2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40 static struct vfsmount *shm_mnt;
44 * This virtual memory filesystem is heavily based on the ramfs. It
45 * extends ramfs by the ability to use swap and honor resource limits
46 * which makes it a completely usable filesystem.
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
85 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
86 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
95 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96 * inode->i_private (with i_mutex making sure that it has only one user at
97 * a time): we would prefer not to enlarge the shmem inode just for that.
100 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 pgoff_t start; /* start of range currently being fallocated */
102 pgoff_t next; /* the next page offset to be fallocated */
103 pgoff_t nr_falloced; /* how many new pages have been fallocated */
104 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 static unsigned long shmem_default_max_blocks(void)
110 return totalram_pages / 2;
113 static unsigned long shmem_default_max_inodes(void)
115 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp,
124 gfp_t gfp, struct vm_area_struct *vma,
125 struct vm_fault *vmf, int *fault_type);
127 int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp)
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 return sb->s_fs_info;
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow large sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 static inline int shmem_acct_block(unsigned long flags, long pages)
178 if (!(flags & VM_NORESERVE))
181 return security_vm_enough_memory_mm(current->mm,
182 pages * VM_ACCT(PAGE_SIZE));
185 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187 if (flags & VM_NORESERVE)
188 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 static const struct super_operations shmem_ops;
192 static const struct address_space_operations shmem_aops;
193 static const struct file_operations shmem_file_operations;
194 static const struct inode_operations shmem_inode_operations;
195 static const struct inode_operations shmem_dir_inode_operations;
196 static const struct inode_operations shmem_special_inode_operations;
197 static const struct vm_operations_struct shmem_vm_ops;
198 static struct file_system_type shmem_fs_type;
200 bool vma_is_shmem(struct vm_area_struct *vma)
202 return vma->vm_ops == &shmem_vm_ops;
205 static LIST_HEAD(shmem_swaplist);
206 static DEFINE_MUTEX(shmem_swaplist_mutex);
208 static int shmem_reserve_inode(struct super_block *sb)
210 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211 if (sbinfo->max_inodes) {
212 spin_lock(&sbinfo->stat_lock);
213 if (!sbinfo->free_inodes) {
214 spin_unlock(&sbinfo->stat_lock);
217 sbinfo->free_inodes--;
218 spin_unlock(&sbinfo->stat_lock);
223 static void shmem_free_inode(struct super_block *sb)
225 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226 if (sbinfo->max_inodes) {
227 spin_lock(&sbinfo->stat_lock);
228 sbinfo->free_inodes++;
229 spin_unlock(&sbinfo->stat_lock);
234 * shmem_recalc_inode - recalculate the block usage of an inode
235 * @inode: inode to recalc
237 * We have to calculate the free blocks since the mm can drop
238 * undirtied hole pages behind our back.
240 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
241 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
243 * It has to be called with the spinlock held.
245 static void shmem_recalc_inode(struct inode *inode)
247 struct shmem_inode_info *info = SHMEM_I(inode);
250 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 if (sbinfo->max_blocks)
254 percpu_counter_add(&sbinfo->used_blocks, -freed);
255 info->alloced -= freed;
256 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
257 shmem_unacct_blocks(info->flags, freed);
261 bool shmem_charge(struct inode *inode, long pages)
263 struct shmem_inode_info *info = SHMEM_I(inode);
264 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
267 if (shmem_acct_block(info->flags, pages))
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced += pages;
271 inode->i_blocks += pages * BLOCKS_PER_PAGE;
272 shmem_recalc_inode(inode);
273 spin_unlock_irqrestore(&info->lock, flags);
274 inode->i_mapping->nrpages += pages;
276 if (!sbinfo->max_blocks)
278 if (percpu_counter_compare(&sbinfo->used_blocks,
279 sbinfo->max_blocks - pages) > 0) {
280 inode->i_mapping->nrpages -= pages;
281 spin_lock_irqsave(&info->lock, flags);
282 info->alloced -= pages;
283 shmem_recalc_inode(inode);
284 spin_unlock_irqrestore(&info->lock, flags);
285 shmem_unacct_blocks(info->flags, pages);
288 percpu_counter_add(&sbinfo->used_blocks, pages);
292 void shmem_uncharge(struct inode *inode, long pages)
294 struct shmem_inode_info *info = SHMEM_I(inode);
295 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
298 spin_lock_irqsave(&info->lock, flags);
299 info->alloced -= pages;
300 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
301 shmem_recalc_inode(inode);
302 spin_unlock_irqrestore(&info->lock, flags);
304 if (sbinfo->max_blocks)
305 percpu_counter_sub(&sbinfo->used_blocks, pages);
306 shmem_unacct_blocks(info->flags, pages);
310 * Replace item expected in radix tree by a new item, while holding tree lock.
312 static int shmem_radix_tree_replace(struct address_space *mapping,
313 pgoff_t index, void *expected, void *replacement)
315 struct radix_tree_node *node;
319 VM_BUG_ON(!expected);
320 VM_BUG_ON(!replacement);
321 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
324 if (item != expected)
326 __radix_tree_replace(&mapping->page_tree, node, pslot,
327 replacement, NULL, NULL);
332 * Sometimes, before we decide whether to proceed or to fail, we must check
333 * that an entry was not already brought back from swap by a racing thread.
335 * Checking page is not enough: by the time a SwapCache page is locked, it
336 * might be reused, and again be SwapCache, using the same swap as before.
338 static bool shmem_confirm_swap(struct address_space *mapping,
339 pgoff_t index, swp_entry_t swap)
344 item = radix_tree_lookup(&mapping->page_tree, index);
346 return item == swp_to_radix_entry(swap);
350 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
353 * disables huge pages for the mount;
355 * enables huge pages for the mount;
356 * SHMEM_HUGE_WITHIN_SIZE:
357 * only allocate huge pages if the page will be fully within i_size,
358 * also respect fadvise()/madvise() hints;
360 * only allocate huge pages if requested with fadvise()/madvise();
363 #define SHMEM_HUGE_NEVER 0
364 #define SHMEM_HUGE_ALWAYS 1
365 #define SHMEM_HUGE_WITHIN_SIZE 2
366 #define SHMEM_HUGE_ADVISE 3
370 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
373 * disables huge on shm_mnt and all mounts, for emergency use;
375 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
378 #define SHMEM_HUGE_DENY (-1)
379 #define SHMEM_HUGE_FORCE (-2)
381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
382 /* ifdef here to avoid bloating shmem.o when not necessary */
384 int shmem_huge __read_mostly;
386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
387 static int shmem_parse_huge(const char *str)
389 if (!strcmp(str, "never"))
390 return SHMEM_HUGE_NEVER;
391 if (!strcmp(str, "always"))
392 return SHMEM_HUGE_ALWAYS;
393 if (!strcmp(str, "within_size"))
394 return SHMEM_HUGE_WITHIN_SIZE;
395 if (!strcmp(str, "advise"))
396 return SHMEM_HUGE_ADVISE;
397 if (!strcmp(str, "deny"))
398 return SHMEM_HUGE_DENY;
399 if (!strcmp(str, "force"))
400 return SHMEM_HUGE_FORCE;
404 static const char *shmem_format_huge(int huge)
407 case SHMEM_HUGE_NEVER:
409 case SHMEM_HUGE_ALWAYS:
411 case SHMEM_HUGE_WITHIN_SIZE:
412 return "within_size";
413 case SHMEM_HUGE_ADVISE:
415 case SHMEM_HUGE_DENY:
417 case SHMEM_HUGE_FORCE:
426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
427 struct shrink_control *sc, unsigned long nr_to_split)
429 LIST_HEAD(list), *pos, *next;
430 LIST_HEAD(to_remove);
432 struct shmem_inode_info *info;
434 unsigned long batch = sc ? sc->nr_to_scan : 128;
435 int removed = 0, split = 0;
437 if (list_empty(&sbinfo->shrinklist))
440 spin_lock(&sbinfo->shrinklist_lock);
441 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
442 info = list_entry(pos, struct shmem_inode_info, shrinklist);
445 inode = igrab(&info->vfs_inode);
447 /* inode is about to be evicted */
449 list_del_init(&info->shrinklist);
454 /* Check if there's anything to gain */
455 if (round_up(inode->i_size, PAGE_SIZE) ==
456 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
457 list_move(&info->shrinklist, &to_remove);
462 list_move(&info->shrinklist, &list);
467 spin_unlock(&sbinfo->shrinklist_lock);
469 list_for_each_safe(pos, next, &to_remove) {
470 info = list_entry(pos, struct shmem_inode_info, shrinklist);
471 inode = &info->vfs_inode;
472 list_del_init(&info->shrinklist);
476 list_for_each_safe(pos, next, &list) {
479 info = list_entry(pos, struct shmem_inode_info, shrinklist);
480 inode = &info->vfs_inode;
482 if (nr_to_split && split >= nr_to_split) {
487 page = find_lock_page(inode->i_mapping,
488 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
492 if (!PageTransHuge(page)) {
498 ret = split_huge_page(page);
503 /* split failed: leave it on the list */
510 list_del_init(&info->shrinklist);
515 spin_lock(&sbinfo->shrinklist_lock);
516 list_splice_tail(&list, &sbinfo->shrinklist);
517 sbinfo->shrinklist_len -= removed;
518 spin_unlock(&sbinfo->shrinklist_lock);
523 static long shmem_unused_huge_scan(struct super_block *sb,
524 struct shrink_control *sc)
526 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
528 if (!READ_ONCE(sbinfo->shrinklist_len))
531 return shmem_unused_huge_shrink(sbinfo, sc, 0);
534 static long shmem_unused_huge_count(struct super_block *sb,
535 struct shrink_control *sc)
537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
538 return READ_ONCE(sbinfo->shrinklist_len);
540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
542 #define shmem_huge SHMEM_HUGE_DENY
544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
545 struct shrink_control *sc, unsigned long nr_to_split)
549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
552 * Like add_to_page_cache_locked, but error if expected item has gone.
