2 * Copyright (C) 2012 ARM Ltd.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/cpu.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/interrupt.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
28 #include <linux/irqchip/arm-gic.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
35 * How the whole thing works (courtesy of Christoffer Dall):
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
71 #define VGIC_ADDR_UNDEF (-1)
72 #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
74 #define PRODUCT_ID_KVM 0x4b /* ASCII code K */
75 #define IMPLEMENTER_ARM 0x43b
76 #define GICC_ARCH_VERSION_V2 0x2
78 /* Physical address of vgic virtual cpu interface */
79 static phys_addr_t vgic_vcpu_base;
81 /* Virtual control interface base address */
82 static void __iomem *vgic_vctrl_base;
84 static struct device_node *vgic_node;
86 #define ACCESS_READ_VALUE (1 << 0)
87 #define ACCESS_READ_RAZ (0 << 0)
88 #define ACCESS_READ_MASK(x) ((x) & (1 << 0))
89 #define ACCESS_WRITE_IGNORED (0 << 1)
90 #define ACCESS_WRITE_SETBIT (1 << 1)
91 #define ACCESS_WRITE_CLEARBIT (2 << 1)
92 #define ACCESS_WRITE_VALUE (3 << 1)
93 #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
95 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
96 static void vgic_update_state(struct kvm *kvm);
97 static void vgic_kick_vcpus(struct kvm *kvm);
98 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
99 static u32 vgic_nr_lr;
101 static unsigned int vgic_maint_irq;
103 static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
104 int cpuid, u32 offset)
108 return x->percpu[cpuid].reg;
110 return x->shared.reg + offset - 1;
113 static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
116 if (irq < VGIC_NR_PRIVATE_IRQS)
117 return test_bit(irq, x->percpu[cpuid].reg_ul);
119 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
122 static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
127 if (irq < VGIC_NR_PRIVATE_IRQS) {
128 reg = x->percpu[cpuid].reg_ul;
130 reg = x->shared.reg_ul;
131 irq -= VGIC_NR_PRIVATE_IRQS;
140 static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
142 if (unlikely(cpuid >= VGIC_MAX_CPUS))
144 return x->percpu[cpuid].reg_ul;
147 static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
149 return x->shared.reg_ul;
152 static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
155 BUG_ON(offset > (VGIC_NR_IRQS / 4));
157 return x->percpu[cpuid] + offset;
159 return x->shared + offset - 8;
162 #define VGIC_CFG_LEVEL 0
163 #define VGIC_CFG_EDGE 1
165 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
167 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
170 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
171 return irq_val == VGIC_CFG_EDGE;
174 static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
176 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
178 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
181 static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
183 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
185 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
188 static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
190 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
192 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
195 static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
197 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
199 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
202 static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
204 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
206 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
209 static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
211 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
213 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
216 static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
218 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
220 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
223 static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
225 if (irq < VGIC_NR_PRIVATE_IRQS)
226 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
228 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
229 vcpu->arch.vgic_cpu.pending_shared);
232 static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
234 if (irq < VGIC_NR_PRIVATE_IRQS)
235 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
237 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
238 vcpu->arch.vgic_cpu.pending_shared);
241 static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
243 return *((u32 *)mmio->data) & mask;
246 static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
248 *((u32 *)mmio->data) = value & mask;
252 * vgic_reg_access - access vgic register
253 * @mmio: pointer to the data describing the mmio access
254 * @reg: pointer to the virtual backing of vgic distributor data
255 * @offset: least significant 2 bits used for word offset
256 * @mode: ACCESS_ mode (see defines above)
258 * Helper to make vgic register access easier using one of the access
259 * modes defined for vgic register access
260 * (read,raz,write-ignored,setbit,clearbit,write)
262 static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
263 phys_addr_t offset, int mode)
265 int word_offset = (offset & 3) * 8;
266 u32 mask = (1UL << (mmio->len * 8)) - 1;
270 * Any alignment fault should have been delivered to the guest
