]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/intel_breadcrumbs.c
Merge tag 'nds32-for-linus-4.17' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27
28 #include "i915_drv.h"
29
30 #ifdef CONFIG_SMP
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
32 #else
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
34 #endif
35
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
37 {
38         struct intel_wait *wait;
39         unsigned int result = 0;
40
41         lockdep_assert_held(&b->irq_lock);
42
43         wait = b->irq_wait;
44         if (wait) {
45                 /*
46                  * N.B. Since task_asleep() and ttwu are not atomic, the
47                  * waiter may actually go to sleep after the check, causing
48                  * us to suppress a valid wakeup. We prefer to reduce the
49                  * number of false positive missed_breadcrumb() warnings
50                  * at the expense of a few false negatives, as it it easy
51                  * to trigger a false positive under heavy load. Enough
52                  * signal should remain from genuine missed_breadcrumb()
53                  * for us to detect in CI.
54                  */
55                 bool was_asleep = task_asleep(wait->tsk);
56
57                 result = ENGINE_WAKEUP_WAITER;
58                 if (wake_up_process(wait->tsk) && was_asleep)
59                         result |= ENGINE_WAKEUP_ASLEEP;
60         }
61
62         return result;
63 }
64
65 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
66 {
67         struct intel_breadcrumbs *b = &engine->breadcrumbs;
68         unsigned long flags;
69         unsigned int result;
70
71         spin_lock_irqsave(&b->irq_lock, flags);
72         result = __intel_breadcrumbs_wakeup(b);
73         spin_unlock_irqrestore(&b->irq_lock, flags);
74
75         return result;
76 }
77
78 static unsigned long wait_timeout(void)
79 {
80         return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
81 }
82
83 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
84 {
85         if (drm_debug & DRM_UT_DRIVER) {
86                 struct drm_printer p = drm_debug_printer(__func__);
87
88                 intel_engine_dump(engine, &p,
89                                   "%s missed breadcrumb at %pS\n",
90                                   engine->name, __builtin_return_address(0));
91         }
92
93         set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
94 }
95
96 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
97 {
98         struct intel_engine_cs *engine =
99                 from_timer(engine, t, breadcrumbs.hangcheck);
100         struct intel_breadcrumbs *b = &engine->breadcrumbs;
101
102         if (!b->irq_armed)
103                 return;
104
105         if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
106                 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
107                 mod_timer(&b->hangcheck, wait_timeout());
108                 return;
109         }
110
111         /* We keep the hangcheck timer alive until we disarm the irq, even
112          * if there are no waiters at present.
113          *
114          * If the waiter was currently running, assume it hasn't had a chance
115          * to process the pending interrupt (e.g, low priority task on a loaded
116          * system) and wait until it sleeps before declaring a missed interrupt.
117          *
118          * If the waiter was asleep (and not even pending a wakeup), then we
119          * must have missed an interrupt as the GPU has stopped advancing
120          * but we still have a waiter. Assuming all batches complete within
121          * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
122          */
123         if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
124                 missed_breadcrumb(engine);
125                 mod_timer(&b->fake_irq, jiffies + 1);
126         } else {
127                 mod_timer(&b->hangcheck, wait_timeout());
128         }
129 }
130
131 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
132 {
133         struct intel_engine_cs *engine = from_timer(engine, t,
134                                                     breadcrumbs.fake_irq);
135         struct intel_breadcrumbs *b = &engine->breadcrumbs;
136
137         /* The timer persists in case we cannot enable interrupts,
138          * or if we have previously seen seqno/interrupt incoherency
139          * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
140          * Here the worker will wake up every jiffie in order to kick the
141          * oldest waiter to do the coherent seqno check.
142          */
143
144         spin_lock_irq(&b->irq_lock);
145         if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
146                 __intel_engine_disarm_breadcrumbs(engine);
147         spin_unlock_irq(&b->irq_lock);
148         if (!b->irq_armed)
149                 return;
150
151         mod_timer(&b->fake_irq, jiffies + 1);
152 }
153
154 static void irq_enable(struct intel_engine_cs *engine)
155 {
156         /*
157          * FIXME: Ideally we want this on the API boundary, but for the
158          * sake of testing with mock breadcrumbs (no HW so unable to
159          * enable irqs) we place it deep within the bowels, at the point
160          * of no return.
