1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
49 static DEFINE_MUTEX(input_mutex);
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 static const unsigned int input_max_code[EV_CNT] = {
64 static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
67 return code <= max && test_bit(code, bm);
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
86 static void input_start_autorepeat(struct input_dev *dev, int code)
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
97 static void input_stop_autorepeat(struct input_dev *dev)
99 del_timer(&dev->timer);
103 * Pass values first through all filters and then, if event has not been
104 * filtered out, through all open handles. This order is achieved by placing
105 * filters at the head of the list of handles attached to the device, and
106 * placing regular handles at the tail of the list.
108 * This function is called with dev->event_lock held and interrupts disabled.
110 static void input_pass_values(struct input_dev *dev,
111 struct input_value *vals, unsigned int count)
113 struct input_handle *handle;
114 struct input_value *v;
116 lockdep_assert_held(&dev->event_lock);
120 handle = rcu_dereference(dev->grab);
122 count = handle->handler->events(handle, vals, count);
124 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
126 count = handle->handler->events(handle, vals,
135 /* trigger auto repeat for key events */
136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 for (v = vals; v != vals + count; v++) {
138 if (v->type == EV_KEY && v->value != 2) {
140 input_start_autorepeat(dev, v->code);
142 input_stop_autorepeat(dev);
148 #define INPUT_IGNORE_EVENT 0
149 #define INPUT_PASS_TO_HANDLERS 1
150 #define INPUT_PASS_TO_DEVICE 2
152 #define INPUT_FLUSH 8
153 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
155 static int input_handle_abs_event(struct input_dev *dev,
156 unsigned int code, int *pval)
158 struct input_mt *mt = dev->mt;
159 bool is_new_slot = false;
163 if (code == ABS_MT_SLOT) {
165 * "Stage" the event; we'll flush it later, when we
166 * get actual touch data.
168 if (mt && *pval >= 0 && *pval < mt->num_slots)
171 return INPUT_IGNORE_EVENT;
174 is_mt_event = input_is_mt_value(code);
177 pold = &dev->absinfo[code].value;
179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
183 * Bypass filtering for multi-touch events when
184 * not employing slots.
190 *pval = input_defuzz_abs_event(*pval, *pold,
191 dev->absinfo[code].fuzz);
193 return INPUT_IGNORE_EVENT;
198 /* Flush pending "slot" event */
200 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
204 return INPUT_PASS_TO_HANDLERS;
207 static int input_get_disposition(struct input_dev *dev,
208 unsigned int type, unsigned int code, int *pval)
210 int disposition = INPUT_IGNORE_EVENT;
213 /* filter-out events from inhibited devices */
215 return INPUT_IGNORE_EVENT;
222 disposition = INPUT_PASS_TO_ALL;
226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
229 disposition = INPUT_PASS_TO_HANDLERS;
235 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
237 /* auto-repeat bypasses state updates */
239 disposition = INPUT_PASS_TO_HANDLERS;
243 if (!!test_bit(code, dev->key) != !!value) {
245 __change_bit(code, dev->key);
246 disposition = INPUT_PASS_TO_HANDLERS;
252 if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 !!test_bit(code, dev->sw) != !!value) {
255 __change_bit(code, dev->sw);
256 disposition = INPUT_PASS_TO_HANDLERS;
261 if (is_event_supported(code, dev->absbit, ABS_MAX))
262 disposition = input_handle_abs_event(dev, code, &value);
267 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 disposition = INPUT_PASS_TO_HANDLERS;
273 if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 disposition = INPUT_PASS_TO_ALL;
279 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 !!test_bit(code, dev->led) != !!value) {
282 __change_bit(code, dev->led);
283 disposition = INPUT_PASS_TO_ALL;
288 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
290 if (!!test_bit(code, dev->snd) != !!value)
291 __change_bit(code, dev->snd);
292 disposition = INPUT_PASS_TO_ALL;
297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 dev->rep[code] = value;
299 disposition = INPUT_PASS_TO_ALL;
305 disposition = INPUT_PASS_TO_ALL;
309 disposition = INPUT_PASS_TO_ALL;
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 unsigned int type, unsigned int code, int value)
320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 dev->event(dev, type, code, value);
323 if (disposition & INPUT_PASS_TO_HANDLERS) {
324 struct input_value *v;
326 if (disposition & INPUT_SLOT) {
327 v = &dev->vals[dev->num_vals++];
329 v->code = ABS_MT_SLOT;
330 v->value = dev->mt->slot;
333 v = &dev->vals[dev->num_vals++];
339 if (disposition & INPUT_FLUSH) {
340 if (dev->num_vals >= 2)
341 input_pass_values(dev, dev->vals, dev->num_vals);
344 * Reset the timestamp on flush so we won't end up
345 * with a stale one. Note we only need to reset the
346 * monolithic one as we use its presence when deciding
347 * whether to generate a synthetic timestamp.
349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 } else if (dev->num_vals >= dev->max_vals - 2) {
351 dev->vals[dev->num_vals++] = input_value_sync;
352 input_pass_values(dev, dev->vals, dev->num_vals);
357 void input_handle_event(struct input_dev *dev,
358 unsigned int type, unsigned int code, int value)
362 lockdep_assert_held(&dev->event_lock);
364 disposition = input_get_disposition(dev, type, code, &value);
365 if (disposition != INPUT_IGNORE_EVENT) {
367 add_input_randomness(type, code, value);
369 input_event_dispose(dev, disposition, type, code, value);
374 * input_event() - report new input event
375 * @dev: device that generated the event
376 * @type: type of the event
378 * @value: value of the event
380 * This function should be used by drivers implementing various input
381 * devices to report input events. See also input_inject_event().
383 * NOTE: input_event() may be safely used right after input device was
384 * allocated with input_allocate_device(), even before it is registered
385 * with input_register_device(), but the event will not reach any of the
386 * input handlers. Such early invocation of input_event() may be used
387 * to 'seed' initial state of a switch or initial position of absolute
390 void input_event(struct input_dev *dev,
391 unsigned int type, unsigned int code, int value)
395 if (is_event_supported(type, dev->evbit, EV_MAX)) {
397 spin_lock_irqsave(&dev->event_lock, flags);
398 input_handle_event(dev, type, code, value);
399 spin_unlock_irqrestore(&dev->event_lock, flags);
402 EXPORT_SYMBOL(input_event);
405 * input_inject_event() - send input event from input handler
406 * @handle: input handle to send event through
407 * @type: type of the event
409 * @value: value of the event
411 * Similar to input_event() but will ignore event if device is
412 * "grabbed" and handle injecting event is not the one that owns
415 void input_inject_event(struct input_handle *handle,
416 unsigned int type, unsigned int code, int value)
418 struct input_dev *dev = handle->dev;
419 struct input_handle *grab;
422 if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 spin_lock_irqsave(&dev->event_lock, flags);
426 grab = rcu_dereference(dev->grab);
427 if (!grab || grab == handle)
428 input_handle_event(dev, type, code, value);
431 spin_unlock_irqrestore(&dev->event_lock, flags);
434 EXPORT_SYMBOL(input_inject_event);
437 * input_alloc_absinfo - allocates array of input_absinfo structs
438 * @dev: the input device emitting absolute events
440 * If the absinfo struct the caller asked for is already allocated, this
441 * functions will not do anything.
443 void input_alloc_absinfo(struct input_dev *dev)
448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
450 dev_err(dev->dev.parent ?: &dev->dev,
451 "%s: unable to allocate memory\n", __func__);
453 * We will handle this allocation failure in
454 * input_register_device() when we refuse to register input
455 * device with ABS bits but without absinfo.