271 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
277 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
281 if (mmio->is_write) {
282 u32 data = mmio_data_read(mmio, mask) << word_offset;
283 switch (ACCESS_WRITE_MASK(mode)) {
284 case ACCESS_WRITE_IGNORED:
287 case ACCESS_WRITE_SETBIT:
291 case ACCESS_WRITE_CLEARBIT:
295 case ACCESS_WRITE_VALUE:
296 regval = (regval & ~(mask << word_offset)) | data;
301 switch (ACCESS_READ_MASK(mode)) {
302 case ACCESS_READ_RAZ:
306 case ACCESS_READ_VALUE:
307 mmio_data_write(mmio, mask, regval >> word_offset);
312 static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
313 struct kvm_exit_mmio *mmio, phys_addr_t offset)
316 u32 word_offset = offset & 3;
318 switch (offset & ~3) {
319 case 0: /* GICD_CTLR */
320 reg = vcpu->kvm->arch.vgic.enabled;
321 vgic_reg_access(mmio, ®, word_offset,
322 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
323 if (mmio->is_write) {
324 vcpu->kvm->arch.vgic.enabled = reg & 1;
325 vgic_update_state(vcpu->kvm);
330 case 4: /* GICD_TYPER */
331 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
332 reg |= (VGIC_NR_IRQS >> 5) - 1;
333 vgic_reg_access(mmio, ®, word_offset,
334 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337 case 8: /* GICD_IIDR */
338 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
339 vgic_reg_access(mmio, ®, word_offset,
340 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
347 static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
348 struct kvm_exit_mmio *mmio, phys_addr_t offset)
350 vgic_reg_access(mmio, NULL, offset,
351 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
355 static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
356 struct kvm_exit_mmio *mmio,
359 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
360 vcpu->vcpu_id, offset);
361 vgic_reg_access(mmio, reg, offset,
362 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
363 if (mmio->is_write) {
364 vgic_update_state(vcpu->kvm);
371 static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
372 struct kvm_exit_mmio *mmio,
375 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
376 vcpu->vcpu_id, offset);
377 vgic_reg_access(mmio, reg, offset,
378 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
379 if (mmio->is_write) {
380 if (offset < 4) /* Force SGI enabled */
382 vgic_retire_disabled_irqs(vcpu);
383 vgic_update_state(vcpu->kvm);
390 static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
391 struct kvm_exit_mmio *mmio,
394 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
395 vcpu->vcpu_id, offset);
396 vgic_reg_access(mmio, reg, offset,
397 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
398 if (mmio->is_write) {
399 vgic_update_state(vcpu->kvm);
406 static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
407 struct kvm_exit_mmio *mmio,
410 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
411 vcpu->vcpu_id, offset);
412 vgic_reg_access(mmio, reg, offset,
413 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
414 if (mmio->is_write) {
415 vgic_update_state(vcpu->kvm);
422 static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
423 struct kvm_exit_mmio *mmio,
426 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
427 vcpu->vcpu_id, offset);
428 vgic_reg_access(mmio, reg, offset,
429 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
433 #define GICD_ITARGETSR_SIZE 32
434 #define GICD_CPUTARGETS_BITS 8
435 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
436 static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
438 struct vgic_dist *dist = &kvm->arch.vgic;
442 irq -= VGIC_NR_PRIVATE_IRQS;
444 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
445 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
450 static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
452 struct vgic_dist *dist = &kvm->arch.vgic;
453 struct kvm_vcpu *vcpu;
458 irq -= VGIC_NR_PRIVATE_IRQS;
461 * Pick the LSB in each byte. This ensures we target exactly
462 * one vcpu per IRQ. If the byte is null, assume we target
465 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
466 int shift = i * GICD_CPUTARGETS_BITS;
467 target = ffs((val >> shift) & 0xffU);
468 target = target ? (target - 1) : 0;
469 dist->irq_spi_cpu[irq + i] = target;
470 kvm_for_each_vcpu(c, vcpu, kvm) {
471 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
473 set_bit(irq + i, bmap);
475 clear_bit(irq + i, bmap);
480 static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
481 struct kvm_exit_mmio *mmio,
486 /* We treat the banked interrupts targets as read-only */
488 u32 roreg = 1 << vcpu->vcpu_id;
490 roreg |= roreg << 16;
492 vgic_reg_access(mmio, &roreg, offset,
493 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
497 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
498 vgic_reg_access(mmio, ®, offset,
499 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
500 if (mmio->is_write) {
501 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
502 vgic_update_state(vcpu->kvm);
509 static u32 vgic_cfg_expand(u16 val)
515 * Turn a 16bit value like abcd...mnop into a 32bit word
516 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
518 for (i = 0; i < 16; i++)
519 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
524 static u16 vgic_cfg_compress(u32 val)
530 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
531 * abcd...mnop which is what we really care about.