554 static int shmem_add_to_page_cache(struct page *page,
555 struct address_space *mapping,
556 pgoff_t index, void *expected)
558 int error, nr = hpage_nr_pages(page);
560 VM_BUG_ON_PAGE(PageTail(page), page);
561 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
562 VM_BUG_ON_PAGE(!PageLocked(page), page);
563 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
564 VM_BUG_ON(expected && PageTransHuge(page));
566 page_ref_add(page, nr);
567 page->mapping = mapping;
570 spin_lock_irq(&mapping->tree_lock);
571 if (PageTransHuge(page)) {
572 void __rcu **results;
577 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
578 &results, &idx, index, 1) &&
579 idx < index + HPAGE_PMD_NR) {
584 for (i = 0; i < HPAGE_PMD_NR; i++) {
585 error = radix_tree_insert(&mapping->page_tree,
586 index + i, page + i);
589 count_vm_event(THP_FILE_ALLOC);
591 } else if (!expected) {
592 error = radix_tree_insert(&mapping->page_tree, index, page);
594 error = shmem_radix_tree_replace(mapping, index, expected,
599 mapping->nrpages += nr;
600 if (PageTransHuge(page))
601 __inc_node_page_state(page, NR_SHMEM_THPS);
602 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
603 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
604 spin_unlock_irq(&mapping->tree_lock);
606 page->mapping = NULL;
607 spin_unlock_irq(&mapping->tree_lock);
608 page_ref_sub(page, nr);
614 * Like delete_from_page_cache, but substitutes swap for page.
616 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
618 struct address_space *mapping = page->mapping;
621 VM_BUG_ON_PAGE(PageCompound(page), page);
623 spin_lock_irq(&mapping->tree_lock);
624 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
625 page->mapping = NULL;
627 __dec_node_page_state(page, NR_FILE_PAGES);
628 __dec_node_page_state(page, NR_SHMEM);
629 spin_unlock_irq(&mapping->tree_lock);
635 * Remove swap entry from radix tree, free the swap and its page cache.
637 static int shmem_free_swap(struct address_space *mapping,
638 pgoff_t index, void *radswap)
642 spin_lock_irq(&mapping->tree_lock);
643 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
644 spin_unlock_irq(&mapping->tree_lock);
647 free_swap_and_cache(radix_to_swp_entry(radswap));
652 * Determine (in bytes) how many of the shmem object's pages mapped by the
653 * given offsets are swapped out.
655 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656 * as long as the inode doesn't go away and racy results are not a problem.
658 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
659 pgoff_t start, pgoff_t end)
661 struct radix_tree_iter iter;
664 unsigned long swapped = 0;
668 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
669 if (iter.index >= end)
672 page = radix_tree_deref_slot(slot);
674 if (radix_tree_deref_retry(page)) {
675 slot = radix_tree_iter_retry(&iter);
679 if (radix_tree_exceptional_entry(page))
682 if (need_resched()) {
683 slot = radix_tree_iter_resume(slot, &iter);
690 return swapped << PAGE_SHIFT;
694 * Determine (in bytes) how many of the shmem object's pages mapped by the
695 * given vma is swapped out.
697 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698 * as long as the inode doesn't go away and racy results are not a problem.
700 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
702 struct inode *inode = file_inode(vma->vm_file);
703 struct shmem_inode_info *info = SHMEM_I(inode);
704 struct address_space *mapping = inode->i_mapping;
705 unsigned long swapped;
707 /* Be careful as we don't hold info->lock */
708 swapped = READ_ONCE(info->swapped);
711 * The easier cases are when the shmem object has nothing in swap, or
712 * the vma maps it whole. Then we can simply use the stats that we
718 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
719 return swapped << PAGE_SHIFT;
721 /* Here comes the more involved part */
722 return shmem_partial_swap_usage(mapping,
723 linear_page_index(vma, vma->vm_start),
724 linear_page_index(vma, vma->vm_end));
728 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
730 void shmem_unlock_mapping(struct address_space *mapping)
733 pgoff_t indices[PAGEVEC_SIZE];
736 pagevec_init(&pvec, 0);
738 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
740 while (!mapping_unevictable(mapping)) {
742 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
745 pvec.nr = find_get_entries(mapping, index,
746 PAGEVEC_SIZE, pvec.pages, indices);
749 index = indices[pvec.nr - 1] + 1;
750 pagevec_remove_exceptionals(&pvec);
751 check_move_unevictable_pages(pvec.pages, pvec.nr);
752 pagevec_release(&pvec);
758 * Remove range of pages and swap entries from radix tree, and free them.
759 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
761 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
764 struct address_space *mapping = inode->i_mapping;
765 struct shmem_inode_info *info = SHMEM_I(inode);
766 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
767 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
768 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
769 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
771 pgoff_t indices[PAGEVEC_SIZE];
772 long nr_swaps_freed = 0;
777 end = -1; /* unsigned, so actually very big */
779 pagevec_init(&pvec, 0);
781 while (index < end) {
782 pvec.nr = find_get_entries(mapping, index,
783 min(end - index, (pgoff_t)PAGEVEC_SIZE),
784 pvec.pages, indices);
787 for (i = 0; i < pagevec_count(&pvec); i++) {
788 struct page *page = pvec.pages[i];
794 if (radix_tree_exceptional_entry(page)) {
797 nr_swaps_freed += !shmem_free_swap(mapping,
802 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
804 if (!trylock_page(page))
807 if (PageTransTail(page)) {
808 /* Middle of THP: zero out the page */
809 clear_highpage(page);
812 } else if (PageTransHuge(page)) {
813 if (index == round_down(end, HPAGE_PMD_NR)) {
815 * Range ends in the middle of THP:
818 clear_highpage(page);
822 index += HPAGE_PMD_NR - 1;
823 i += HPAGE_PMD_NR - 1;
826 if (!unfalloc || !PageUptodate(page)) {
827 VM_BUG_ON_PAGE(PageTail(page), page);
828 if (page_mapping(page) == mapping) {
829 VM_BUG_ON_PAGE(PageWriteback(page), page);
830 truncate_inode_page(mapping, page);
835 pagevec_remove_exceptionals(&pvec);
836 pagevec_release(&pvec);
842 struct page *page = NULL;
843 shmem_getpage(inode, start - 1, &page, SGP_READ);
845 unsigned int top = PAGE_SIZE;
850 zero_user_segment(page, partial_start, top);
851 set_page_dirty(page);
857 struct page *page = NULL;
858 shmem_getpage(inode, end, &page, SGP_READ);
860 zero_user_segment(page, 0, partial_end);
861 set_page_dirty(page);
870 while (index < end) {
873 pvec.nr = find_get_entries(mapping, index,
874 min(end - index, (pgoff_t)PAGEVEC_SIZE),
875 pvec.pages, indices);
877 /* If all gone or hole-punch or unfalloc, we're done */
878 if (index == start || end != -1)
880 /* But if truncating, restart to make sure all gone */
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 struct page *page = pvec.pages[i];
891 if (radix_tree_exceptional_entry(page)) {
894 if (shmem_free_swap(mapping, index, page)) {
895 /* Swap was replaced by page: retry */
905 if (PageTransTail(page)) {
906 /* Middle of THP: zero out the page */
907 clear_highpage(page);
910 * Partial thp truncate due 'start' in middle
911 * of THP: don't need to look on these pages
912 * again on !pvec.nr restart.
914 if (index != round_down(end, HPAGE_PMD_NR))
917 } else if (PageTransHuge(page)) {
918 if (index == round_down(end, HPAGE_PMD_NR)) {
920 * Range ends in the middle of THP:
923 clear_highpage(page);
927 index += HPAGE_PMD_NR - 1;
928 i += HPAGE_PMD_NR - 1;
931 if (!unfalloc || !PageUptodate(page)) {
932 VM_BUG_ON_PAGE(PageTail(page), page);
933 if (page_mapping(page) == mapping) {
934 VM_BUG_ON_PAGE(PageWriteback(page), page);
935 truncate_inode_page(mapping, page);
937 /* Page was replaced by swap: retry */
945 pagevec_remove_exceptionals(&pvec);
946 pagevec_release(&pvec);
950 spin_lock_irq(&info->lock);
951 info->swapped -= nr_swaps_freed;
952 shmem_recalc_inode(inode);
953 spin_unlock_irq(&info->lock);
956 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
958 shmem_undo_range(inode, lstart, lend, false);
959 inode->i_ctime = inode->i_mtime = current_time(inode);
961 EXPORT_SYMBOL_GPL(shmem_truncate_range);
963 static int shmem_getattr(const struct path *path, struct kstat *stat,
964 u32 request_mask, unsigned int query_flags)
966 struct inode *inode = path->dentry->d_inode;
967 struct shmem_inode_info *info = SHMEM_I(inode);
969 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
970 spin_lock_irq(&info->lock);
971 shmem_recalc_inode(inode);
972 spin_unlock_irq(&info->lock);
974 generic_fillattr(inode, stat);
978 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
980 struct inode *inode = d_inode(dentry);
981 struct shmem_inode_info *info = SHMEM_I(inode);
982 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
985 error = setattr_prepare(dentry, attr);
989 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
990 loff_t oldsize = inode->i_size;
991 loff_t newsize = attr->ia_size;
993 /* protected by i_mutex */
994 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
995 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
998 if (newsize != oldsize) {
999 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1003 i_size_write(inode, newsize);
1004 inode->i_ctime = inode->i_mtime = current_time(inode);
1006 if (newsize <= oldsize) {
1007 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1008 if (oldsize > holebegin)
1009 unmap_mapping_range(inode->i_mapping,
1012 shmem_truncate_range(inode,
1013 newsize, (loff_t)-1);
1014 /* unmap again to remove racily COWed private pages */
1015 if (oldsize > holebegin)
1016 unmap_mapping_range(inode->i_mapping,
1020 * Part of the huge page can be beyond i_size: subject
1021 * to shrink under memory pressure.