459 EXPORT_SYMBOL(input_alloc_absinfo);
461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 int min, int max, int fuzz, int flat)
464 struct input_absinfo *absinfo;
466 __set_bit(EV_ABS, dev->evbit);
467 __set_bit(axis, dev->absbit);
469 input_alloc_absinfo(dev);
473 absinfo = &dev->absinfo[axis];
474 absinfo->minimum = min;
475 absinfo->maximum = max;
476 absinfo->fuzz = fuzz;
477 absinfo->flat = flat;
479 EXPORT_SYMBOL(input_set_abs_params);
482 * input_copy_abs - Copy absinfo from one input_dev to another
483 * @dst: Destination input device to copy the abs settings to
484 * @dst_axis: ABS_* value selecting the destination axis
485 * @src: Source input device to copy the abs settings from
486 * @src_axis: ABS_* value selecting the source axis
488 * Set absinfo for the selected destination axis by copying it from
489 * the specified source input device's source axis.
490 * This is useful to e.g. setup a pen/stylus input-device for combined
491 * touchscreen/pen hardware where the pen uses the same coordinates as
494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 const struct input_dev *src, unsigned int src_axis)
497 /* src must have EV_ABS and src_axis set */
498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 test_bit(src_axis, src->absbit))))
503 * input_alloc_absinfo() may have failed for the source. Our caller is
504 * expected to catch this when registering the input devices, which may
505 * happen after the input_copy_abs() call.
510 input_set_capability(dst, EV_ABS, dst_axis);
514 dst->absinfo[dst_axis] = src->absinfo[src_axis];
516 EXPORT_SYMBOL(input_copy_abs);
519 * input_grab_device - grabs device for exclusive use
520 * @handle: input handle that wants to own the device
522 * When a device is grabbed by an input handle all events generated by
523 * the device are delivered only to this handle. Also events injected
524 * by other input handles are ignored while device is grabbed.
526 int input_grab_device(struct input_handle *handle)
528 struct input_dev *dev = handle->dev;
531 retval = mutex_lock_interruptible(&dev->mutex);
540 rcu_assign_pointer(dev->grab, handle);
543 mutex_unlock(&dev->mutex);
546 EXPORT_SYMBOL(input_grab_device);
548 static void __input_release_device(struct input_handle *handle)
550 struct input_dev *dev = handle->dev;
551 struct input_handle *grabber;
553 grabber = rcu_dereference_protected(dev->grab,
554 lockdep_is_held(&dev->mutex));
555 if (grabber == handle) {
556 rcu_assign_pointer(dev->grab, NULL);
557 /* Make sure input_pass_values() notices that grab is gone */
560 list_for_each_entry(handle, &dev->h_list, d_node)
561 if (handle->open && handle->handler->start)
562 handle->handler->start(handle);
567 * input_release_device - release previously grabbed device
568 * @handle: input handle that owns the device
570 * Releases previously grabbed device so that other input handles can
571 * start receiving input events. Upon release all handlers attached
572 * to the device have their start() method called so they have a change
573 * to synchronize device state with the rest of the system.
575 void input_release_device(struct input_handle *handle)
577 struct input_dev *dev = handle->dev;
579 mutex_lock(&dev->mutex);
580 __input_release_device(handle);
581 mutex_unlock(&dev->mutex);
583 EXPORT_SYMBOL(input_release_device);
586 * input_open_device - open input device
587 * @handle: handle through which device is being accessed
589 * This function should be called by input handlers when they
590 * want to start receive events from given input device.
592 int input_open_device(struct input_handle *handle)
594 struct input_dev *dev = handle->dev;
597 retval = mutex_lock_interruptible(&dev->mutex);
601 if (dev->going_away) {
608 if (dev->users++ || dev->inhibited) {
610 * Device is already opened and/or inhibited,
611 * so we can exit immediately and report success.
617 retval = dev->open(dev);
622 * Make sure we are not delivering any more events
623 * through this handle
631 input_dev_poller_start(dev->poller);
634 mutex_unlock(&dev->mutex);
637 EXPORT_SYMBOL(input_open_device);
639 int input_flush_device(struct input_handle *handle, struct file *file)
641 struct input_dev *dev = handle->dev;
644 retval = mutex_lock_interruptible(&dev->mutex);
649 retval = dev->flush(dev, file);
651 mutex_unlock(&dev->mutex);
654 EXPORT_SYMBOL(input_flush_device);
657 * input_close_device - close input device
658 * @handle: handle through which device is being accessed
660 * This function should be called by input handlers when they
661 * want to stop receive events from given input device.
663 void input_close_device(struct input_handle *handle)
665 struct input_dev *dev = handle->dev;
667 mutex_lock(&dev->mutex);
669 __input_release_device(handle);
671 if (!--dev->users && !dev->inhibited) {
673 input_dev_poller_stop(dev->poller);
678 if (!--handle->open) {
680 * synchronize_rcu() makes sure that input_pass_values()
681 * completed and that no more input events are delivered
682 * through this handle
687 mutex_unlock(&dev->mutex);
689 EXPORT_SYMBOL(input_close_device);
692 * Simulate keyup events for all keys that are marked as pressed.
693 * The function must be called with dev->event_lock held.
695 static bool input_dev_release_keys(struct input_dev *dev)
697 bool need_sync = false;
700 lockdep_assert_held(&dev->event_lock);
702 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
703 for_each_set_bit(code, dev->key, KEY_CNT) {
704 input_handle_event(dev, EV_KEY, code, 0);
713 * Prepare device for unregistering
715 static void input_disconnect_device(struct input_dev *dev)
717 struct input_handle *handle;
720 * Mark device as going away. Note that we take dev->mutex here
721 * not to protect access to dev->going_away but rather to ensure
722 * that there are no threads in the middle of input_open_device()
724 mutex_lock(&dev->mutex);
725 dev->going_away = true;
726 mutex_unlock(&dev->mutex);
728 spin_lock_irq(&dev->event_lock);
731 * Simulate keyup events for all pressed keys so that handlers
732 * are not left with "stuck" keys. The driver may continue
733 * generate events even after we done here but they will not
734 * reach any handlers.
736 if (input_dev_release_keys(dev))
737 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
739 list_for_each_entry(handle, &dev->h_list, d_node)
742 spin_unlock_irq(&dev->event_lock);
746 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
747 * @ke: keymap entry containing scancode to be converted.
748 * @scancode: pointer to the location where converted scancode should
751 * This function is used to convert scancode stored in &struct keymap_entry
752 * into scalar form understood by legacy keymap handling methods. These
753 * methods expect scancodes to be represented as 'unsigned int'.
755 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
756 unsigned int *scancode)
760 *scancode = *((u8 *)ke->scancode);
764 *scancode = *((u16 *)ke->scancode);
768 *scancode = *((u32 *)ke->scancode);
777 EXPORT_SYMBOL(input_scancode_to_scalar);
780 * Those routines handle the default case where no [gs]etkeycode() is
781 * defined. In this case, an array indexed by the scancode is used.
