2 * Copyright © 2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
38 struct intel_wait *wait;
39 unsigned int result = 0;
41 lockdep_assert_held(&b->irq_lock);
46 * N.B. Since task_asleep() and ttwu are not atomic, the
47 * waiter may actually go to sleep after the check, causing
48 * us to suppress a valid wakeup. We prefer to reduce the
49 * number of false positive missed_breadcrumb() warnings
50 * at the expense of a few false negatives, as it it easy
51 * to trigger a false positive under heavy load. Enough
52 * signal should remain from genuine missed_breadcrumb()
53 * for us to detect in CI.
55 bool was_asleep = task_asleep(wait->tsk);
57 result = ENGINE_WAKEUP_WAITER;
58 if (wake_up_process(wait->tsk) && was_asleep)
59 result |= ENGINE_WAKEUP_ASLEEP;
65 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
67 struct intel_breadcrumbs *b = &engine->breadcrumbs;
71 spin_lock_irqsave(&b->irq_lock, flags);
72 result = __intel_breadcrumbs_wakeup(b);
73 spin_unlock_irqrestore(&b->irq_lock, flags);
78 static unsigned long wait_timeout(void)
80 return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
83 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
85 if (drm_debug & DRM_UT_DRIVER) {
86 struct drm_printer p = drm_debug_printer(__func__);
88 intel_engine_dump(engine, &p,
89 "%s missed breadcrumb at %pS\n",
90 engine->name, __builtin_return_address(0));
93 set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
96 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
98 struct intel_engine_cs *engine =
99 from_timer(engine, t, breadcrumbs.hangcheck);
100 struct intel_breadcrumbs *b = &engine->breadcrumbs;
105 if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
106 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
107 mod_timer(&b->hangcheck, wait_timeout());
111 /* We keep the hangcheck timer alive until we disarm the irq, even
112 * if there are no waiters at present.
114 * If the waiter was currently running, assume it hasn't had a chance
115 * to process the pending interrupt (e.g, low priority task on a loaded
116 * system) and wait until it sleeps before declaring a missed interrupt.
118 * If the waiter was asleep (and not even pending a wakeup), then we
119 * must have missed an interrupt as the GPU has stopped advancing
120 * but we still have a waiter. Assuming all batches complete within
121 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
123 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
124 missed_breadcrumb(engine);
125 mod_timer(&b->fake_irq, jiffies + 1);
127 mod_timer(&b->hangcheck, wait_timeout());
131 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
133 struct intel_engine_cs *engine = from_timer(engine, t,
134 breadcrumbs.fake_irq);
135 struct intel_breadcrumbs *b = &engine->breadcrumbs;
137 /* The timer persists in case we cannot enable interrupts,
138 * or if we have previously seen seqno/interrupt incoherency
139 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
140 * Here the worker will wake up every jiffie in order to kick the
141 * oldest waiter to do the coherent seqno check.
144 spin_lock_irq(&b->irq_lock);
145 if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
146 __intel_engine_disarm_breadcrumbs(engine);
147 spin_unlock_irq(&b->irq_lock);
151 mod_timer(&b->fake_irq, jiffies + 1);
154 static void irq_enable(struct intel_engine_cs *engine)
157 * FIXME: Ideally we want this on the API boundary, but for the
158 * sake of testing with mock breadcrumbs (no HW so unable to
159 * enable irqs) we place it deep within the bowels, at the point
162 GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
164 /* Enabling the IRQ may miss the generation of the interrupt, but
165 * we still need to force the barrier before reading the seqno,
168 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
170 /* Caller disables interrupts */
171 if (engine->irq_enable) {
172 spin_lock(&engine->i915->irq_lock);
173 engine->irq_enable(engine);
174 spin_unlock(&engine->i915->irq_lock);
178 static void irq_disable(struct intel_engine_cs *engine)
180 /* Caller disables interrupts */
181 if (engine->irq_disable) {
182 spin_lock(&engine->i915->irq_lock);
183 engine->irq_disable(engine);
184 spin_unlock(&engine->i915->irq_lock);
188 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
190 struct intel_breadcrumbs *b = &engine->breadcrumbs;
192 lockdep_assert_held(&b->irq_lock);
193 GEM_BUG_ON(b->irq_wait);
194 GEM_BUG_ON(!b->irq_armed);
196 GEM_BUG_ON(!b->irq_enabled);
197 if (!--b->irq_enabled)
200 b->irq_armed = false;
203 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
205 struct intel_breadcrumbs *b = &engine->breadcrumbs;
207 spin_lock_irq(&b->irq_lock);