161          */
162         GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
163
164         /* Enabling the IRQ may miss the generation of the interrupt, but
165          * we still need to force the barrier before reading the seqno,
166          * just in case.
167          */
168         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
169
170         /* Caller disables interrupts */
171         if (engine->irq_enable) {
172                 spin_lock(&engine->i915->irq_lock);
173                 engine->irq_enable(engine);
174                 spin_unlock(&engine->i915->irq_lock);
175         }
176 }
177
178 static void irq_disable(struct intel_engine_cs *engine)
179 {
180         /* Caller disables interrupts */
181         if (engine->irq_disable) {
182                 spin_lock(&engine->i915->irq_lock);
183                 engine->irq_disable(engine);
184                 spin_unlock(&engine->i915->irq_lock);
185         }
186 }
187
188 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
189 {
190         struct intel_breadcrumbs *b = &engine->breadcrumbs;
191
192         lockdep_assert_held(&b->irq_lock);
193         GEM_BUG_ON(b->irq_wait);
194         GEM_BUG_ON(!b->irq_armed);
195
196         GEM_BUG_ON(!b->irq_enabled);
197         if (!--b->irq_enabled)
198                 irq_disable(engine);
199
200         b->irq_armed = false;
201 }
202
203 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
204 {
205         struct intel_breadcrumbs *b = &engine->breadcrumbs;
206
207         spin_lock_irq(&b->irq_lock);
208         if (!b->irq_enabled++)
209                 irq_enable(engine);
210         GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
211         spin_unlock_irq(&b->irq_lock);
212 }
213
214 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
215 {
216         struct intel_breadcrumbs *b = &engine->breadcrumbs;
217
218         spin_lock_irq(&b->irq_lock);
219         GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
220         if (!--b->irq_enabled)
221                 irq_disable(engine);
222         spin_unlock_irq(&b->irq_lock);
223 }
224
225 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
226 {
227         struct intel_breadcrumbs *b = &engine->breadcrumbs;
228         struct intel_wait *wait, *n;
229
230         if (!b->irq_armed)
231                 return;
232
233         /*
234          * We only disarm the irq when we are idle (all requests completed),
235          * so if the bottom-half remains asleep, it missed the request
236          * completion.
237          */
238         if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
239                 missed_breadcrumb(engine);
240
241         spin_lock_irq(&b->rb_lock);
242
243         spin_lock(&b->irq_lock);
244         b->irq_wait = NULL;
245         if (b->irq_armed)
246                 __intel_engine_disarm_breadcrumbs(engine);
247         spin_unlock(&b->irq_lock);
248
249         rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
250                 GEM_BUG_ON(!i915_seqno_passed(intel_engine_get_seqno(engine),
251                                               wait->seqno));
252                 RB_CLEAR_NODE(&wait->node);
253                 wake_up_process(wait->tsk);
254         }
255         b->waiters = RB_ROOT;
256
257         spin_unlock_irq(&b->rb_lock);
258 }
259
260 static bool use_fake_irq(const struct intel_breadcrumbs *b)
261 {
262         const struct intel_engine_cs *engine =
263                 container_of(b, struct intel_engine_cs, breadcrumbs);
264
265         if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
266                 return false;
267
268         /* Only start with the heavy weight fake irq timer if we have not
269          * seen any interrupts since enabling it the first time. If the
270          * interrupts are still arriving, it means we made a mistake in our
271          * engine->seqno_barrier(), a timing error that should be transient
272          * and unlikely to reoccur.