1023 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1024 spin_lock(&sbinfo->shrinklist_lock);
1025 if (list_empty(&info->shrinklist)) {
1026 list_add_tail(&info->shrinklist,
1027 &sbinfo->shrinklist);
1028 sbinfo->shrinklist_len++;
1030 spin_unlock(&sbinfo->shrinklist_lock);
1035 setattr_copy(inode, attr);
1036 if (attr->ia_valid & ATTR_MODE)
1037 error = posix_acl_chmod(inode, inode->i_mode);
1041 static void shmem_evict_inode(struct inode *inode)
1043 struct shmem_inode_info *info = SHMEM_I(inode);
1044 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1046 if (inode->i_mapping->a_ops == &shmem_aops) {
1047 shmem_unacct_size(info->flags, inode->i_size);
1049 shmem_truncate_range(inode, 0, (loff_t)-1);
1050 if (!list_empty(&info->shrinklist)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 if (!list_empty(&info->shrinklist)) {
1053 list_del_init(&info->shrinklist);
1054 sbinfo->shrinklist_len--;
1056 spin_unlock(&sbinfo->shrinklist_lock);
1058 if (!list_empty(&info->swaplist)) {
1059 mutex_lock(&shmem_swaplist_mutex);
1060 list_del_init(&info->swaplist);
1061 mutex_unlock(&shmem_swaplist_mutex);
1065 simple_xattrs_free(&info->xattrs);
1066 WARN_ON(inode->i_blocks);
1067 shmem_free_inode(inode->i_sb);
1071 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1073 struct radix_tree_iter iter;
1075 unsigned long found = -1;
1076 unsigned int checked = 0;
1079 radix_tree_for_each_slot(slot, root, &iter, 0) {
1080 if (*slot == item) {
1085 if ((checked % 4096) != 0)
1087 slot = radix_tree_iter_resume(slot, &iter);
1096 * If swap found in inode, free it and move page from swapcache to filecache.
1098 static int shmem_unuse_inode(struct shmem_inode_info *info,
1099 swp_entry_t swap, struct page **pagep)
1101 struct address_space *mapping = info->vfs_inode.i_mapping;
1107 radswap = swp_to_radix_entry(swap);
1108 index = find_swap_entry(&mapping->page_tree, radswap);
1110 return -EAGAIN; /* tell shmem_unuse we found nothing */
1113 * Move _head_ to start search for next from here.
1114 * But be careful: shmem_evict_inode checks list_empty without taking
1115 * mutex, and there's an instant in list_move_tail when info->swaplist
1116 * would appear empty, if it were the only one on shmem_swaplist.
1118 if (shmem_swaplist.next != &info->swaplist)
1119 list_move_tail(&shmem_swaplist, &info->swaplist);
1121 gfp = mapping_gfp_mask(mapping);
1122 if (shmem_should_replace_page(*pagep, gfp)) {
1123 mutex_unlock(&shmem_swaplist_mutex);
1124 error = shmem_replace_page(pagep, gfp, info, index);
1125 mutex_lock(&shmem_swaplist_mutex);
1127 * We needed to drop mutex to make that restrictive page
1128 * allocation, but the inode might have been freed while we
1129 * dropped it: although a racing shmem_evict_inode() cannot
1130 * complete without emptying the radix_tree, our page lock
1131 * on this swapcache page is not enough to prevent that -
1132 * free_swap_and_cache() of our swap entry will only
1133 * trylock_page(), removing swap from radix_tree whatever.
1135 * We must not proceed to shmem_add_to_page_cache() if the
1136 * inode has been freed, but of course we cannot rely on
1137 * inode or mapping or info to check that. However, we can
1138 * safely check if our swap entry is still in use (and here
1139 * it can't have got reused for another page): if it's still
1140 * in use, then the inode cannot have been freed yet, and we
1141 * can safely proceed (if it's no longer in use, that tells
1142 * nothing about the inode, but we don't need to unuse swap).
1144 if (!page_swapcount(*pagep))
1149 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1150 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1151 * beneath us (pagelock doesn't help until the page is in pagecache).
1154 error = shmem_add_to_page_cache(*pagep, mapping, index,
1156 if (error != -ENOMEM) {
1158 * Truncation and eviction use free_swap_and_cache(), which
1159 * only does trylock page: if we raced, best clean up here.
1161 delete_from_swap_cache(*pagep);
1162 set_page_dirty(*pagep);
1164 spin_lock_irq(&info->lock);
1166 spin_unlock_irq(&info->lock);
1174 * Search through swapped inodes to find and replace swap by page.
1176 int shmem_unuse(swp_entry_t swap, struct page *page)
1178 struct list_head *this, *next;
1179 struct shmem_inode_info *info;
1180 struct mem_cgroup *memcg;
1184 * There's a faint possibility that swap page was replaced before
1185 * caller locked it: caller will come back later with the right page.
1187 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1191 * Charge page using GFP_KERNEL while we can wait, before taking
1192 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1193 * Charged back to the user (not to caller) when swap account is used.
1195 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1199 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1202 mutex_lock(&shmem_swaplist_mutex);
1203 list_for_each_safe(this, next, &shmem_swaplist) {
1204 info = list_entry(this, struct shmem_inode_info, swaplist);
1206 error = shmem_unuse_inode(info, swap, &page);
1208 list_del_init(&info->swaplist);
1210 if (error != -EAGAIN)
1212 /* found nothing in this: move on to search the next */
1214 mutex_unlock(&shmem_swaplist_mutex);
1217 if (error != -ENOMEM)
1219 mem_cgroup_cancel_charge(page, memcg, false);
1221 mem_cgroup_commit_charge(page, memcg, true, false);
1229 * Move the page from the page cache to the swap cache.
1231 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1233 struct shmem_inode_info *info;
1234 struct address_space *mapping;
1235 struct inode *inode;
1239 VM_BUG_ON_PAGE(PageCompound(page), page);
1240 BUG_ON(!PageLocked(page));
1241 mapping = page->mapping;
1242 index = page->index;
1243 inode = mapping->host;
1244 info = SHMEM_I(inode);
1245 if (info->flags & VM_LOCKED)
1247 if (!total_swap_pages)
1251 * Our capabilities prevent regular writeback or sync from ever calling
1252 * shmem_writepage; but a stacking filesystem might use ->writepage of
1253 * its underlying filesystem, in which case tmpfs should write out to
1254 * swap only in response to memory pressure, and not for the writeback
1257 if (!wbc->for_reclaim) {
1258 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1263 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1264 * value into swapfile.c, the only way we can correctly account for a
1265 * fallocated page arriving here is now to initialize it and write it.
1267 * That's okay for a page already fallocated earlier, but if we have
1268 * not yet completed the fallocation, then (a) we want to keep track
1269 * of this page in case we have to undo it, and (b) it may not be a
1270 * good idea to continue anyway, once we're pushing into swap. So
1271 * reactivate the page, and let shmem_fallocate() quit when too many.
1273 if (!PageUptodate(page)) {
1274 if (inode->i_private) {
1275 struct shmem_falloc *shmem_falloc;
1276 spin_lock(&inode->i_lock);
1277 shmem_falloc = inode->i_private;
1279 !shmem_falloc->waitq &&
1280 index >= shmem_falloc->start &&
1281 index < shmem_falloc->next)
1282 shmem_falloc->nr_unswapped++;
1284 shmem_falloc = NULL;
1285 spin_unlock(&inode->i_lock);
1289 clear_highpage(page);
1290 flush_dcache_page(page);
1291 SetPageUptodate(page);
1294 swap = get_swap_page();
1298 if (mem_cgroup_try_charge_swap(page, swap))
1302 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1303 * if it's not already there. Do it now before the page is
1304 * moved to swap cache, when its pagelock no longer protects
1305 * the inode from eviction. But don't unlock the mutex until
1306 * we've incremented swapped, because shmem_unuse_inode() will
1307 * prune a !swapped inode from the swaplist under this mutex.
