2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44 static struct vfsmount *shm_mnt;
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
126 static unsigned long shmem_default_max_blocks(void)
128 return totalram_pages() / 2;
131 static unsigned long shmem_default_max_inodes(void)
133 unsigned long nr_pages = totalram_pages();
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 return sb->s_fs_info;
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 static inline int shmem_acct_block(unsigned long flags, long pages)
202 if (!(flags & VM_NORESERVE))
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 if (shmem_acct_block(info->flags, pages))
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
227 percpu_counter_add(&sbinfo->used_blocks, pages);
233 shmem_unacct_blocks(info->flags, pages);
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
256 bool vma_is_shmem(struct vm_area_struct *vma)
258 return vma->vm_ops == &shmem_vm_ops;
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 static int shmem_reserve_inode(struct super_block *sb)
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
279 static void shmem_free_inode(struct super_block *sb)
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
299 * It has to be called with the spinlock held.
301 static void shmem_recalc_inode(struct inode *inode)
303 struct shmem_inode_info *info = SHMEM_I(inode);
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
314 bool shmem_charge(struct inode *inode, long pages)
316 struct shmem_inode_info *info = SHMEM_I(inode);
319 if (!shmem_inode_acct_block(inode, pages))
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
334 void shmem_uncharge(struct inode *inode, long pages)
336 struct shmem_inode_info *info = SHMEM_I(inode);
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
347 shmem_inode_unacct_blocks(inode, pages);
351 * Replace item expected in xarray by a new item, while holding xa_lock.
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
356 XA_STATE(xas, &mapping->i_pages, index);
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
364 xas_store(&xas, replacement);
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
385 * disables huge pages for the mount;
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
392 * only allocate huge pages if requested with fadvise()/madvise();
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
405 * disables huge on shm_mnt and all mounts, for emergency use;
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
416 static int shmem_huge __read_mostly;
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
441 case SHMEM_HUGE_NEVER:
443 case SHMEM_HUGE_ALWAYS:
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
449 case SHMEM_HUGE_DENY:
451 case SHMEM_HUGE_FORCE:
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
466 struct shmem_inode_info *info;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
471 if (list_empty(&sbinfo->shrinklist))
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
479 inode = igrab(&info->vfs_inode);
481 /* inode is about to be evicted */
483 list_del_init(&info->shrinklist);
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
496 list_move(&info->shrinklist, &list);
501 spin_unlock(&sbinfo->shrinklist_lock);
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
510 list_for_each_safe(pos, next, &list) {
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
516 if (nr_to_split && split >= nr_to_split)
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
534 * Waiting for the lock may lead to deadlock in the
537 if (!trylock_page(page)) {
542 ret = split_huge_page(page);
546 /* If split failed leave the inode on the list */
552 list_del_init(&info->shrinklist);
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
571 if (!READ_ONCE(sbinfo->shrinklist_len))
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
585 #define shmem_huge SHMEM_HUGE_DENY
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
604 * Like add_to_page_cache_locked, but error if expected item has gone.
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp,
609 struct mm_struct *charge_mm)
611 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
613 unsigned long nr = compound_nr(page);
616 VM_BUG_ON_PAGE(PageTail(page), page);
617 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
618 VM_BUG_ON_PAGE(!PageLocked(page), page);
619 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
620 VM_BUG_ON(expected && PageTransHuge(page));
622 page_ref_add(page, nr);
623 page->mapping = mapping;
626 if (!PageSwapCache(page)) {
627 error = mem_cgroup_charge(page, charge_mm, gfp);
629 if (PageTransHuge(page)) {
630 count_vm_event(THP_FILE_FALLBACK);
631 count_vm_event(THP_FILE_FALLBACK_CHARGE);
636 cgroup_throttle_swaprate(page, gfp);
641 entry = xas_find_conflict(&xas);
642 if (entry != expected)
643 xas_set_err(&xas, -EEXIST);
644 xas_create_range(&xas);
648 xas_store(&xas, page);
653 if (PageTransHuge(page)) {
654 count_vm_event(THP_FILE_ALLOC);
655 __inc_node_page_state(page, NR_SHMEM_THPS);
657 mapping->nrpages += nr;
658 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
659 __mod_lruvec_page_state(page, NR_SHMEM, nr);
661 xas_unlock_irq(&xas);
662 } while (xas_nomem(&xas, gfp));
664 if (xas_error(&xas)) {
665 error = xas_error(&xas);
671 page->mapping = NULL;
672 page_ref_sub(page, nr);
677 * Like delete_from_page_cache, but substitutes swap for page.
679 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
681 struct address_space *mapping = page->mapping;
684 VM_BUG_ON_PAGE(PageCompound(page), page);
686 xa_lock_irq(&mapping->i_pages);
687 error = shmem_replace_entry(mapping, page->index, page, radswap);
688 page->mapping = NULL;
690 __dec_lruvec_page_state(page, NR_FILE_PAGES);
691 __dec_lruvec_page_state(page, NR_SHMEM);
692 xa_unlock_irq(&mapping->i_pages);
698 * Remove swap entry from page cache, free the swap and its page cache.
700 static int shmem_free_swap(struct address_space *mapping,
701 pgoff_t index, void *radswap)
705 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
708 free_swap_and_cache(radix_to_swp_entry(radswap));
713 * Determine (in bytes) how many of the shmem object's pages mapped by the
714 * given offsets are swapped out.
716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
717 * as long as the inode doesn't go away and racy results are not a problem.
719 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
720 pgoff_t start, pgoff_t end)
722 XA_STATE(xas, &mapping->i_pages, start);
724 unsigned long swapped = 0;
727 xas_for_each(&xas, page, end - 1) {
728 if (xas_retry(&xas, page))
730 if (xa_is_value(page))
733 if (need_resched()) {
741 return swapped << PAGE_SHIFT;
745 * Determine (in bytes) how many of the shmem object's pages mapped by the
746 * given vma is swapped out.
748 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
749 * as long as the inode doesn't go away and racy results are not a problem.
751 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
753 struct inode *inode = file_inode(vma->vm_file);
754 struct shmem_inode_info *info = SHMEM_I(inode);
755 struct address_space *mapping = inode->i_mapping;
756 unsigned long swapped;
758 /* Be careful as we don't hold info->lock */
759 swapped = READ_ONCE(info->swapped);
762 * The easier cases are when the shmem object has nothing in swap, or
763 * the vma maps it whole. Then we can simply use the stats that we
769 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
770 return swapped << PAGE_SHIFT;
772 /* Here comes the more involved part */
773 return shmem_partial_swap_usage(mapping,
774 linear_page_index(vma, vma->vm_start),
775 linear_page_index(vma, vma->vm_end));
779 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
781 void shmem_unlock_mapping(struct address_space *mapping)
784 pgoff_t indices[PAGEVEC_SIZE];
789 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
791 while (!mapping_unevictable(mapping)) {
793 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
794 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
796 pvec.nr = find_get_entries(mapping, index,
797 PAGEVEC_SIZE, pvec.pages, indices);
800 index = indices[pvec.nr - 1] + 1;
801 pagevec_remove_exceptionals(&pvec);
802 check_move_unevictable_pages(&pvec);
803 pagevec_release(&pvec);
809 * Check whether a hole-punch or truncation needs to split a huge page,
810 * returning true if no split was required, or the split has been successful.
812 * Eviction (or truncation to 0 size) should never need to split a huge page;
813 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
814 * head, and then succeeded to trylock on tail.
816 * A split can only succeed when there are no additional references on the
817 * huge page: so the split below relies upon find_get_entries() having stopped
818 * when it found a subpage of the huge page, without getting further references.
820 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
822 if (!PageTransCompound(page))
825 /* Just proceed to delete a huge page wholly within the range punched */
826 if (PageHead(page) &&
827 page->index >= start && page->index + HPAGE_PMD_NR <= end)
830 /* Try to split huge page, so we can truly punch the hole or truncate */
831 return split_huge_page(page) >= 0;
835 * Remove range of pages and swap entries from page cache, and free them.
836 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
838 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
841 struct address_space *mapping = inode->i_mapping;
842 struct shmem_inode_info *info = SHMEM_I(inode);
843 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
845 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
846 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
848 pgoff_t indices[PAGEVEC_SIZE];
849 long nr_swaps_freed = 0;
854 end = -1; /* unsigned, so actually very big */
858 while (index < end) {
859 pvec.nr = find_get_entries(mapping, index,
860 min(end - index, (pgoff_t)PAGEVEC_SIZE),
861 pvec.pages, indices);
864 for (i = 0; i < pagevec_count(&pvec); i++) {
865 struct page *page = pvec.pages[i];
871 if (xa_is_value(page)) {
874 nr_swaps_freed += !shmem_free_swap(mapping,
879 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
881 if (!trylock_page(page))
884 if ((!unfalloc || !PageUptodate(page)) &&
885 page_mapping(page) == mapping) {
886 VM_BUG_ON_PAGE(PageWriteback(page), page);
887 if (shmem_punch_compound(page, start, end))
888 truncate_inode_page(mapping, page);
892 pagevec_remove_exceptionals(&pvec);
893 pagevec_release(&pvec);
899 struct page *page = NULL;
900 shmem_getpage(inode, start - 1, &page, SGP_READ);
902 unsigned int top = PAGE_SIZE;
907 zero_user_segment(page, partial_start, top);
908 set_page_dirty(page);
914 struct page *page = NULL;
915 shmem_getpage(inode, end, &page, SGP_READ);
917 zero_user_segment(page, 0, partial_end);
918 set_page_dirty(page);
927 while (index < end) {
930 pvec.nr = find_get_entries(mapping, index,
931 min(end - index, (pgoff_t)PAGEVEC_SIZE),
932 pvec.pages, indices);
934 /* If all gone or hole-punch or unfalloc, we're done */
935 if (index == start || end != -1)
937 /* But if truncating, restart to make sure all gone */
941 for (i = 0; i < pagevec_count(&pvec); i++) {
942 struct page *page = pvec.pages[i];
948 if (xa_is_value(page)) {
951 if (shmem_free_swap(mapping, index, page)) {
952 /* Swap was replaced by page: retry */
962 if (!unfalloc || !PageUptodate(page)) {
963 if (page_mapping(page) != mapping) {
964 /* Page was replaced by swap: retry */
969 VM_BUG_ON_PAGE(PageWriteback(page), page);
970 if (shmem_punch_compound(page, start, end))
971 truncate_inode_page(mapping, page);
972 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
973 /* Wipe the page and don't get stuck */
974 clear_highpage(page);
975 flush_dcache_page(page);
976 set_page_dirty(page);
978 round_up(start, HPAGE_PMD_NR))
984 pagevec_remove_exceptionals(&pvec);
985 pagevec_release(&pvec);
989 spin_lock_irq(&info->lock);
990 info->swapped -= nr_swaps_freed;
991 shmem_recalc_inode(inode);
992 spin_unlock_irq(&info->lock);
995 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
997 shmem_undo_range(inode, lstart, lend, false);
998 inode->i_ctime = inode->i_mtime = current_time(inode);
1000 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1002 static int shmem_getattr(const struct path *path, struct kstat *stat,
1003 u32 request_mask, unsigned int query_flags)
1005 struct inode *inode = path->dentry->d_inode;
1006 struct shmem_inode_info *info = SHMEM_I(inode);
1007 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1009 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1010 spin_lock_irq(&info->lock);
1011 shmem_recalc_inode(inode);
1012 spin_unlock_irq(&info->lock);
1014 generic_fillattr(inode, stat);
1016 if (is_huge_enabled(sb_info))
1017 stat->blksize = HPAGE_PMD_SIZE;
1022 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1024 struct inode *inode = d_inode(dentry);
1025 struct shmem_inode_info *info = SHMEM_I(inode);
1026 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1029 error = setattr_prepare(dentry, attr);
1033 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1034 loff_t oldsize = inode->i_size;
1035 loff_t newsize = attr->ia_size;
1037 /* protected by i_mutex */
1038 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1039 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1042 if (newsize != oldsize) {
1043 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1047 i_size_write(inode, newsize);
1048 inode->i_ctime = inode->i_mtime = current_time(inode);
1050 if (newsize <= oldsize) {
1051 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1056 shmem_truncate_range(inode,
1057 newsize, (loff_t)-1);
1058 /* unmap again to remove racily COWed private pages */
1059 if (oldsize > holebegin)
1060 unmap_mapping_range(inode->i_mapping,
1064 * Part of the huge page can be beyond i_size: subject
1065 * to shrink under memory pressure.