273          */
274         return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
275 }
276
277 static void enable_fake_irq(struct intel_breadcrumbs *b)
278 {
279         /* Ensure we never sleep indefinitely */
280         if (!b->irq_enabled || use_fake_irq(b))
281                 mod_timer(&b->fake_irq, jiffies + 1);
282         else
283                 mod_timer(&b->hangcheck, wait_timeout());
284 }
285
286 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
287 {
288         struct intel_engine_cs *engine =
289                 container_of(b, struct intel_engine_cs, breadcrumbs);
290         struct drm_i915_private *i915 = engine->i915;
291         bool enabled;
292
293         lockdep_assert_held(&b->irq_lock);
294         if (b->irq_armed)
295                 return false;
296
297         /* The breadcrumb irq will be disarmed on the interrupt after the
298          * waiters are signaled. This gives us a single interrupt window in
299          * which we can add a new waiter and avoid the cost of re-enabling
300          * the irq.
301          */
302         b->irq_armed = true;
303
304         if (I915_SELFTEST_ONLY(b->mock)) {
305                 /* For our mock objects we want to avoid interaction
306                  * with the real hardware (which is not set up). So
307                  * we simply pretend we have enabled the powerwell
308                  * and the irq, and leave it up to the mock
309                  * implementation to call intel_engine_wakeup()
310                  * itself when it wants to simulate a user interrupt,
311                  */
312                 return true;
313         }
314
315         /* Since we are waiting on a request, the GPU should be busy
316          * and should have its own rpm reference. This is tracked
317          * by i915->gt.awake, we can forgo holding our own wakref
318          * for the interrupt as before i915->gt.awake is released (when
319          * the driver is idle) we disarm the breadcrumbs.
320          */
321
322         /* No interrupts? Kick the waiter every jiffie! */
323         enabled = false;
324         if (!b->irq_enabled++ &&
325             !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
326                 irq_enable(engine);
327                 enabled = true;
328         }
329
330         enable_fake_irq(b);
331         return enabled;
332 }
333
334 static inline struct intel_wait *to_wait(struct rb_node *node)
335 {
336         return rb_entry(node, struct intel_wait, node);
337 }
338
339 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
340                                               struct intel_wait *wait)
341 {
342         lockdep_assert_held(&b->rb_lock);
343         GEM_BUG_ON(b->irq_wait == wait);
344
345         /*
346          * This request is completed, so remove it from the tree, mark it as
347          * complete, and *then* wake up the associated task. N.B. when the
348          * task wakes up, it will find the empty rb_node, discern that it
349          * has already been removed from the tree and skip the serialisation
350          * of the b->rb_lock and b->irq_lock. This means that the destruction
351          * of the intel_wait is not serialised with the interrupt handler
352          * by the waiter - it must instead be serialised by the caller.
353          */
354         rb_erase(&wait->node, &b->waiters);
355         RB_CLEAR_NODE(&wait->node);
356
357         if (wait->tsk->state != TASK_RUNNING)
358                 wake_up_process(wait->tsk); /* implicit smp_wmb() */
359 }
360
361 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
362                                             struct rb_node *next)
363 {
364         struct intel_breadcrumbs *b = &engine->breadcrumbs;
365
366         spin_lock(&b->irq_lock);
367         GEM_BUG_ON(!b->irq_armed);
368         GEM_BUG_ON(!b->irq_wait);
369         b->irq_wait = to_wait(next);
370         spin_unlock(&b->irq_lock);
371
372         /* We always wake up the next waiter that takes over as the bottom-half
373          * as we may delegate not only the irq-seqno barrier to the next waiter
374          * but also the task of waking up concurrent waiters.
375          */
376         if (next)
377                 wake_up_process(to_wait(next)->tsk);
378 }
379
380 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
381                                     struct intel_wait *wait)
382 {
383         struct intel_breadcrumbs *b = &engine->breadcrumbs;
384         struct rb_node **p, *parent, *completed;
385         bool first, armed;
386         u32 seqno;
387
388         GEM_BUG_ON(!wait->seqno);
389
390         /* Insert the request into the retirement ordered list
391          * of waiters by walking the rbtree. If we are the oldest
392          * seqno in the tree (the first to be retired), then
393          * set ourselves as the bottom-half.
394          *
395          * As we descend the tree, prune completed branches since we hold the
396          * spinlock we know that the first_waiter must be delayed and can
397          * reduce some of the sequential wake up latency if we take action
398          * ourselves and wake up the completed tasks in parallel. Also, by
399          * removing stale elements in the tree, we may be able to reduce the
400          * ping-pong between the old bottom-half and ourselves as first-waiter.