784 static unsigned int input_fetch_keycode(struct input_dev *dev,
787 switch (dev->keycodesize) {
789 return ((u8 *)dev->keycode)[index];
792 return ((u16 *)dev->keycode)[index];
795 return ((u32 *)dev->keycode)[index];
799 static int input_default_getkeycode(struct input_dev *dev,
800 struct input_keymap_entry *ke)
805 if (!dev->keycodesize)
808 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
811 error = input_scancode_to_scalar(ke, &index);
816 if (index >= dev->keycodemax)
819 ke->keycode = input_fetch_keycode(dev, index);
821 ke->len = sizeof(index);
822 memcpy(ke->scancode, &index, sizeof(index));
827 static int input_default_setkeycode(struct input_dev *dev,
828 const struct input_keymap_entry *ke,
829 unsigned int *old_keycode)
835 if (!dev->keycodesize)
838 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
841 error = input_scancode_to_scalar(ke, &index);
846 if (index >= dev->keycodemax)
849 if (dev->keycodesize < sizeof(ke->keycode) &&
850 (ke->keycode >> (dev->keycodesize * 8)))
853 switch (dev->keycodesize) {
855 u8 *k = (u8 *)dev->keycode;
856 *old_keycode = k[index];
857 k[index] = ke->keycode;
861 u16 *k = (u16 *)dev->keycode;
862 *old_keycode = k[index];
863 k[index] = ke->keycode;
867 u32 *k = (u32 *)dev->keycode;
868 *old_keycode = k[index];
869 k[index] = ke->keycode;
874 if (*old_keycode <= KEY_MAX) {
875 __clear_bit(*old_keycode, dev->keybit);
876 for (i = 0; i < dev->keycodemax; i++) {
877 if (input_fetch_keycode(dev, i) == *old_keycode) {
878 __set_bit(*old_keycode, dev->keybit);
879 /* Setting the bit twice is useless, so break */
885 __set_bit(ke->keycode, dev->keybit);
890 * input_get_keycode - retrieve keycode currently mapped to a given scancode
891 * @dev: input device which keymap is being queried
894 * This function should be called by anyone interested in retrieving current
895 * keymap. Presently evdev handlers use it.
897 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
902 spin_lock_irqsave(&dev->event_lock, flags);
903 retval = dev->getkeycode(dev, ke);
904 spin_unlock_irqrestore(&dev->event_lock, flags);
908 EXPORT_SYMBOL(input_get_keycode);
911 * input_set_keycode - attribute a keycode to a given scancode
912 * @dev: input device which keymap is being updated
913 * @ke: new keymap entry
915 * This function should be called by anyone needing to update current
916 * keymap. Presently keyboard and evdev handlers use it.
918 int input_set_keycode(struct input_dev *dev,
919 const struct input_keymap_entry *ke)
922 unsigned int old_keycode;
925 if (ke->keycode > KEY_MAX)
928 spin_lock_irqsave(&dev->event_lock, flags);
930 retval = dev->setkeycode(dev, ke, &old_keycode);
934 /* Make sure KEY_RESERVED did not get enabled. */
935 __clear_bit(KEY_RESERVED, dev->keybit);
938 * Simulate keyup event if keycode is not present
939 * in the keymap anymore
941 if (old_keycode > KEY_MAX) {
942 dev_warn(dev->dev.parent ?: &dev->dev,
943 "%s: got too big old keycode %#x\n",
944 __func__, old_keycode);
945 } else if (test_bit(EV_KEY, dev->evbit) &&
946 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
947 __test_and_clear_bit(old_keycode, dev->key)) {
949 * We have to use input_event_dispose() here directly instead
950 * of input_handle_event() because the key we want to release
951 * here is considered no longer supported by the device and
952 * input_handle_event() will ignore it.
954 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
955 EV_KEY, old_keycode, 0);
956 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
957 EV_SYN, SYN_REPORT, 1);
961 spin_unlock_irqrestore(&dev->event_lock, flags);
965 EXPORT_SYMBOL(input_set_keycode);
967 bool input_match_device_id(const struct input_dev *dev,
968 const struct input_device_id *id)
970 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
971 if (id->bustype != dev->id.bustype)
974 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
975 if (id->vendor != dev->id.vendor)
978 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
979 if (id->product != dev->id.product)
982 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
983 if (id->version != dev->id.version)
986 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
987 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
988 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
989 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
990 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
991 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
992 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
993 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
994 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
995 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1001 EXPORT_SYMBOL(input_match_device_id);
1003 static const struct input_device_id *input_match_device(struct input_handler *handler,
1004 struct input_dev *dev)
1006 const struct input_device_id *id;
1008 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1009 if (input_match_device_id(dev, id) &&
1010 (!handler->match || handler->match(handler, dev))) {
1018 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1020 const struct input_device_id *id;
1023 id = input_match_device(handler, dev);
1027 error = handler->connect(handler, dev, id);
1028 if (error && error != -ENODEV)
1029 pr_err("failed to attach handler %s to device %s, error: %d\n",
1030 handler->name, kobject_name(&dev->dev.kobj), error);
1035 #ifdef CONFIG_COMPAT
1037 static int input_bits_to_string(char *buf, int buf_size,
1038 unsigned long bits, bool skip_empty)
1042 if (in_compat_syscall()) {
1043 u32 dword = bits >> 32;
1044 if (dword || !skip_empty)
1045 len += snprintf(buf, buf_size, "%x ", dword);
1047 dword = bits & 0xffffffffUL;
1048 if (dword || !skip_empty || len)
1049 len += snprintf(buf + len, max(buf_size - len, 0),
1052 if (bits || !skip_empty)
1053 len += snprintf(buf, buf_size, "%lx", bits);
1059 #else /* !CONFIG_COMPAT */
1061 static int input_bits_to_string(char *buf, int buf_size,
1062 unsigned long bits, bool skip_empty)
1064 return bits || !skip_empty ?
1065 snprintf(buf, buf_size, "%lx", bits) : 0;
1070 #ifdef CONFIG_PROC_FS
1072 static struct proc_dir_entry *proc_bus_input_dir;
1073 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1074 static int input_devices_state;
1076 static inline void input_wakeup_procfs_readers(void)
1078 input_devices_state++;
1079 wake_up(&input_devices_poll_wait);
1082 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1084 poll_wait(file, &input_devices_poll_wait, wait);
1085 if (file->f_version != input_devices_state) {
1086 file->f_version = input_devices_state;
1087 return EPOLLIN | EPOLLRDNORM;
1093 union input_seq_state {
1096 bool mutex_acquired;
1101 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1103 union input_seq_state *state = (union input_seq_state *)&seq->private;
1106 /* We need to fit into seq->private pointer */
1107 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1109 error = mutex_lock_interruptible(&input_mutex);
1111 state->mutex_acquired = false;
1112 return ERR_PTR(error);
1115 state->mutex_acquired = true;
1117 return seq_list_start(&input_dev_list, *pos);
1120 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1122 return seq_list_next(v, &input_dev_list, pos);
1125 static void input_seq_stop(struct seq_file *seq, void *v)
1127 union input_seq_state *state = (union input_seq_state *)&seq->private;
1129 if (state->mutex_acquired)
1130 mutex_unlock(&input_mutex);
1133 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1134 unsigned long *bitmap, int max)
1137 bool skip_empty = true;
1140 seq_printf(seq, "B: %s=", name);
1142 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1143 if (input_bits_to_string(buf, sizeof(buf),
1144 bitmap[i], skip_empty)) {
1146 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1151 * If no output was produced print a single 0.