1309 mutex_lock(&shmem_swaplist_mutex);
1310 if (list_empty(&info->swaplist))
1311 list_add_tail(&info->swaplist, &shmem_swaplist);
1313 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1314 spin_lock_irq(&info->lock);
1315 shmem_recalc_inode(inode);
1317 spin_unlock_irq(&info->lock);
1319 swap_shmem_alloc(swap);
1320 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1322 mutex_unlock(&shmem_swaplist_mutex);
1323 BUG_ON(page_mapped(page));
1324 swap_writepage(page, wbc);
1328 mutex_unlock(&shmem_swaplist_mutex);
1330 swapcache_free(swap);
1332 set_page_dirty(page);
1333 if (wbc->for_reclaim)
1334 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1339 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1340 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1344 if (!mpol || mpol->mode == MPOL_DEFAULT)
1345 return; /* show nothing */
1347 mpol_to_str(buffer, sizeof(buffer), mpol);
1349 seq_printf(seq, ",mpol=%s", buffer);
1352 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1354 struct mempolicy *mpol = NULL;
1356 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1357 mpol = sbinfo->mpol;
1359 spin_unlock(&sbinfo->stat_lock);
1363 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1364 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1367 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1371 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1373 #define vm_policy vm_private_data
1376 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1377 struct shmem_inode_info *info, pgoff_t index)
1379 /* Create a pseudo vma that just contains the policy */
1381 /* Bias interleave by inode number to distribute better across nodes */
1382 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1384 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1387 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1389 /* Drop reference taken by mpol_shared_policy_lookup() */
1390 mpol_cond_put(vma->vm_policy);
1393 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1394 struct shmem_inode_info *info, pgoff_t index)
1396 struct vm_area_struct pvma;
1399 shmem_pseudo_vma_init(&pvma, info, index);
1400 page = swapin_readahead(swap, gfp, &pvma, 0);
1401 shmem_pseudo_vma_destroy(&pvma);
1406 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1407 struct shmem_inode_info *info, pgoff_t index)
1409 struct vm_area_struct pvma;
1410 struct inode *inode = &info->vfs_inode;
1411 struct address_space *mapping = inode->i_mapping;
1412 pgoff_t idx, hindex;
1413 void __rcu **results;
1416 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1419 hindex = round_down(index, HPAGE_PMD_NR);
1421 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1422 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1428 shmem_pseudo_vma_init(&pvma, info, hindex);
1429 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1430 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1431 shmem_pseudo_vma_destroy(&pvma);
1433 prep_transhuge_page(page);
1437 static struct page *shmem_alloc_page(gfp_t gfp,
1438 struct shmem_inode_info *info, pgoff_t index)
1440 struct vm_area_struct pvma;
1443 shmem_pseudo_vma_init(&pvma, info, index);
1444 page = alloc_page_vma(gfp, &pvma, 0);
1445 shmem_pseudo_vma_destroy(&pvma);
1450 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1451 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1452 pgoff_t index, bool huge)
1458 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1460 nr = huge ? HPAGE_PMD_NR : 1;
1462 if (shmem_acct_block(info->flags, nr))
1464 if (sbinfo->max_blocks) {
1465 if (percpu_counter_compare(&sbinfo->used_blocks,
1466 sbinfo->max_blocks - nr) > 0)
1468 percpu_counter_add(&sbinfo->used_blocks, nr);
1472 page = shmem_alloc_hugepage(gfp, info, index);
1474 page = shmem_alloc_page(gfp, info, index);
1476 __SetPageLocked(page);
1477 __SetPageSwapBacked(page);
1482 if (sbinfo->max_blocks)
1483 percpu_counter_add(&sbinfo->used_blocks, -nr);
1485 shmem_unacct_blocks(info->flags, nr);
1487 return ERR_PTR(err);
1491 * When a page is moved from swapcache to shmem filecache (either by the
1492 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494 * ignorance of the mapping it belongs to. If that mapping has special
1495 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496 * we may need to copy to a suitable page before moving to filecache.
1498 * In a future release, this may well be extended to respect cpuset and
1499 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500 * but for now it is a simple matter of zone.
1502 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1504 return page_zonenum(page) > gfp_zone(gfp);
1507 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1508 struct shmem_inode_info *info, pgoff_t index)
1510 struct page *oldpage, *newpage;
1511 struct address_space *swap_mapping;
1516 swap_index = page_private(oldpage);
1517 swap_mapping = page_mapping(oldpage);
1520 * We have arrived here because our zones are constrained, so don't
1521 * limit chance of success by further cpuset and node constraints.
1523 gfp &= ~GFP_CONSTRAINT_MASK;
1524 newpage = shmem_alloc_page(gfp, info, index);
1529 copy_highpage(newpage, oldpage);
1530 flush_dcache_page(newpage);
1532 __SetPageLocked(newpage);
1533 __SetPageSwapBacked(newpage);
1534 SetPageUptodate(newpage);
1535 set_page_private(newpage, swap_index);
1536 SetPageSwapCache(newpage);
1539 * Our caller will very soon move newpage out of swapcache, but it's
1540 * a nice clean interface for us to replace oldpage by newpage there.
1542 spin_lock_irq(&swap_mapping->tree_lock);
1543 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1546 __inc_node_page_state(newpage, NR_FILE_PAGES);
1547 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1549 spin_unlock_irq(&swap_mapping->tree_lock);
1551 if (unlikely(error)) {
1553 * Is this possible? I think not, now that our callers check
1554 * both PageSwapCache and page_private after getting page lock;
1555 * but be defensive. Reverse old to newpage for clear and free.
1559 mem_cgroup_migrate(oldpage, newpage);
1560 lru_cache_add_anon(newpage);
1564 ClearPageSwapCache(oldpage);
1565 set_page_private(oldpage, 0);
1567 unlock_page(oldpage);
1574 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1576 * If we allocate a new one we do not mark it dirty. That's up to the
1577 * vm. If we swap it in we mark it dirty since we also free the swap
1578 * entry since a page cannot live in both the swap and page cache.
1580 * fault_mm and fault_type are only supplied by shmem_fault:
1581 * otherwise they are NULL.
1583 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1584 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1585 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1587 struct address_space *mapping = inode->i_mapping;
1588 struct shmem_inode_info *info = SHMEM_I(inode);
1589 struct shmem_sb_info *sbinfo;
1590 struct mm_struct *charge_mm;
1591 struct mem_cgroup *memcg;
1594 enum sgp_type sgp_huge = sgp;
1595 pgoff_t hindex = index;
1600 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1602 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1606 page = find_lock_entry(mapping, index);
1607 if (radix_tree_exceptional_entry(page)) {
1608 swap = radix_to_swp_entry(page);
1612 if (sgp <= SGP_CACHE &&
1613 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1618 if (page && sgp == SGP_WRITE)
1619 mark_page_accessed(page);
1621 /* fallocated page? */
1622 if (page && !PageUptodate(page)) {
1623 if (sgp != SGP_READ)
1629 if (page || (sgp == SGP_READ && !swap.val)) {
1635 * Fast cache lookup did not find it:
1636 * bring it back from swap or allocate.
1638 sbinfo = SHMEM_SB(inode->i_sb);
1639 charge_mm = vma ? vma->vm_mm : current->mm;
1642 /* Look it up and read it in.. */
1643 page = lookup_swap_cache(swap);
1645 /* Or update major stats only when swapin succeeds?? */
1647 *fault_type |= VM_FAULT_MAJOR;
1648 count_vm_event(PGMAJFAULT);
1649 mem_cgroup_count_vm_event(charge_mm,
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1660 /* We have to do this with page locked to prevent races */
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1664 error = -EEXIST; /* try again */
1667 if (!PageUptodate(page)) {
1671 wait_on_page_writeback(page);
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1679 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap));
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1693 * Reset swap.val? No, leave it so "failed" goes back to
1694 * "repeat": reading a hole and writing should succeed.
1697 mem_cgroup_cancel_charge(page, memcg, false);
1698 delete_from_swap_cache(page);
1704 mem_cgroup_commit_charge(page, memcg, true, false);
1706 spin_lock_irq(&info->lock);
1708 shmem_recalc_inode(inode);
1709 spin_unlock_irq(&info->lock);
1711 if (sgp == SGP_WRITE)
1712 mark_page_accessed(page);
1714 delete_from_swap_cache(page);
1715 set_page_dirty(page);
1719 if (vma && userfaultfd_missing(vma)) {
1720 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1724 /* shmem_symlink() */
1725 if (mapping->a_ops != &shmem_aops)
1727 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1729 if (shmem_huge == SHMEM_HUGE_FORCE)
1731 switch (sbinfo->huge) {
1734 case SHMEM_HUGE_NEVER:
1736 case SHMEM_HUGE_WITHIN_SIZE:
1737 off = round_up(index, HPAGE_PMD_NR);
1738 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1739 if (i_size >= HPAGE_PMD_SIZE &&
1740 i_size >> PAGE_SHIFT >= off)
1743 case SHMEM_HUGE_ADVISE:
1744 if (sgp_huge == SGP_HUGE)
1746 /* TODO: implement fadvise() hints */
1751 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1754 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1759 error = PTR_ERR(page);
1761 if (error != -ENOSPC)
1764 * Try to reclaim some spece by splitting a huge page
1765 * beyond i_size on the filesystem.
1769 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1770 if (ret == SHRINK_STOP)
1778 if (PageTransHuge(page))
1779 hindex = round_down(index, HPAGE_PMD_NR);
1783 if (sgp == SGP_WRITE)
1784 __SetPageReferenced(page);
1786 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1787 PageTransHuge(page));
1790 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1791 compound_order(page));
1793 error = shmem_add_to_page_cache(page, mapping, hindex,
1795 radix_tree_preload_end();
1798 mem_cgroup_cancel_charge(page, memcg,
1799 PageTransHuge(page));
1802 mem_cgroup_commit_charge(page, memcg, false,
1803 PageTransHuge(page));
1804 lru_cache_add_anon(page);
1806 spin_lock_irq(&info->lock);
1807 info->alloced += 1 << compound_order(page);
1808 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1809 shmem_recalc_inode(inode);
1810 spin_unlock_irq(&info->lock);
1813 if (PageTransHuge(page) &&
1814 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1815 hindex + HPAGE_PMD_NR - 1) {
1817 * Part of the huge page is beyond i_size: subject
1818 * to shrink under memory pressure.
1820 spin_lock(&sbinfo->shrinklist_lock);
1821 if (list_empty(&info->shrinklist)) {
1822 list_add_tail(&info->shrinklist,
1823 &sbinfo->shrinklist);
1824 sbinfo->shrinklist_len++;
1826 spin_unlock(&sbinfo->shrinklist_lock);
1830 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1832 if (sgp == SGP_FALLOC)
1836 * Let SGP_WRITE caller clear ends if write does not fill page;
1837 * but SGP_FALLOC on a page fallocated earlier must initialize
1838 * it now, lest undo on failure cancel our earlier guarantee.