208 if (!b->irq_enabled++)
210 GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
211 spin_unlock_irq(&b->irq_lock);
214 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
216 struct intel_breadcrumbs *b = &engine->breadcrumbs;
218 spin_lock_irq(&b->irq_lock);
219 GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
220 if (!--b->irq_enabled)
222 spin_unlock_irq(&b->irq_lock);
225 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
227 struct intel_breadcrumbs *b = &engine->breadcrumbs;
228 struct intel_wait *wait, *n;
234 * We only disarm the irq when we are idle (all requests completed),
235 * so if the bottom-half remains asleep, it missed the request
238 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
239 missed_breadcrumb(engine);
241 spin_lock_irq(&b->rb_lock);
243 spin_lock(&b->irq_lock);
246 __intel_engine_disarm_breadcrumbs(engine);
247 spin_unlock(&b->irq_lock);
249 rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
250 GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
252 RB_CLEAR_NODE(&wait->node);
253 wake_up_process(wait->tsk);
255 b->waiters = RB_ROOT;
257 spin_unlock_irq(&b->rb_lock);
260 static bool use_fake_irq(const struct intel_breadcrumbs *b)
262 const struct intel_engine_cs *engine =
263 container_of(b, struct intel_engine_cs, breadcrumbs);
265 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
268 /* Only start with the heavy weight fake irq timer if we have not
269 * seen any interrupts since enabling it the first time. If the
270 * interrupts are still arriving, it means we made a mistake in our
271 * engine->seqno_barrier(), a timing error that should be transient
272 * and unlikely to reoccur.
274 return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
277 static void enable_fake_irq(struct intel_breadcrumbs *b)
279 /* Ensure we never sleep indefinitely */
280 if (!b->irq_enabled || use_fake_irq(b))
281 mod_timer(&b->fake_irq, jiffies + 1);
283 mod_timer(&b->hangcheck, wait_timeout());
286 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
288 struct intel_engine_cs *engine =
289 container_of(b, struct intel_engine_cs, breadcrumbs);
290 struct drm_i915_private *i915 = engine->i915;
293 lockdep_assert_held(&b->irq_lock);
297 /* The breadcrumb irq will be disarmed on the interrupt after the
298 * waiters are signaled. This gives us a single interrupt window in
299 * which we can add a new waiter and avoid the cost of re-enabling
304 if (I915_SELFTEST_ONLY(b->mock)) {
305 /* For our mock objects we want to avoid interaction
306 * with the real hardware (which is not set up). So
307 * we simply pretend we have enabled the powerwell
308 * and the irq, and leave it up to the mock
309 * implementation to call intel_engine_wakeup()
310 * itself when it wants to simulate a user interrupt,
315 /* Since we are waiting on a request, the GPU should be busy
316 * and should have its own rpm reference. This is tracked
317 * by i915->gt.awake, we can forgo holding our own wakref
318 * for the interrupt as before i915->gt.awake is released (when
319 * the driver is idle) we disarm the breadcrumbs.
322 /* No interrupts? Kick the waiter every jiffie! */
324 if (!b->irq_enabled++ &&
325 !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
334 static inline struct intel_wait *to_wait(struct rb_node *node)
336 return rb_entry(node, struct intel_wait, node);
339 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
340 struct intel_wait *wait)
342 lockdep_assert_held(&b->rb_lock);
343 GEM_BUG_ON(b->irq_wait == wait);
346 * This request is completed, so remove it from the tree, mark it as
347 * complete, and *then* wake up the associated task. N.B. when the
348 * task wakes up, it will find the empty rb_node, discern that it
349 * has already been removed from the tree and skip the serialisation
350 * of the b->rb_lock and b->irq_lock. This means that the destruction
351 * of the intel_wait is not serialised with the interrupt handler
352 * by the waiter - it must instead be serialised by the caller.
354 rb_erase(&wait->node, &b->waiters);
355 RB_CLEAR_NODE(&wait->node);
357 if (wait->tsk->state != TASK_RUNNING)
358 wake_up_process(wait->tsk); /* implicit smp_wmb() */
361 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
362 struct rb_node *next)
364 struct intel_breadcrumbs *b = &engine->breadcrumbs;
366 spin_lock(&b->irq_lock);
367 GEM_BUG_ON(!b->irq_armed);
368 GEM_BUG_ON(!b->irq_wait);
369 b->irq_wait = to_wait(next);
370 spin_unlock(&b->irq_lock);
372 /* We always wake up the next waiter that takes over as the bottom-half
373 * as we may delegate not only the irq-seqno barrier to the next waiter
374 * but also the task of waking up concurrent waiters.