1067 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1068 spin_lock(&sbinfo->shrinklist_lock);
1070 * _careful to defend against unlocked access to
1071 * ->shrink_list in shmem_unused_huge_shrink()
1073 if (list_empty_careful(&info->shrinklist)) {
1074 list_add_tail(&info->shrinklist,
1075 &sbinfo->shrinklist);
1076 sbinfo->shrinklist_len++;
1078 spin_unlock(&sbinfo->shrinklist_lock);
1083 setattr_copy(inode, attr);
1084 if (attr->ia_valid & ATTR_MODE)
1085 error = posix_acl_chmod(inode, inode->i_mode);
1089 static void shmem_evict_inode(struct inode *inode)
1091 struct shmem_inode_info *info = SHMEM_I(inode);
1092 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1094 if (inode->i_mapping->a_ops == &shmem_aops) {
1095 shmem_unacct_size(info->flags, inode->i_size);
1097 shmem_truncate_range(inode, 0, (loff_t)-1);
1098 if (!list_empty(&info->shrinklist)) {
1099 spin_lock(&sbinfo->shrinklist_lock);
1100 if (!list_empty(&info->shrinklist)) {
1101 list_del_init(&info->shrinklist);
1102 sbinfo->shrinklist_len--;
1104 spin_unlock(&sbinfo->shrinklist_lock);
1106 while (!list_empty(&info->swaplist)) {
1107 /* Wait while shmem_unuse() is scanning this inode... */
1108 wait_var_event(&info->stop_eviction,
1109 !atomic_read(&info->stop_eviction));
1110 mutex_lock(&shmem_swaplist_mutex);
1111 /* ...but beware of the race if we peeked too early */
1112 if (!atomic_read(&info->stop_eviction))
1113 list_del_init(&info->swaplist);
1114 mutex_unlock(&shmem_swaplist_mutex);
1118 simple_xattrs_free(&info->xattrs);
1119 WARN_ON(inode->i_blocks);
1120 shmem_free_inode(inode->i_sb);
1124 extern struct swap_info_struct *swap_info[];
1126 static int shmem_find_swap_entries(struct address_space *mapping,
1127 pgoff_t start, unsigned int nr_entries,
1128 struct page **entries, pgoff_t *indices,
1129 unsigned int type, bool frontswap)
1131 XA_STATE(xas, &mapping->i_pages, start);
1134 unsigned int ret = 0;
1140 xas_for_each(&xas, page, ULONG_MAX) {
1141 if (xas_retry(&xas, page))
1144 if (!xa_is_value(page))
1147 entry = radix_to_swp_entry(page);
1148 if (swp_type(entry) != type)
1151 !frontswap_test(swap_info[type], swp_offset(entry)))
1154 indices[ret] = xas.xa_index;
1155 entries[ret] = page;
1157 if (need_resched()) {
1161 if (++ret == nr_entries)
1170 * Move the swapped pages for an inode to page cache. Returns the count
1171 * of pages swapped in, or the error in case of failure.
1173 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1179 struct address_space *mapping = inode->i_mapping;
1181 for (i = 0; i < pvec.nr; i++) {
1182 struct page *page = pvec.pages[i];
1184 if (!xa_is_value(page))
1186 error = shmem_swapin_page(inode, indices[i],
1188 mapping_gfp_mask(mapping),
1195 if (error == -ENOMEM)
1199 return error ? error : ret;
1203 * If swap found in inode, free it and move page from swapcache to filecache.
1205 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1206 bool frontswap, unsigned long *fs_pages_to_unuse)
1208 struct address_space *mapping = inode->i_mapping;
1210 struct pagevec pvec;
1211 pgoff_t indices[PAGEVEC_SIZE];
1212 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1215 pagevec_init(&pvec);
1217 unsigned int nr_entries = PAGEVEC_SIZE;
1219 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1220 nr_entries = *fs_pages_to_unuse;
1222 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1223 pvec.pages, indices,
1230 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1234 if (frontswap_partial) {
1235 *fs_pages_to_unuse -= ret;
1236 if (*fs_pages_to_unuse == 0) {
1237 ret = FRONTSWAP_PAGES_UNUSED;
1242 start = indices[pvec.nr - 1];
1249 * Read all the shared memory data that resides in the swap
1250 * device 'type' back into memory, so the swap device can be
1253 int shmem_unuse(unsigned int type, bool frontswap,
1254 unsigned long *fs_pages_to_unuse)
1256 struct shmem_inode_info *info, *next;
1259 if (list_empty(&shmem_swaplist))
1262 mutex_lock(&shmem_swaplist_mutex);
1263 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1264 if (!info->swapped) {
1265 list_del_init(&info->swaplist);
1269 * Drop the swaplist mutex while searching the inode for swap;
1270 * but before doing so, make sure shmem_evict_inode() will not
1271 * remove placeholder inode from swaplist, nor let it be freed
1272 * (igrab() would protect from unlink, but not from unmount).
1274 atomic_inc(&info->stop_eviction);
1275 mutex_unlock(&shmem_swaplist_mutex);
1277 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1281 mutex_lock(&shmem_swaplist_mutex);
1282 next = list_next_entry(info, swaplist);
1284 list_del_init(&info->swaplist);
1285 if (atomic_dec_and_test(&info->stop_eviction))
1286 wake_up_var(&info->stop_eviction);
1290 mutex_unlock(&shmem_swaplist_mutex);
1296 * Move the page from the page cache to the swap cache.
1298 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1300 struct shmem_inode_info *info;
1301 struct address_space *mapping;
1302 struct inode *inode;
1306 VM_BUG_ON_PAGE(PageCompound(page), page);
1307 BUG_ON(!PageLocked(page));
1308 mapping = page->mapping;
1309 index = page->index;
1310 inode = mapping->host;
1311 info = SHMEM_I(inode);
1312 if (info->flags & VM_LOCKED)
1314 if (!total_swap_pages)
1318 * Our capabilities prevent regular writeback or sync from ever calling
1319 * shmem_writepage; but a stacking filesystem might use ->writepage of
1320 * its underlying filesystem, in which case tmpfs should write out to
1321 * swap only in response to memory pressure, and not for the writeback
1324 if (!wbc->for_reclaim) {
1325 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1330 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1331 * value into swapfile.c, the only way we can correctly account for a
1332 * fallocated page arriving here is now to initialize it and write it.
1334 * That's okay for a page already fallocated earlier, but if we have
1335 * not yet completed the fallocation, then (a) we want to keep track
1336 * of this page in case we have to undo it, and (b) it may not be a
1337 * good idea to continue anyway, once we're pushing into swap. So
1338 * reactivate the page, and let shmem_fallocate() quit when too many.
1340 if (!PageUptodate(page)) {
1341 if (inode->i_private) {
1342 struct shmem_falloc *shmem_falloc;
1343 spin_lock(&inode->i_lock);
1344 shmem_falloc = inode->i_private;
1346 !shmem_falloc->waitq &&
1347 index >= shmem_falloc->start &&
1348 index < shmem_falloc->next)
1349 shmem_falloc->nr_unswapped++;
1351 shmem_falloc = NULL;
1352 spin_unlock(&inode->i_lock);
1356 clear_highpage(page);
1357 flush_dcache_page(page);
1358 SetPageUptodate(page);
1361 swap = get_swap_page(page);
1366 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1367 * if it's not already there. Do it now before the page is
1368 * moved to swap cache, when its pagelock no longer protects
1369 * the inode from eviction. But don't unlock the mutex until
1370 * we've incremented swapped, because shmem_unuse_inode() will
1371 * prune a !swapped inode from the swaplist under this mutex.
