interconnect path(s) for the device */
1486 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1488 if (ret == -EPROBE_DEFER)
1489 goto remove_opp_dev;
1491 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1495 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1496 INIT_LIST_HEAD(&opp_table->opp_list);
1497 kref_init(&opp_table->kref);
1502 _of_clear_opp_table(opp_table);
1503 _remove_opp_dev(opp_dev, opp_table);
1504 mutex_destroy(&opp_table->lock);
1507 return ERR_PTR(ret);
1510 void _get_opp_table_kref(struct opp_table *opp_table)
1512 kref_get(&opp_table->kref);
1515 static struct opp_table *_update_opp_table_clk(struct device *dev,
1516 struct opp_table *opp_table,
1522 * Return early if we don't need to get clk or we have already done it
1525 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1529 /* Find clk for the device */
1530 opp_table->clk = clk_get(dev, NULL);
1532 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1534 opp_table->config_clks = _opp_config_clk_single;
1535 opp_table->clk_count = 1;
1539 if (ret == -ENOENT) {
1541 * There are few platforms which don't want the OPP core to
1542 * manage device's clock settings. In such cases neither the
1543 * platform provides the clks explicitly to us, nor the DT
1544 * contains a valid clk entry. The OPP nodes in DT may still
1545 * contain "opp-hz" property though, which we need to parse and
1546 * allow the platform to find an OPP based on freq later on.
1548 * This is a simple solution to take care of such corner cases,
1549 * i.e. make the clk_count 1, which lets us allocate space for
1550 * frequency in opp->rates and also parse the entries in DT.
1552 opp_table->clk_count = 1;
1554 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1558 dev_pm_opp_put_opp_table(opp_table);
1559 dev_err_probe(dev, ret, "Couldn't find clock\n");
1561 return ERR_PTR(ret);
1565 * We need to make sure that the OPP table for a device doesn't get added twice,
1566 * if this routine gets called in parallel with the same device pointer.
1568 * The simplest way to enforce that is to perform everything (find existing
1569 * table and if not found, create a new one) under the opp_table_lock, so only
1570 * one creator gets access to the same. But that expands the critical section
1571 * under the lock and may end up causing circular dependencies with frameworks
1572 * like debugfs, interconnect or clock framework as they may be direct or
1573 * indirect users of OPP core.
1575 * And for that reason we have to go for a bit tricky implementation here, which
1576 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1577 * of adding an OPP table and others should wait for it to finish.
1579 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1582 struct opp_table *opp_table;
1585 mutex_lock(&opp_table_lock);
1587 opp_table = _find_opp_table_unlocked(dev);
1588 if (!IS_ERR(opp_table))
1592 * The opp_tables list or an OPP table's dev_list is getting updated by
1593 * another user, wait for it to finish.
1595 if (unlikely(opp_tables_busy)) {
1596 mutex_unlock(&opp_table_lock);
1601 opp_tables_busy = true;
1602 opp_table = _managed_opp(dev, index);
1604 /* Drop the lock to reduce the size of critical section */
1605 mutex_unlock(&opp_table_lock);
1608 if (!_add_opp_dev(dev, opp_table)) {
1609 dev_pm_opp_put_opp_table(opp_table);
1610 opp_table = ERR_PTR(-ENOMEM);
1613 mutex_lock(&opp_table_lock);
1615 opp_table = _allocate_opp_table(dev, index);
1617 mutex_lock(&opp_table_lock);
1618 if (!IS_ERR(opp_table))
1619 list_add(&opp_table->node, &opp_tables);
1622 opp_tables_busy = false;
1625 mutex_unlock(&opp_table_lock);
1627 return _update_opp_table_clk(dev, opp_table, getclk);
1630 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1632 return _add_opp_table_indexed(dev, 0, getclk);
1635 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1637 return _find_opp_table(dev);
1639 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1641 static void _opp_table_kref_release(struct kref *kref)
1643 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1644 struct opp_device *opp_dev, *temp;
1647 /* Drop the lock as soon as we can */
1648 list_del(&opp_table->node);
1649 mutex_unlock(&opp_table_lock);
1651 if (opp_table->current_opp)
1652 dev_pm_opp_put(opp_table->current_opp);
1654 _of_clear_opp_table(opp_table);
1656 /* Release automatically acquired single clk */
1657 if (!IS_ERR(opp_table->clk))
1658 clk_put(opp_table->clk);
1660 if (opp_table->paths) {
1661 for (i = 0; i < opp_table->path_count; i++)
1662 icc_put(opp_table->paths[i]);
1663 kfree(opp_table->paths);
1666 WARN_ON(!list_empty(&opp_table->opp_list));
1668 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1669 _remove_opp_dev(opp_dev, opp_table);
1671 mutex_destroy(&opp_table->lock);
1675 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1677 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1680 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1682 void _opp_free(struct dev_pm_opp *opp)
1687 static void _opp_kref_release(struct kref *kref)
1689 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1690 struct opp_table *opp_table = opp->opp_table;
1692 list_del(&opp->node);
1693 mutex_unlock(&opp_table->lock);
1696 * Notify the changes in the availability of the operable
1697 * frequency/voltage list.