1156 seq_putc(seq, '\n');
1159 static int input_devices_seq_show(struct seq_file *seq, void *v)
1161 struct input_dev *dev = container_of(v, struct input_dev, node);
1162 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1163 struct input_handle *handle;
1165 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1166 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1168 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1169 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1170 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1171 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1172 seq_puts(seq, "H: Handlers=");
1174 list_for_each_entry(handle, &dev->h_list, d_node)
1175 seq_printf(seq, "%s ", handle->name);
1176 seq_putc(seq, '\n');
1178 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1180 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1181 if (test_bit(EV_KEY, dev->evbit))
1182 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1183 if (test_bit(EV_REL, dev->evbit))
1184 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1185 if (test_bit(EV_ABS, dev->evbit))
1186 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1187 if (test_bit(EV_MSC, dev->evbit))
1188 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1189 if (test_bit(EV_LED, dev->evbit))
1190 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1191 if (test_bit(EV_SND, dev->evbit))
1192 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1193 if (test_bit(EV_FF, dev->evbit))
1194 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1195 if (test_bit(EV_SW, dev->evbit))
1196 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1198 seq_putc(seq, '\n');
1204 static const struct seq_operations input_devices_seq_ops = {
1205 .start = input_devices_seq_start,
1206 .next = input_devices_seq_next,
1207 .stop = input_seq_stop,
1208 .show = input_devices_seq_show,
1211 static int input_proc_devices_open(struct inode *inode, struct file *file)
1213 return seq_open(file, &input_devices_seq_ops);
1216 static const struct proc_ops input_devices_proc_ops = {
1217 .proc_open = input_proc_devices_open,
1218 .proc_poll = input_proc_devices_poll,
1219 .proc_read = seq_read,
1220 .proc_lseek = seq_lseek,
1221 .proc_release = seq_release,
1224 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1226 union input_seq_state *state = (union input_seq_state *)&seq->private;
1229 /* We need to fit into seq->private pointer */
1230 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1232 error = mutex_lock_interruptible(&input_mutex);
1234 state->mutex_acquired = false;
1235 return ERR_PTR(error);
1238 state->mutex_acquired = true;
1241 return seq_list_start(&input_handler_list, *pos);
1244 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1246 union input_seq_state *state = (union input_seq_state *)&seq->private;
1248 state->pos = *pos + 1;
1249 return seq_list_next(v, &input_handler_list, pos);
1252 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1254 struct input_handler *handler = container_of(v, struct input_handler, node);
1255 union input_seq_state *state = (union input_seq_state *)&seq->private;
1257 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1258 if (handler->filter)
1259 seq_puts(seq, " (filter)");
1260 if (handler->legacy_minors)
1261 seq_printf(seq, " Minor=%d", handler->minor);
1262 seq_putc(seq, '\n');
1267 static const struct seq_operations input_handlers_seq_ops = {
1268 .start = input_handlers_seq_start,
1269 .next = input_handlers_seq_next,
1270 .stop = input_seq_stop,
1271 .show = input_handlers_seq_show,
1274 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1276 return seq_open(file, &input_handlers_seq_ops);
1279 static const struct proc_ops input_handlers_proc_ops = {
1280 .proc_open = input_proc_handlers_open,
1281 .proc_read = seq_read,
1282 .proc_lseek = seq_lseek,
1283 .proc_release = seq_release,
1286 static int __init input_proc_init(void)
1288 struct proc_dir_entry *entry;
1290 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1291 if (!proc_bus_input_dir)
1294 entry = proc_create("devices", 0, proc_bus_input_dir,
1295 &input_devices_proc_ops);
1299 entry = proc_create("handlers", 0, proc_bus_input_dir,
1300 &input_handlers_proc_ops);
1306 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1307 fail1: remove_proc_entry("bus/input", NULL);
1311 static void input_proc_exit(void)
1313 remove_proc_entry("devices", proc_bus_input_dir);
1314 remove_proc_entry("handlers", proc_bus_input_dir);
1315 remove_proc_entry("bus/input", NULL);
1318 #else /* !CONFIG_PROC_FS */
1319 static inline void input_wakeup_procfs_readers(void) { }
1320 static inline int input_proc_init(void) { return 0; }
1321 static inline void input_proc_exit(void) { }
1324 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1325 static ssize_t input_dev_show_##name(struct device *dev, \
1326 struct device_attribute *attr, \
1329 struct input_dev *input_dev = to_input_dev(dev); \
1331 return sysfs_emit(buf, "%s\n", \
1332 input_dev->name ? input_dev->name : ""); \
1334 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1336 INPUT_DEV_STRING_ATTR_SHOW(name);
1337 INPUT_DEV_STRING_ATTR_SHOW(phys);
1338 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1340 static int input_print_modalias_bits(char *buf, int size,
1341 char name, const unsigned long *bm,
1342 unsigned int min_bit, unsigned int max_bit)
1347 len += snprintf(buf, max(size, 0), "%c", name);
1348 for_each_set_bit_from(bit, bm, max_bit)
1349 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1353 static int input_print_modalias_parts(char *buf, int size, int full_len,
1354 const struct input_dev *id)
1356 int len, klen, remainder, space;
1358 len = snprintf(buf, max(size, 0),
1359 "input:b%04Xv%04Xp%04Xe%04X-",
1360 id->id.bustype, id->id.vendor,
1361 id->id.product, id->id.version);
1363 len += input_print_modalias_bits(buf + len, size - len,
1364 'e', id->evbit, 0, EV_MAX);
1367 * Calculate the remaining space in the buffer making sure we
1368 * have place for the terminating 0.
1370 space = max(size - (len + 1), 0);
1372 klen = input_print_modalias_bits(buf + len, size - len,
1373 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1377 * If we have more data than we can fit in the buffer, check
1378 * if we can trim key data to fit in the rest. We will indicate
1379 * that key data is incomplete by adding "+" sign at the end, like
1380 * this: * "k1,2,3,45,+,".
1382 * Note that we shortest key info (if present) is "k+," so we
1383 * can only try to trim if key data is longer than that.
1385 if (full_len && size < full_len + 1 && klen > 3) {
1386 remainder = full_len - len;
1388 * We can only trim if we have space for the remainder
1389 * and also for at least "k+," which is 3 more characters.
1391 if (remainder <= space - 3) {
1393 * We are guaranteed to have 'k' in the buffer, so
1394 * we need at least 3 additional bytes for storing
1395 * "+," in addition to the remainder.
1397 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1398 if (buf[i] == 'k' || buf[i] == ',') {
1399 strcpy(buf + i + 1, "+,");
1400 len = i + 3; /* Not counting '\0' */
1407 len += input_print_modalias_bits(buf + len, size - len,
1408 'r', id->relbit, 0, REL_MAX);
1409 len += input_print_modalias_bits(buf + len, size - len,
1410 'a', id->absbit, 0, ABS_MAX);
1411 len += input_print_modalias_bits(buf + len, size - len,
1412 'm', id->mscbit, 0, MSC_MAX);
1413 len += input_print_modalias_bits(buf + len, size - len,
1414 'l', id->ledbit, 0, LED_MAX);
1415 len += input_print_modalias_bits(buf + len, size - len,
1416 's', id->sndbit, 0, SND_MAX);
1417 len += input_print_modalias_bits(buf + len, size - len,
1418 'f', id->ffbit, 0, FF_MAX);
1419 len += input_print_modalias_bits(buf + len, size - len,
1420 'w', id->swbit, 0, SW_MAX);
1425 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1430 * Printing is done in 2 passes: first one figures out total length
1431 * needed for the modalias string, second one will try to trim key
1432 * data in case when buffer is too small for the entire modalias.
1433 * If the buffer is too small regardless, it will fill as much as it
1434 * can (without trimming key data) into the buffer and leave it to
1435 * the caller to figure out what to do with the result.