1373 mutex_lock(&shmem_swaplist_mutex);
1374 if (list_empty(&info->swaplist))
1375 list_add(&info->swaplist, &shmem_swaplist);
1377 if (add_to_swap_cache(page, swap,
1378 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) {
1379 spin_lock_irq(&info->lock);
1380 shmem_recalc_inode(inode);
1382 spin_unlock_irq(&info->lock);
1384 swap_shmem_alloc(swap);
1385 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1387 mutex_unlock(&shmem_swaplist_mutex);
1388 BUG_ON(page_mapped(page));
1389 swap_writepage(page, wbc);
1393 mutex_unlock(&shmem_swaplist_mutex);
1394 put_swap_page(page, swap);
1396 set_page_dirty(page);
1397 if (wbc->for_reclaim)
1398 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1403 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1404 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408 if (!mpol || mpol->mode == MPOL_DEFAULT)
1409 return; /* show nothing */
1411 mpol_to_str(buffer, sizeof(buffer), mpol);
1413 seq_printf(seq, ",mpol=%s", buffer);
1416 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1418 struct mempolicy *mpol = NULL;
1420 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1421 mpol = sbinfo->mpol;
1423 spin_unlock(&sbinfo->stat_lock);
1427 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1428 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1431 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1435 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1437 #define vm_policy vm_private_data
1440 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1441 struct shmem_inode_info *info, pgoff_t index)
1443 /* Create a pseudo vma that just contains the policy */
1444 vma_init(vma, NULL);
1445 /* Bias interleave by inode number to distribute better across nodes */
1446 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1447 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1450 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1452 /* Drop reference taken by mpol_shared_policy_lookup() */
1453 mpol_cond_put(vma->vm_policy);
1456 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1457 struct shmem_inode_info *info, pgoff_t index)
1459 struct vm_area_struct pvma;
1461 struct vm_fault vmf;
1463 shmem_pseudo_vma_init(&pvma, info, index);
1466 page = swap_cluster_readahead(swap, gfp, &vmf);
1467 shmem_pseudo_vma_destroy(&pvma);
1472 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1473 struct shmem_inode_info *info, pgoff_t index)
1475 struct vm_area_struct pvma;
1476 struct address_space *mapping = info->vfs_inode.i_mapping;
1480 hindex = round_down(index, HPAGE_PMD_NR);
1481 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1485 shmem_pseudo_vma_init(&pvma, info, hindex);
1486 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1487 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1488 shmem_pseudo_vma_destroy(&pvma);
1490 prep_transhuge_page(page);
1492 count_vm_event(THP_FILE_FALLBACK);
1496 static struct page *shmem_alloc_page(gfp_t gfp,
1497 struct shmem_inode_info *info, pgoff_t index)
1499 struct vm_area_struct pvma;
1502 shmem_pseudo_vma_init(&pvma, info, index);
1503 page = alloc_page_vma(gfp, &pvma, 0);
1504 shmem_pseudo_vma_destroy(&pvma);
1509 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1510 struct inode *inode,
1511 pgoff_t index, bool huge)
1513 struct shmem_inode_info *info = SHMEM_I(inode);
1518 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1520 nr = huge ? HPAGE_PMD_NR : 1;
1522 if (!shmem_inode_acct_block(inode, nr))
1526 page = shmem_alloc_hugepage(gfp, info, index);
1528 page = shmem_alloc_page(gfp, info, index);
1530 __SetPageLocked(page);
1531 __SetPageSwapBacked(page);
1536 shmem_inode_unacct_blocks(inode, nr);
1538 return ERR_PTR(err);
1542 * When a page is moved from swapcache to shmem filecache (either by the
1543 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1544 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1545 * ignorance of the mapping it belongs to. If that mapping has special
1546 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1547 * we may need to copy to a suitable page before moving to filecache.
1549 * In a future release, this may well be extended to respect cpuset and
1550 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1551 * but for now it is a simple matter of zone.
1553 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1555 return page_zonenum(page) > gfp_zone(gfp);
1558 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1561 struct page *oldpage, *newpage;
1562 struct address_space *swap_mapping;
1568 entry.val = page_private(oldpage);
1569 swap_index = swp_offset(entry);
1570 swap_mapping = page_mapping(oldpage);
1573 * We have arrived here because our zones are constrained, so don't
1574 * limit chance of success by further cpuset and node constraints.
1576 gfp &= ~GFP_CONSTRAINT_MASK;
1577 newpage = shmem_alloc_page(gfp, info, index);
1582 copy_highpage(newpage, oldpage);
1583 flush_dcache_page(newpage);
1585 __SetPageLocked(newpage);
1586 __SetPageSwapBacked(newpage);
1587 SetPageUptodate(newpage);
1588 set_page_private(newpage, entry.val);
1589 SetPageSwapCache(newpage);
1592 * Our caller will very soon move newpage out of swapcache, but it's
1593 * a nice clean interface for us to replace oldpage by newpage there.
1595 xa_lock_irq(&swap_mapping->i_pages);
1596 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1598 mem_cgroup_migrate(oldpage, newpage);
1599 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1600 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1602 xa_unlock_irq(&swap_mapping->i_pages);
1604 if (unlikely(error)) {
1606 * Is this possible? I think not, now that our callers check
1607 * both PageSwapCache and page_private after getting page lock;
1608 * but be defensive. Reverse old to newpage for clear and free.
1612 lru_cache_add_anon(newpage);
1616 ClearPageSwapCache(oldpage);
1617 set_page_private(oldpage, 0);
1619 unlock_page(oldpage);
1626 * Swap in the page pointed to by *pagep.
1627 * Caller has to make sure that *pagep contains a valid swapped page.
1628 * Returns 0 and the page in pagep if success. On failure, returns the
1629 * the error code and NULL in *pagep.
1631 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1632 struct page **pagep, enum sgp_type sgp,
1633 gfp_t gfp, struct vm_area_struct *vma,
1634 vm_fault_t *fault_type)
1636 struct address_space *mapping = inode->i_mapping;
1637 struct shmem_inode_info *info = SHMEM_I(inode);
1638 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1643 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1644 swap = radix_to_swp_entry(*pagep);
1647 /* Look it up and read it in.. */
1648 page = lookup_swap_cache(swap, NULL, 0);
1650 /* Or update major stats only when swapin succeeds?? */
1652 *fault_type |= VM_FAULT_MAJOR;
1653 count_vm_event(PGMAJFAULT);
1654 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1656 /* Here we actually start the io */
1657 page = shmem_swapin(swap, gfp, info, index);
1664 /* We have to do this with page locked to prevent races */
1666 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1667 !shmem_confirm_swap(mapping, index, swap)) {
1671 if (!PageUptodate(page)) {
1675 wait_on_page_writeback(page);
1677 if (shmem_should_replace_page(page, gfp)) {
1678 error = shmem_replace_page(&page, gfp, info, index);
1683 error = shmem_add_to_page_cache(page, mapping, index,
1684 swp_to_radix_entry(swap), gfp,
1689 spin_lock_irq(&info->lock);
1691 shmem_recalc_inode(inode);
1692 spin_unlock_irq(&info->lock);
1694 if (sgp == SGP_WRITE)
1695 mark_page_accessed(page);
1697 delete_from_swap_cache(page);
1698 set_page_dirty(page);
1704 if (!shmem_confirm_swap(mapping, index, swap))
1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1718 * If we allocate a new one we do not mark it dirty. That's up to the
1719 * vm. If we swap it in we mark it dirty since we also free the swap
1720 * entry since a page cannot live in both the swap and page cache.
1722 * vmf and fault_type are only supplied by shmem_fault:
1723 * otherwise they are NULL.
1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1726 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1727 struct vm_area_struct *vma, struct vm_fault *vmf,
1728 vm_fault_t *fault_type)
1730 struct address_space *mapping = inode->i_mapping;
1731 struct shmem_inode_info *info = SHMEM_I(inode);
1732 struct shmem_sb_info *sbinfo;
1733 struct mm_struct *charge_mm;
1735 enum sgp_type sgp_huge = sgp;
1736 pgoff_t hindex = index;
1741 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1743 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1746 if (sgp <= SGP_CACHE &&
1747 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1751 sbinfo = SHMEM_SB(inode->i_sb);
1752 charge_mm = vma ? vma->vm_mm : current->mm;
1754 page = find_lock_entry(mapping, index);
1755 if (xa_is_value(page)) {
1756 error = shmem_swapin_page(inode, index, &page,
1757 sgp, gfp, vma, fault_type);
1758 if (error == -EEXIST)
1765 if (page && sgp == SGP_WRITE)
1766 mark_page_accessed(page);
1768 /* fallocated page? */
1769 if (page && !PageUptodate(page)) {
1770 if (sgp != SGP_READ)
1776 if (page || sgp == SGP_READ) {
1782 * Fast cache lookup did not find it:
1783 * bring it back from swap or allocate.
1786 if (vma && userfaultfd_missing(vma)) {
1787 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1791 /* shmem_symlink() */
1792 if (mapping->a_ops != &shmem_aops)
1794 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1796 if (shmem_huge == SHMEM_HUGE_FORCE)
1798 switch (sbinfo->huge) {
1799 case SHMEM_HUGE_NEVER:
1801 case SHMEM_HUGE_WITHIN_SIZE: {
1805 off = round_up(index, HPAGE_PMD_NR);
1806 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807 if (i_size >= HPAGE_PMD_SIZE &&
1808 i_size >> PAGE_SHIFT >= off)
1813 case SHMEM_HUGE_ADVISE:
1814 if (sgp_huge == SGP_HUGE)
1816 /* TODO: implement fadvise() hints */
1821 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1824 page = shmem_alloc_and_acct_page(gfp, inode,
1830 error = PTR_ERR(page);
1832 if (error != -ENOSPC)
1835 * Try to reclaim some space by splitting a huge page
1836 * beyond i_size on the filesystem.
1841 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1842 if (ret == SHRINK_STOP)
1850 if (PageTransHuge(page))
1851 hindex = round_down(index, HPAGE_PMD_NR);
1855 if (sgp == SGP_WRITE)
1856 __SetPageReferenced(page);
1858 error = shmem_add_to_page_cache(page, mapping, hindex,
1859 NULL, gfp & GFP_RECLAIM_MASK,
1863 lru_cache_add_anon(page);
1865 spin_lock_irq(&info->lock);
1866 info->alloced += compound_nr(page);
1867 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1868 shmem_recalc_inode(inode);
1869 spin_unlock_irq(&info->lock);
1872 if (PageTransHuge(page) &&
1873 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1874 hindex + HPAGE_PMD_NR - 1) {
1876 * Part of the huge page is beyond i_size: subject
1877 * to shrink under memory pressure.
1879 spin_lock(&sbinfo->shrinklist_lock);
1881 * _careful to defend against unlocked access to
1882 * ->shrink_list in shmem_unused_huge_shrink()
1884 if (list_empty_careful(&info->shrinklist)) {
1885 list_add_tail(&info->shrinklist,
1886 &sbinfo->shrinklist);
1887 sbinfo->shrinklist_len++;
1889 spin_unlock(&sbinfo->shrinklist_lock);
1893 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1895 if (sgp == SGP_FALLOC)
1899 * Let SGP_WRITE caller clear ends if write does not fill page;
1900 * but SGP_FALLOC on a page fallocated earlier must initialize
1901 * it now, lest undo on failure cancel our earlier guarantee.