1699 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1700 _of_clear_opp(opp_table, opp);
1701 opp_debug_remove_one(opp);
1705 void dev_pm_opp_get(struct dev_pm_opp *opp)
1707 kref_get(&opp->kref);
1710 void dev_pm_opp_put(struct dev_pm_opp *opp)
1712 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1714 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1717 * dev_pm_opp_remove() - Remove an OPP from OPP table
1718 * @dev: device for which we do this operation
1719 * @freq: OPP to remove with matching 'freq'
1721 * This function removes an opp from the opp table.
1723 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1725 struct dev_pm_opp *opp = NULL, *iter;
1726 struct opp_table *opp_table;
1728 opp_table = _find_opp_table(dev);
1729 if (IS_ERR(opp_table))
1732 if (!assert_single_clk(opp_table))
1735 mutex_lock(&opp_table->lock);
1737 list_for_each_entry(iter, &opp_table->opp_list, node) {
1738 if (iter->rates[0] == freq) {
1744 mutex_unlock(&opp_table->lock);
1747 dev_pm_opp_put(opp);
1749 /* Drop the reference taken by dev_pm_opp_add() */
1750 dev_pm_opp_put_opp_table(opp_table);
1752 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1757 /* Drop the reference taken by _find_opp_table() */
1758 dev_pm_opp_put_opp_table(opp_table);
1760 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1762 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1765 struct dev_pm_opp *opp = NULL, *temp;
1767 mutex_lock(&opp_table->lock);
1768 list_for_each_entry(temp, &opp_table->opp_list, node) {
1770 * Refcount must be dropped only once for each OPP by OPP core,
1771 * do that with help of "removed" flag.
1773 if (!temp->removed && dynamic == temp->dynamic) {
1779 mutex_unlock(&opp_table->lock);
1784 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1785 * happen lock less to avoid circular dependency issues. This routine must be
1786 * called without the opp_table->lock held.
1788 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1790 struct dev_pm_opp *opp;
1792 while ((opp = _opp_get_next(opp_table, dynamic))) {
1793 opp->removed = true;
1794 dev_pm_opp_put(opp);
1796 /* Drop the references taken by dev_pm_opp_add() */
1798 dev_pm_opp_put_opp_table(opp_table);
1802 bool _opp_remove_all_static(struct opp_table *opp_table)
1804 mutex_lock(&opp_table->lock);
1806 if (!opp_table->parsed_static_opps) {
1807 mutex_unlock(&opp_table->lock);
1811 if (--opp_table->parsed_static_opps) {
1812 mutex_unlock(&opp_table->lock);
1816 mutex_unlock(&opp_table->lock);
1818 _opp_remove_all(opp_table, false);
1823 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1824 * @dev: device for which we do this operation
1826 * This function removes all dynamically created OPPs from the opp table.
1828 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1830 struct opp_table *opp_table;
1832 opp_table = _find_opp_table(dev);
1833 if (IS_ERR(opp_table))
1836 _opp_remove_all(opp_table, true);
1838 /* Drop the reference taken by _find_opp_table() */
1839 dev_pm_opp_put_opp_table(opp_table);
1841 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1843 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1845 struct dev_pm_opp *opp;
1846 int supply_count, supply_size, icc_size, clk_size;
1848 /* Allocate space for at least one supply */
1849 supply_count = opp_table->regulator_count > 0 ?