533 for (i = 0; i < 16; i++)
534 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
540 * The distributor uses 2 bits per IRQ for the CFG register, but the
541 * LSB is always 0. As such, we only keep the upper bit, and use the
542 * two above functions to compress/expand the bits
544 static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
545 struct kvm_exit_mmio *mmio, phys_addr_t offset)
551 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
552 vcpu->vcpu_id, offset);
559 val = vgic_cfg_expand(val);
560 vgic_reg_access(mmio, &val, offset,
561 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
562 if (mmio->is_write) {
564 *reg = ~0U; /* Force PPIs/SGIs to 1 */
568 val = vgic_cfg_compress(val);
573 *reg &= 0xffff << 16;
581 static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
582 struct kvm_exit_mmio *mmio, phys_addr_t offset)
585 vgic_reg_access(mmio, ®, offset,
586 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
587 if (mmio->is_write) {
588 vgic_dispatch_sgi(vcpu, reg);
589 vgic_update_state(vcpu->kvm);
596 #define LR_CPUID(lr) \
597 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
598 #define LR_IRQID(lr) \
599 ((lr) & GICH_LR_VIRTUALID)
601 static void vgic_retire_lr(int lr_nr, int irq, struct vgic_cpu *vgic_cpu)
603 clear_bit(lr_nr, vgic_cpu->lr_used);
604 vgic_cpu->vgic_lr[lr_nr] &= ~GICH_LR_STATE;
605 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
609 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
610 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
612 * Move any pending IRQs that have already been assigned to LRs back to the
613 * emulated distributor state so that the complete emulated state can be read
614 * from the main emulation structures without investigating the LRs.
616 * Note that IRQs in the active state in the LRs get their pending state moved
617 * to the distributor but the active state stays in the LRs, because we don't
618 * track the active state on the distributor side.
620 static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
622 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
623 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
624 int vcpu_id = vcpu->vcpu_id;
625 int i, irq, source_cpu;
628 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
629 lr = &vgic_cpu->vgic_lr[i];
631 source_cpu = LR_CPUID(*lr);
634 * There are three options for the state bits:
638 * 11: pending and active
640 * If the LR holds only an active interrupt (not pending) then
641 * just leave it alone.
643 if ((*lr & GICH_LR_STATE) == GICH_LR_ACTIVE_BIT)
647 * Reestablish the pending state on the distributor and the
648 * CPU interface. It may have already been pending, but that
649 * is fine, then we are only setting a few bits that were
652 vgic_dist_irq_set(vcpu, irq);
653 if (irq < VGIC_NR_SGIS)
654 dist->irq_sgi_sources[vcpu_id][irq] |= 1 << source_cpu;
655 *lr &= ~GICH_LR_PENDING_BIT;
658 * If there's no state left on the LR (it could still be
659 * active), then the LR does not hold any useful info and can
660 * be marked as free for other use.
662 if (!(*lr & GICH_LR_STATE))
663 vgic_retire_lr(i, irq, vgic_cpu);
665 /* Finally update the VGIC state. */
666 vgic_update_state(vcpu->kvm);
670 /* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
671 static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
672 struct kvm_exit_mmio *mmio,
675 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
677 int min_sgi = (offset & ~0x3) * 4;
678 int max_sgi = min_sgi + 3;
679 int vcpu_id = vcpu->vcpu_id;
682 /* Copy source SGIs from distributor side */
683 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
684 int shift = 8 * (sgi - min_sgi);
685 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
688 mmio_data_write(mmio, ~0, reg);
692 static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
693 struct kvm_exit_mmio *mmio,
694 phys_addr_t offset, bool set)
696 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
698 int min_sgi = (offset & ~0x3) * 4;
699 int max_sgi = min_sgi + 3;
700 int vcpu_id = vcpu->vcpu_id;
702 bool updated = false;
704 reg = mmio_data_read(mmio, ~0);
706 /* Clear pending SGIs on the distributor */
707 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
708 u8 mask = reg >> (8 * (sgi - min_sgi));
710 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
712 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
714 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
716 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
721 vgic_update_state(vcpu->kvm);
726 static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
727 struct kvm_exit_mmio *mmio,
731 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
733 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
736 static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
737 struct kvm_exit_mmio *mmio,
741 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
743 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
747 * I would have liked to use the kvm_bus_io_*() API instead, but it
748 * cannot cope with banked registers (only the VM pointer is passed
749 * around, and we need the vcpu). One of these days, someone please
755 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
759 static const struct mmio_range vgic_dist_ranges[] = {
761 .base = GIC_DIST_CTRL,
763 .handle_mmio = handle_mmio_misc,
766 .base = GIC_DIST_IGROUP,