1437 full_len = input_print_modalias_parts(NULL, 0, 0, id);
1438 return input_print_modalias_parts(buf, size, full_len, id);
1441 static ssize_t input_dev_show_modalias(struct device *dev,
1442 struct device_attribute *attr,
1445 struct input_dev *id = to_input_dev(dev);
1448 len = input_print_modalias(buf, PAGE_SIZE, id);
1449 if (len < PAGE_SIZE - 2)
1450 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1452 return min_t(int, len, PAGE_SIZE);
1454 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1456 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1457 int max, int add_cr);
1459 static ssize_t input_dev_show_properties(struct device *dev,
1460 struct device_attribute *attr,
1463 struct input_dev *input_dev = to_input_dev(dev);
1464 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1465 INPUT_PROP_MAX, true);
1466 return min_t(int, len, PAGE_SIZE);
1468 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1470 static int input_inhibit_device(struct input_dev *dev);
1471 static int input_uninhibit_device(struct input_dev *dev);
1473 static ssize_t inhibited_show(struct device *dev,
1474 struct device_attribute *attr,
1477 struct input_dev *input_dev = to_input_dev(dev);
1479 return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1482 static ssize_t inhibited_store(struct device *dev,
1483 struct device_attribute *attr, const char *buf,
1486 struct input_dev *input_dev = to_input_dev(dev);
1490 if (kstrtobool(buf, &inhibited))
1494 rv = input_inhibit_device(input_dev);
1496 rv = input_uninhibit_device(input_dev);
1504 static DEVICE_ATTR_RW(inhibited);
1506 static struct attribute *input_dev_attrs[] = {
1507 &dev_attr_name.attr,
1508 &dev_attr_phys.attr,
1509 &dev_attr_uniq.attr,
1510 &dev_attr_modalias.attr,
1511 &dev_attr_properties.attr,
1512 &dev_attr_inhibited.attr,
1516 static const struct attribute_group input_dev_attr_group = {
1517 .attrs = input_dev_attrs,
1520 #define INPUT_DEV_ID_ATTR(name) \
1521 static ssize_t input_dev_show_id_##name(struct device *dev, \
1522 struct device_attribute *attr, \
1525 struct input_dev *input_dev = to_input_dev(dev); \
1526 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \
1528 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1530 INPUT_DEV_ID_ATTR(bustype);
1531 INPUT_DEV_ID_ATTR(vendor);
1532 INPUT_DEV_ID_ATTR(product);
1533 INPUT_DEV_ID_ATTR(version);
1535 static struct attribute *input_dev_id_attrs[] = {
1536 &dev_attr_bustype.attr,
1537 &dev_attr_vendor.attr,
1538 &dev_attr_product.attr,
1539 &dev_attr_version.attr,
1543 static const struct attribute_group input_dev_id_attr_group = {
1545 .attrs = input_dev_id_attrs,
1548 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1549 int max, int add_cr)
1553 bool skip_empty = true;
1555 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1556 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1557 bitmap[i], skip_empty);
1561 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1566 * If no output was produced print a single 0.
1569 len = snprintf(buf, buf_size, "%d", 0);
1572 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1577 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1578 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1579 struct device_attribute *attr, \
1582 struct input_dev *input_dev = to_input_dev(dev); \
1583 int len = input_print_bitmap(buf, PAGE_SIZE, \
1584 input_dev->bm##bit, ev##_MAX, \
1586 return min_t(int, len, PAGE_SIZE); \
1588 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1590 INPUT_DEV_CAP_ATTR(EV, ev);
1591 INPUT_DEV_CAP_ATTR(KEY, key);
1592 INPUT_DEV_CAP_ATTR(REL, rel);
1593 INPUT_DEV_CAP_ATTR(ABS, abs);
1594 INPUT_DEV_CAP_ATTR(MSC, msc);
1595 INPUT_DEV_CAP_ATTR(LED, led);
1596 INPUT_DEV_CAP_ATTR(SND, snd);
1597 INPUT_DEV_CAP_ATTR(FF, ff);
1598 INPUT_DEV_CAP_ATTR(SW, sw);
1600 static struct attribute *input_dev_caps_attrs[] = {
1613 static const struct attribute_group input_dev_caps_attr_group = {
1614 .name = "capabilities",
1615 .attrs = input_dev_caps_attrs,
1618 static const struct attribute_group *input_dev_attr_groups[] = {
1619 &input_dev_attr_group,
1620 &input_dev_id_attr_group,
1621 &input_dev_caps_attr_group,
1622 &input_poller_attribute_group,
1626 static void input_dev_release(struct device *device)
1628 struct input_dev *dev = to_input_dev(device);
1630 input_ff_destroy(dev);
1631 input_mt_destroy_slots(dev);
1633 kfree(dev->absinfo);
1637 module_put(THIS_MODULE);
1641 * Input uevent interface - loading event handlers based on
1644 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1645 const char *name, const unsigned long *bitmap, int max)
1649 if (add_uevent_var(env, "%s", name))
1652 len = input_print_bitmap(&env->buf[env->buflen - 1],
1653 sizeof(env->buf) - env->buflen,
1654 bitmap, max, false);
1655 if (len >= (sizeof(env->buf) - env->buflen))
1663 * This is a pretty gross hack. When building uevent data the driver core
1664 * may try adding more environment variables to kobj_uevent_env without
1665 * telling us, so we have no idea how much of the buffer we can use to
1666 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1667 * reduce amount of memory we will use for the modalias environment variable.
1669 * The potential additions are:
1671 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1673 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1675 * 68 bytes total. Allow extra buffer - 96 bytes
1677 #define UEVENT_ENV_EXTRA_LEN 96
1679 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1680 const struct input_dev *dev)
1684 if (add_uevent_var(env, "MODALIAS="))
1687 len = input_print_modalias(&env->buf[env->buflen - 1],
1688 (int)sizeof(env->buf) - env->buflen -
1689 UEVENT_ENV_EXTRA_LEN,
1691 if (len >= ((int)sizeof(env->buf) - env->buflen -
1692 UEVENT_ENV_EXTRA_LEN))
1699 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1701 int err = add_uevent_var(env, fmt, val); \
1706 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1708 int err = input_add_uevent_bm_var(env, name, bm, max); \
1713 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1715 int err = input_add_uevent_modalias_var(env, dev); \
1720 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1722 const struct input_dev *dev = to_input_dev(device);
1724 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1725 dev->id.bustype, dev->id.vendor,
1726 dev->id.product, dev->id.version);
1728 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1730 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1732 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1734 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1736 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1737 if (test_bit(EV_KEY, dev->evbit))
1738 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1739 if (test_bit(EV_REL, dev->evbit))
1740 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1741 if (test_bit(EV_ABS, dev->evbit))
1742 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1743 if (test_bit(EV_MSC, dev->evbit))
1744 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1745 if (test_bit(EV_LED, dev->evbit))
1746 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1747 if (test_bit(EV_SND, dev->evbit))
1748 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1749 if (test_bit(EV_FF, dev->evbit))
1750 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1751 if (test_bit(EV_SW, dev->evbit))
1752 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1754 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1759 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1764 if (!test_bit(EV_##type, dev->evbit)) \
1767 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1768 active = test_bit(i, dev->bits); \
1769 if (!active && !on) \
1772 dev->event(dev, EV_##type, i, on ? active : 0); \
1776 static void input_dev_toggle(struct input_dev *dev, bool activate)
1781 INPUT_DO_TOGGLE(dev, LED, led, activate);
1782 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1784 if (activate && test_bit(EV_REP, dev->evbit)) {
1785 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1786 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1791 * input_reset_device() - reset/restore the state of input device
1792 * @dev: input device whose state needs to be reset
1794 * This function tries to reset the state of an opened input device and
1795 * bring internal state and state if the hardware in sync with each other.
1796 * We mark all keys as released, restore LED state, repeat rate, etc.
1798 void input_reset_device(struct input_dev *dev)
1800 unsigned long flags;
1802 mutex_lock(&dev->mutex);
1803 spin_lock_irqsave(&dev->event_lock, flags);
1805 input_dev_toggle(dev, true);
1806 if (input_dev_release_keys(dev))
1807 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1809 spin_unlock_irqrestore(&dev->event_lock, flags);
1810 mutex_unlock(&dev->mutex);
1812 EXPORT_SYMBOL(input_reset_device);
1814 static int input_inhibit_device(struct input_dev *dev)
1816 mutex_lock(&dev->mutex);
1825 input_dev_poller_stop(dev->poller);
1828 spin_lock_irq(&dev->event_lock);
1829 input_mt_release_slots(dev);
1830 input_dev_release_keys(dev);
1831 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1832 input_dev_toggle(dev, false);
1833 spin_unlock_irq(&dev->event_lock);
1835 dev->inhibited = true;
1838 mutex_unlock(&dev->mutex);
1842 static int input_uninhibit_device(struct input_dev *dev)
1846 mutex_lock(&dev->mutex);
1848 if (!dev->inhibited)
1853 ret = dev->open(dev);
1858 input_dev_poller_start(dev->poller);
1861 dev->inhibited = false;
1862 spin_lock_irq(&dev->event_lock);
1863 input_dev_toggle(dev, true);
1864 spin_unlock_irq(&dev->event_lock);
1867 mutex_unlock(&dev->mutex);
1871 static int input_dev_suspend(struct device *dev)
1873 struct input_dev *input_dev = to_input_dev(dev);
1875 spin_lock_irq(&input_dev->event_lock);
1878 * Keys that are pressed now are unlikely to be
1879 * still pressed when we resume.