377 wake_up_process(to_wait(next)->tsk);
380 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
381 struct intel_wait *wait)
383 struct intel_breadcrumbs *b = &engine->breadcrumbs;
384 struct rb_node **p, *parent, *completed;
388 GEM_BUG_ON(!wait->seqno);
390 /* Insert the request into the retirement ordered list
391 * of waiters by walking the rbtree. If we are the oldest
392 * seqno in the tree (the first to be retired), then
393 * set ourselves as the bottom-half.
395 * As we descend the tree, prune completed branches since we hold the
396 * spinlock we know that the first_waiter must be delayed and can
397 * reduce some of the sequential wake up latency if we take action
398 * ourselves and wake up the completed tasks in parallel. Also, by
399 * removing stale elements in the tree, we may be able to reduce the
400 * ping-pong between the old bottom-half and ourselves as first-waiter.
406 seqno = intel_engine_get_seqno(engine);
408 /* If the request completed before we managed to grab the spinlock,
409 * return now before adding ourselves to the rbtree. We let the
410 * current bottom-half handle any pending wakeups and instead
411 * try and get out of the way quickly.
413 if (i915_seqno_passed(seqno, wait->seqno)) {
414 RB_CLEAR_NODE(&wait->node);
418 p = &b->waiters.rb_node;
421 if (wait->seqno == to_wait(parent)->seqno) {
422 /* We have multiple waiters on the same seqno, select
423 * the highest priority task (that with the smallest
424 * task->prio) to serve as the bottom-half for this
427 if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
428 p = &parent->rb_right;
431 p = &parent->rb_left;
433 } else if (i915_seqno_passed(wait->seqno,
434 to_wait(parent)->seqno)) {
435 p = &parent->rb_right;
436 if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
441 p = &parent->rb_left;
444 rb_link_node(&wait->node, parent, p);
445 rb_insert_color(&wait->node, &b->waiters);
448 spin_lock(&b->irq_lock);
450 /* After assigning ourselves as the new bottom-half, we must
451 * perform a cursory check to prevent a missed interrupt.
452 * Either we miss the interrupt whilst programming the hardware,
453 * or if there was a previous waiter (for a later seqno) they
454 * may be woken instead of us (due to the inherent race
455 * in the unlocked read of b->irq_seqno_bh in the irq handler)
456 * and so we miss the wake up.
458 armed = __intel_breadcrumbs_enable_irq(b);
459 spin_unlock(&b->irq_lock);
463 /* Advance the bottom-half (b->irq_wait) before we wake up
464 * the waiters who may scribble over their intel_wait
465 * just as the interrupt handler is dereferencing it via
469 struct rb_node *next = rb_next(completed);
470 GEM_BUG_ON(next == &wait->node);
471 __intel_breadcrumbs_next(engine, next);
475 struct intel_wait *crumb = to_wait(completed);
476 completed = rb_prev(completed);
477 __intel_breadcrumbs_finish(b, crumb);
481 GEM_BUG_ON(!b->irq_wait);
482 GEM_BUG_ON(!b->irq_armed);
483 GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
488 bool intel_engine_add_wait(struct intel_engine_cs *engine,
489 struct intel_wait *wait)
491 struct intel_breadcrumbs *b = &engine->breadcrumbs;
494 spin_lock_irq(&b->rb_lock);
495 armed = __intel_engine_add_wait(engine, wait);
496 spin_unlock_irq(&b->rb_lock);
500 /* Make the caller recheck if its request has already started. */
501 return i915_seqno_passed(intel_engine_get_seqno(engine),
505 static inline bool chain_wakeup(struct rb_node *rb, int priority)
507 return rb && to_wait(rb)->tsk->prio <= priority;
510 static inline int wakeup_priority(struct intel_breadcrumbs *b,
511 struct task_struct *tsk)
513 if (tsk == b->signaler)
519 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
520 struct intel_wait *wait)
522 struct intel_breadcrumbs *b = &engine->breadcrumbs;
524 lockdep_assert_held(&b->rb_lock);
526 if (RB_EMPTY_NODE(&wait->node))
529 if (b->irq_wait == wait) {
530 const int priority = wakeup_priority(b, wait->tsk);
531 struct rb_node *next;
533 /* We are the current bottom-half. Find the next candidate,
534 * the first waiter in the queue on the remaining oldest
535 * request. As multiple seqnos may complete in the time it
536 * takes us to wake up and find the next waiter, we have to
537 * wake up that waiter for it to perform its own coherent
540 next = rb_next(&wait->node);
541 if (chain_wakeup(next, priority)) {
542 /* If the next waiter is already complete,
543 * wake it up and continue onto the next waiter. So
544 * if have a small herd, they will wake up in parallel
545 * rather than sequentially, which should reduce
546 * the overall latency in waking all the completed
549 * However, waking up a chain adds extra latency to
550 * the first_waiter. This is undesirable if that
551 * waiter is a high priority task.