767 .len = VGIC_NR_IRQS / 8,
768 .handle_mmio = handle_mmio_raz_wi,
771 .base = GIC_DIST_ENABLE_SET,
772 .len = VGIC_NR_IRQS / 8,
773 .handle_mmio = handle_mmio_set_enable_reg,
776 .base = GIC_DIST_ENABLE_CLEAR,
777 .len = VGIC_NR_IRQS / 8,
778 .handle_mmio = handle_mmio_clear_enable_reg,
781 .base = GIC_DIST_PENDING_SET,
782 .len = VGIC_NR_IRQS / 8,
783 .handle_mmio = handle_mmio_set_pending_reg,
786 .base = GIC_DIST_PENDING_CLEAR,
787 .len = VGIC_NR_IRQS / 8,
788 .handle_mmio = handle_mmio_clear_pending_reg,
791 .base = GIC_DIST_ACTIVE_SET,
792 .len = VGIC_NR_IRQS / 8,
793 .handle_mmio = handle_mmio_raz_wi,
796 .base = GIC_DIST_ACTIVE_CLEAR,
797 .len = VGIC_NR_IRQS / 8,
798 .handle_mmio = handle_mmio_raz_wi,
801 .base = GIC_DIST_PRI,
803 .handle_mmio = handle_mmio_priority_reg,
806 .base = GIC_DIST_TARGET,
808 .handle_mmio = handle_mmio_target_reg,
811 .base = GIC_DIST_CONFIG,
812 .len = VGIC_NR_IRQS / 4,
813 .handle_mmio = handle_mmio_cfg_reg,
816 .base = GIC_DIST_SOFTINT,
818 .handle_mmio = handle_mmio_sgi_reg,
821 .base = GIC_DIST_SGI_PENDING_CLEAR,
823 .handle_mmio = handle_mmio_sgi_clear,
826 .base = GIC_DIST_SGI_PENDING_SET,
828 .handle_mmio = handle_mmio_sgi_set,
834 struct mmio_range *find_matching_range(const struct mmio_range *ranges,
835 struct kvm_exit_mmio *mmio,
838 const struct mmio_range *r = ranges;
841 if (offset >= r->base &&
842 (offset + mmio->len) <= (r->base + r->len))
851 * vgic_handle_mmio - handle an in-kernel MMIO access
852 * @vcpu: pointer to the vcpu performing the access
853 * @run: pointer to the kvm_run structure
854 * @mmio: pointer to the data describing the access
856 * returns true if the MMIO access has been performed in kernel space,
857 * and false if it needs to be emulated in user space.
859 bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
860 struct kvm_exit_mmio *mmio)
862 const struct mmio_range *range;
863 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
864 unsigned long base = dist->vgic_dist_base;
866 unsigned long offset;
868 if (!irqchip_in_kernel(vcpu->kvm) ||
869 mmio->phys_addr < base ||
870 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
873 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
875 kvm_inject_dabt(vcpu, mmio->phys_addr);
879 offset = mmio->phys_addr - base;
880 range = find_matching_range(vgic_dist_ranges, mmio, offset);
881 if (unlikely(!range || !range->handle_mmio)) {
882 pr_warn("Unhandled access %d %08llx %d\n",
883 mmio->is_write, mmio->phys_addr, mmio->len);
887 spin_lock(&vcpu->kvm->arch.vgic.lock);
888 offset = mmio->phys_addr - range->base - base;
889 updated_state = range->handle_mmio(vcpu, mmio, offset);
890 spin_unlock(&vcpu->kvm->arch.vgic.lock);
891 kvm_prepare_mmio(run, mmio);
892 kvm_handle_mmio_return(vcpu, run);
895 vgic_kick_vcpus(vcpu->kvm);
900 static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
902 struct kvm *kvm = vcpu->kvm;
903 struct vgic_dist *dist = &kvm->arch.vgic;
904 int nrcpus = atomic_read(&kvm->online_vcpus);
906 int sgi, mode, c, vcpu_id;
908 vcpu_id = vcpu->vcpu_id;
911 target_cpus = (reg >> 16) & 0xff;
912 mode = (reg >> 24) & 3;
920 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
924 target_cpus = 1 << vcpu_id;
928 kvm_for_each_vcpu(c, vcpu, kvm) {
929 if (target_cpus & 1) {
930 /* Flag the SGI as pending */
931 vgic_dist_irq_set(vcpu, sgi);
932 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
933 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
940 static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
942 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
943 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
944 unsigned long pending_private, pending_shared;
947 vcpu_id = vcpu->vcpu_id;
948 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
949 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
951 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
952 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
953 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
955 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
956 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
957 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
958 bitmap_and(pend_shared, pend_shared,
959 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
960 VGIC_NR_SHARED_IRQS);
962 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
963 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
964 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
965 pending_shared < VGIC_NR_SHARED_IRQS);
969 * Update the interrupt state and determine which CPUs have pending
970 * interrupts. Must be called with distributor lock held.
972 static void vgic_update_state(struct kvm *kvm)
974 struct vgic_dist *dist = &kvm->arch.vgic;
975 struct kvm_vcpu *vcpu;
978 if (!dist->enabled) {
979 set_bit(0, &dist->irq_pending_on_cpu);
983 kvm_for_each_vcpu(c, vcpu, kvm) {
984 if (compute_pending_for_cpu(vcpu)) {
985 pr_debug("CPU%d has pending interrupts\n", c);
986 set_bit(c, &dist->irq_pending_on_cpu);
991 #define MK_LR_PEND(src, irq) \
992 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
995 * An interrupt may have been disabled after being made pending on the
996 * CPU interface (the classic case is a timer running while we're
997 * rebooting the guest - the interrupt would kick as soon as the CPU
998 * interface gets enabled, with deadly consequences).