1903 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1904 struct page *head = compound_head(page);
1907 for (i = 0; i < compound_nr(head); i++) {
1908 clear_highpage(head + i);
1909 flush_dcache_page(head + i);
1911 SetPageUptodate(head);
1914 /* Perhaps the file has been truncated since we checked */
1915 if (sgp <= SGP_CACHE &&
1916 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1918 ClearPageDirty(page);
1919 delete_from_page_cache(page);
1920 spin_lock_irq(&info->lock);
1921 shmem_recalc_inode(inode);
1922 spin_unlock_irq(&info->lock);
1927 *pagep = page + index - hindex;
1934 shmem_inode_unacct_blocks(inode, compound_nr(page));
1936 if (PageTransHuge(page)) {
1946 if (error == -ENOSPC && !once++) {
1947 spin_lock_irq(&info->lock);
1948 shmem_recalc_inode(inode);
1949 spin_unlock_irq(&info->lock);
1952 if (error == -EEXIST)
1958 * This is like autoremove_wake_function, but it removes the wait queue
1959 * entry unconditionally - even if something else had already woken the
1962 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1964 int ret = default_wake_function(wait, mode, sync, key);
1965 list_del_init(&wait->entry);
1969 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1971 struct vm_area_struct *vma = vmf->vma;
1972 struct inode *inode = file_inode(vma->vm_file);
1973 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1976 vm_fault_t ret = VM_FAULT_LOCKED;
1979 * Trinity finds that probing a hole which tmpfs is punching can
1980 * prevent the hole-punch from ever completing: which in turn
1981 * locks writers out with its hold on i_mutex. So refrain from
1982 * faulting pages into the hole while it's being punched. Although
1983 * shmem_undo_range() does remove the additions, it may be unable to
1984 * keep up, as each new page needs its own unmap_mapping_range() call,
1985 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1987 * It does not matter if we sometimes reach this check just before the
1988 * hole-punch begins, so that one fault then races with the punch:
1989 * we just need to make racing faults a rare case.
1991 * The implementation below would be much simpler if we just used a
1992 * standard mutex or completion: but we cannot take i_mutex in fault,
1993 * and bloating every shmem inode for this unlikely case would be sad.
1995 if (unlikely(inode->i_private)) {
1996 struct shmem_falloc *shmem_falloc;
1998 spin_lock(&inode->i_lock);
1999 shmem_falloc = inode->i_private;
2001 shmem_falloc->waitq &&
2002 vmf->pgoff >= shmem_falloc->start &&
2003 vmf->pgoff < shmem_falloc->next) {
2005 wait_queue_head_t *shmem_falloc_waitq;
2006 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2008 ret = VM_FAULT_NOPAGE;
2009 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2011 ret = VM_FAULT_RETRY;
2013 shmem_falloc_waitq = shmem_falloc->waitq;
2014 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2015 TASK_UNINTERRUPTIBLE);
2016 spin_unlock(&inode->i_lock);
2020 * shmem_falloc_waitq points into the shmem_fallocate()
2021 * stack of the hole-punching task: shmem_falloc_waitq
2022 * is usually invalid by the time we reach here, but
2023 * finish_wait() does not dereference it in that case;
2024 * though i_lock needed lest racing with wake_up_all().
2026 spin_lock(&inode->i_lock);
2027 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2028 spin_unlock(&inode->i_lock);
2034 spin_unlock(&inode->i_lock);
2039 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2040 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2042 else if (vma->vm_flags & VM_HUGEPAGE)
2045 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2046 gfp, vma, vmf, &ret);
2048 return vmf_error(err);
2052 unsigned long shmem_get_unmapped_area(struct file *file,
2053 unsigned long uaddr, unsigned long len,
2054 unsigned long pgoff, unsigned long flags)
2056 unsigned long (*get_area)(struct file *,
2057 unsigned long, unsigned long, unsigned long, unsigned long);
2059 unsigned long offset;
2060 unsigned long inflated_len;
2061 unsigned long inflated_addr;
2062 unsigned long inflated_offset;
2064 if (len > TASK_SIZE)
2067 get_area = current->mm->get_unmapped_area;
2068 addr = get_area(file, uaddr, len, pgoff, flags);
2070 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2072 if (IS_ERR_VALUE(addr))
2074 if (addr & ~PAGE_MASK)
2076 if (addr > TASK_SIZE - len)
2079 if (shmem_huge == SHMEM_HUGE_DENY)
2081 if (len < HPAGE_PMD_SIZE)
2083 if (flags & MAP_FIXED)
2086 * Our priority is to support MAP_SHARED mapped hugely;
2087 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2088 * But if caller specified an address hint and we allocated area there
2089 * successfully, respect that as before.
2094 if (shmem_huge != SHMEM_HUGE_FORCE) {
2095 struct super_block *sb;
2098 VM_BUG_ON(file->f_op != &shmem_file_operations);
2099 sb = file_inode(file)->i_sb;
2102 * Called directly from mm/mmap.c, or drivers/char/mem.c
2103 * for "/dev/zero", to create a shared anonymous object.
2105 if (IS_ERR(shm_mnt))
2107 sb = shm_mnt->mnt_sb;
2109 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2113 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2114 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2116 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2119 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2120 if (inflated_len > TASK_SIZE)
2122 if (inflated_len < len)
2125 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2126 if (IS_ERR_VALUE(inflated_addr))
2128 if (inflated_addr & ~PAGE_MASK)
2131 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2132 inflated_addr += offset - inflated_offset;
2133 if (inflated_offset > offset)
2134 inflated_addr += HPAGE_PMD_SIZE;
2136 if (inflated_addr > TASK_SIZE - len)
2138 return inflated_addr;
2142 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2144 struct inode *inode = file_inode(vma->vm_file);
2145 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2148 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2151 struct inode *inode = file_inode(vma->vm_file);
2154 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2155 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2159 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2161 struct inode *inode = file_inode(file);
2162 struct shmem_inode_info *info = SHMEM_I(inode);
2163 int retval = -ENOMEM;
2166 * What serializes the accesses to info->flags?
2167 * ipc_lock_object() when called from shmctl_do_lock(),
2168 * no serialization needed when called from shm_destroy().
2170 if (lock && !(info->flags & VM_LOCKED)) {
2171 if (!user_shm_lock(inode->i_size, user))
2173 info->flags |= VM_LOCKED;
2174 mapping_set_unevictable(file->f_mapping);
2176 if (!lock && (info->flags & VM_LOCKED) && user) {
2177 user_shm_unlock(inode->i_size, user);
2178 info->flags &= ~VM_LOCKED;
2179 mapping_clear_unevictable(file->f_mapping);
2187 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2189 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2191 if (info->seals & F_SEAL_FUTURE_WRITE) {
2193 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2194 * "future write" seal active.
2196 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2200 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2201 * MAP_SHARED and read-only, take care to not allow mprotect to
2202 * revert protections on such mappings. Do this only for shared
2203 * mappings. For private mappings, don't need to mask
2204 * VM_MAYWRITE as we still want them to be COW-writable.
2206 if (vma->vm_flags & VM_SHARED)
2207 vma->vm_flags &= ~(VM_MAYWRITE);
2210 file_accessed(file);
2211 vma->vm_ops = &shmem_vm_ops;
2212 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2213 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2214 (vma->vm_end & HPAGE_PMD_MASK)) {
2215 khugepaged_enter(vma, vma->vm_flags);
2220 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2221 umode_t mode, dev_t dev, unsigned long flags)
2223 struct inode *inode;
2224 struct shmem_inode_info *info;
2225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2227 if (shmem_reserve_inode(sb))
2230 inode = new_inode(sb);
2232 inode->i_ino = get_next_ino();
2233 inode_init_owner(inode, dir, mode);
2234 inode->i_blocks = 0;
2235 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2236 inode->i_generation = prandom_u32();
2237 info = SHMEM_I(inode);
2238 memset(info, 0, (char *)inode - (char *)info);
2239 spin_lock_init(&info->lock);
2240 atomic_set(&info->stop_eviction, 0);
2241 info->seals = F_SEAL_SEAL;
2242 info->flags = flags & VM_NORESERVE;
2243 INIT_LIST_HEAD(&info->shrinklist);
2244 INIT_LIST_HEAD(&info->swaplist);
2245 simple_xattrs_init(&info->xattrs);
2246 cache_no_acl(inode);
2248 switch (mode & S_IFMT) {
2250 inode->i_op = &shmem_special_inode_operations;
2251 init_special_inode(inode, mode, dev);
2254 inode->i_mapping->a_ops = &shmem_aops;
2255 inode->i_op = &shmem_inode_operations;
2256 inode->i_fop = &shmem_file_operations;
2257 mpol_shared_policy_init(&info->policy,
2258 shmem_get_sbmpol(sbinfo));
2262 /* Some things misbehave if size == 0 on a directory */
2263 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2264 inode->i_op = &shmem_dir_inode_operations;
2265 inode->i_fop = &simple_dir_operations;
2269 * Must not load anything in the rbtree,
2270 * mpol_free_shared_policy will not be called.
2272 mpol_shared_policy_init(&info->policy, NULL);
2276 lockdep_annotate_inode_mutex_key(inode);
2278 shmem_free_inode(sb);
2282 bool shmem_mapping(struct address_space *mapping)
2284 return mapping->a_ops == &shmem_aops;
2287 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2289 struct vm_area_struct *dst_vma,
2290 unsigned long dst_addr,
2291 unsigned long src_addr,
2293 struct page **pagep)
2295 struct inode *inode = file_inode(dst_vma->vm_file);
2296 struct shmem_inode_info *info = SHMEM_I(inode);
2297 struct address_space *mapping = inode->i_mapping;
2298 gfp_t gfp = mapping_gfp_mask(mapping);
2299 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2303 pte_t _dst_pte, *dst_pte;
2305 pgoff_t offset, max_off;
2308 if (!shmem_inode_acct_block(inode, 1))
2312 page = shmem_alloc_page(gfp, info, pgoff);
2314 goto out_unacct_blocks;
2316 if (!zeropage) { /* mcopy_atomic */
2317 page_kaddr = kmap_atomic(page);
2318 ret = copy_from_user(page_kaddr,
2319 (const void __user *)src_addr,
2321 kunmap_atomic(page_kaddr);
2323 /* fallback to copy_from_user outside mmap_sem */
2324 if (unlikely(ret)) {
2326 shmem_inode_unacct_blocks(inode, 1);
2327 /* don't free the page */
2330 } else { /* mfill_zeropage_atomic */
2331 clear_highpage(page);
2338 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2339 __SetPageLocked(page);
2340 __SetPageSwapBacked(page);
2341 __SetPageUptodate(page);
2344 offset = linear_page_index(dst_vma, dst_addr);
2345 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2346 if (unlikely(offset >= max_off))
2349 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2350 gfp & GFP_RECLAIM_MASK, dst_mm);
2354 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2355 if (dst_vma->vm_flags & VM_WRITE)
2356 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2359 * We don't set the pte dirty if the vma has no
2360 * VM_WRITE permission, so mark the page dirty or it
2361 * could be freed from under us. We could do it
2362 * unconditionally before unlock_page(), but doing it
2363 * only if VM_WRITE is not set is faster.