1850 opp_table->regulator_count : 1;
1851 supply_size = sizeof(*opp->supplies) * supply_count;
1852 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1853 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1855 /* allocate new OPP node and supplies structures */
1856 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1860 /* Put the supplies, bw and clock at the end of the OPP structure */
1861 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1863 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1866 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1868 INIT_LIST_HEAD(&opp->node);
1873 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1874 struct opp_table *opp_table)
1876 struct regulator *reg;
1879 if (!opp_table->regulators)
1882 for (i = 0; i < opp_table->regulator_count; i++) {
1883 reg = opp_table->regulators[i];
1885 if (!regulator_is_supported_voltage(reg,
1886 opp->supplies[i].u_volt_min,
1887 opp->supplies[i].u_volt_max)) {
1888 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1889 __func__, opp->supplies[i].u_volt_min,
1890 opp->supplies[i].u_volt_max);
1898 static int _opp_compare_rate(struct opp_table *opp_table,
1899 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1903 for (i = 0; i < opp_table->clk_count; i++) {
1904 if (opp1->rates[i] != opp2->rates[i])
1905 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1908 /* Same rates for both OPPs */
1912 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1913 struct dev_pm_opp *opp2)
1917 for (i = 0; i < opp_table->path_count; i++) {
1918 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1919 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1922 /* Same bw for both OPPs */
1932 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1933 struct dev_pm_opp *opp2)
1937 ret = _opp_compare_rate(opp_table, opp1, opp2);
1941 ret = _opp_compare_bw(opp_table, opp1, opp2);
1945 if (opp1->level != opp2->level)
1946 return opp1->level < opp2->level ? -1 : 1;
1948 /* Duplicate OPPs */
1952 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1953 struct opp_table *opp_table,
1954 struct list_head **head)
1956 struct dev_pm_opp *opp;
1960 * Insert new OPP in order of increasing frequency and discard if
1963 * Need to use &opp_table->opp_list in the condition part of the 'for'
1964 * loop, don't replace it with head otherwise it will become an infinite
1967 list_for_each_entry(opp, &opp_table->opp_list, node) {
1968 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1977 /* Duplicate OPPs */
1978 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1979 __func__, opp->rates[0], opp->supplies[0].u_volt,
1980 opp->available, new_opp->rates[0],
1981 new_opp->supplies[0].u_volt, new_opp->available);
1983 /* Should we compare voltages for all regulators here ? */
1984 return opp->available &&
1985 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1991 void _required_opps_available(struct dev_pm_opp *opp, int count)
1995 for (i = 0; i < count; i++) {
1996 if (opp->required_opps[i]->available)
1999 opp->available = false;
2000 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
2001 __func__, opp->required_opps[i]->np, opp->rates[0]);
2008 * 0: On success. And appropriate error message for duplicate OPPs.
2009 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2010 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2011 * sure we don't print error messages unnecessarily if different parts of
2012 * kernel try to initialize the OPP table.
2013 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2014 * should be considered an error by the callers of _opp_add().
2016 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2017 struct opp_table *opp_table)
2019 struct list_head *head;
2022 mutex_lock(&opp_table->lock);
2023 head = &opp_table->opp_list;
2025 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2027 mutex_unlock(&opp_table->lock);
2031 list_add(&new_opp->node, head);
2032 mutex_unlock(&opp_table->lock);
2034 new_opp->opp_table = opp_table;
2035 kref_init(&new_opp->kref);
2037 opp_debug_create_one(new_opp, opp_table);
2039 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2040 new_opp->available = false;
2041 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2042 __func__, new_opp->rates[0]);
2045 /* required-opps not fully initialized yet */
2046 if (lazy_linking_pending(opp_table))
2049 _required_opps_available(new_opp, opp_table->required_opp_count);
2055 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2056 * @opp_table: OPP table
2057 * @dev: device for which we do this operation
2058 * @data: The OPP data for the OPP to add
2059 * @dynamic: Dynamically added OPPs.
2061 * This function adds an opp definition to the opp table and returns status.
2062 * The opp is made available by default and it can be controlled using
2063 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2065 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2066 * and freed by dev_pm_opp_of_remove_table.
2070 * Duplicate OPPs (both freq and volt are same) and opp->available
2071 * -EEXIST Freq are same and volt are different OR
2072 * Duplicate OPPs (both freq and volt are same) and !opp->available
2073 * -ENOMEM Memory allocation failure
2075 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2076 struct dev_pm_opp_data *data, bool dynamic)
2078 struct dev_pm_opp *new_opp;
2079 unsigned long tol, u_volt = data->u_volt;
2082 if (!assert_single_clk(opp_table))
2085 new_opp = _opp_allocate(opp_table);
2089 /* populate the opp table */
2090 new_opp->rates[0] = data->freq;
2091 new_opp->level = data->level;
2092 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2093 new_opp->supplies[0].u_volt = u_volt;
2094 new_opp->supplies[0].u_volt_min = u_volt - tol;
2095 new_opp->supplies[0].u_volt_max = u_volt + tol;
2096 new_opp->available = true;
2097 new_opp->dynamic = dynamic;
2099 ret = _opp_add(dev, new_opp, opp_table);
2101 /* Don't return error for duplicate OPPs */
2108 * Notify the changes in the availability of the operable
2109 * frequency/voltage list.