1000 * The solution is to examine already active LRs, and check the
1001 * interrupt is still enabled. If not, just retire it.
1003 static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1005 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1008 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
1009 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1011 if (!vgic_irq_is_enabled(vcpu, irq)) {
1012 vgic_retire_lr(lr, irq, vgic_cpu);
1013 if (vgic_irq_is_active(vcpu, irq))
1014 vgic_irq_clear_active(vcpu, irq);
1020 * Queue an interrupt to a CPU virtual interface. Return true on success,
1021 * or false if it wasn't possible to queue it.
1023 static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1025 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1028 /* Sanitize the input... */
1029 BUG_ON(sgi_source_id & ~7);
1030 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1031 BUG_ON(irq >= VGIC_NR_IRQS);
1033 kvm_debug("Queue IRQ%d\n", irq);
1035 lr = vgic_cpu->vgic_irq_lr_map[irq];
1037 /* Do we have an active interrupt for the same CPUID? */
1038 if (lr != LR_EMPTY &&
1039 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
1040 kvm_debug("LR%d piggyback for IRQ%d %x\n",
1041 lr, irq, vgic_cpu->vgic_lr[lr]);
1042 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1043 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
1047 /* Try to use another LR for this interrupt */
1048 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1050 if (lr >= vgic_cpu->nr_lr)
1053 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1054 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
1055 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1056 set_bit(lr, vgic_cpu->lr_used);
1058 if (!vgic_irq_is_edge(vcpu, irq))
1059 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
1064 static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1066 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1067 unsigned long sources;
1068 int vcpu_id = vcpu->vcpu_id;
1071 sources = dist->irq_sgi_sources[vcpu_id][irq];
1073 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1074 if (vgic_queue_irq(vcpu, c, irq))
1075 clear_bit(c, &sources);
1078 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1081 * If the sources bitmap has been cleared it means that we
1082 * could queue all the SGIs onto link registers (see the
1083 * clear_bit above), and therefore we are done with them in
1084 * our emulated gic and can get rid of them.
1087 vgic_dist_irq_clear(vcpu, irq);
1088 vgic_cpu_irq_clear(vcpu, irq);
1095 static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1097 if (vgic_irq_is_active(vcpu, irq))
1098 return true; /* level interrupt, already queued */
1100 if (vgic_queue_irq(vcpu, 0, irq)) {
1101 if (vgic_irq_is_edge(vcpu, irq)) {
1102 vgic_dist_irq_clear(vcpu, irq);
1103 vgic_cpu_irq_clear(vcpu, irq);
1105 vgic_irq_set_active(vcpu, irq);
1115 * Fill the list registers with pending interrupts before running the
1118 static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1120 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1121 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1125 vcpu_id = vcpu->vcpu_id;
1128 * We may not have any pending interrupt, or the interrupts
1129 * may have been serviced from another vcpu. In all cases,
1132 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1133 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1138 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1139 if (!vgic_queue_sgi(vcpu, i))
1144 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1145 if (!vgic_queue_hwirq(vcpu, i))
1150 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1151 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1157 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1159 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1161 * We're about to run this VCPU, and we've consumed
1162 * everything the distributor had in store for
1163 * us. Claim we don't have anything pending. We'll
1164 * adjust that if needed while exiting.
1166 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1170 static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1172 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1173 bool level_pending = false;
1175 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1177 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1179 * Some level interrupts have been EOIed. Clear their
1184 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1186 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1188 vgic_irq_clear_active(vcpu, irq);
1189 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1191 /* Any additional pending interrupt? */
1192 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1193 vgic_cpu_irq_set(vcpu, irq);
1194 level_pending = true;
1196 vgic_cpu_irq_clear(vcpu, irq);
1200 * Despite being EOIed, the LR may not have
1201 * been marked as empty.
1203 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1204 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
1208 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1209 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1211 return level_pending;
1215 * Sync back the VGIC state after a guest run. The distributor lock is
1216 * needed so we don't get preempted in the middle of the state processing.