1840 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1841 struct page *head = compound_head(page);
1844 for (i = 0; i < (1 << compound_order(head)); i++) {
1845 clear_highpage(head + i);
1846 flush_dcache_page(head + i);
1848 SetPageUptodate(head);
1852 /* Perhaps the file has been truncated since we checked */
1853 if (sgp <= SGP_CACHE &&
1854 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1856 ClearPageDirty(page);
1857 delete_from_page_cache(page);
1858 spin_lock_irq(&info->lock);
1859 shmem_recalc_inode(inode);
1860 spin_unlock_irq(&info->lock);
1865 *pagep = page + index - hindex;
1872 if (sbinfo->max_blocks)
1873 percpu_counter_sub(&sbinfo->used_blocks,
1874 1 << compound_order(page));
1875 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1877 if (PageTransHuge(page)) {
1883 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1890 if (error == -ENOSPC && !once++) {
1891 spin_lock_irq(&info->lock);
1892 shmem_recalc_inode(inode);
1893 spin_unlock_irq(&info->lock);
1896 if (error == -EEXIST) /* from above or from radix_tree_insert */
1902 * This is like autoremove_wake_function, but it removes the wait queue
1903 * entry unconditionally - even if something else had already woken the
1906 static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1908 int ret = default_wake_function(wait, mode, sync, key);
1909 list_del_init(&wait->task_list);
1913 static int shmem_fault(struct vm_fault *vmf)
1915 struct vm_area_struct *vma = vmf->vma;
1916 struct inode *inode = file_inode(vma->vm_file);
1917 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1920 int ret = VM_FAULT_LOCKED;
1923 * Trinity finds that probing a hole which tmpfs is punching can
1924 * prevent the hole-punch from ever completing: which in turn
1925 * locks writers out with its hold on i_mutex. So refrain from
1926 * faulting pages into the hole while it's being punched. Although
1927 * shmem_undo_range() does remove the additions, it may be unable to
1928 * keep up, as each new page needs its own unmap_mapping_range() call,
1929 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1931 * It does not matter if we sometimes reach this check just before the
1932 * hole-punch begins, so that one fault then races with the punch:
1933 * we just need to make racing faults a rare case.
1935 * The implementation below would be much simpler if we just used a
1936 * standard mutex or completion: but we cannot take i_mutex in fault,
1937 * and bloating every shmem inode for this unlikely case would be sad.
1939 if (unlikely(inode->i_private)) {
1940 struct shmem_falloc *shmem_falloc;
1942 spin_lock(&inode->i_lock);
1943 shmem_falloc = inode->i_private;
1945 shmem_falloc->waitq &&
1946 vmf->pgoff >= shmem_falloc->start &&
1947 vmf->pgoff < shmem_falloc->next) {
1948 wait_queue_head_t *shmem_falloc_waitq;
1949 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1951 ret = VM_FAULT_NOPAGE;
1952 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1953 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1954 /* It's polite to up mmap_sem if we can */
1955 up_read(&vma->vm_mm->mmap_sem);
1956 ret = VM_FAULT_RETRY;
1959 shmem_falloc_waitq = shmem_falloc->waitq;
1960 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1961 TASK_UNINTERRUPTIBLE);
1962 spin_unlock(&inode->i_lock);
1966 * shmem_falloc_waitq points into the shmem_fallocate()
1967 * stack of the hole-punching task: shmem_falloc_waitq
1968 * is usually invalid by the time we reach here, but
1969 * finish_wait() does not dereference it in that case;
1970 * though i_lock needed lest racing with wake_up_all().
1972 spin_lock(&inode->i_lock);
1973 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1974 spin_unlock(&inode->i_lock);
1977 spin_unlock(&inode->i_lock);
1981 if (vma->vm_flags & VM_HUGEPAGE)
1983 else if (vma->vm_flags & VM_NOHUGEPAGE)
1986 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1987 gfp, vma, vmf, &ret);
1989 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1993 unsigned long shmem_get_unmapped_area(struct file *file,
1994 unsigned long uaddr, unsigned long len,
1995 unsigned long pgoff, unsigned long flags)
1997 unsigned long (*get_area)(struct file *,
1998 unsigned long, unsigned long, unsigned long, unsigned long);
2000 unsigned long offset;
2001 unsigned long inflated_len;
2002 unsigned long inflated_addr;
2003 unsigned long inflated_offset;
2005 if (len > TASK_SIZE)
2008 get_area = current->mm->get_unmapped_area;
2009 addr = get_area(file, uaddr, len, pgoff, flags);
2011 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2013 if (IS_ERR_VALUE(addr))
2015 if (addr & ~PAGE_MASK)
2017 if (addr > TASK_SIZE - len)
2020 if (shmem_huge == SHMEM_HUGE_DENY)
2022 if (len < HPAGE_PMD_SIZE)
2024 if (flags & MAP_FIXED)
2027 * Our priority is to support MAP_SHARED mapped hugely;
2028 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2029 * But if caller specified an address hint, respect that as before.
2034 if (shmem_huge != SHMEM_HUGE_FORCE) {
2035 struct super_block *sb;
2038 VM_BUG_ON(file->f_op != &shmem_file_operations);
2039 sb = file_inode(file)->i_sb;
2042 * Called directly from mm/mmap.c, or drivers/char/mem.c
2043 * for "/dev/zero", to create a shared anonymous object.
2045 if (IS_ERR(shm_mnt))
2047 sb = shm_mnt->mnt_sb;
2049 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2053 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2054 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2056 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2059 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2060 if (inflated_len > TASK_SIZE)
2062 if (inflated_len < len)
2065 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2066 if (IS_ERR_VALUE(inflated_addr))
2068 if (inflated_addr & ~PAGE_MASK)
2071 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2072 inflated_addr += offset - inflated_offset;
2073 if (inflated_offset > offset)
2074 inflated_addr += HPAGE_PMD_SIZE;
2076 if (inflated_addr > TASK_SIZE - len)
2078 return inflated_addr;
2082 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2084 struct inode *inode = file_inode(vma->vm_file);
2085 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2088 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2091 struct inode *inode = file_inode(vma->vm_file);
2094 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2095 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2099 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2101 struct inode *inode = file_inode(file);
2102 struct shmem_inode_info *info = SHMEM_I(inode);
2103 int retval = -ENOMEM;
2105 spin_lock_irq(&info->lock);
2106 if (lock && !(info->flags & VM_LOCKED)) {
2107 if (!user_shm_lock(inode->i_size, user))
2109 info->flags |= VM_LOCKED;
2110 mapping_set_unevictable(file->f_mapping);
2112 if (!lock && (info->flags & VM_LOCKED) && user) {
2113 user_shm_unlock(inode->i_size, user);
2114 info->flags &= ~VM_LOCKED;
2115 mapping_clear_unevictable(file->f_mapping);
2120 spin_unlock_irq(&info->lock);
2124 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2126 file_accessed(file);
2127 vma->vm_ops = &shmem_vm_ops;
2128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2129 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2130 (vma->vm_end & HPAGE_PMD_MASK)) {
2131 khugepaged_enter(vma, vma->vm_flags);
2136 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2137 umode_t mode, dev_t dev, unsigned long flags)
2139 struct inode *inode;
2140 struct shmem_inode_info *info;
2141 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2143 if (shmem_reserve_inode(sb))
2146 inode = new_inode(sb);
2148 inode->i_ino = get_next_ino();
2149 inode_init_owner(inode, dir, mode);
2150 inode->i_blocks = 0;
2151 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2152 inode->i_generation = get_seconds();
2153 info = SHMEM_I(inode);
2154 memset(info, 0, (char *)inode - (char *)info);
2155 spin_lock_init(&info->lock);
2156 info->seals = F_SEAL_SEAL;
2157 info->flags = flags & VM_NORESERVE;
2158 INIT_LIST_HEAD(&info->shrinklist);
2159 INIT_LIST_HEAD(&info->swaplist);
2160 simple_xattrs_init(&info->xattrs);
2161 cache_no_acl(inode);
2163 switch (mode & S_IFMT) {
2165 inode->i_op = &shmem_special_inode_operations;
2166 init_special_inode(inode, mode, dev);
2169 inode->i_mapping->a_ops = &shmem_aops;
2170 inode->i_op = &shmem_inode_operations;
2171 inode->i_fop = &shmem_file_operations;
2172 mpol_shared_policy_init(&info->policy,
2173 shmem_get_sbmpol(sbinfo));
2177 /* Some things misbehave if size == 0 on a directory */
2178 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2179 inode->i_op = &shmem_dir_inode_operations;
2180 inode->i_fop = &simple_dir_operations;
2184 * Must not load anything in the rbtree,
2185 * mpol_free_shared_policy will not be called.