2111 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2121 * This is required only for the V2 bindings, and it enables a platform to
2122 * specify the hierarchy of versions it supports. OPP layer will then enable
2123 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2126 static int _opp_set_supported_hw(struct opp_table *opp_table,
2127 const u32 *versions, unsigned int count)
2129 /* Another CPU that shares the OPP table has set the property ? */
2130 if (opp_table->supported_hw)
2133 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2135 if (!opp_table->supported_hw)
2138 opp_table->supported_hw_count = count;
2143 static void _opp_put_supported_hw(struct opp_table *opp_table)
2145 if (opp_table->supported_hw) {
2146 kfree(opp_table->supported_hw);
2147 opp_table->supported_hw = NULL;
2148 opp_table->supported_hw_count = 0;
2153 * This is required only for the V2 bindings, and it enables a platform to
2154 * specify the extn to be used for certain property names. The properties to
2155 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2156 * should postfix the property name with -<name> while looking for them.
2158 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2160 /* Another CPU that shares the OPP table has set the property ? */
2161 if (!opp_table->prop_name) {
2162 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2163 if (!opp_table->prop_name)
2170 static void _opp_put_prop_name(struct opp_table *opp_table)
2172 if (opp_table->prop_name) {
2173 kfree(opp_table->prop_name);
2174 opp_table->prop_name = NULL;
2179 * In order to support OPP switching, OPP layer needs to know the name of the
2180 * device's regulators, as the core would be required to switch voltages as
2183 * This must be called before any OPPs are initialized for the device.
2185 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2186 const char * const names[])
2188 const char * const *temp = names;
2189 struct regulator *reg;
2190 int count = 0, ret, i;
2192 /* Count number of regulators */
2199 /* Another CPU that shares the OPP table has set the regulators ? */
2200 if (opp_table->regulators)
2203 opp_table->regulators = kmalloc_array(count,
2204 sizeof(*opp_table->regulators),
2206 if (!opp_table->regulators)
2209 for (i = 0; i < count; i++) {
2210 reg = regulator_get_optional(dev, names[i]);
2212 ret = dev_err_probe(dev, PTR_ERR(reg),
2213 "%s: no regulator (%s) found\n",
2214 __func__, names[i]);
2215 goto free_regulators;
2218 opp_table->regulators[i] = reg;
2221 opp_table->regulator_count = count;
2223 /* Set generic config_regulators() for single regulators here */
2225 opp_table->config_regulators = _opp_config_regulator_single;
2231 regulator_put(opp_table->regulators[--i]);
2233 kfree(opp_table->regulators);
2234 opp_table->regulators = NULL;
2235 opp_table->regulator_count = -1;
2240 static void _opp_put_regulators(struct opp_table *opp_table)
2244 if (!opp_table->regulators)
2247 if (opp_table->enabled) {
2248 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2249 regulator_disable(opp_table->regulators[i]);
2252 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2253 regulator_put(opp_table->regulators[i]);
2255 kfree(opp_table->regulators);
2256 opp_table->regulators = NULL;
2257 opp_table->regulator_count = -1;
2260 static void _put_clks(struct opp_table *opp_table, int count)
2264 for (i = count - 1; i >= 0; i--)
2265 clk_put(opp_table->clks[i]);
2267 kfree(opp_table->clks);
2268 opp_table->clks = NULL;
2272 * In order to support OPP switching, OPP layer needs to get pointers to the
2273 * clocks for the device. Simple cases work fine without using this routine
2274 * (i.e. by passing connection-id as NULL), but for a device with multiple
2275 * clocks available, the OPP core needs to know the exact names of the clks to
2278 * This must be called before any OPPs are initialized for the device.
2280 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2281 const char * const names[],
2282 config_clks_t config_clks)
2284 const char * const *temp = names;
2285 int count = 0, ret, i;
2288 /* Count number of clks */
2293 * This is a special case where we have a single clock, whose connection
2294 * id name is NULL, i.e. first two entries are NULL in the array.
2296 if (!count && !names[1])
2299 /* Fail early for invalid configurations */
2300 if (!count || (!config_clks && count > 1))
2303 /* Another CPU that shares the OPP table has set the clkname ? */
2304 if (opp_table->clks)
2307 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2309 if (!opp_table->clks)
2312 /* Find clks for the device */
2313 for (i = 0; i < count; i++) {
2314 clk = clk_get(dev, names[i]);
2316 ret = dev_err_probe(dev, PTR_ERR(clk),
2317 "%s: Couldn't find clock with name: %s\n",
2318 __func__, names[i]);
2322 opp_table->clks[i] = clk;
2325 opp_table->clk_count = count;
2326 opp_table->config_clks = config_clks;
2328 /* Set generic single clk set here */
2330 if (!opp_table->config_clks)
2331 opp_table->config_clks = _opp_config_clk_single;
2334 * We could have just dropped the "clk" field and used "clks"
2335 * everywhere. Instead we kept the "clk" field around for
2336 * following reasons:
2338 * - avoiding clks[0] everywhere else.