1218 static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1220 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1221 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1225 level_pending = vgic_process_maintenance(vcpu);
1227 /* Clear mappings for empty LRs */
1228 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1232 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1235 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1237 BUG_ON(irq >= VGIC_NR_IRQS);
1238 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1241 /* Check if we still have something up our sleeve... */
1242 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1244 if (level_pending || pending < vgic_cpu->nr_lr)
1245 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1248 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1250 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1252 if (!irqchip_in_kernel(vcpu->kvm))
1255 spin_lock(&dist->lock);
1256 __kvm_vgic_flush_hwstate(vcpu);
1257 spin_unlock(&dist->lock);
1260 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1264 if (!irqchip_in_kernel(vcpu->kvm))
1267 spin_lock(&dist->lock);
1268 __kvm_vgic_sync_hwstate(vcpu);
1269 spin_unlock(&dist->lock);
1272 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1274 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1276 if (!irqchip_in_kernel(vcpu->kvm))
1279 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1282 static void vgic_kick_vcpus(struct kvm *kvm)
1284 struct kvm_vcpu *vcpu;
1288 * We've injected an interrupt, time to find out who deserves
1291 kvm_for_each_vcpu(c, vcpu, kvm) {
1292 if (kvm_vgic_vcpu_pending_irq(vcpu))
1293 kvm_vcpu_kick(vcpu);
1297 static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1299 int is_edge = vgic_irq_is_edge(vcpu, irq);
1300 int state = vgic_dist_irq_is_pending(vcpu, irq);
1303 * Only inject an interrupt if:
1304 * - edge triggered and we have a rising edge
1305 * - level triggered and we change level
1308 return level > state;
1310 return level != state;
1313 static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1314 unsigned int irq_num, bool level)
1316 struct vgic_dist *dist = &kvm->arch.vgic;
1317 struct kvm_vcpu *vcpu;
1318 int is_edge, is_level;
1322 spin_lock(&dist->lock);
1324 vcpu = kvm_get_vcpu(kvm, cpuid);
1325 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1326 is_level = !is_edge;
1328 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1333 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1334 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1335 vcpu = kvm_get_vcpu(kvm, cpuid);
1338 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1341 vgic_dist_irq_set(vcpu, irq_num);
1343 vgic_dist_irq_clear(vcpu, irq_num);
1345 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1352 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1354 * Level interrupt in progress, will be picked up
1362 vgic_cpu_irq_set(vcpu, irq_num);
1363 set_bit(cpuid, &dist->irq_pending_on_cpu);
1367 spin_unlock(&dist->lock);
1373 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1374 * @kvm: The VM structure pointer
1375 * @cpuid: The CPU for PPIs
1376 * @irq_num: The IRQ number that is assigned to the device
1377 * @level: Edge-triggered: true: to trigger the interrupt
1378 * false: to ignore the call
1379 * Level-sensitive true: activates an interrupt
1380 * false: deactivates an interrupt
1382 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1383 * level-sensitive interrupts. You can think of the level parameter as 1
1384 * being HIGH and 0 being LOW and all devices being active-HIGH.
1386 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1389 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1390 vgic_kick_vcpus(kvm);
1395 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1398 * We cannot rely on the vgic maintenance interrupt to be
1399 * delivered synchronously. This means we can only use it to
1400 * exit the VM, and we perform the handling of EOIed
1401 * interrupts on the exit path (see vgic_process_maintenance).
1407 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1408 * @vcpu: pointer to the vcpu struct
1410 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1411 * this vcpu and enable the VGIC for this VCPU
1413 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1415 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1416 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1419 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1422 for (i = 0; i < VGIC_NR_IRQS; i++) {
1423 if (i < VGIC_NR_PPIS)
1424 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1425 vcpu->vcpu_id, i, 1);
1426 if (i < VGIC_NR_PRIVATE_IRQS)
1427 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1428 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1430 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1434 * By forcing VMCR to zero, the GIC will restore the binary
1435 * points to their reset values. Anything else resets to zero
1438 vgic_cpu->vgic_vmcr = 0;
1440 vgic_cpu->nr_lr = vgic_nr_lr;
1441 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1446 static void vgic_init_maintenance_interrupt(void *info)
1448 enable_percpu_irq(vgic_maint_irq, 0);
1451 static int vgic_cpu_notify(struct notifier_block *self,
1452 unsigned long action, void *cpu)
1456 case CPU_STARTING_FROZEN:
1457 vgic_init_maintenance_interrupt(NULL);
1460 case CPU_DYING_FROZEN:
1461 disable_percpu_irq(vgic_maint_irq);
1468 static struct notifier_block vgic_cpu_nb = {
1469 .notifier_call = vgic_cpu_notify,
1472 int kvm_vgic_hyp_init(void)
1475 struct resource vctrl_res;
1476 struct resource vcpu_res;
1478 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1480 kvm_err("error: no compatible vgic node in DT\n");
1484 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1485 if (!vgic_maint_irq) {
1486 kvm_err("error getting vgic maintenance irq from DT\n");
1491 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1492 "vgic", kvm_get_running_vcpus());
1494 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1498 ret = register_cpu_notifier(&vgic_cpu_nb);