2365 set_page_dirty(page);
2368 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2371 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2372 if (unlikely(offset >= max_off))
2373 goto out_release_unlock;
2376 if (!pte_none(*dst_pte))
2377 goto out_release_unlock;
2379 lru_cache_add_anon(page);
2381 spin_lock_irq(&info->lock);
2383 inode->i_blocks += BLOCKS_PER_PAGE;
2384 shmem_recalc_inode(inode);
2385 spin_unlock_irq(&info->lock);
2387 inc_mm_counter(dst_mm, mm_counter_file(page));
2388 page_add_file_rmap(page, false);
2389 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2391 /* No need to invalidate - it was non-present before */
2392 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2393 pte_unmap_unlock(dst_pte, ptl);
2399 pte_unmap_unlock(dst_pte, ptl);
2400 ClearPageDirty(page);
2401 delete_from_page_cache(page);
2406 shmem_inode_unacct_blocks(inode, 1);
2410 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2412 struct vm_area_struct *dst_vma,
2413 unsigned long dst_addr,
2414 unsigned long src_addr,
2415 struct page **pagep)
2417 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2418 dst_addr, src_addr, false, pagep);
2421 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2423 struct vm_area_struct *dst_vma,
2424 unsigned long dst_addr)
2426 struct page *page = NULL;
2428 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2429 dst_addr, 0, true, &page);
2433 static const struct inode_operations shmem_symlink_inode_operations;
2434 static const struct inode_operations shmem_short_symlink_operations;
2436 #ifdef CONFIG_TMPFS_XATTR
2437 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2439 #define shmem_initxattrs NULL
2443 shmem_write_begin(struct file *file, struct address_space *mapping,
2444 loff_t pos, unsigned len, unsigned flags,
2445 struct page **pagep, void **fsdata)
2447 struct inode *inode = mapping->host;
2448 struct shmem_inode_info *info = SHMEM_I(inode);
2449 pgoff_t index = pos >> PAGE_SHIFT;
2451 /* i_mutex is held by caller */
2452 if (unlikely(info->seals & (F_SEAL_GROW |
2453 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2454 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2456 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2460 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2464 shmem_write_end(struct file *file, struct address_space *mapping,
2465 loff_t pos, unsigned len, unsigned copied,
2466 struct page *page, void *fsdata)
2468 struct inode *inode = mapping->host;
2470 if (pos + copied > inode->i_size)
2471 i_size_write(inode, pos + copied);
2473 if (!PageUptodate(page)) {
2474 struct page *head = compound_head(page);
2475 if (PageTransCompound(page)) {
2478 for (i = 0; i < HPAGE_PMD_NR; i++) {
2479 if (head + i == page)
2481 clear_highpage(head + i);
2482 flush_dcache_page(head + i);
2485 if (copied < PAGE_SIZE) {
2486 unsigned from = pos & (PAGE_SIZE - 1);
2487 zero_user_segments(page, 0, from,
2488 from + copied, PAGE_SIZE);
2490 SetPageUptodate(head);
2492 set_page_dirty(page);
2499 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2501 struct file *file = iocb->ki_filp;
2502 struct inode *inode = file_inode(file);
2503 struct address_space *mapping = inode->i_mapping;
2505 unsigned long offset;
2506 enum sgp_type sgp = SGP_READ;
2509 loff_t *ppos = &iocb->ki_pos;
2512 * Might this read be for a stacking filesystem? Then when reading
2513 * holes of a sparse file, we actually need to allocate those pages,
2514 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2516 if (!iter_is_iovec(to))
2519 index = *ppos >> PAGE_SHIFT;
2520 offset = *ppos & ~PAGE_MASK;
2523 struct page *page = NULL;
2525 unsigned long nr, ret;
2526 loff_t i_size = i_size_read(inode);
2528 end_index = i_size >> PAGE_SHIFT;
2529 if (index > end_index)
2531 if (index == end_index) {
2532 nr = i_size & ~PAGE_MASK;
2537 error = shmem_getpage(inode, index, &page, sgp);
2539 if (error == -EINVAL)
2544 if (sgp == SGP_CACHE)
2545 set_page_dirty(page);
2550 * We must evaluate after, since reads (unlike writes)
2551 * are called without i_mutex protection against truncate
2554 i_size = i_size_read(inode);
2555 end_index = i_size >> PAGE_SHIFT;
2556 if (index == end_index) {
2557 nr = i_size & ~PAGE_MASK;
2568 * If users can be writing to this page using arbitrary
2569 * virtual addresses, take care about potential aliasing
2570 * before reading the page on the kernel side.
2572 if (mapping_writably_mapped(mapping))
2573 flush_dcache_page(page);
2575 * Mark the page accessed if we read the beginning.
2578 mark_page_accessed(page);
2580 page = ZERO_PAGE(0);
2585 * Ok, we have the page, and it's up-to-date, so
2586 * now we can copy it to user space...
2588 ret = copy_page_to_iter(page, offset, nr, to);
2591 index += offset >> PAGE_SHIFT;
2592 offset &= ~PAGE_MASK;
2595 if (!iov_iter_count(to))
2604 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2605 file_accessed(file);
2606 return retval ? retval : error;
2610 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2612 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2613 pgoff_t index, pgoff_t end, int whence)
2616 struct pagevec pvec;
2617 pgoff_t indices[PAGEVEC_SIZE];
2621 pagevec_init(&pvec);
2622 pvec.nr = 1; /* start small: we may be there already */
2624 pvec.nr = find_get_entries(mapping, index,
2625 pvec.nr, pvec.pages, indices);
2627 if (whence == SEEK_DATA)
2631 for (i = 0; i < pvec.nr; i++, index++) {
2632 if (index < indices[i]) {
2633 if (whence == SEEK_HOLE) {
2639 page = pvec.pages[i];
2640 if (page && !xa_is_value(page)) {
2641 if (!PageUptodate(page))
2645 (page && whence == SEEK_DATA) ||
2646 (!page && whence == SEEK_HOLE)) {
2651 pagevec_remove_exceptionals(&pvec);
2652 pagevec_release(&pvec);
2653 pvec.nr = PAGEVEC_SIZE;
2659 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2661 struct address_space *mapping = file->f_mapping;
2662 struct inode *inode = mapping->host;
2666 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2667 return generic_file_llseek_size(file, offset, whence,
2668 MAX_LFS_FILESIZE, i_size_read(inode));
2670 /* We're holding i_mutex so we can access i_size directly */
2672 if (offset < 0 || offset >= inode->i_size)
2675 start = offset >> PAGE_SHIFT;
2676 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2677 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2678 new_offset <<= PAGE_SHIFT;
2679 if (new_offset > offset) {
2680 if (new_offset < inode->i_size)
2681 offset = new_offset;
2682 else if (whence == SEEK_DATA)
2685 offset = inode->i_size;
2690 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2691 inode_unlock(inode);
2695 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2698 struct inode *inode = file_inode(file);
2699 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2700 struct shmem_inode_info *info = SHMEM_I(inode);
2701 struct shmem_falloc shmem_falloc;
2702 pgoff_t start, index, end;
2705 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2710 if (mode & FALLOC_FL_PUNCH_HOLE) {
2711 struct address_space *mapping = file->f_mapping;
2712 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2713 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2714 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2716 /* protected by i_mutex */
2717 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2722 shmem_falloc.waitq = &shmem_falloc_waitq;
2723 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2724 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2725 spin_lock(&inode->i_lock);
2726 inode->i_private = &shmem_falloc;
2727 spin_unlock(&inode->i_lock);
2729 if ((u64)unmap_end > (u64)unmap_start)
2730 unmap_mapping_range(mapping, unmap_start,
2731 1 + unmap_end - unmap_start, 0);
2732 shmem_truncate_range(inode, offset, offset + len - 1);
2733 /* No need to unmap again: hole-punching leaves COWed pages */
2735 spin_lock(&inode->i_lock);
2736 inode->i_private = NULL;
2737 wake_up_all(&shmem_falloc_waitq);
2738 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2739 spin_unlock(&inode->i_lock);
2744 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2745 error = inode_newsize_ok(inode, offset + len);
2749 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2754 start = offset >> PAGE_SHIFT;
2755 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2756 /* Try to avoid a swapstorm if len is impossible to satisfy */
2757 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2762 shmem_falloc.waitq = NULL;
2763 shmem_falloc.start = start;
2764 shmem_falloc.next = start;
2765 shmem_falloc.nr_falloced = 0;
2766 shmem_falloc.nr_unswapped = 0;
2767 spin_lock(&inode->i_lock);
2768 inode->i_private = &shmem_falloc;
2769 spin_unlock(&inode->i_lock);
2771 for (index = start; index < end; index++) {
2775 * Good, the fallocate(2) manpage permits EINTR: we may have
2776 * been interrupted because we are using up too much memory.
2778 if (signal_pending(current))
2780 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2783 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2785 /* Remove the !PageUptodate pages we added */
2786 if (index > start) {
2787 shmem_undo_range(inode,
2788 (loff_t)start << PAGE_SHIFT,
2789 ((loff_t)index << PAGE_SHIFT) - 1, true);
2795 * Inform shmem_writepage() how far we have reached.
2796 * No need for lock or barrier: we have the page lock.
2798 shmem_falloc.next++;
2799 if (!PageUptodate(page))
2800 shmem_falloc.nr_falloced++;
2803 * If !PageUptodate, leave it that way so that freeable pages
2804 * can be recognized if we need to rollback on error later.