2339 * - not running single clk helpers for multiple clk usecase by
2342 * Since this is single-clk case, just update the clk pointer
2345 opp_table->clk = opp_table->clks[0];
2351 _put_clks(opp_table, i);
2355 static void _opp_put_clknames(struct opp_table *opp_table)
2357 if (!opp_table->clks)
2360 opp_table->config_clks = NULL;
2361 opp_table->clk = ERR_PTR(-ENODEV);
2363 _put_clks(opp_table, opp_table->clk_count);
2367 * This is useful to support platforms with multiple regulators per device.
2369 * This must be called before any OPPs are initialized for the device.
2371 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2372 struct device *dev, config_regulators_t config_regulators)
2374 /* Another CPU that shares the OPP table has set the helper ? */
2375 if (!opp_table->config_regulators)
2376 opp_table->config_regulators = config_regulators;
2381 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2383 if (opp_table->config_regulators)
2384 opp_table->config_regulators = NULL;
2387 static void _opp_detach_genpd(struct opp_table *opp_table)
2391 if (!opp_table->genpd_virt_devs)
2394 for (index = 0; index < opp_table->required_opp_count; index++) {
2395 if (!opp_table->genpd_virt_devs[index])
2398 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2399 opp_table->genpd_virt_devs[index] = NULL;
2402 kfree(opp_table->genpd_virt_devs);
2403 opp_table->genpd_virt_devs = NULL;
2407 * Multiple generic power domains for a device are supported with the help of
2408 * virtual genpd devices, which are created for each consumer device - genpd
2409 * pair. These are the device structures which are attached to the power domain
2410 * and are required by the OPP core to set the performance state of the genpd.
2411 * The same API also works for the case where single genpd is available and so
2412 * we don't need to support that separately.
2414 * This helper will normally be called by the consumer driver of the device
2415 * "dev", as only that has details of the genpd names.
2417 * This helper needs to be called once with a list of all genpd to attach.
2418 * Otherwise the original device structure will be used instead by the OPP core.
2420 * The order of entries in the names array must match the order in which
2421 * "required-opps" are added in DT.
2423 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2424 const char * const *names, struct device ***virt_devs)
2426 struct device *virt_dev;
2427 int index = 0, ret = -EINVAL;
2428 const char * const *name = names;
2430 if (opp_table->genpd_virt_devs)
2433 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2434 sizeof(*opp_table->genpd_virt_devs),
2436 if (!opp_table->genpd_virt_devs)
2440 if (index >= opp_table->required_opp_count) {
2441 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2442 *name, opp_table->required_opp_count, index);
2446 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2447 if (IS_ERR_OR_NULL(virt_dev)) {
2448 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2449 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2453 opp_table->genpd_virt_devs[index] = virt_dev;
2459 *virt_devs = opp_table->genpd_virt_devs;
2464 _opp_detach_genpd(opp_table);
2469 static void _opp_clear_config(struct opp_config_data *data)
2471 if (data->flags & OPP_CONFIG_GENPD)
2472 _opp_detach_genpd(data->opp_table);
2473 if (data->flags & OPP_CONFIG_REGULATOR)
2474 _opp_put_regulators(data->opp_table);
2475 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2476 _opp_put_supported_hw(data->opp_table);
2477 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2478 _opp_put_config_regulators_helper(data->opp_table);
2479 if (data->flags & OPP_CONFIG_PROP_NAME)
2480 _opp_put_prop_name(data->opp_table);
2481 if (data->flags & OPP_CONFIG_CLK)
2482 _opp_put_clknames(data->opp_table);
2484 dev_pm_opp_put_opp_table(data->opp_table);
2489 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2490 * @dev: Device for which configuration is being set.
2491 * @config: OPP configuration.
2493 * This allows all device OPP configurations to be performed at once.
2495 * This must be called before any OPPs are initialized for the device. This may
2496 * be called multiple times for the same OPP table, for example once for each
2497 * CPU that share the same table. This must be balanced by the same number of
2498 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2500 * This returns a token to the caller, which must be passed to
2501 * dev_pm_opp_clear_config() to free the resources later. The value of the
2502 * returned token will be >= 1 for success and negative for errors. The minimum
2503 * value of 1 is chosen here to make it easy for callers to manage the resource.