1500 kvm_err("Cannot register vgic CPU notifier\n");
1504 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1506 kvm_err("Cannot obtain VCTRL resource\n");
1510 vgic_vctrl_base = of_iomap(vgic_node, 2);
1511 if (!vgic_vctrl_base) {
1512 kvm_err("Cannot ioremap VCTRL\n");
1517 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1518 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1520 ret = create_hyp_io_mappings(vgic_vctrl_base,
1521 vgic_vctrl_base + resource_size(&vctrl_res),
1524 kvm_err("Cannot map VCTRL into hyp\n");
1528 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1529 vctrl_res.start, vgic_maint_irq);
1530 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1532 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1533 kvm_err("Cannot obtain VCPU resource\n");
1537 vgic_vcpu_base = vcpu_res.start;
1542 iounmap(vgic_vctrl_base);
1544 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1546 of_node_put(vgic_node);
1551 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1552 * @kvm: pointer to the kvm struct
1554 * Map the virtual CPU interface into the VM before running any VCPUs. We
1555 * can't do this at creation time, because user space must first set the
1556 * virtual CPU interface address in the guest physical address space. Also
1557 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1559 int kvm_vgic_init(struct kvm *kvm)
1563 if (!irqchip_in_kernel(kvm))
1566 mutex_lock(&kvm->lock);
1568 if (vgic_initialized(kvm))
1571 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1572 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1573 kvm_err("Need to set vgic cpu and dist addresses first\n");
1578 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1579 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1581 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1585 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1586 vgic_set_target_reg(kvm, 0, i);
1588 kvm->arch.vgic.ready = true;
1590 mutex_unlock(&kvm->lock);
1594 int kvm_vgic_create(struct kvm *kvm)
1596 int i, vcpu_lock_idx = -1, ret = 0;
1597 struct kvm_vcpu *vcpu;
1599 mutex_lock(&kvm->lock);
1601 if (kvm->arch.vgic.vctrl_base) {
1607 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1608 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1609 * that no other VCPUs are run while we create the vgic.
1611 kvm_for_each_vcpu(i, vcpu, kvm) {
1612 if (!mutex_trylock(&vcpu->mutex))
1617 kvm_for_each_vcpu(i, vcpu, kvm) {
1618 if (vcpu->arch.has_run_once) {
1624 spin_lock_init(&kvm->arch.vgic.lock);
1625 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1626 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1627 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1630 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1631 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1632 mutex_unlock(&vcpu->mutex);
1636 mutex_unlock(&kvm->lock);
1640 static bool vgic_ioaddr_overlap(struct kvm *kvm)
1642 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1643 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1645 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1647 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1648 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1653 static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1654 phys_addr_t addr, phys_addr_t size)
1658 if (addr & ~KVM_PHYS_MASK)
1661 if (addr & (SZ_4K - 1))
1664 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1666 if (addr + size < addr)
1669 ret = vgic_ioaddr_overlap(kvm);
1677 * kvm_vgic_addr - set or get vgic VM base addresses
1678 * @kvm: pointer to the vm struct
1679 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1680 * @addr: pointer to address value
1681 * @write: if true set the address in the VM address space, if false read the
1684 * Set or get the vgic base addresses for the distributor and the virtual CPU
1685 * interface in the VM physical address space. These addresses are properties
1686 * of the emulated core/SoC and therefore user space initially knows this
1689 int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
1692 struct vgic_dist *vgic = &kvm->arch.vgic;
1694 mutex_lock(&kvm->lock);
1696 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1698 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1699 *addr, KVM_VGIC_V2_DIST_SIZE);
1701 *addr = vgic->vgic_dist_base;
1704 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1706 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1707 *addr, KVM_VGIC_V2_CPU_SIZE);
1709 *addr = vgic->vgic_cpu_base;
1716 mutex_unlock(&kvm->lock);
1720 static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1721 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1723 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1724 u32 reg, mask = 0, shift = 0;
1725 bool updated = false;
1727 switch (offset & ~0x3) {
1729 mask = GICH_VMCR_CTRL_MASK;
1730 shift = GICH_VMCR_CTRL_SHIFT;
1732 case GIC_CPU_PRIMASK:
1733 mask = GICH_VMCR_PRIMASK_MASK;
1734 shift = GICH_VMCR_PRIMASK_SHIFT;
1736 case GIC_CPU_BINPOINT:
1737 mask = GICH_VMCR_BINPOINT_MASK;
1738 shift = GICH_VMCR_BINPOINT_SHIFT;
1740 case GIC_CPU_ALIAS_BINPOINT:
1741 mask = GICH_VMCR_ALIAS_BINPOINT_MASK;
1742 shift = GICH_VMCR_ALIAS_BINPOINT_SHIFT;
1746 if (!mmio->is_write) {
1747 reg = (vgic_cpu->vgic_vmcr & mask) >> shift;
1748 mmio_data_write(mmio, ~0, reg);
1750 reg = mmio_data_read(mmio, ~0);
1751 reg = (reg << shift) & mask;
1752 if (reg != (vgic_cpu->vgic_vmcr & mask))
1754 vgic_cpu->vgic_vmcr &= ~mask;
1755 vgic_cpu->vgic_vmcr |= reg;
1760 static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1761 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1763 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
1766 static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1767 struct kvm_exit_mmio *mmio,
1776 reg = (PRODUCT_ID_KVM << 20) |
1777 (GICC_ARCH_VERSION_V2 << 16) |
1778 (IMPLEMENTER_ARM << 0);
1779 mmio_data_write(mmio, ~0, reg);
1784 * CPU Interface Register accesses - these are not accessed by the VM, but by
1785 * user space for saving and restoring VGIC state.