2805 * But set_page_dirty so that memory pressure will swap rather
2806 * than free the pages we are allocating (and SGP_CACHE pages
2807 * might still be clean: we now need to mark those dirty too).
2809 set_page_dirty(page);
2815 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2816 i_size_write(inode, offset + len);
2817 inode->i_ctime = current_time(inode);
2819 spin_lock(&inode->i_lock);
2820 inode->i_private = NULL;
2821 spin_unlock(&inode->i_lock);
2823 inode_unlock(inode);
2827 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2829 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2831 buf->f_type = TMPFS_MAGIC;
2832 buf->f_bsize = PAGE_SIZE;
2833 buf->f_namelen = NAME_MAX;
2834 if (sbinfo->max_blocks) {
2835 buf->f_blocks = sbinfo->max_blocks;
2837 buf->f_bfree = sbinfo->max_blocks -
2838 percpu_counter_sum(&sbinfo->used_blocks);
2840 if (sbinfo->max_inodes) {
2841 buf->f_files = sbinfo->max_inodes;
2842 buf->f_ffree = sbinfo->free_inodes;
2844 /* else leave those fields 0 like simple_statfs */
2849 * File creation. Allocate an inode, and we're done..
2852 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2854 struct inode *inode;
2855 int error = -ENOSPC;
2857 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2859 error = simple_acl_create(dir, inode);
2862 error = security_inode_init_security(inode, dir,
2864 shmem_initxattrs, NULL);
2865 if (error && error != -EOPNOTSUPP)
2869 dir->i_size += BOGO_DIRENT_SIZE;
2870 dir->i_ctime = dir->i_mtime = current_time(dir);
2871 d_instantiate(dentry, inode);
2872 dget(dentry); /* Extra count - pin the dentry in core */
2881 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2883 struct inode *inode;
2884 int error = -ENOSPC;
2886 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2888 error = security_inode_init_security(inode, dir,
2890 shmem_initxattrs, NULL);
2891 if (error && error != -EOPNOTSUPP)
2893 error = simple_acl_create(dir, inode);
2896 d_tmpfile(dentry, inode);
2904 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2908 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2914 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2917 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2925 struct inode *inode = d_inode(old_dentry);
2929 * No ordinary (disk based) filesystem counts links as inodes;
2930 * but each new link needs a new dentry, pinning lowmem, and
2931 * tmpfs dentries cannot be pruned until they are unlinked.
2932 * But if an O_TMPFILE file is linked into the tmpfs, the
2933 * first link must skip that, to get the accounting right.
2935 if (inode->i_nlink) {
2936 ret = shmem_reserve_inode(inode->i_sb);
2941 dir->i_size += BOGO_DIRENT_SIZE;
2942 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2944 ihold(inode); /* New dentry reference */
2945 dget(dentry); /* Extra pinning count for the created dentry */
2946 d_instantiate(dentry, inode);
2951 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2953 struct inode *inode = d_inode(dentry);
2955 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2956 shmem_free_inode(inode->i_sb);
2958 dir->i_size -= BOGO_DIRENT_SIZE;
2959 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2961 dput(dentry); /* Undo the count from "create" - this does all the work */
2965 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2967 if (!simple_empty(dentry))
2970 drop_nlink(d_inode(dentry));
2972 return shmem_unlink(dir, dentry);
2975 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2977 bool old_is_dir = d_is_dir(old_dentry);
2978 bool new_is_dir = d_is_dir(new_dentry);
2980 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2982 drop_nlink(old_dir);
2985 drop_nlink(new_dir);
2989 old_dir->i_ctime = old_dir->i_mtime =
2990 new_dir->i_ctime = new_dir->i_mtime =
2991 d_inode(old_dentry)->i_ctime =
2992 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2997 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2999 struct dentry *whiteout;
3002 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3006 error = shmem_mknod(old_dir, whiteout,
3007 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3013 * Cheat and hash the whiteout while the old dentry is still in
3014 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3016 * d_lookup() will consistently find one of them at this point,
3017 * not sure which one, but that isn't even important.
3024 * The VFS layer already does all the dentry stuff for rename,
3025 * we just have to decrement the usage count for the target if
3026 * it exists so that the VFS layer correctly free's it when it
3029 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3031 struct inode *inode = d_inode(old_dentry);
3032 int they_are_dirs = S_ISDIR(inode->i_mode);
3034 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3037 if (flags & RENAME_EXCHANGE)
3038 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3040 if (!simple_empty(new_dentry))
3043 if (flags & RENAME_WHITEOUT) {
3046 error = shmem_whiteout(old_dir, old_dentry);
3051 if (d_really_is_positive(new_dentry)) {
3052 (void) shmem_unlink(new_dir, new_dentry);
3053 if (they_are_dirs) {
3054 drop_nlink(d_inode(new_dentry));
3055 drop_nlink(old_dir);
3057 } else if (they_are_dirs) {
3058 drop_nlink(old_dir);
3062 old_dir->i_size -= BOGO_DIRENT_SIZE;
3063 new_dir->i_size += BOGO_DIRENT_SIZE;
3064 old_dir->i_ctime = old_dir->i_mtime =
3065 new_dir->i_ctime = new_dir->i_mtime =
3066 inode->i_ctime = current_time(old_dir);
3070 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3074 struct inode *inode;
3077 len = strlen(symname) + 1;
3078 if (len > PAGE_SIZE)
3079 return -ENAMETOOLONG;
3081 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3086 error = security_inode_init_security(inode, dir, &dentry->d_name,
3087 shmem_initxattrs, NULL);
3088 if (error && error != -EOPNOTSUPP) {
3093 inode->i_size = len-1;
3094 if (len <= SHORT_SYMLINK_LEN) {
3095 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3096 if (!inode->i_link) {
3100 inode->i_op = &shmem_short_symlink_operations;
3102 inode_nohighmem(inode);
3103 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3108 inode->i_mapping->a_ops = &shmem_aops;
3109 inode->i_op = &shmem_symlink_inode_operations;
3110 memcpy(page_address(page), symname, len);
3111 SetPageUptodate(page);
3112 set_page_dirty(page);
3116 dir->i_size += BOGO_DIRENT_SIZE;
3117 dir->i_ctime = dir->i_mtime = current_time(dir);
3118 d_instantiate(dentry, inode);
3123 static void shmem_put_link(void *arg)
3125 mark_page_accessed(arg);
3129 static const char *shmem_get_link(struct dentry *dentry,
3130 struct inode *inode,
3131 struct delayed_call *done)
3133 struct page *page = NULL;
3136 page = find_get_page(inode->i_mapping, 0);
3138 return ERR_PTR(-ECHILD);
3139 if (!PageUptodate(page)) {
3141 return ERR_PTR(-ECHILD);
3144 error = shmem_getpage(inode, 0, &page, SGP_READ);
3146 return ERR_PTR(error);
3149 set_delayed_call(done, shmem_put_link, page);
3150 return page_address(page);
3153 #ifdef CONFIG_TMPFS_XATTR
3155 * Superblocks without xattr inode operations may get some security.* xattr
3156 * support from the LSM "for free". As soon as we have any other xattrs
3157 * like ACLs, we also need to implement the security.* handlers at
3158 * filesystem level, though.
3162 * Callback for security_inode_init_security() for acquiring xattrs.
3164 static int shmem_initxattrs(struct inode *inode,
3165 const struct xattr *xattr_array,
3168 struct shmem_inode_info *info = SHMEM_I(inode);
3169 const struct xattr *xattr;
3170 struct simple_xattr *new_xattr;
3173 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3174 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3178 len = strlen(xattr->name) + 1;
3179 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3181 if (!new_xattr->name) {
3186 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3187 XATTR_SECURITY_PREFIX_LEN);
3188 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3191 simple_xattr_list_add(&info->xattrs, new_xattr);
3197 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3198 struct dentry *unused, struct inode *inode,
3199 const char *name, void *buffer, size_t size)
3201 struct shmem_inode_info *info = SHMEM_I(inode);
3203 name = xattr_full_name(handler, name);
3204 return simple_xattr_get(&info->xattrs, name, buffer, size);
3207 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3208 struct dentry *unused, struct inode *inode,
3209 const char *name, const void *value,
3210 size_t size, int flags)
3212 struct shmem_inode_info *info = SHMEM_I(inode);
3214 name = xattr_full_name(handler, name);
3215 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3218 static const struct xattr_handler shmem_security_xattr_handler = {
3219 .prefix = XATTR_SECURITY_PREFIX,
3220 .get = shmem_xattr_handler_get,
3221 .set = shmem_xattr_handler_set,
3224 static const struct xattr_handler shmem_trusted_xattr_handler = {
3225 .prefix = XATTR_TRUSTED_PREFIX,
3226 .get = shmem_xattr_handler_get,
3227 .set = shmem_xattr_handler_set,
3230 static const struct xattr_handler *shmem_xattr_handlers[] = {
3231 #ifdef CONFIG_TMPFS_POSIX_ACL
3232 &posix_acl_access_xattr_handler,
3233 &posix_acl_default_xattr_handler,
3235 &shmem_security_xattr_handler,
3236 &shmem_trusted_xattr_handler,
3240 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3242 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3243 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3245 #endif /* CONFIG_TMPFS_XATTR */
3247 static const struct inode_operations shmem_short_symlink_operations = {
3248 .get_link = simple_get_link,
3249 #ifdef CONFIG_TMPFS_XATTR
3250 .listxattr = shmem_listxattr,
3254 static const struct inode_operations shmem_symlink_inode_operations = {
3255 .get_link = shmem_get_link,
3256 #ifdef CONFIG_TMPFS_XATTR
3257 .listxattr = shmem_listxattr,
3261 static struct dentry *shmem_get_parent(struct dentry *child)
3263 return ERR_PTR(-ESTALE);
3266 static int shmem_match(struct inode *ino, void *vfh)
3270 inum = (inum << 32) | fh[1];
3271 return ino->i_ino == inum && fh[0] == ino->i_generation;
3274 /* Find any alias of inode, but prefer a hashed alias */
3275 static struct dentry *shmem_find_alias(struct inode *inode)
3277 struct dentry *alias = d_find_alias(inode);
3279 return alias ?: d_find_any_alias(inode);
3283 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3284 struct fid *fid, int fh_len, int fh_type)
3286 struct inode *inode;