1881 if (input_dev_release_keys(input_dev))
1882 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1884 /* Turn off LEDs and sounds, if any are active. */
1885 input_dev_toggle(input_dev, false);
1887 spin_unlock_irq(&input_dev->event_lock);
1892 static int input_dev_resume(struct device *dev)
1894 struct input_dev *input_dev = to_input_dev(dev);
1896 spin_lock_irq(&input_dev->event_lock);
1898 /* Restore state of LEDs and sounds, if any were active. */
1899 input_dev_toggle(input_dev, true);
1901 spin_unlock_irq(&input_dev->event_lock);
1906 static int input_dev_freeze(struct device *dev)
1908 struct input_dev *input_dev = to_input_dev(dev);
1910 spin_lock_irq(&input_dev->event_lock);
1913 * Keys that are pressed now are unlikely to be
1914 * still pressed when we resume.
1916 if (input_dev_release_keys(input_dev))
1917 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1919 spin_unlock_irq(&input_dev->event_lock);
1924 static int input_dev_poweroff(struct device *dev)
1926 struct input_dev *input_dev = to_input_dev(dev);
1928 spin_lock_irq(&input_dev->event_lock);
1930 /* Turn off LEDs and sounds, if any are active. */
1931 input_dev_toggle(input_dev, false);
1933 spin_unlock_irq(&input_dev->event_lock);
1938 static const struct dev_pm_ops input_dev_pm_ops = {
1939 .suspend = input_dev_suspend,
1940 .resume = input_dev_resume,
1941 .freeze = input_dev_freeze,
1942 .poweroff = input_dev_poweroff,
1943 .restore = input_dev_resume,
1946 static const struct device_type input_dev_type = {
1947 .groups = input_dev_attr_groups,
1948 .release = input_dev_release,
1949 .uevent = input_dev_uevent,
1950 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1953 static char *input_devnode(const struct device *dev, umode_t *mode)
1955 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1958 const struct class input_class = {
1960 .devnode = input_devnode,
1962 EXPORT_SYMBOL_GPL(input_class);
1965 * input_allocate_device - allocate memory for new input device
1967 * Returns prepared struct input_dev or %NULL.
1969 * NOTE: Use input_free_device() to free devices that have not been
1970 * registered; input_unregister_device() should be used for already
1971 * registered devices.
1973 struct input_dev *input_allocate_device(void)
1975 static atomic_t input_no = ATOMIC_INIT(-1);
1976 struct input_dev *dev;
1978 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1983 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1984 * see input_estimate_events_per_packet(). We will tune the number
1985 * when we register the device.
1988 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1994 mutex_init(&dev->mutex);
1995 spin_lock_init(&dev->event_lock);
1996 timer_setup(&dev->timer, NULL, 0);
1997 INIT_LIST_HEAD(&dev->h_list);
1998 INIT_LIST_HEAD(&dev->node);
2000 dev->dev.type = &input_dev_type;
2001 dev->dev.class = &input_class;
2002 device_initialize(&dev->dev);
2004 * From this point on we can no longer simply "kfree(dev)", we need
2005 * to use input_free_device() so that device core properly frees its
2006 * resources associated with the input device.
2009 dev_set_name(&dev->dev, "input%lu",
2010 (unsigned long)atomic_inc_return(&input_no));
2012 __module_get(THIS_MODULE);
2016 EXPORT_SYMBOL(input_allocate_device);
2018 struct input_devres {
2019 struct input_dev *input;
2022 static int devm_input_device_match(struct device *dev, void *res, void *data)
2024 struct input_devres *devres = res;
2026 return devres->input == data;
2029 static void devm_input_device_release(struct device *dev, void *res)
2031 struct input_devres *devres = res;
2032 struct input_dev *input = devres->input;
2034 dev_dbg(dev, "%s: dropping reference to %s\n",
2035 __func__, dev_name(&input->dev));
2036 input_put_device(input);
2040 * devm_input_allocate_device - allocate managed input device
2041 * @dev: device owning the input device being created
2043 * Returns prepared struct input_dev or %NULL.
2045 * Managed input devices do not need to be explicitly unregistered or
2046 * freed as it will be done automatically when owner device unbinds from
2047 * its driver (or binding fails). Once managed input device is allocated,
2048 * it is ready to be set up and registered in the same fashion as regular
2049 * input device. There are no special devm_input_device_[un]register()
2050 * variants, regular ones work with both managed and unmanaged devices,
2051 * should you need them. In most cases however, managed input device need
2052 * not be explicitly unregistered or freed.
2054 * NOTE: the owner device is set up as parent of input device and users
2055 * should not override it.
2057 struct input_dev *devm_input_allocate_device(struct device *dev)
2059 struct input_dev *input;
2060 struct input_devres *devres;
2062 devres = devres_alloc(devm_input_device_release,
2063 sizeof(*devres), GFP_KERNEL);
2067 input = input_allocate_device();
2069 devres_free(devres);
2073 input->dev.parent = dev;
2074 input->devres_managed = true;
2076 devres->input = input;
2077 devres_add(dev, devres);
2081 EXPORT_SYMBOL(devm_input_allocate_device);
2084 * input_free_device - free memory occupied by input_dev structure
2085 * @dev: input device to free
2087 * This function should only be used if input_register_device()
2088 * was not called yet or if it failed. Once device was registered
2089 * use input_unregister_device() and memory will be freed once last
2090 * reference to the device is dropped.
2092 * Device should be allocated by input_allocate_device().
2094 * NOTE: If there are references to the input device then memory
2095 * will not be freed until last reference is dropped.
2097 void input_free_device(struct input_dev *dev)
2100 if (dev->devres_managed)
2101 WARN_ON(devres_destroy(dev->dev.parent,
2102 devm_input_device_release,
2103 devm_input_device_match,
2105 input_put_device(dev);
2108 EXPORT_SYMBOL(input_free_device);
2111 * input_set_timestamp - set timestamp for input events
2112 * @dev: input device to set timestamp for
2113 * @timestamp: the time at which the event has occurred
2114 * in CLOCK_MONOTONIC
2116 * This function is intended to provide to the input system a more
2117 * accurate time of when an event actually occurred. The driver should
2118 * call this function as soon as a timestamp is acquired ensuring
2119 * clock conversions in input_set_timestamp are done correctly.
2121 * The system entering suspend state between timestamp acquisition and
2122 * calling input_set_timestamp can result in inaccurate conversions.
2124 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2126 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2127 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2128 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2131 EXPORT_SYMBOL(input_set_timestamp);
2134 * input_get_timestamp - get timestamp for input events
2135 * @dev: input device to get timestamp from
2137 * A valid timestamp is a timestamp of non-zero value.
2139 ktime_t *input_get_timestamp(struct input_dev *dev)
2141 const ktime_t invalid_timestamp = ktime_set(0, 0);
2143 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2144 input_set_timestamp(dev, ktime_get());
2146 return dev->timestamp;
2148 EXPORT_SYMBOL(input_get_timestamp);
2151 * input_set_capability - mark device as capable of a certain event
2152 * @dev: device that is capable of emitting or accepting event
2153 * @type: type of the event (EV_KEY, EV_REL, etc...)