401          */
402         armed = false;
403         first = true;
404         parent = NULL;
405         completed = NULL;
406         seqno = intel_engine_get_seqno(engine);
407
408          /* If the request completed before we managed to grab the spinlock,
409           * return now before adding ourselves to the rbtree. We let the
410           * current bottom-half handle any pending wakeups and instead
411           * try and get out of the way quickly.
412           */
413         if (i915_seqno_passed(seqno, wait->seqno)) {
414                 RB_CLEAR_NODE(&wait->node);
415                 return first;
416         }
417
418         p = &b->waiters.rb_node;
419         while (*p) {
420                 parent = *p;
421                 if (wait->seqno == to_wait(parent)->seqno) {
422                         /* We have multiple waiters on the same seqno, select
423                          * the highest priority task (that with the smallest
424                          * task->prio) to serve as the bottom-half for this
425                          * group.
426                          */
427                         if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
428                                 p = &parent->rb_right;
429                                 first = false;
430                         } else {
431                                 p = &parent->rb_left;
432                         }
433                 } else if (i915_seqno_passed(wait->seqno,
434                                              to_wait(parent)->seqno)) {
435                         p = &parent->rb_right;
436                         if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
437                                 completed = parent;
438                         else
439                                 first = false;
440                 } else {
441                         p = &parent->rb_left;
442                 }
443         }
444         rb_link_node(&wait->node, parent, p);
445         rb_insert_color(&wait->node, &b->waiters);
446
447         if (first) {
448                 spin_lock(&b->irq_lock);
449                 b->irq_wait = wait;
450                 /* After assigning ourselves as the new bottom-half, we must
451                  * perform a cursory check to prevent a missed interrupt.
452                  * Either we miss the interrupt whilst programming the hardware,
453                  * or if there was a previous waiter (for a later seqno) they
454                  * may be woken instead of us (due to the inherent race
455                  * in the unlocked read of b->irq_seqno_bh in the irq handler)
456                  * and so we miss the wake up.
457                  */
458                 armed = __intel_breadcrumbs_enable_irq(b);
459                 spin_unlock(&b->irq_lock);
460         }
461
462         if (completed) {
463                 /* Advance the bottom-half (b->irq_wait) before we wake up
464                  * the waiters who may scribble over their intel_wait
465                  * just as the interrupt handler is dereferencing it via
466                  * b->irq_wait.
467                  */
468                 if (!first) {
469                         struct rb_node *next = rb_next(completed);
470                         GEM_BUG_ON(next == &wait->node);
471                         __intel_breadcrumbs_next(engine, next);
472                 }
473
474                 do {
475                         struct intel_wait *crumb = to_wait(completed);
476                         completed = rb_prev(completed);
477                         __intel_breadcrumbs_finish(b, crumb);
478                 } while (completed);
479         }
480
481         GEM_BUG_ON(!b->irq_wait);
482         GEM_BUG_ON(!b->irq_armed);
483         GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
484
485         return armed;
486 }
487
488 bool intel_engine_add_wait(struct intel_engine_cs *engine,
489                            struct intel_wait *wait)
490 {
491         struct intel_breadcrumbs *b = &engine->breadcrumbs;
492         bool armed;
493
494         spin_lock_irq(&b->rb_lock);
495         armed = __intel_engine_add_wait(engine, wait);
496         spin_unlock_irq(&b->rb_lock);
497         if (armed)
498                 return armed;
499
500         /* Make the caller recheck if its request has already started. */
501         return i915_seqno_passed(intel_engine_get_seqno(engine),
502                                  wait->seqno - 1);
503 }
504
505 static inline bool chain_wakeup(struct rb_node *rb, int priority)
506 {
507         return rb && to_wait(rb)->tsk->prio <= priority;
508 }
509
510 static inline int wakeup_priority(struct intel_breadcrumbs *b,
511                                   struct task_struct *tsk)
512 {
513         if (tsk == b->signaler)
514                 return INT_MIN;
515         else
516                 return tsk->prio;
517 }
518
519 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
520                                        struct intel_wait *wait)
521 {
522         struct intel_breadcrumbs *b = &engine->breadcrumbs;
523
524         lockdep_assert_held(&b->rb_lock);
525
526         if (RB_EMPTY_NODE(&wait->node))
527                 goto out;
528
529         if (b->irq_wait == wait) {
530                 const int priority = wakeup_priority(b, wait->tsk);
531                 struct rb_node *next;
532
533                 /* We are the current bottom-half. Find the next candidate,
534                  * the first waiter in the queue on the remaining oldest
535                  * request. As multiple seqnos may complete in the time it
536                  * takes us to wake up and find the next waiter, we have to
537                  * wake up that waiter for it to perform its own coherent
538                  * completion check.