2187 mpol_shared_policy_init(&info->policy, NULL);
2191 shmem_free_inode(sb);
2195 bool shmem_mapping(struct address_space *mapping)
2197 return mapping->a_ops == &shmem_aops;
2200 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2202 struct vm_area_struct *dst_vma,
2203 unsigned long dst_addr,
2204 unsigned long src_addr,
2205 struct page **pagep)
2207 struct inode *inode = file_inode(dst_vma->vm_file);
2208 struct shmem_inode_info *info = SHMEM_I(inode);
2209 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2210 struct address_space *mapping = inode->i_mapping;
2211 gfp_t gfp = mapping_gfp_mask(mapping);
2212 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2213 struct mem_cgroup *memcg;
2217 pte_t _dst_pte, *dst_pte;
2221 if (shmem_acct_block(info->flags, 1))
2223 if (sbinfo->max_blocks) {
2224 if (percpu_counter_compare(&sbinfo->used_blocks,
2225 sbinfo->max_blocks) >= 0)
2226 goto out_unacct_blocks;
2227 percpu_counter_inc(&sbinfo->used_blocks);
2231 page = shmem_alloc_page(gfp, info, pgoff);
2233 goto out_dec_used_blocks;
2235 page_kaddr = kmap_atomic(page);
2236 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2238 kunmap_atomic(page_kaddr);
2240 /* fallback to copy_from_user outside mmap_sem */
2241 if (unlikely(ret)) {
2243 if (sbinfo->max_blocks)
2244 percpu_counter_add(&sbinfo->used_blocks, -1);
2245 shmem_unacct_blocks(info->flags, 1);
2246 /* don't free the page */
2254 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2255 __SetPageLocked(page);
2256 __SetPageSwapBacked(page);
2257 __SetPageUptodate(page);
2259 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2263 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2265 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2266 radix_tree_preload_end();
2269 goto out_release_uncharge;
2271 mem_cgroup_commit_charge(page, memcg, false, false);
2273 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2274 if (dst_vma->vm_flags & VM_WRITE)
2275 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2278 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2279 if (!pte_none(*dst_pte))
2280 goto out_release_uncharge_unlock;
2282 lru_cache_add_anon(page);
2284 spin_lock(&info->lock);
2286 inode->i_blocks += BLOCKS_PER_PAGE;
2287 shmem_recalc_inode(inode);
2288 spin_unlock(&info->lock);
2290 inc_mm_counter(dst_mm, mm_counter_file(page));
2291 page_add_file_rmap(page, false);
2292 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2294 /* No need to invalidate - it was non-present before */
2295 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2297 pte_unmap_unlock(dst_pte, ptl);
2301 out_release_uncharge_unlock:
2302 pte_unmap_unlock(dst_pte, ptl);
2303 out_release_uncharge:
2304 mem_cgroup_cancel_charge(page, memcg, false);
2308 out_dec_used_blocks:
2309 if (sbinfo->max_blocks)
2310 percpu_counter_add(&sbinfo->used_blocks, -1);
2312 shmem_unacct_blocks(info->flags, 1);
2317 static const struct inode_operations shmem_symlink_inode_operations;
2318 static const struct inode_operations shmem_short_symlink_operations;
2320 #ifdef CONFIG_TMPFS_XATTR
2321 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2323 #define shmem_initxattrs NULL
2327 shmem_write_begin(struct file *file, struct address_space *mapping,
2328 loff_t pos, unsigned len, unsigned flags,
2329 struct page **pagep, void **fsdata)
2331 struct inode *inode = mapping->host;
2332 struct shmem_inode_info *info = SHMEM_I(inode);
2333 pgoff_t index = pos >> PAGE_SHIFT;
2335 /* i_mutex is held by caller */
2336 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2337 if (info->seals & F_SEAL_WRITE)
2339 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2343 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2347 shmem_write_end(struct file *file, struct address_space *mapping,
2348 loff_t pos, unsigned len, unsigned copied,
2349 struct page *page, void *fsdata)
2351 struct inode *inode = mapping->host;
2353 if (pos + copied > inode->i_size)
2354 i_size_write(inode, pos + copied);
2356 if (!PageUptodate(page)) {
2357 struct page *head = compound_head(page);
2358 if (PageTransCompound(page)) {
2361 for (i = 0; i < HPAGE_PMD_NR; i++) {
2362 if (head + i == page)
2364 clear_highpage(head + i);
2365 flush_dcache_page(head + i);
2368 if (copied < PAGE_SIZE) {
2369 unsigned from = pos & (PAGE_SIZE - 1);
2370 zero_user_segments(page, 0, from,
2371 from + copied, PAGE_SIZE);
2373 SetPageUptodate(head);
2375 set_page_dirty(page);
2382 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2384 struct file *file = iocb->ki_filp;
2385 struct inode *inode = file_inode(file);
2386 struct address_space *mapping = inode->i_mapping;
2388 unsigned long offset;
2389 enum sgp_type sgp = SGP_READ;
2392 loff_t *ppos = &iocb->ki_pos;
2395 * Might this read be for a stacking filesystem? Then when reading
2396 * holes of a sparse file, we actually need to allocate those pages,
2397 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2399 if (!iter_is_iovec(to))
2402 index = *ppos >> PAGE_SHIFT;
2403 offset = *ppos & ~PAGE_MASK;
2406 struct page *page = NULL;
2408 unsigned long nr, ret;
2409 loff_t i_size = i_size_read(inode);
2411 end_index = i_size >> PAGE_SHIFT;
2412 if (index > end_index)
2414 if (index == end_index) {
2415 nr = i_size & ~PAGE_MASK;
2420 error = shmem_getpage(inode, index, &page, sgp);
2422 if (error == -EINVAL)
2427 if (sgp == SGP_CACHE)
2428 set_page_dirty(page);
2433 * We must evaluate after, since reads (unlike writes)
2434 * are called without i_mutex protection against truncate
2437 i_size = i_size_read(inode);
2438 end_index = i_size >> PAGE_SHIFT;
2439 if (index == end_index) {
2440 nr = i_size & ~PAGE_MASK;
2451 * If users can be writing to this page using arbitrary
2452 * virtual addresses, take care about potential aliasing
2453 * before reading the page on the kernel side.
2455 if (mapping_writably_mapped(mapping))
2456 flush_dcache_page(page);
2458 * Mark the page accessed if we read the beginning.
2461 mark_page_accessed(page);
2463 page = ZERO_PAGE(0);
2468 * Ok, we have the page, and it's up-to-date, so
2469 * now we can copy it to user space...
2471 ret = copy_page_to_iter(page, offset, nr, to);
2474 index += offset >> PAGE_SHIFT;
2475 offset &= ~PAGE_MASK;
2478 if (!iov_iter_count(to))
2487 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2488 file_accessed(file);
2489 return retval ? retval : error;
2493 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2495 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2496 pgoff_t index, pgoff_t end, int whence)
2499 struct pagevec pvec;
2500 pgoff_t indices[PAGEVEC_SIZE];
2504 pagevec_init(&pvec, 0);
2505 pvec.nr = 1; /* start small: we may be there already */
2507 pvec.nr = find_get_entries(mapping, index,
2508 pvec.nr, pvec.pages, indices);
2510 if (whence == SEEK_DATA)
2514 for (i = 0; i < pvec.nr; i++, index++) {
2515 if (index < indices[i]) {
2516 if (whence == SEEK_HOLE) {
2522 page = pvec.pages[i];
2523 if (page && !radix_tree_exceptional_entry(page)) {
2524 if (!PageUptodate(page))
2528 (page && whence == SEEK_DATA) ||
2529 (!page && whence == SEEK_HOLE)) {
2534 pagevec_remove_exceptionals(&pvec);
2535 pagevec_release(&pvec);
2536 pvec.nr = PAGEVEC_SIZE;
2542 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2544 struct address_space *mapping = file->f_mapping;
2545 struct inode *inode = mapping->host;
2549 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2550 return generic_file_llseek_size(file, offset, whence,
2551 MAX_LFS_FILESIZE, i_size_read(inode));
2553 /* We're holding i_mutex so we can access i_size directly */
2557 else if (offset >= inode->i_size)
2560 start = offset >> PAGE_SHIFT;
2561 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2562 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2563 new_offset <<= PAGE_SHIFT;
2564 if (new_offset > offset) {
2565 if (new_offset < inode->i_size)
2566 offset = new_offset;
2567 else if (whence == SEEK_DATA)
2570 offset = inode->i_size;
2575 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2576 inode_unlock(inode);
2581 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2582 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2584 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2585 #define LAST_SCAN 4 /* about 150ms max */
2587 static void shmem_tag_pins(struct address_space *mapping)
2589 struct radix_tree_iter iter;
2598 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2599 page = radix_tree_deref_slot(slot);
2600 if (!page || radix_tree_exception(page)) {
2601 if (radix_tree_deref_retry(page)) {
2602 slot = radix_tree_iter_retry(&iter);
2605 } else if (page_count(page) - page_mapcount(page) > 1) {
2606 spin_lock_irq(&mapping->tree_lock);
2607 radix_tree_tag_set(&mapping->page_tree, iter.index,
2609 spin_unlock_irq(&mapping->tree_lock);
2612 if (need_resched()) {
2613 slot = radix_tree_iter_resume(slot, &iter);
2621 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2622 * via get_user_pages(), drivers might have some pending I/O without any active
2623 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2624 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2625 * them to be dropped.
2626 * The caller must guarantee that no new user will acquire writable references
2627 * to those pages to avoid races.
2629 static int shmem_wait_for_pins(struct address_space *mapping)
2631 struct radix_tree_iter iter;
2637 shmem_tag_pins(mapping);
2640 for (scan = 0; scan <= LAST_SCAN; scan++) {
2641 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2645 lru_add_drain_all();
2646 else if (schedule_timeout_killable((HZ << scan) / 200))
2651 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2652 start, SHMEM_TAG_PINNED) {
2654 page = radix_tree_deref_slot(slot);
2655 if (radix_tree_exception(page)) {
2656 if (radix_tree_deref_retry(page)) {
2657 slot = radix_tree_iter_retry(&iter);
2665 page_count(page) - page_mapcount(page) != 1) {
2666 if (scan < LAST_SCAN)
2667 goto continue_resched;
2670 * On the last scan, we clean up all those tags
2671 * we inserted; but make a note that we still
2672 * found pages pinned.
2677 spin_lock_irq(&mapping->tree_lock);
2678 radix_tree_tag_clear(&mapping->page_tree,
2679 iter.index, SHMEM_TAG_PINNED);
2680 spin_unlock_irq(&mapping->tree_lock);
2682 if (need_resched()) {
2683 slot = radix_tree_iter_resume(slot, &iter);
2693 #define F_ALL_SEALS (F_SEAL_SEAL | \
2698 int shmem_add_seals(struct file *file, unsigned int seals)
2700 struct inode *inode = file_inode(file);
2701 struct shmem_inode_info *info = SHMEM_I(inode);
2706 * Sealing allows multiple parties to share a shmem-file but restrict
2707 * access to a specific subset of file operations. Seals can only be
2708 * added, but never removed. This way, mutually untrusted parties can
2709 * share common memory regions with a well-defined policy. A malicious
2710 * peer can thus never perform unwanted operations on a shared object.