1787 static const struct mmio_range vgic_cpu_ranges[] = {
1789 .base = GIC_CPU_CTRL,
1791 .handle_mmio = handle_cpu_mmio_misc,
1794 .base = GIC_CPU_ALIAS_BINPOINT,
1796 .handle_mmio = handle_mmio_abpr,
1799 .base = GIC_CPU_ACTIVEPRIO,
1801 .handle_mmio = handle_mmio_raz_wi,
1804 .base = GIC_CPU_IDENT,
1806 .handle_mmio = handle_cpu_mmio_ident,
1810 static int vgic_attr_regs_access(struct kvm_device *dev,
1811 struct kvm_device_attr *attr,
1812 u32 *reg, bool is_write)
1814 const struct mmio_range *r = NULL, *ranges;
1817 struct kvm_vcpu *vcpu, *tmp_vcpu;
1818 struct vgic_dist *vgic;
1819 struct kvm_exit_mmio mmio;
1821 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1822 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1823 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1825 mutex_lock(&dev->kvm->lock);
1827 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1832 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1833 vgic = &dev->kvm->arch.vgic;
1836 mmio.is_write = is_write;
1838 mmio_data_write(&mmio, ~0, *reg);
1839 switch (attr->group) {
1840 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1841 mmio.phys_addr = vgic->vgic_dist_base + offset;
1842 ranges = vgic_dist_ranges;
1844 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1845 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1846 ranges = vgic_cpu_ranges;
1851 r = find_matching_range(ranges, &mmio, offset);
1853 if (unlikely(!r || !r->handle_mmio)) {
1859 spin_lock(&vgic->lock);
1862 * Ensure that no other VCPU is running by checking the vcpu->cpu
1863 * field. If no other VPCUs are running we can safely access the VGIC
1864 * state, because even if another VPU is run after this point, that
1865 * VCPU will not touch the vgic state, because it will block on
1866 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1868 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1869 if (unlikely(tmp_vcpu->cpu != -1)) {
1871 goto out_vgic_unlock;
1876 * Move all pending IRQs from the LRs on all VCPUs so the pending
1877 * state can be properly represented in the register state accessible
1880 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1881 vgic_unqueue_irqs(tmp_vcpu);
1884 r->handle_mmio(vcpu, &mmio, offset);
1887 *reg = mmio_data_read(&mmio, ~0);
1891 spin_unlock(&vgic->lock);
1893 mutex_unlock(&dev->kvm->lock);
1897 static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1901 switch (attr->group) {
1902 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1903 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1905 unsigned long type = (unsigned long)attr->attr;
1907 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1910 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1911 return (r == -ENODEV) ? -ENXIO : r;
1914 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1915 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1916 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1919 if (get_user(reg, uaddr))
1922 return vgic_attr_regs_access(dev, attr, ®, true);
1930 static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1934 switch (attr->group) {
1935 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1936 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1938 unsigned long type = (unsigned long)attr->attr;
1940 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1942 return (r == -ENODEV) ? -ENXIO : r;
1944 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1949 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1950 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1951 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1954 r = vgic_attr_regs_access(dev, attr, ®, false);
1957 r = put_user(reg, uaddr);
1966 static int vgic_has_attr_regs(const struct mmio_range *ranges,
1969 struct kvm_exit_mmio dev_attr_mmio;
1971 dev_attr_mmio.len = 4;
1972 if (find_matching_range(ranges, &dev_attr_mmio, offset))
1978 static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1982 switch (attr->group) {
1983 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1984 switch (attr->attr) {
1985 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1986 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1990 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1991 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1992 return vgic_has_attr_regs(vgic_dist_ranges, offset);
1993 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1994 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1995 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2000 static void vgic_destroy(struct kvm_device *dev)
2005 static int vgic_create(struct kvm_device *dev, u32 type)
2007 return kvm_vgic_create(dev->kvm);
2010 struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2011 .name = "kvm-arm-vgic",
2012 .create = vgic_create,
2013 .destroy = vgic_destroy,
2014 .set_attr = vgic_set_attr,
2015 .get_attr = vgic_get_attr,
2016 .has_attr = vgic_has_attr,