3287 struct dentry *dentry = NULL;
3294 inum = (inum << 32) | fid->raw[1];
3296 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3297 shmem_match, fid->raw);
3299 dentry = shmem_find_alias(inode);
3306 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3307 struct inode *parent)
3311 return FILEID_INVALID;
3314 if (inode_unhashed(inode)) {
3315 /* Unfortunately insert_inode_hash is not idempotent,
3316 * so as we hash inodes here rather than at creation
3317 * time, we need a lock to ensure we only try
3320 static DEFINE_SPINLOCK(lock);
3322 if (inode_unhashed(inode))
3323 __insert_inode_hash(inode,
3324 inode->i_ino + inode->i_generation);
3328 fh[0] = inode->i_generation;
3329 fh[1] = inode->i_ino;
3330 fh[2] = ((__u64)inode->i_ino) >> 32;
3336 static const struct export_operations shmem_export_ops = {
3337 .get_parent = shmem_get_parent,
3338 .encode_fh = shmem_encode_fh,
3339 .fh_to_dentry = shmem_fh_to_dentry,
3353 static const struct constant_table shmem_param_enums_huge[] = {
3354 {"never", SHMEM_HUGE_NEVER },
3355 {"always", SHMEM_HUGE_ALWAYS },
3356 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3357 {"advise", SHMEM_HUGE_ADVISE },
3361 const struct fs_parameter_spec shmem_fs_parameters[] = {
3362 fsparam_u32 ("gid", Opt_gid),
3363 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3364 fsparam_u32oct("mode", Opt_mode),
3365 fsparam_string("mpol", Opt_mpol),
3366 fsparam_string("nr_blocks", Opt_nr_blocks),
3367 fsparam_string("nr_inodes", Opt_nr_inodes),
3368 fsparam_string("size", Opt_size),
3369 fsparam_u32 ("uid", Opt_uid),
3373 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3375 struct shmem_options *ctx = fc->fs_private;
3376 struct fs_parse_result result;
3377 unsigned long long size;
3381 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3387 size = memparse(param->string, &rest);
3389 size <<= PAGE_SHIFT;
3390 size *= totalram_pages();
3396 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3397 ctx->seen |= SHMEM_SEEN_BLOCKS;
3400 ctx->blocks = memparse(param->string, &rest);
3403 ctx->seen |= SHMEM_SEEN_BLOCKS;
3406 ctx->inodes = memparse(param->string, &rest);
3409 ctx->seen |= SHMEM_SEEN_INODES;
3412 ctx->mode = result.uint_32 & 07777;
3415 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3416 if (!uid_valid(ctx->uid))
3420 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3421 if (!gid_valid(ctx->gid))
3425 ctx->huge = result.uint_32;
3426 if (ctx->huge != SHMEM_HUGE_NEVER &&
3427 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3428 has_transparent_hugepage()))
3429 goto unsupported_parameter;
3430 ctx->seen |= SHMEM_SEEN_HUGE;
3433 if (IS_ENABLED(CONFIG_NUMA)) {
3434 mpol_put(ctx->mpol);
3436 if (mpol_parse_str(param->string, &ctx->mpol))
3440 goto unsupported_parameter;
3444 unsupported_parameter:
3445 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3447 return invalfc(fc, "Bad value for '%s'", param->key);
3450 static int shmem_parse_options(struct fs_context *fc, void *data)
3452 char *options = data;
3455 int err = security_sb_eat_lsm_opts(options, &fc->security);
3460 while (options != NULL) {
3461 char *this_char = options;
3464 * NUL-terminate this option: unfortunately,
3465 * mount options form a comma-separated list,
3466 * but mpol's nodelist may also contain commas.
3468 options = strchr(options, ',');
3469 if (options == NULL)
3472 if (!isdigit(*options)) {
3478 char *value = strchr(this_char,'=');
3484 len = strlen(value);
3486 err = vfs_parse_fs_string(fc, this_char, value, len);
3495 * Reconfigure a shmem filesystem.
3497 * Note that we disallow change from limited->unlimited blocks/inodes while any
3498 * are in use; but we must separately disallow unlimited->limited, because in
3499 * that case we have no record of how much is already in use.
3501 static int shmem_reconfigure(struct fs_context *fc)
3503 struct shmem_options *ctx = fc->fs_private;
3504 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3505 unsigned long inodes;
3508 spin_lock(&sbinfo->stat_lock);
3509 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3510 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3511 if (!sbinfo->max_blocks) {
3512 err = "Cannot retroactively limit size";
3515 if (percpu_counter_compare(&sbinfo->used_blocks,
3517 err = "Too small a size for current use";
3521 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3522 if (!sbinfo->max_inodes) {
3523 err = "Cannot retroactively limit inodes";
3526 if (ctx->inodes < inodes) {
3527 err = "Too few inodes for current use";
3532 if (ctx->seen & SHMEM_SEEN_HUGE)
3533 sbinfo->huge = ctx->huge;
3534 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3535 sbinfo->max_blocks = ctx->blocks;
3536 if (ctx->seen & SHMEM_SEEN_INODES) {
3537 sbinfo->max_inodes = ctx->inodes;
3538 sbinfo->free_inodes = ctx->inodes - inodes;
3542 * Preserve previous mempolicy unless mpol remount option was specified.
3545 mpol_put(sbinfo->mpol);
3546 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3549 spin_unlock(&sbinfo->stat_lock);
3552 spin_unlock(&sbinfo->stat_lock);
3553 return invalfc(fc, "%s", err);
3556 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3558 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3560 if (sbinfo->max_blocks != shmem_default_max_blocks())
3561 seq_printf(seq, ",size=%luk",
3562 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3563 if (sbinfo->max_inodes != shmem_default_max_inodes())
3564 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3565 if (sbinfo->mode != (0777 | S_ISVTX))
3566 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3567 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3568 seq_printf(seq, ",uid=%u",
3569 from_kuid_munged(&init_user_ns, sbinfo->uid));
3570 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3571 seq_printf(seq, ",gid=%u",
3572 from_kgid_munged(&init_user_ns, sbinfo->gid));
3573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3576 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3578 shmem_show_mpol(seq, sbinfo->mpol);
3582 #endif /* CONFIG_TMPFS */
3584 static void shmem_put_super(struct super_block *sb)
3586 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3588 percpu_counter_destroy(&sbinfo->used_blocks);
3589 mpol_put(sbinfo->mpol);
3591 sb->s_fs_info = NULL;
3594 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3596 struct shmem_options *ctx = fc->fs_private;
3597 struct inode *inode;
3598 struct shmem_sb_info *sbinfo;
3601 /* Round up to L1_CACHE_BYTES to resist false sharing */
3602 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3603 L1_CACHE_BYTES), GFP_KERNEL);
3607 sb->s_fs_info = sbinfo;
3611 * Per default we only allow half of the physical ram per
3612 * tmpfs instance, limiting inodes to one per page of lowmem;
3613 * but the internal instance is left unlimited.
3615 if (!(sb->s_flags & SB_KERNMOUNT)) {
3616 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3617 ctx->blocks = shmem_default_max_blocks();
3618 if (!(ctx->seen & SHMEM_SEEN_INODES))
3619 ctx->inodes = shmem_default_max_inodes();
3621 sb->s_flags |= SB_NOUSER;
3623 sb->s_export_op = &shmem_export_ops;
3624 sb->s_flags |= SB_NOSEC;
3626 sb->s_flags |= SB_NOUSER;
3628 sbinfo->max_blocks = ctx->blocks;
3629 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3630 sbinfo->uid = ctx->uid;
3631 sbinfo->gid = ctx->gid;
3632 sbinfo->mode = ctx->mode;
3633 sbinfo->huge = ctx->huge;
3634 sbinfo->mpol = ctx->mpol;
3637 spin_lock_init(&sbinfo->stat_lock);
3638 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3640 spin_lock_init(&sbinfo->shrinklist_lock);
3641 INIT_LIST_HEAD(&sbinfo->shrinklist);
3643 sb->s_maxbytes = MAX_LFS_FILESIZE;
3644 sb->s_blocksize = PAGE_SIZE;
3645 sb->s_blocksize_bits = PAGE_SHIFT;
3646 sb->s_magic = TMPFS_MAGIC;
3647 sb->s_op = &shmem_ops;
3648 sb->s_time_gran = 1;
3649 #ifdef CONFIG_TMPFS_XATTR
3650 sb->s_xattr = shmem_xattr_handlers;
3652 #ifdef CONFIG_TMPFS_POSIX_ACL
3653 sb->s_flags |= SB_POSIXACL;
3655 uuid_gen(&sb->s_uuid);
3657 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3660 inode->i_uid = sbinfo->uid;
3661 inode->i_gid = sbinfo->gid;
3662 sb->s_root = d_make_root(inode);
3668 shmem_put_super(sb);
3672 static int shmem_get_tree(struct fs_context *fc)
3674 return get_tree_nodev(fc, shmem_fill_super);
3677 static void shmem_free_fc(struct fs_context *fc)
3679 struct shmem_options *ctx = fc->fs_private;
3682 mpol_put(ctx->mpol);
3687 static const struct fs_context_operations shmem_fs_context_ops = {
3688 .free = shmem_free_fc,
3689 .get_tree = shmem_get_tree,
3691 .parse_monolithic = shmem_parse_options,
3692 .parse_param = shmem_parse_one,
3693 .reconfigure = shmem_reconfigure,
3697 static struct kmem_cache *shmem_inode_cachep;
3699 static struct inode *shmem_alloc_inode(struct super_block *sb)
3701 struct shmem_inode_info *info;
3702 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3705 return &info->vfs_inode;
3708 static void shmem_free_in_core_inode(struct inode *inode)
3710 if (S_ISLNK(inode->i_mode))
3711 kfree(inode->i_link);
3712 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3715 static void shmem_destroy_inode(struct inode *inode)
3717 if (S_ISREG(inode->i_mode))
3718 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3721 static void shmem_init_inode(void *foo)
3723 struct shmem_inode_info *info = foo;
3724 inode_init_once(&info->vfs_inode);
3727 static void shmem_init_inodecache(void)
3729 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3730 sizeof(struct shmem_inode_info),
3731 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3734 static void shmem_destroy_inodecache(void)
3736 kmem_cache_destroy(shmem_inode_cachep);
3739 static const struct address_space_operations shmem_aops = {
3740 .writepage = shmem_writepage,
3741 .set_page_dirty = __set_page_dirty_no_writeback,
3743 .write_begin = shmem_write_begin,
3744 .write_end = shmem_write_end,
3746 #ifdef CONFIG_MIGRATION
3747 .migratepage = migrate_page,
3749 .error_remove_page = generic_error_remove_page,
3752 static const struct file_operations shmem_file_operations = {
3754 .get_unmapped_area = shmem_get_unmapped_area,
3756 .llseek = shmem_file_llseek,
3757 .read_iter = shmem_file_read_iter,
3758 .write_iter = generic_file_write_iter,
3759 .fsync = noop_fsync,
3760 .splice_read = generic_file_splice_read,
3761 .splice_write = iter_file_splice_write,
3762 .fallocate = shmem_fallocate,
3766 static const struct inode_operations shmem_inode_operations = {