2712 * Seals are only supported on special shmem-files and always affect
2713 * the whole underlying inode. Once a seal is set, it may prevent some
2714 * kinds of access to the file. Currently, the following seals are
2716 * SEAL_SEAL: Prevent further seals from being set on this file
2717 * SEAL_SHRINK: Prevent the file from shrinking
2718 * SEAL_GROW: Prevent the file from growing
2719 * SEAL_WRITE: Prevent write access to the file
2721 * As we don't require any trust relationship between two parties, we
2722 * must prevent seals from being removed. Therefore, sealing a file
2723 * only adds a given set of seals to the file, it never touches
2724 * existing seals. Furthermore, the "setting seals"-operation can be
2725 * sealed itself, which basically prevents any further seal from being
2728 * Semantics of sealing are only defined on volatile files. Only
2729 * anonymous shmem files support sealing. More importantly, seals are
2730 * never written to disk. Therefore, there's no plan to support it on
2734 if (file->f_op != &shmem_file_operations)
2736 if (!(file->f_mode & FMODE_WRITE))
2738 if (seals & ~(unsigned int)F_ALL_SEALS)
2743 if (info->seals & F_SEAL_SEAL) {
2748 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2749 error = mapping_deny_writable(file->f_mapping);
2753 error = shmem_wait_for_pins(file->f_mapping);
2755 mapping_allow_writable(file->f_mapping);
2760 info->seals |= seals;
2764 inode_unlock(inode);
2767 EXPORT_SYMBOL_GPL(shmem_add_seals);
2769 int shmem_get_seals(struct file *file)
2771 if (file->f_op != &shmem_file_operations)
2774 return SHMEM_I(file_inode(file))->seals;
2776 EXPORT_SYMBOL_GPL(shmem_get_seals);
2778 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2784 /* disallow upper 32bit */
2788 error = shmem_add_seals(file, arg);
2791 error = shmem_get_seals(file);
2801 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2804 struct inode *inode = file_inode(file);
2805 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2806 struct shmem_inode_info *info = SHMEM_I(inode);
2807 struct shmem_falloc shmem_falloc;
2808 pgoff_t start, index, end;
2811 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2816 if (mode & FALLOC_FL_PUNCH_HOLE) {
2817 struct address_space *mapping = file->f_mapping;
2818 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2819 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2820 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2822 /* protected by i_mutex */
2823 if (info->seals & F_SEAL_WRITE) {
2828 shmem_falloc.waitq = &shmem_falloc_waitq;
2829 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2830 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2831 spin_lock(&inode->i_lock);
2832 inode->i_private = &shmem_falloc;
2833 spin_unlock(&inode->i_lock);
2835 if ((u64)unmap_end > (u64)unmap_start)
2836 unmap_mapping_range(mapping, unmap_start,
2837 1 + unmap_end - unmap_start, 0);
2838 shmem_truncate_range(inode, offset, offset + len - 1);
2839 /* No need to unmap again: hole-punching leaves COWed pages */
2841 spin_lock(&inode->i_lock);
2842 inode->i_private = NULL;
2843 wake_up_all(&shmem_falloc_waitq);
2844 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2845 spin_unlock(&inode->i_lock);
2850 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2851 error = inode_newsize_ok(inode, offset + len);
2855 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2860 start = offset >> PAGE_SHIFT;
2861 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862 /* Try to avoid a swapstorm if len is impossible to satisfy */
2863 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2868 shmem_falloc.waitq = NULL;
2869 shmem_falloc.start = start;
2870 shmem_falloc.next = start;
2871 shmem_falloc.nr_falloced = 0;
2872 shmem_falloc.nr_unswapped = 0;
2873 spin_lock(&inode->i_lock);
2874 inode->i_private = &shmem_falloc;
2875 spin_unlock(&inode->i_lock);
2877 for (index = start; index < end; index++) {
2881 * Good, the fallocate(2) manpage permits EINTR: we may have
2882 * been interrupted because we are using up too much memory.
2884 if (signal_pending(current))
2886 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2889 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2891 /* Remove the !PageUptodate pages we added */
2892 if (index > start) {
2893 shmem_undo_range(inode,
2894 (loff_t)start << PAGE_SHIFT,
2895 ((loff_t)index << PAGE_SHIFT) - 1, true);
2901 * Inform shmem_writepage() how far we have reached.
2902 * No need for lock or barrier: we have the page lock.
2904 shmem_falloc.next++;
2905 if (!PageUptodate(page))
2906 shmem_falloc.nr_falloced++;
2909 * If !PageUptodate, leave it that way so that freeable pages
2910 * can be recognized if we need to rollback on error later.
2911 * But set_page_dirty so that memory pressure will swap rather
2912 * than free the pages we are allocating (and SGP_CACHE pages
2913 * might still be clean: we now need to mark those dirty too).
2915 set_page_dirty(page);
2921 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2922 i_size_write(inode, offset + len);
2923 inode->i_ctime = current_time(inode);
2925 spin_lock(&inode->i_lock);
2926 inode->i_private = NULL;
2927 spin_unlock(&inode->i_lock);
2929 inode_unlock(inode);
2933 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2935 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2937 buf->f_type = TMPFS_MAGIC;
2938 buf->f_bsize = PAGE_SIZE;
2939 buf->f_namelen = NAME_MAX;
2940 if (sbinfo->max_blocks) {
2941 buf->f_blocks = sbinfo->max_blocks;
2943 buf->f_bfree = sbinfo->max_blocks -
2944 percpu_counter_sum(&sbinfo->used_blocks);
2946 if (sbinfo->max_inodes) {
2947 buf->f_files = sbinfo->max_inodes;
2948 buf->f_ffree = sbinfo->free_inodes;
2950 /* else leave those fields 0 like simple_statfs */
2955 * File creation. Allocate an inode, and we're done..
2958 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960 struct inode *inode;
2961 int error = -ENOSPC;
2963 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2965 error = simple_acl_create(dir, inode);
2968 error = security_inode_init_security(inode, dir,
2970 shmem_initxattrs, NULL);
2971 if (error && error != -EOPNOTSUPP)
2975 dir->i_size += BOGO_DIRENT_SIZE;
2976 dir->i_ctime = dir->i_mtime = current_time(dir);
2977 d_instantiate(dentry, inode);
2978 dget(dentry); /* Extra count - pin the dentry in core */
2987 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2989 struct inode *inode;
2990 int error = -ENOSPC;
2992 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2994 error = security_inode_init_security(inode, dir,
2996 shmem_initxattrs, NULL);
2997 if (error && error != -EOPNOTSUPP)
2999 error = simple_acl_create(dir, inode);
3002 d_tmpfile(dentry, inode);
3010 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3014 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3020 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3023 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3029 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3031 struct inode *inode = d_inode(old_dentry);
3035 * No ordinary (disk based) filesystem counts links as inodes;
3036 * but each new link needs a new dentry, pinning lowmem, and
3037 * tmpfs dentries cannot be pruned until they are unlinked.
3039 ret = shmem_reserve_inode(inode->i_sb);
3043 dir->i_size += BOGO_DIRENT_SIZE;
3044 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3046 ihold(inode); /* New dentry reference */
3047 dget(dentry); /* Extra pinning count for the created dentry */
3048 d_instantiate(dentry, inode);
3053 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3055 struct inode *inode = d_inode(dentry);
3057 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3058 shmem_free_inode(inode->i_sb);
3060 dir->i_size -= BOGO_DIRENT_SIZE;
3061 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3063 dput(dentry); /* Undo the count from "create" - this does all the work */
3067 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3069 if (!simple_empty(dentry))
3072 drop_nlink(d_inode(dentry));
3074 return shmem_unlink(dir, dentry);
3077 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3079 bool old_is_dir = d_is_dir(old_dentry);
3080 bool new_is_dir = d_is_dir(new_dentry);
3082 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3084 drop_nlink(old_dir);
3087 drop_nlink(new_dir);
3091 old_dir->i_ctime = old_dir->i_mtime =
3092 new_dir->i_ctime = new_dir->i_mtime =
3093 d_inode(old_dentry)->i_ctime =
3094 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3099 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3101 struct dentry *whiteout;
3104 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3108 error = shmem_mknod(old_dir, whiteout,
3109 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3115 * Cheat and hash the whiteout while the old dentry is still in
3116 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3118 * d_lookup() will consistently find one of them at this point,
3119 * not sure which one, but that isn't even important.