2156 * In addition to setting up corresponding bit in appropriate capability
2157 * bitmap the function also adjusts dev->evbit.
2159 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2161 if (type < EV_CNT && input_max_code[type] &&
2162 code > input_max_code[type]) {
2163 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2171 __set_bit(code, dev->keybit);
2175 __set_bit(code, dev->relbit);
2179 input_alloc_absinfo(dev);
2180 __set_bit(code, dev->absbit);
2184 __set_bit(code, dev->mscbit);
2188 __set_bit(code, dev->swbit);
2192 __set_bit(code, dev->ledbit);
2196 __set_bit(code, dev->sndbit);
2200 __set_bit(code, dev->ffbit);
2208 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2213 __set_bit(type, dev->evbit);
2215 EXPORT_SYMBOL(input_set_capability);
2217 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2221 unsigned int events;
2224 mt_slots = dev->mt->num_slots;
2225 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2226 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2227 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2228 mt_slots = clamp(mt_slots, 2, 32);
2229 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2235 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2237 if (test_bit(EV_ABS, dev->evbit))
2238 for_each_set_bit(i, dev->absbit, ABS_CNT)
2239 events += input_is_mt_axis(i) ? mt_slots : 1;
2241 if (test_bit(EV_REL, dev->evbit))
2242 events += bitmap_weight(dev->relbit, REL_CNT);
2244 /* Make room for KEY and MSC events */
2250 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2252 if (!test_bit(EV_##type, dev->evbit)) \
2253 memset(dev->bits##bit, 0, \
2254 sizeof(dev->bits##bit)); \
2257 static void input_cleanse_bitmasks(struct input_dev *dev)
2259 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2260 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2261 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2262 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2263 INPUT_CLEANSE_BITMASK(dev, LED, led);
2264 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2265 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2266 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2269 static void __input_unregister_device(struct input_dev *dev)
2271 struct input_handle *handle, *next;
2273 input_disconnect_device(dev);
2275 mutex_lock(&input_mutex);
2277 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2278 handle->handler->disconnect(handle);
2279 WARN_ON(!list_empty(&dev->h_list));
2281 del_timer_sync(&dev->timer);
2282 list_del_init(&dev->node);
2284 input_wakeup_procfs_readers();
2286 mutex_unlock(&input_mutex);
2288 device_del(&dev->dev);
2291 static void devm_input_device_unregister(struct device *dev, void *res)
2293 struct input_devres *devres = res;
2294 struct input_dev *input = devres->input;
2296 dev_dbg(dev, "%s: unregistering device %s\n",
2297 __func__, dev_name(&input->dev));
2298 __input_unregister_device(input);
2302 * Generate software autorepeat event. Note that we take
2303 * dev->event_lock here to avoid racing with input_event
2304 * which may cause keys get "stuck".
2306 static void input_repeat_key(struct timer_list *t)
2308 struct input_dev *dev = from_timer(dev, t, timer);
2309 unsigned long flags;
2311 spin_lock_irqsave(&dev->event_lock, flags);
2313 if (!dev->inhibited &&
2314 test_bit(dev->repeat_key, dev->key) &&
2315 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2317 input_set_timestamp(dev, ktime_get());
2318 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2319 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2321 if (dev->rep[REP_PERIOD])
2322 mod_timer(&dev->timer, jiffies +
2323 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2326 spin_unlock_irqrestore(&dev->event_lock, flags);
2330 * input_enable_softrepeat - enable software autorepeat
2331 * @dev: input device
2332 * @delay: repeat delay
2333 * @period: repeat period
2335 * Enable software autorepeat on the input device.
2337 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2339 dev->timer.function = input_repeat_key;
2340 dev->rep[REP_DELAY] = delay;
2341 dev->rep[REP_PERIOD] = period;
2343 EXPORT_SYMBOL(input_enable_softrepeat);
2345 bool input_device_enabled(struct input_dev *dev)
2347 lockdep_assert_held(&dev->mutex);
2349 return !dev->inhibited && dev->users > 0;
2351 EXPORT_SYMBOL_GPL(input_device_enabled);
2353 static int input_device_tune_vals(struct input_dev *dev)
2355 struct input_value *vals;
2356 unsigned int packet_size;
2357 unsigned int max_vals;
2359 packet_size = input_estimate_events_per_packet(dev);
2360 if (dev->hint_events_per_packet < packet_size)
2361 dev->hint_events_per_packet = packet_size;
2363 max_vals = dev->hint_events_per_packet + 2;
2364 if (dev->max_vals >= max_vals)
2367 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2371 spin_lock_irq(&dev->event_lock);
2372 dev->max_vals = max_vals;
2373 swap(dev->vals, vals);
2374 spin_unlock_irq(&dev->event_lock);
2376 /* Because of swap() above, this frees the old vals memory */
2383 * input_register_device - register device with input core
2384 * @dev: device to be registered
2386 * This function registers device with input core. The device must be
2387 * allocated with input_allocate_device() and all it's capabilities
2388 * set up before registering.
2389 * If function fails the device must be freed with input_free_device().
2390 * Once device has been successfully registered it can be unregistered
2391 * with input_unregister_device(); input_free_device() should not be
2392 * called in this case.
2394 * Note that this function is also used to register managed input devices
2395 * (ones allocated with devm_input_allocate_device()). Such managed input
2396 * devices need not be explicitly unregistered or freed, their tear down
2397 * is controlled by the devres infrastructure. It is also worth noting
2398 * that tear down of managed input devices is internally a 2-step process:
2399 * registered managed input device is first unregistered, but stays in
2400 * memory and can still handle input_event() calls (although events will
2401 * not be delivered anywhere). The freeing of managed input device will
2402 * happen later, when devres stack is unwound to the point where device
2403 * allocation was made.
2405 int input_register_device(struct input_dev *dev)
2407 struct input_devres *devres = NULL;
2408 struct input_handler *handler;
2412 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2414 "Absolute device without dev->absinfo, refusing to register\n");
2418 if (dev->devres_managed) {
2419 devres = devres_alloc(devm_input_device_unregister,
2420 sizeof(*devres), GFP_KERNEL);
2424 devres->input = dev;
2427 /* Every input device generates EV_SYN/SYN_REPORT events. */
2428 __set_bit(EV_SYN, dev->evbit);
2430 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2431 __clear_bit(KEY_RESERVED, dev->keybit);
2433 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2434 input_cleanse_bitmasks(dev);
2436 error = input_device_tune_vals(dev);
2438 goto err_devres_free;
2441 * If delay and period are pre-set by the driver, then autorepeating
2442 * is handled by the driver itself and we don't do it in input.c.
2444 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2445 input_enable_softrepeat(dev, 250, 33);
2447 if (!dev->getkeycode)
2448 dev->getkeycode = input_default_getkeycode;
2450 if (!dev->setkeycode)
2451 dev->setkeycode = input_default_setkeycode;
2454 input_dev_poller_finalize(dev->poller);
2456 error = device_add(&dev->dev);
2458 goto err_devres_free;
2460 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2461 pr_info("%s as %s\n",
2462 dev->name ? dev->name : "Unspecified device",
2463 path ? path : "N/A");
2466 error = mutex_lock_interruptible(&input_mutex);
2468 goto err_device_del;
2470 list_add_tail(&dev->node, &input_dev_list);
2472 list_for_each_entry(handler, &input_handler_list, node)
2473 input_attach_handler(dev, handler);
2475 input_wakeup_procfs_readers();
2477 mutex_unlock(&input_mutex);
2479 if (dev->devres_managed) {
2480 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2481 __func__, dev_name(&dev->dev));
2482 devres_add(dev->dev.parent, devres);
2487 device_del(&dev->dev);
2489 devres_free(devres);
2492 EXPORT_SYMBOL(input_register_device);
2495 * input_unregister_device - unregister previously registered device
2496 * @dev: device to be unregistered
2498 * This function unregisters an input device. Once device is unregistered
2499 * the caller should not try to access it as it may get freed at any moment.