539                  */
540                 next = rb_next(&wait->node);
541                 if (chain_wakeup(next, priority)) {
542                         /* If the next waiter is already complete,
543                          * wake it up and continue onto the next waiter. So
544                          * if have a small herd, they will wake up in parallel
545                          * rather than sequentially, which should reduce
546                          * the overall latency in waking all the completed
547                          * clients.
548                          *
549                          * However, waking up a chain adds extra latency to
550                          * the first_waiter. This is undesirable if that
551                          * waiter is a high priority task.
552                          */
553                         u32 seqno = intel_engine_get_seqno(engine);
554
555                         while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
556                                 struct rb_node *n = rb_next(next);
557
558                                 __intel_breadcrumbs_finish(b, to_wait(next));
559                                 next = n;
560                                 if (!chain_wakeup(next, priority))
561                                         break;
562                         }
563                 }
564
565                 __intel_breadcrumbs_next(engine, next);
566         } else {
567                 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
568         }
569
570         GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
571         rb_erase(&wait->node, &b->waiters);
572         RB_CLEAR_NODE(&wait->node);
573
574 out:
575         GEM_BUG_ON(b->irq_wait == wait);
576         GEM_BUG_ON(rb_first(&b->waiters) !=
577                    (b->irq_wait ? &b->irq_wait->node : NULL));
578 }
579
580 void intel_engine_remove_wait(struct intel_engine_cs *engine,
581                               struct intel_wait *wait)
582 {
583         struct intel_breadcrumbs *b = &engine->breadcrumbs;
584
585         /* Quick check to see if this waiter was already decoupled from
586          * the tree by the bottom-half to avoid contention on the spinlock
587          * by the herd.
588          */
589         if (RB_EMPTY_NODE(&wait->node)) {
590                 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
591                 return;
592         }
593
594         spin_lock_irq(&b->rb_lock);
595         __intel_engine_remove_wait(engine, wait);
596         spin_unlock_irq(&b->rb_lock);
597 }
598
599 static void signaler_set_rtpriority(void)
600 {
601          struct sched_param param = { .sched_priority = 1 };
602
603          sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
604 }
605
606 static int intel_breadcrumbs_signaler(void *arg)
607 {
608         struct intel_engine_cs *engine = arg;
609         struct intel_breadcrumbs *b = &engine->breadcrumbs;
610         struct i915_request *rq, *n;
611
612         /* Install ourselves with high priority to reduce signalling latency */
613         signaler_set_rtpriority();
614
615         do {
616                 bool do_schedule = true;
617                 LIST_HEAD(list);
618                 u32 seqno;
619
620                 set_current_state(TASK_INTERRUPTIBLE);
621                 if (list_empty(&b->signals))
622                         goto sleep;
623
624                 /*
625                  * We are either woken up by the interrupt bottom-half,
626                  * or by a client adding a new signaller. In both cases,
627                  * the GPU seqno may have advanced beyond our oldest signal.
628                  * If it has, propagate the signal, remove the waiter and
629                  * check again with the next oldest signal. Otherwise we
630                  * need to wait for a new interrupt from the GPU or for
631                  * a new client.