553 u32 seqno = intel_engine_get_seqno(engine);
555 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
556 struct rb_node *n = rb_next(next);
558 __intel_breadcrumbs_finish(b, to_wait(next));
560 if (!chain_wakeup(next, priority))
565 __intel_breadcrumbs_next(engine, next);
567 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
570 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
571 rb_erase(&wait->node, &b->waiters);
572 RB_CLEAR_NODE(&wait->node);
575 GEM_BUG_ON(b->irq_wait == wait);
576 GEM_BUG_ON(rb_first(&b->waiters) !=
577 (b->irq_wait ? &b->irq_wait->node : NULL));
580 void intel_engine_remove_wait(struct intel_engine_cs *engine,
581 struct intel_wait *wait)
583 struct intel_breadcrumbs *b = &engine->breadcrumbs;
585 /* Quick check to see if this waiter was already decoupled from
586 * the tree by the bottom-half to avoid contention on the spinlock
589 if (RB_EMPTY_NODE(&wait->node)) {
590 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
594 spin_lock_irq(&b->rb_lock);
595 __intel_engine_remove_wait(engine, wait);
596 spin_unlock_irq(&b->rb_lock);
599 static void signaler_set_rtpriority(void)
601 struct sched_param param = { .sched_priority = 1 };
603 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
606 static int intel_breadcrumbs_signaler(void *arg)
608 struct intel_engine_cs *engine = arg;
609 struct intel_breadcrumbs *b = &engine->breadcrumbs;
610 struct i915_request *rq, *n;
612 /* Install ourselves with high priority to reduce signalling latency */
613 signaler_set_rtpriority();
616 bool do_schedule = true;
620 set_current_state(TASK_INTERRUPTIBLE);
621 if (list_empty(&b->signals))
625 * We are either woken up by the interrupt bottom-half,
626 * or by a client adding a new signaller. In both cases,
627 * the GPU seqno may have advanced beyond our oldest signal.
628 * If it has, propagate the signal, remove the waiter and
629 * check again with the next oldest signal. Otherwise we
630 * need to wait for a new interrupt from the GPU or for
633 seqno = intel_engine_get_seqno(engine);
635 spin_lock_irq(&b->rb_lock);
636 list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
637 u32 this = rq->signaling.wait.seqno;
639 GEM_BUG_ON(!rq->signaling.wait.seqno);
641 if (!i915_seqno_passed(seqno, this))
644 if (likely(this == i915_request_global_seqno(rq))) {
645 __intel_engine_remove_wait(engine,
646 &rq->signaling.wait);
648 rq->signaling.wait.seqno = 0;
649 __list_del_entry(&rq->signaling.link);
651 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
653 list_add_tail(&rq->signaling.link,
655 i915_request_get(rq);
659 spin_unlock_irq(&b->rb_lock);
661 if (!list_empty(&list)) {
663 list_for_each_entry_safe(rq, n, &list, signaling.link) {
664 dma_fence_signal(&rq->fence);
665 GEM_BUG_ON(!i915_request_completed(rq));
666 i915_request_put(rq);
668 local_bh_enable(); /* kick start the tasklets */
671 * If the engine is saturated we may be continually
672 * processing completed requests. This angers the
673 * NMI watchdog if we never let anything else
674 * have access to the CPU. Let's pretend to be nice
675 * and relinquish the CPU if we burn through the
676 * entire RT timeslice!
678 do_schedule = need_resched();
681 if (unlikely(do_schedule)) {
682 /* Before we sleep, check for a missed seqno */
683 if (current->state & TASK_NORMAL &&
684 !list_empty(&b->signals) &&
685 engine->irq_seqno_barrier &&
686 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
687 &engine->irq_posted)) {
688 engine->irq_seqno_barrier(engine);
689 intel_engine_wakeup(engine);
693 if (kthread_should_park())
696 if (unlikely(kthread_should_stop()))
702 __set_current_state(TASK_RUNNING);
707 static void insert_signal(struct intel_breadcrumbs *b,
708 struct i915_request *request,
711 struct i915_request *iter;
713 lockdep_assert_held(&b->rb_lock);
716 * A reasonable assumption is that we are called to add signals
717 * in sequence, as the requests are submitted for execution and
718 * assigned a global_seqno. This will be the case for the majority
719 * of internally generated signals (inter-engine signaling).