2501 void input_unregister_device(struct input_dev *dev)
2503 if (dev->devres_managed) {
2504 WARN_ON(devres_destroy(dev->dev.parent,
2505 devm_input_device_unregister,
2506 devm_input_device_match,
2508 __input_unregister_device(dev);
2510 * We do not do input_put_device() here because it will be done
2511 * when 2nd devres fires up.
2514 __input_unregister_device(dev);
2515 input_put_device(dev);
2518 EXPORT_SYMBOL(input_unregister_device);
2520 static int input_handler_check_methods(const struct input_handler *handler)
2524 if (handler->filter)
2526 if (handler->events)
2532 pr_err("%s: only one event processing method can be defined (%s)\n",
2533 __func__, handler->name);
2541 * An implementation of input_handler's events() method that simply
2542 * invokes handler->event() method for each event one by one.
2544 static unsigned int input_handler_events_default(struct input_handle *handle,
2545 struct input_value *vals,
2548 struct input_handler *handler = handle->handler;
2549 struct input_value *v;
2551 for (v = vals; v != vals + count; v++)
2552 handler->event(handle, v->type, v->code, v->value);
2558 * An implementation of input_handler's events() method that invokes
2559 * handler->filter() method for each event one by one and removes events
2560 * that were filtered out from the "vals" array.
2562 static unsigned int input_handler_events_filter(struct input_handle *handle,
2563 struct input_value *vals,
2566 struct input_handler *handler = handle->handler;
2567 struct input_value *end = vals;
2568 struct input_value *v;
2570 for (v = vals; v != vals + count; v++) {
2571 if (handler->filter(handle, v->type, v->code, v->value))
2582 * An implementation of input_handler's events() method that does nothing.
2584 static unsigned int input_handler_events_null(struct input_handle *handle,
2585 struct input_value *vals,
2592 * input_register_handler - register a new input handler
2593 * @handler: handler to be registered
2595 * This function registers a new input handler (interface) for input
2596 * devices in the system and attaches it to all input devices that
2597 * are compatible with the handler.
2599 int input_register_handler(struct input_handler *handler)
2601 struct input_dev *dev;
2604 error = input_handler_check_methods(handler);
2608 INIT_LIST_HEAD(&handler->h_list);
2610 if (handler->filter)
2611 handler->events = input_handler_events_filter;
2612 else if (handler->event)
2613 handler->events = input_handler_events_default;
2614 else if (!handler->events)
2615 handler->events = input_handler_events_null;
2617 error = mutex_lock_interruptible(&input_mutex);
2621 list_add_tail(&handler->node, &input_handler_list);
2623 list_for_each_entry(dev, &input_dev_list, node)
2624 input_attach_handler(dev, handler);
2626 input_wakeup_procfs_readers();
2628 mutex_unlock(&input_mutex);
2631 EXPORT_SYMBOL(input_register_handler);
2634 * input_unregister_handler - unregisters an input handler
2635 * @handler: handler to be unregistered
2637 * This function disconnects a handler from its input devices and
2638 * removes it from lists of known handlers.
2640 void input_unregister_handler(struct input_handler *handler)
2642 struct input_handle *handle, *next;
2644 mutex_lock(&input_mutex);
2646 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2647 handler->disconnect(handle);
2648 WARN_ON(!list_empty(&handler->h_list));
2650 list_del_init(&handler->node);
2652 input_wakeup_procfs_readers();
2654 mutex_unlock(&input_mutex);
2656 EXPORT_SYMBOL(input_unregister_handler);
2659 * input_handler_for_each_handle - handle iterator
2660 * @handler: input handler to iterate
2661 * @data: data for the callback
2662 * @fn: function to be called for each handle
2664 * Iterate over @bus's list of devices, and call @fn for each, passing
2665 * it @data and stop when @fn returns a non-zero value. The function is
2666 * using RCU to traverse the list and therefore may be using in atomic
2667 * contexts. The @fn callback is invoked from RCU critical section and
2668 * thus must not sleep.
2670 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2671 int (*fn)(struct input_handle *, void *))
2673 struct input_handle *handle;
2678 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2679 retval = fn(handle, data);
2688 EXPORT_SYMBOL(input_handler_for_each_handle);
2691 * input_register_handle - register a new input handle
2692 * @handle: handle to register
2694 * This function puts a new input handle onto device's
2695 * and handler's lists so that events can flow through
2696 * it once it is opened using input_open_device().
2698 * This function is supposed to be called from handler's
2701 int input_register_handle(struct input_handle *handle)
2703 struct input_handler *handler = handle->handler;
2704 struct input_dev *dev = handle->dev;
2708 * We take dev->mutex here to prevent race with
2709 * input_release_device().
2711 error = mutex_lock_interruptible(&dev->mutex);
2716 * Filters go to the head of the list, normal handlers
2719 if (handler->filter)
2720 list_add_rcu(&handle->d_node, &dev->h_list);
2722 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2724 mutex_unlock(&dev->mutex);
2727 * Since we are supposed to be called from ->connect()
2728 * which is mutually exclusive with ->disconnect()
2729 * we can't be racing with input_unregister_handle()
2730 * and so separate lock is not needed here.
2732 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2735 handler->start(handle);
2739 EXPORT_SYMBOL(input_register_handle);
2742 * input_unregister_handle - unregister an input handle
2743 * @handle: handle to unregister
2745 * This function removes input handle from device's
2746 * and handler's lists.
2748 * This function is supposed to be called from handler's
2749 * disconnect() method.
2751 void input_unregister_handle(struct input_handle *handle)
2753 struct input_dev *dev = handle->dev;
2755 list_del_rcu(&handle->h_node);
2758 * Take dev->mutex to prevent race with input_release_device().
2760 mutex_lock(&dev->mutex);
2761 list_del_rcu(&handle->d_node);
2762 mutex_unlock(&dev->mutex);
2766 EXPORT_SYMBOL(input_unregister_handle);
2769 * input_get_new_minor - allocates a new input minor number
2770 * @legacy_base: beginning or the legacy range to be searched
2771 * @legacy_num: size of legacy range
2772 * @allow_dynamic: whether we can also take ID from the dynamic range
2774 * This function allocates a new device minor for from input major namespace.
2775 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2776 * parameters and whether ID can be allocated from dynamic range if there are
2777 * no free IDs in legacy range.
2779 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2783 * This function should be called from input handler's ->connect()
2784 * methods, which are serialized with input_mutex, so no additional
2785 * locking is needed here.
2787 if (legacy_base >= 0) {
2788 int minor = ida_alloc_range(&input_ida, legacy_base,
2789 legacy_base + legacy_num - 1,
2791 if (minor >= 0 || !allow_dynamic)
2795 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2796 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2798 EXPORT_SYMBOL(input_get_new_minor);
2801 * input_free_minor - release previously allocated minor
2802 * @minor: minor to be released
2804 * This function releases previously allocated input minor so that it can be
2807 void input_free_minor(unsigned int minor)
2809 ida_free(&input_ida, minor);
2811 EXPORT_SYMBOL(input_free_minor);
2813 static int __init input_init(void)
2817 err = class_register(&input_class);
2819 pr_err("unable to register input_dev class\n");
2823 err = input_proc_init();
2827 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2828 INPUT_MAX_CHAR_DEVICES, "input");
2830 pr_err("unable to register char major %d", INPUT_MAJOR);
2836 fail2: input_proc_exit();
2837 fail1: class_unregister(&input_class);
2841 static void __exit input_exit(void)
2844 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2845 INPUT_MAX_CHAR_DEVICES);
2846 class_unregister(&input_class);
2849 subsys_initcall(input_init);
2850 module_exit(input_exit);