632                  */
633                 seqno = intel_engine_get_seqno(engine);
634
635                 spin_lock_irq(&b->rb_lock);
636                 list_for_each_entry_safe(rq, n, &b->signals, signaling.link) {
637                         u32 this = rq->signaling.wait.seqno;
638
639                         GEM_BUG_ON(!rq->signaling.wait.seqno);
640
641                         if (!i915_seqno_passed(seqno, this))
642                                 break;
643
644                         if (likely(this == i915_request_global_seqno(rq))) {
645                                 __intel_engine_remove_wait(engine,
646                                                            &rq->signaling.wait);
647
648                                 rq->signaling.wait.seqno = 0;
649                                 __list_del_entry(&rq->signaling.link);
650
651                                 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
652                                               &rq->fence.flags)) {
653                                         list_add_tail(&rq->signaling.link,
654                                                       &list);
655                                         i915_request_get(rq);
656                                 }
657                         }
658                 }
659                 spin_unlock_irq(&b->rb_lock);
660
661                 if (!list_empty(&list)) {
662                         local_bh_disable();
663                         list_for_each_entry_safe(rq, n, &list, signaling.link) {
664                                 dma_fence_signal(&rq->fence);
665                                 GEM_BUG_ON(!i915_request_completed(rq));
666                                 i915_request_put(rq);
667                         }
668                         local_bh_enable(); /* kick start the tasklets */
669
670                         /*
671                          * If the engine is saturated we may be continually
672                          * processing completed requests. This angers the
673                          * NMI watchdog if we never let anything else
674                          * have access to the CPU. Let's pretend to be nice
675                          * and relinquish the CPU if we burn through the
676                          * entire RT timeslice!
677                          */
678                         do_schedule = need_resched();
679                 }
680
681                 if (unlikely(do_schedule)) {
682                         /* Before we sleep, check for a missed seqno */
683                         if (current->state & TASK_NORMAL &&
684                             !list_empty(&b->signals) &&
685                             engine->irq_seqno_barrier &&
686                             test_and_clear_bit(ENGINE_IRQ_BREADCRUMB,
687                                                &engine->irq_posted)) {
688                                 engine->irq_seqno_barrier(engine);
689                                 intel_engine_wakeup(engine);
690                         }
691
692 sleep:
693                         if (kthread_should_park())
694                                 kthread_parkme();
695
696                         if (unlikely(kthread_should_stop()))
697                                 break;
698
699                         schedule();
700                 }
701         } while (1);
702         __set_current_state(TASK_RUNNING);
703
704         return 0;
705 }
706
707 static void insert_signal(struct intel_breadcrumbs *b,
708                           struct i915_request *request,
709                           const u32 seqno)
710 {
711         struct i915_request *iter;
712
713         lockdep_assert_held(&b->rb_lock);
714
715         /*
716          * A reasonable assumption is that we are called to add signals
717          * in sequence, as the requests are submitted for execution and
718          * assigned a global_seqno. This will be the case for the majority
719          * of internally generated signals (inter-engine signaling).
720          *
721          * Out of order waiters triggering random signaling enabling will
722          * be more problematic, but hopefully rare enough and the list
723          * small enough that the O(N) insertion sort is not an issue.
724          */
725
726         list_for_each_entry_reverse(iter, &b->signals, signaling.link)
727                 if (i915_seqno_passed(seqno, iter->signaling.wait.seqno))
728                         break;
729
730         list_add(&request->signaling.link, &iter->signaling.link);
731 }
732
733 void intel_engine_enable_signaling(struct i915_request *request, bool wakeup)
734 {
735         struct intel_engine_cs *engine = request->engine;
736         struct intel_breadcrumbs *b = &engine->breadcrumbs;
737         u32 seqno;
738
739         /*
740          * Note that we may be called from an interrupt handler on another
741          * device (e.g. nouveau signaling a fence completion causing us
742          * to submit a request, and so enable signaling). As such,
743          * we need to make sure that all other users of b->rb_lock protect
744          * against interrupts, i.e. use spin_lock_irqsave.
745          */
746
747         /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
748         GEM_BUG_ON(!irqs_disabled());
749         lockdep_assert_held(&request->lock);
750
751         seqno = i915_request_global_seqno(request);
752         if (!seqno) /* will be enabled later upon execution */
753                 return;
754
755         GEM_BUG_ON(request->signaling.wait.seqno);
756         request->signaling.wait.tsk = b->signaler;
757         request->signaling.wait.request = request;
758         request->signaling.wait.seqno = seqno;
759
760         /*
761          * Add ourselves into the list of waiters, but registering our
762          * bottom-half as the signaller thread. As per usual, only the oldest
763          * waiter (not just signaller) is tasked as the bottom-half waking
764          * up all completed waiters after the user interrupt.