2505 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2507 struct opp_table *opp_table;
2508 struct opp_config_data *data;
2512 data = kmalloc(sizeof(*data), GFP_KERNEL);
2516 opp_table = _add_opp_table(dev, false);
2517 if (IS_ERR(opp_table)) {
2519 return PTR_ERR(opp_table);
2522 data->opp_table = opp_table;
2525 /* This should be called before OPPs are initialized */
2526 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2531 /* Configure clocks */
2532 if (config->clk_names) {
2533 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2534 config->config_clks);
2538 data->flags |= OPP_CONFIG_CLK;
2539 } else if (config->config_clks) {
2540 /* Don't allow config callback without clocks */
2545 /* Configure property names */
2546 if (config->prop_name) {
2547 ret = _opp_set_prop_name(opp_table, config->prop_name);
2551 data->flags |= OPP_CONFIG_PROP_NAME;
2554 /* Configure config_regulators helper */
2555 if (config->config_regulators) {
2556 ret = _opp_set_config_regulators_helper(opp_table, dev,
2557 config->config_regulators);
2561 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2564 /* Configure supported hardware */
2565 if (config->supported_hw) {
2566 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2567 config->supported_hw_count);
2571 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2574 /* Configure supplies */
2575 if (config->regulator_names) {
2576 ret = _opp_set_regulators(opp_table, dev,
2577 config->regulator_names);
2581 data->flags |= OPP_CONFIG_REGULATOR;
2585 if (config->genpd_names) {
2586 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2591 data->flags |= OPP_CONFIG_GENPD;
2594 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2602 _opp_clear_config(data);
2605 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2608 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2609 * @token: The token returned by dev_pm_opp_set_config() previously.
2611 * This allows all device OPP configurations to be cleared at once. This must be
2612 * called once for each call made to dev_pm_opp_set_config(), in order to free
2613 * the OPPs properly.
2615 * Currently the first call itself ends up freeing all the OPP configurations,
2616 * while the later ones only drop the OPP table reference. This works well for
2617 * now as we would never want to use an half initialized OPP table and want to
2618 * remove the configurations together.
2620 void dev_pm_opp_clear_config(int token)
2622 struct opp_config_data *data;
2625 * This lets the callers call this unconditionally and keep their code
2628 if (unlikely(token <= 0))
2631 data = xa_erase(&opp_configs, token);
2635 _opp_clear_config(data);
2637 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2639 static void devm_pm_opp_config_release(void *token)
2641 dev_pm_opp_clear_config((unsigned long)token);
2645 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2646 * @dev: Device for which configuration is being set.
2647 * @config: OPP configuration.
2649 * This allows all device OPP configurations to be performed at once.
2650 * This is a resource-managed variant of dev_pm_opp_set_config().
2652 * Return: 0 on success and errorno otherwise.
2654 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2656 int token = dev_pm_opp_set_config(dev, config);
2661 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2662 (void *) ((unsigned long) token));
2664 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2667 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2668 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the @src_table.
2670 * @src_opp: OPP from the @src_table.
2672 * This function returns the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the @src_opp (present in @src_table).
2675 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2678 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2680 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2681 struct opp_table *dst_table,
2682 struct dev_pm_opp *src_opp)
2684 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2687 if (!src_table || !dst_table || !src_opp ||
2688 !src_table->required_opp_tables)
2689 return ERR_PTR(-EINVAL);
2691 /* required-opps not fully initialized yet */
2692 if (lazy_linking_pending(src_table))
2693 return ERR_PTR(-EBUSY);
2695 for (i = 0; i < src_table->required_opp_count; i++) {
2696 if (src_table->required_opp_tables[i] == dst_table) {
2697 mutex_lock(&src_table->lock);
2699 list_for_each_entry(opp, &src_table->opp_list, node) {
2700 if (opp == src_opp) {
2701 dest_opp = opp->required_opps[i];
2702 dev_pm_opp_get(dest_opp);
2707 mutex_unlock(&src_table->lock);
2712 if (IS_ERR(dest_opp)) {
2713 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2714 src_table, dst_table);
2719 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2722 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2723 * @src_table: OPP table which has dst_table as one of its required OPP table.
2724 * @dst_table: Required OPP table of the src_table.
2725 * @pstate: Current performance state of the src_table.
2727 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2728 * "required-opps" property of the OPP (present in @src_table) which has
2729 * performance state set to @pstate.