721 * Out of order waiters triggering random signaling enabling will
722 * be more problematic, but hopefully rare enough and the list
723 * small enough that the O(N) insertion sort is not an issue.
726 list_for_each_entry_reverse(iter, &b->signals, signaling.link)
727 if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
730 list_add(&request->signaling.link, &iter->signaling.link);
733 void intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
735 struct intel_engine_cs *engine = request->engine;
736 struct intel_breadcrumbs *b = &engine->breadcrumbs;
740 * Note that we may be called from an interrupt handler on another
741 * device (e.g. nouveau signaling a fence completion causing us
742 * to submit a request, and so enable signaling). As such,
743 * we need to make sure that all other users of b->rb_lock protect
744 * against interrupts, i.e. use spin_lock_irqsave.
747 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
748 GEM_BUG_ON(!irqs_disabled());
749 lockdep_assert_held(&request->lock);
751 seqno = i915_request_global_seqno(request);
752 if (!seqno) /* will be enabled later upon execution */
755 GEM_BUG_ON(request->signaling.wait.seqno);
756 request->signaling.wait.tsk = b->signaler;
757 request->signaling.wait.request = request;
758 request->signaling.wait.seqno = seqno;
761 * Add ourselves into the list of waiters, but registering our
762 * bottom-half as the signaller thread. As per usual, only the oldest
763 * waiter (not just signaller) is tasked as the bottom-half waking
764 * up all completed waiters after the user interrupt.
766 * If we are the oldest waiter, enable the irq (after which we
767 * must double check that the seqno did not complete).
769 spin_lock(&b->rb_lock);
770 insert_signal(b, request, seqno);
771 wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
772 spin_unlock(&b->rb_lock);
775 wake_up_process(b->signaler);
778 void intel_engine_cancel_signaling(struct i915_request *request)
780 struct intel_engine_cs *engine = request->engine;
781 struct intel_breadcrumbs *b = &engine->breadcrumbs;
783 GEM_BUG_ON(!irqs_disabled());
784 lockdep_assert_held(&request->lock);
786 if (!READ_ONCE(request->signaling.wait.seqno))
789 spin_lock(&b->rb_lock);
790 __intel_engine_remove_wait(engine, &request->signaling.wait);
791 if (fetch_and_zero(&request->signaling.wait.seqno))
792 __list_del_entry(&request->signaling.link);
793 spin_unlock(&b->rb_lock);
796 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
798 struct intel_breadcrumbs *b = &engine->breadcrumbs;
799 struct task_struct *tsk;
801 spin_lock_init(&b->rb_lock);
802 spin_lock_init(&b->irq_lock);
804 timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
805 timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
807 INIT_LIST_HEAD(&b->signals);
809 /* Spawn a thread to provide a common bottom-half for all signals.
810 * As this is an asynchronous interface we cannot steal the current
811 * task for handling the bottom-half to the user interrupt, therefore
812 * we create a thread to do the coherent seqno dance after the
813 * interrupt and then signal the waitqueue (via the dma-buf/fence).
815 tsk = kthread_run(intel_breadcrumbs_signaler, engine,
816 "i915/signal:%d", engine->id);
825 static void cancel_fake_irq(struct intel_engine_cs *engine)
827 struct intel_breadcrumbs *b = &engine->breadcrumbs;
829 del_timer_sync(&b->hangcheck);
830 del_timer_sync(&b->fake_irq);
831 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
834 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
836 struct intel_breadcrumbs *b = &engine->breadcrumbs;
838 cancel_fake_irq(engine);
839 spin_lock_irq(&b->irq_lock);
846 /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
847 * GPU is active and may have already executed the MI_USER_INTERRUPT
848 * before the CPU is ready to receive. However, the engine is currently
849 * idle (we haven't started it yet), there is no possibility for a
850 * missed interrupt as we enabled the irq and so we can clear the
851 * immediate wakeup (until a real interrupt arrives for the waiter).
853 clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
858 spin_unlock_irq(&b->irq_lock);
861 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
863 struct intel_breadcrumbs *b = &engine->breadcrumbs;
865 /* The engines should be idle and all requests accounted for! */
866 WARN_ON(READ_ONCE(b->irq_wait));
867 WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
868 WARN_ON(!list_empty(&b->signals));
870 if (!IS_ERR_OR_NULL(b->signaler))
871 kthread_stop(b->signaler);
873 cancel_fake_irq(engine);
876 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
877 #include "selftests/intel_breadcrumbs.c"