765          *
766          * If we are the oldest waiter, enable the irq (after which we
767          * must double check that the seqno did not complete).
768          */
769         spin_lock(&b->rb_lock);
770         insert_signal(b, request, seqno);
771         wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
772         spin_unlock(&b->rb_lock);
773
774         if (wakeup)
775                 wake_up_process(b->signaler);
776 }
777
778 void intel_engine_cancel_signaling(struct i915_request *request)
779 {
780         struct intel_engine_cs *engine = request->engine;
781         struct intel_breadcrumbs *b = &engine->breadcrumbs;
782
783         GEM_BUG_ON(!irqs_disabled());
784         lockdep_assert_held(&request->lock);
785
786         if (!READ_ONCE(request->signaling.wait.seqno))
787                 return;
788
789         spin_lock(&b->rb_lock);
790         __intel_engine_remove_wait(engine, &request->signaling.wait);
791         if (fetch_and_zero(&request->signaling.wait.seqno))
792                 __list_del_entry(&request->signaling.link);
793         spin_unlock(&b->rb_lock);
794 }
795
796 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
797 {
798         struct intel_breadcrumbs *b = &engine->breadcrumbs;
799         struct task_struct *tsk;
800
801         spin_lock_init(&b->rb_lock);
802         spin_lock_init(&b->irq_lock);
803
804         timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
805         timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
806
807         INIT_LIST_HEAD(&b->signals);
808
809         /* Spawn a thread to provide a common bottom-half for all signals.
810          * As this is an asynchronous interface we cannot steal the current
811          * task for handling the bottom-half to the user interrupt, therefore
812          * we create a thread to do the coherent seqno dance after the
813          * interrupt and then signal the waitqueue (via the dma-buf/fence).
814          */
815         tsk = kthread_run(intel_breadcrumbs_signaler, engine,
816                           "i915/signal:%d", engine->id);
817         if (IS_ERR(tsk))
818                 return PTR_ERR(tsk);
819
820         b->signaler = tsk;
821
822         return 0;
823 }
824
825 static void cancel_fake_irq(struct intel_engine_cs *engine)
826 {
827         struct intel_breadcrumbs *b = &engine->breadcrumbs;
828
829         del_timer_sync(&b->hangcheck);
830         del_timer_sync(&b->fake_irq);
831         clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
832 }
833
834 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
835 {
836         struct intel_breadcrumbs *b = &engine->breadcrumbs;
837
838         cancel_fake_irq(engine);
839         spin_lock_irq(&b->irq_lock);
840
841         if (b->irq_enabled)
842                 irq_enable(engine);
843         else
844                 irq_disable(engine);
845
846         /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
847          * GPU is active and may have already executed the MI_USER_INTERRUPT
848          * before the CPU is ready to receive. However, the engine is currently
849          * idle (we haven't started it yet), there is no possibility for a
850          * missed interrupt as we enabled the irq and so we can clear the
851          * immediate wakeup (until a real interrupt arrives for the waiter).
852          */
853         clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
854
855         if (b->irq_armed)
856                 enable_fake_irq(b);
857
858         spin_unlock_irq(&b->irq_lock);
859 }
860
861 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
862 {
863         struct intel_breadcrumbs *b = &engine->breadcrumbs;
864
865         /* The engines should be idle and all requests accounted for! */
866         WARN_ON(READ_ONCE(b->irq_wait));
867         WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
868         WARN_ON(!list_empty(&b->signals));
869
870         if (!IS_ERR_OR_NULL(b->signaler))
871                 kthread_stop(b->signaler);
872
873         cancel_fake_irq(engine);
874 }
875
876 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
877 #include "selftests/intel_breadcrumbs.c"
878 #endif
This page took 0.086268 seconds and 4 git commands to generate.