3767 .getattr = shmem_getattr,
3768 .setattr = shmem_setattr,
3769 #ifdef CONFIG_TMPFS_XATTR
3770 .listxattr = shmem_listxattr,
3771 .set_acl = simple_set_acl,
3775 static const struct inode_operations shmem_dir_inode_operations = {
3777 .create = shmem_create,
3778 .lookup = simple_lookup,
3780 .unlink = shmem_unlink,
3781 .symlink = shmem_symlink,
3782 .mkdir = shmem_mkdir,
3783 .rmdir = shmem_rmdir,
3784 .mknod = shmem_mknod,
3785 .rename = shmem_rename2,
3786 .tmpfile = shmem_tmpfile,
3788 #ifdef CONFIG_TMPFS_XATTR
3789 .listxattr = shmem_listxattr,
3791 #ifdef CONFIG_TMPFS_POSIX_ACL
3792 .setattr = shmem_setattr,
3793 .set_acl = simple_set_acl,
3797 static const struct inode_operations shmem_special_inode_operations = {
3798 #ifdef CONFIG_TMPFS_XATTR
3799 .listxattr = shmem_listxattr,
3801 #ifdef CONFIG_TMPFS_POSIX_ACL
3802 .setattr = shmem_setattr,
3803 .set_acl = simple_set_acl,
3807 static const struct super_operations shmem_ops = {
3808 .alloc_inode = shmem_alloc_inode,
3809 .free_inode = shmem_free_in_core_inode,
3810 .destroy_inode = shmem_destroy_inode,
3812 .statfs = shmem_statfs,
3813 .show_options = shmem_show_options,
3815 .evict_inode = shmem_evict_inode,
3816 .drop_inode = generic_delete_inode,
3817 .put_super = shmem_put_super,
3818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3819 .nr_cached_objects = shmem_unused_huge_count,
3820 .free_cached_objects = shmem_unused_huge_scan,
3824 static const struct vm_operations_struct shmem_vm_ops = {
3825 .fault = shmem_fault,
3826 .map_pages = filemap_map_pages,
3828 .set_policy = shmem_set_policy,
3829 .get_policy = shmem_get_policy,
3833 int shmem_init_fs_context(struct fs_context *fc)
3835 struct shmem_options *ctx;
3837 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3841 ctx->mode = 0777 | S_ISVTX;
3842 ctx->uid = current_fsuid();
3843 ctx->gid = current_fsgid();
3845 fc->fs_private = ctx;
3846 fc->ops = &shmem_fs_context_ops;
3850 static struct file_system_type shmem_fs_type = {
3851 .owner = THIS_MODULE,
3853 .init_fs_context = shmem_init_fs_context,
3855 .parameters = shmem_fs_parameters,
3857 .kill_sb = kill_litter_super,
3858 .fs_flags = FS_USERNS_MOUNT,
3861 int __init shmem_init(void)
3865 shmem_init_inodecache();
3867 error = register_filesystem(&shmem_fs_type);
3869 pr_err("Could not register tmpfs\n");
3873 shm_mnt = kern_mount(&shmem_fs_type);
3874 if (IS_ERR(shm_mnt)) {
3875 error = PTR_ERR(shm_mnt);
3876 pr_err("Could not kern_mount tmpfs\n");
3880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3881 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3882 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3884 shmem_huge = 0; /* just in case it was patched */
3889 unregister_filesystem(&shmem_fs_type);
3891 shmem_destroy_inodecache();
3892 shm_mnt = ERR_PTR(error);
3896 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3897 static ssize_t shmem_enabled_show(struct kobject *kobj,
3898 struct kobj_attribute *attr, char *buf)
3900 static const int values[] = {
3902 SHMEM_HUGE_WITHIN_SIZE,
3910 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3911 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3913 count += sprintf(buf + count, fmt,
3914 shmem_format_huge(values[i]));
3916 buf[count - 1] = '\n';
3920 static ssize_t shmem_enabled_store(struct kobject *kobj,
3921 struct kobj_attribute *attr, const char *buf, size_t count)
3926 if (count + 1 > sizeof(tmp))
3928 memcpy(tmp, buf, count);
3930 if (count && tmp[count - 1] == '\n')
3931 tmp[count - 1] = '\0';
3933 huge = shmem_parse_huge(tmp);
3934 if (huge == -EINVAL)
3936 if (!has_transparent_hugepage() &&
3937 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3941 if (shmem_huge > SHMEM_HUGE_DENY)
3942 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3946 struct kobj_attribute shmem_enabled_attr =
3947 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3951 bool shmem_huge_enabled(struct vm_area_struct *vma)
3953 struct inode *inode = file_inode(vma->vm_file);
3954 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3958 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3959 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3961 if (shmem_huge == SHMEM_HUGE_FORCE)
3963 if (shmem_huge == SHMEM_HUGE_DENY)
3965 switch (sbinfo->huge) {
3966 case SHMEM_HUGE_NEVER:
3968 case SHMEM_HUGE_ALWAYS:
3970 case SHMEM_HUGE_WITHIN_SIZE:
3971 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3972 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3973 if (i_size >= HPAGE_PMD_SIZE &&
3974 i_size >> PAGE_SHIFT >= off)
3977 case SHMEM_HUGE_ADVISE:
3978 /* TODO: implement fadvise() hints */
3979 return (vma->vm_flags & VM_HUGEPAGE);
3985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3987 #else /* !CONFIG_SHMEM */
3990 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3992 * This is intended for small system where the benefits of the full
3993 * shmem code (swap-backed and resource-limited) are outweighed by
3994 * their complexity. On systems without swap this code should be
3995 * effectively equivalent, but much lighter weight.
3998 static struct file_system_type shmem_fs_type = {
4000 .init_fs_context = ramfs_init_fs_context,
4001 .parameters = ramfs_fs_parameters,
4002 .kill_sb = kill_litter_super,
4003 .fs_flags = FS_USERNS_MOUNT,
4006 int __init shmem_init(void)
4008 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4010 shm_mnt = kern_mount(&shmem_fs_type);
4011 BUG_ON(IS_ERR(shm_mnt));
4016 int shmem_unuse(unsigned int type, bool frontswap,
4017 unsigned long *fs_pages_to_unuse)
4022 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4027 void shmem_unlock_mapping(struct address_space *mapping)
4032 unsigned long shmem_get_unmapped_area(struct file *file,
4033 unsigned long addr, unsigned long len,
4034 unsigned long pgoff, unsigned long flags)
4036 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4042 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4044 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4046 #define shmem_vm_ops generic_file_vm_ops
4047 #define shmem_file_operations ramfs_file_operations
4048 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4049 #define shmem_acct_size(flags, size) 0
4050 #define shmem_unacct_size(flags, size) do {} while (0)
4052 #endif /* CONFIG_SHMEM */
4056 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4057 unsigned long flags, unsigned int i_flags)
4059 struct inode *inode;
4063 return ERR_CAST(mnt);
4065 if (size < 0 || size > MAX_LFS_FILESIZE)
4066 return ERR_PTR(-EINVAL);
4068 if (shmem_acct_size(flags, size))
4069 return ERR_PTR(-ENOMEM);
4071 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4073 if (unlikely(!inode)) {
4074 shmem_unacct_size(flags, size);
4075 return ERR_PTR(-ENOSPC);
4077 inode->i_flags |= i_flags;
4078 inode->i_size = size;
4079 clear_nlink(inode); /* It is unlinked */
4080 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4082 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4083 &shmem_file_operations);
4090 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4091 * kernel internal. There will be NO LSM permission checks against the
4092 * underlying inode. So users of this interface must do LSM checks at a
4093 * higher layer. The users are the big_key and shm implementations. LSM
4094 * checks are provided at the key or shm level rather than the inode.
4095 * @name: name for dentry (to be seen in /proc/<pid>/maps
4096 * @size: size to be set for the file
4097 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4099 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4101 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4105 * shmem_file_setup - get an unlinked file living in tmpfs
4106 * @name: name for dentry (to be seen in /proc/<pid>/maps
4107 * @size: size to be set for the file
4108 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4110 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4112 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4114 EXPORT_SYMBOL_GPL(shmem_file_setup);
4117 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4118 * @mnt: the tmpfs mount where the file will be created
4119 * @name: name for dentry (to be seen in /proc/<pid>/maps
4120 * @size: size to be set for the file
4121 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4123 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4124 loff_t size, unsigned long flags)
4126 return __shmem_file_setup(mnt, name, size, flags, 0);
4128 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4131 * shmem_zero_setup - setup a shared anonymous mapping
4132 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4134 int shmem_zero_setup(struct vm_area_struct *vma)
4137 loff_t size = vma->vm_end - vma->vm_start;
4140 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4141 * between XFS directory reading and selinux: since this file is only
4142 * accessible to the user through its mapping, use S_PRIVATE flag to
4143 * bypass file security, in the same way as shmem_kernel_file_setup().
4145 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4147 return PTR_ERR(file);
4151 vma->vm_file = file;
4152 vma->vm_ops = &shmem_vm_ops;
4154 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4155 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4156 (vma->vm_end & HPAGE_PMD_MASK)) {
4157 khugepaged_enter(vma, vma->vm_flags);
4164 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4165 * @mapping: the page's address_space
4166 * @index: the page index
4167 * @gfp: the page allocator flags to use if allocating
4169 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4170 * with any new page allocations done using the specified allocation flags.
4171 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4172 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4173 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4175 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4176 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4178 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4179 pgoff_t index, gfp_t gfp)
4182 struct inode *inode = mapping->host;
4186 BUG_ON(mapping->a_ops != &shmem_aops);
4187 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4188 gfp, NULL, NULL, NULL);
4190 page = ERR_PTR(error);
4196 * The tiny !SHMEM case uses ramfs without swap
4198 return read_cache_page_gfp(mapping, index, gfp);
4201 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);