2731 * Return: Zero or positive performance state on success, otherwise negative
2734 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2735 struct opp_table *dst_table,
2736 unsigned int pstate)
2738 struct dev_pm_opp *opp;
2739 int dest_pstate = -EINVAL;
2743 * Normally the src_table will have the "required_opps" property set to
2744 * point to one of the OPPs in the dst_table, but in some cases the
2745 * genpd and its master have one to one mapping of performance states
2746 * and so none of them have the "required-opps" property set. Return the
2747 * pstate of the src_table as it is in such cases.
2749 if (!src_table || !src_table->required_opp_count)
2752 /* Both OPP tables must belong to genpds */
2753 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2754 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2758 /* required-opps not fully initialized yet */
2759 if (lazy_linking_pending(src_table))
2762 for (i = 0; i < src_table->required_opp_count; i++) {
2763 if (src_table->required_opp_tables[i]->np == dst_table->np)
2767 if (unlikely(i == src_table->required_opp_count)) {
2768 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2769 __func__, src_table, dst_table);
2773 mutex_lock(&src_table->lock);
2775 list_for_each_entry(opp, &src_table->opp_list, node) {
2776 if (opp->level == pstate) {
2777 dest_pstate = opp->required_opps[i]->level;
2782 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2786 mutex_unlock(&src_table->lock);
2792 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2793 * @dev: The device for which we do this operation
2794 * @data: The OPP data for the OPP to add
2796 * This function adds an opp definition to the opp table and returns status.
2797 * The opp is made available by default and it can be controlled using
2798 * dev_pm_opp_enable/disable functions.
2802 * Duplicate OPPs (both freq and volt are same) and opp->available
2803 * -EEXIST Freq are same and volt are different OR
2804 * Duplicate OPPs (both freq and volt are same) and !opp->available
2805 * -ENOMEM Memory allocation failure
2807 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2809 struct opp_table *opp_table;
2812 opp_table = _add_opp_table(dev, true);
2813 if (IS_ERR(opp_table))
2814 return PTR_ERR(opp_table);
2816 /* Fix regulator count for dynamic OPPs */
2817 opp_table->regulator_count = 1;
2819 ret = _opp_add_v1(opp_table, dev, data, true);
2821 dev_pm_opp_put_opp_table(opp_table);
2825 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2828 * _opp_set_availability() - helper to set the availability of an opp
2829 * @dev: device for which we do this operation
2830 * @freq: OPP frequency to modify availability
2831 * @availability_req: availability status requested for this opp
2833 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2834 * which is isolated here.
2836 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2837 * copy operation, returns 0 if no modification was done OR modification was
2840 static int _opp_set_availability(struct device *dev, unsigned long freq,
2841 bool availability_req)
2843 struct opp_table *opp_table;
2844 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2847 /* Find the opp_table */
2848 opp_table = _find_opp_table(dev);
2849 if (IS_ERR(opp_table)) {
2850 r = PTR_ERR(opp_table);
2851 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2855 if (!assert_single_clk(opp_table)) {
2860 mutex_lock(&opp_table->lock);
2862 /* Do we have the frequency? */
2863 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2864 if (tmp_opp->rates[0] == freq) {
2875 /* Is update really needed? */
2876 if (opp->available == availability_req)
2879 opp->available = availability_req;
2881 dev_pm_opp_get(opp);
2882 mutex_unlock(&opp_table->lock);
2884 /* Notify the change of the OPP availability */
2885 if (availability_req)
2886 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2889 blocking_notifier_call_chain(&opp_table->head,
2890 OPP_EVENT_DISABLE, opp);
2892 dev_pm_opp_put(opp);
2896 mutex_unlock(&opp_table->lock);
2898 dev_pm_opp_put_opp_table(opp_table);
2903 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2904 * @dev: device for which we do this operation
2905 * @freq: OPP frequency to adjust voltage of
2906 * @u_volt: new OPP target voltage
2907 * @u_volt_min: new OPP min voltage
2908 * @u_volt_max: new OPP max voltage
2910 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2911 * copy operation, returns 0 if no modifcation was done OR modification was
2914 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2915 unsigned long u_volt, unsigned long u_volt_min,
2916 unsigned long u_volt_max)
2919 struct opp_table *opp_table;
2920 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2923 /* Find the opp_table */
2924 opp_table = _find_opp_table(dev);
2925 if (IS_ERR(opp_table)) {
2926 r = PTR_ERR(opp_table);
2927 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2931 if (!assert_single_clk(opp_table)) {
2936 mutex_lock(&opp_table->lock);
2938 /* Do we have the frequency? */
2939 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2940 if (tmp_opp->rates[0] == freq) {
2951 /* Is update really needed? */
2952 if (opp->supplies->u_volt == u_volt)
2955 opp->supplies->u_volt = u_volt;
2956 opp->supplies->u_volt_min = u_volt_min;
2957 opp->supplies->u_volt_max = u_volt_max;
2959 dev_pm_opp_get(opp);
2960 mutex_unlock(&opp_table->lock);
2962 /* Notify the voltage change of the OPP */
2963 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2966 dev_pm_opp_put(opp);
2970 mutex_unlock(&opp_table->lock);
2972 dev_pm_opp_put_opp_table(opp_table);
2975 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2978 * dev_pm_opp_enable() - Enable a specific OPP
2979 * @dev: device for which we do this operation
2980 * @freq: OPP frequency to enable
2982 * Enables a provided opp. If the operation is valid, this returns 0, else the
2983 * corresponding error value. It is meant to be used for users an OPP available
2984 * after being temporarily made unavailable with dev_pm_opp_disable.
2986 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2987 * copy operation, returns 0 if no modification was done OR modification was
2990 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2992 return _opp_set_availability(dev, freq, true);
2994 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2997 * dev_pm_opp_disable() - Disable a specific OPP
2998 * @dev: device for which we do this operation
2999 * @freq: OPP frequency to disable
3001 * Disables a provided opp. If the operation is valid, this returns
3002 * 0, else the corresponding error value. It is meant to be a temporary
3003 * control by users to make this OPP not available until the circumstances are
3004 * right to make it available again (with a call to dev_pm_opp_enable).
3006 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3007 * copy operation, returns 0 if no modification was done OR modification was
3010 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3012 return _opp_set_availability(dev, freq, false);
3014 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3017 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3018 * @dev: Device for which notifier needs to be registered
3019 * @nb: Notifier block to be registered
3021 * Return: 0 on success or a negative error value.
3023 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3025 struct opp_table *opp_table;
3028 opp_table = _find_opp_table(dev);
3029 if (IS_ERR(opp_table))
3030 return PTR_ERR(opp_table);
3032 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3034 dev_pm_opp_put_opp_table(opp_table);
3038 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3041 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3042 * @dev: Device for which notifier needs to be unregistered
3043 * @nb: Notifier block to be unregistered
3045 * Return: 0 on success or a negative error value.
3047 int dev_pm_opp_unregister_notifier(struct device *dev,
3048 struct notifier_block *nb)
3050 struct opp_table *opp_table;
3053 opp_table = _find_opp_table(dev);
3054 if (IS_ERR(opp_table))
3055 return PTR_ERR(opp_table);
3057 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3059 dev_pm_opp_put_opp_table(opp_table);
3063 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3066 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3067 * @dev: device pointer used to lookup OPP table.
3069 * Free both OPPs created using static entries present in DT and the
3070 * dynamically added entries.
3072 void dev_pm_opp_remove_table(struct device *dev)
3074 struct opp_table *opp_table;
3076 /* Check for existing table for 'dev' */
3077 opp_table = _find_opp_table(dev);
3078 if (IS_ERR(opp_table)) {
3079 int error = PTR_ERR(opp_table);
3081 if (error != -ENODEV)
3082 WARN(1, "%s: opp_table: %d\n",
3083 IS_ERR_OR_NULL(dev) ?
3084 "Invalid device" : dev_name(dev),
3090 * Drop the extra reference only if the OPP table was successfully added
3091 * with dev_pm_opp_of_add_table() earlier.
3093 if (_opp_remove_all_static(opp_table))
3094 dev_pm_opp_put_opp_table(opp_table);
3096 /* Drop reference taken by _find_opp_table() */
3097 dev_pm_opp_put_opp_table(opp_table);
3099 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3102 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3103 * @dev: device for which we do this operation
3105 * Sync voltage state of the OPP table regulators.
3107 * Return: 0 on success or a negative error value.
3109 int dev_pm_opp_sync_regulators(struct device *dev)
3111 struct opp_table *opp_table;
3112 struct regulator *reg;
3115 /* Device may not have OPP table */
3116 opp_table = _find_opp_table(dev);
3117 if (IS_ERR(opp_table))
3120 /* Regulator may not be required for the device */
3121 if (unlikely(!opp_table->regulators))
3124 /* Nothing to sync if voltage wasn't changed */
3125 if (!opp_table->enabled)
3128 for (i = 0; i < opp_table->regulator_count; i++) {
3129 reg = opp_table->regulators[i];
3130 ret = regulator_sync_voltage(reg);
3135 /* Drop reference taken by _find_opp_table() */
3136 dev_pm_opp_put_opp_table(opp_table);
3140 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);