3126 * The VFS layer already does all the dentry stuff for rename,
3127 * we just have to decrement the usage count for the target if
3128 * it exists so that the VFS layer correctly free's it when it
3131 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3133 struct inode *inode = d_inode(old_dentry);
3134 int they_are_dirs = S_ISDIR(inode->i_mode);
3136 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3139 if (flags & RENAME_EXCHANGE)
3140 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3142 if (!simple_empty(new_dentry))
3145 if (flags & RENAME_WHITEOUT) {
3148 error = shmem_whiteout(old_dir, old_dentry);
3153 if (d_really_is_positive(new_dentry)) {
3154 (void) shmem_unlink(new_dir, new_dentry);
3155 if (they_are_dirs) {
3156 drop_nlink(d_inode(new_dentry));
3157 drop_nlink(old_dir);
3159 } else if (they_are_dirs) {
3160 drop_nlink(old_dir);
3164 old_dir->i_size -= BOGO_DIRENT_SIZE;
3165 new_dir->i_size += BOGO_DIRENT_SIZE;
3166 old_dir->i_ctime = old_dir->i_mtime =
3167 new_dir->i_ctime = new_dir->i_mtime =
3168 inode->i_ctime = current_time(old_dir);
3172 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3176 struct inode *inode;
3178 struct shmem_inode_info *info;
3180 len = strlen(symname) + 1;
3181 if (len > PAGE_SIZE)
3182 return -ENAMETOOLONG;
3184 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3188 error = security_inode_init_security(inode, dir, &dentry->d_name,
3189 shmem_initxattrs, NULL);
3191 if (error != -EOPNOTSUPP) {
3198 info = SHMEM_I(inode);
3199 inode->i_size = len-1;
3200 if (len <= SHORT_SYMLINK_LEN) {
3201 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3202 if (!inode->i_link) {
3206 inode->i_op = &shmem_short_symlink_operations;
3208 inode_nohighmem(inode);
3209 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3214 inode->i_mapping->a_ops = &shmem_aops;
3215 inode->i_op = &shmem_symlink_inode_operations;
3216 memcpy(page_address(page), symname, len);
3217 SetPageUptodate(page);
3218 set_page_dirty(page);
3222 dir->i_size += BOGO_DIRENT_SIZE;
3223 dir->i_ctime = dir->i_mtime = current_time(dir);
3224 d_instantiate(dentry, inode);
3229 static void shmem_put_link(void *arg)
3231 mark_page_accessed(arg);
3235 static const char *shmem_get_link(struct dentry *dentry,
3236 struct inode *inode,
3237 struct delayed_call *done)
3239 struct page *page = NULL;
3242 page = find_get_page(inode->i_mapping, 0);
3244 return ERR_PTR(-ECHILD);
3245 if (!PageUptodate(page)) {
3247 return ERR_PTR(-ECHILD);
3250 error = shmem_getpage(inode, 0, &page, SGP_READ);
3252 return ERR_PTR(error);
3255 set_delayed_call(done, shmem_put_link, page);
3256 return page_address(page);
3259 #ifdef CONFIG_TMPFS_XATTR
3261 * Superblocks without xattr inode operations may get some security.* xattr
3262 * support from the LSM "for free". As soon as we have any other xattrs
3263 * like ACLs, we also need to implement the security.* handlers at
3264 * filesystem level, though.
3268 * Callback for security_inode_init_security() for acquiring xattrs.
3270 static int shmem_initxattrs(struct inode *inode,
3271 const struct xattr *xattr_array,
3274 struct shmem_inode_info *info = SHMEM_I(inode);
3275 const struct xattr *xattr;
3276 struct simple_xattr *new_xattr;
3279 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3280 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3284 len = strlen(xattr->name) + 1;
3285 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3287 if (!new_xattr->name) {
3292 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3293 XATTR_SECURITY_PREFIX_LEN);
3294 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3297 simple_xattr_list_add(&info->xattrs, new_xattr);
3303 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3304 struct dentry *unused, struct inode *inode,
3305 const char *name, void *buffer, size_t size)
3307 struct shmem_inode_info *info = SHMEM_I(inode);
3309 name = xattr_full_name(handler, name);
3310 return simple_xattr_get(&info->xattrs, name, buffer, size);
3313 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3314 struct dentry *unused, struct inode *inode,
3315 const char *name, const void *value,
3316 size_t size, int flags)
3318 struct shmem_inode_info *info = SHMEM_I(inode);
3320 name = xattr_full_name(handler, name);
3321 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3324 static const struct xattr_handler shmem_security_xattr_handler = {
3325 .prefix = XATTR_SECURITY_PREFIX,
3326 .get = shmem_xattr_handler_get,
3327 .set = shmem_xattr_handler_set,
3330 static const struct xattr_handler shmem_trusted_xattr_handler = {
3331 .prefix = XATTR_TRUSTED_PREFIX,
3332 .get = shmem_xattr_handler_get,
3333 .set = shmem_xattr_handler_set,
3336 static const struct xattr_handler *shmem_xattr_handlers[] = {
3337 #ifdef CONFIG_TMPFS_POSIX_ACL
3338 &posix_acl_access_xattr_handler,
3339 &posix_acl_default_xattr_handler,
3341 &shmem_security_xattr_handler,
3342 &shmem_trusted_xattr_handler,
3346 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3348 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3349 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3351 #endif /* CONFIG_TMPFS_XATTR */
3353 static const struct inode_operations shmem_short_symlink_operations = {
3354 .get_link = simple_get_link,
3355 #ifdef CONFIG_TMPFS_XATTR
3356 .listxattr = shmem_listxattr,
3360 static const struct inode_operations shmem_symlink_inode_operations = {
3361 .get_link = shmem_get_link,
3362 #ifdef CONFIG_TMPFS_XATTR
3363 .listxattr = shmem_listxattr,
3367 static struct dentry *shmem_get_parent(struct dentry *child)
3369 return ERR_PTR(-ESTALE);
3372 static int shmem_match(struct inode *ino, void *vfh)
3376 inum = (inum << 32) | fh[1];
3377 return ino->i_ino == inum && fh[0] == ino->i_generation;
3380 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3381 struct fid *fid, int fh_len, int fh_type)
3383 struct inode *inode;
3384 struct dentry *dentry = NULL;
3391 inum = (inum << 32) | fid->raw[1];
3393 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3394 shmem_match, fid->raw);
3396 dentry = d_find_alias(inode);
3403 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3404 struct inode *parent)
3408 return FILEID_INVALID;
3411 if (inode_unhashed(inode)) {
3412 /* Unfortunately insert_inode_hash is not idempotent,
3413 * so as we hash inodes here rather than at creation
3414 * time, we need a lock to ensure we only try
3417 static DEFINE_SPINLOCK(lock);
3419 if (inode_unhashed(inode))
3420 __insert_inode_hash(inode,
3421 inode->i_ino + inode->i_generation);
3425 fh[0] = inode->i_generation;
3426 fh[1] = inode->i_ino;
3427 fh[2] = ((__u64)inode->i_ino) >> 32;
3433 static const struct export_operations shmem_export_ops = {
3434 .get_parent = shmem_get_parent,
3435 .encode_fh = shmem_encode_fh,
3436 .fh_to_dentry = shmem_fh_to_dentry,
3439 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3442 char *this_char, *value, *rest;
3443 struct mempolicy *mpol = NULL;
3447 while (options != NULL) {
3448 this_char = options;
3451 * NUL-terminate this option: unfortunately,
3452 * mount options form a comma-separated list,
3453 * but mpol's nodelist may also contain commas.
3455 options = strchr(options, ',');
3456 if (options == NULL)
3459 if (!isdigit(*options)) {
3466 if ((value = strchr(this_char,'=')) != NULL) {
3469 pr_err("tmpfs: No value for mount option '%s'\n",
3474 if (!strcmp(this_char,"size")) {
3475 unsigned long long size;
3476 size = memparse(value,&rest);
3478 size <<= PAGE_SHIFT;
3479 size *= totalram_pages;
3485 sbinfo->max_blocks =
3486 DIV_ROUND_UP(size, PAGE_SIZE);
3487 } else if (!strcmp(this_char,"nr_blocks")) {
3488 sbinfo->max_blocks = memparse(value, &rest);
3491 } else if (!strcmp(this_char,"nr_inodes")) {
3492 sbinfo->max_inodes = memparse(value, &rest);
3495 } else if (!strcmp(this_char,"mode")) {
3498 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3501 } else if (!strcmp(this_char,"uid")) {
3504 uid = simple_strtoul(value, &rest, 0);
3507 sbinfo->uid = make_kuid(current_user_ns(), uid);
3508 if (!uid_valid(sbinfo->uid))
3510 } else if (!strcmp(this_char,"gid")) {
3513 gid = simple_strtoul(value, &rest, 0);
3516 sbinfo->gid = make_kgid(current_user_ns(), gid);
3517 if (!gid_valid(sbinfo->gid))
3519 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3520 } else if (!strcmp(this_char, "huge")) {
3522 huge = shmem_parse_huge(value);
3525 if (!has_transparent_hugepage() &&
3526 huge != SHMEM_HUGE_NEVER)
3528 sbinfo->huge = huge;
3531 } else if (!strcmp(this_char,"mpol")) {
3534 if (mpol_parse_str(value, &mpol))
3538 pr_err("tmpfs: Bad mount option %s\n", this_char);
3542 sbinfo->mpol = mpol;
3546 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3554 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3556 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3557 struct shmem_sb_info config = *sbinfo;
3558 unsigned long inodes;
3559 int error = -EINVAL;
3562 if (shmem_parse_options(data, &config, true))
3565 spin_lock(&sbinfo->stat_lock);
3566 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3567 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3569 if (config.max_inodes < inodes)
3572 * Those tests disallow limited->unlimited while any are in use;
3573 * but we must separately disallow unlimited->limited, because
3574 * in that case we have no record of how much is already in use.
3576 if (config.max_blocks && !sbinfo->max_blocks)
3578 if (config.max_inodes && !sbinfo->max_inodes)
3582 sbinfo->huge = config.huge;
3583 sbinfo->max_blocks = config.max_blocks;
3584 sbinfo->max_inodes = config.max_inodes;
3585 sbinfo->free_inodes = config.max_inodes - inodes;
3588 * Preserve previous mempolicy unless mpol remount option was specified.
3591 mpol_put(sbinfo->mpol);
3592 sbinfo->mpol = config.mpol; /* transfers initial ref */
3595 spin_unlock(&sbinfo->stat_lock);
3599 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3601 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3603 if (sbinfo->max_blocks != shmem_default_max_blocks())
3604 seq_printf(seq, ",size=%luk",
3605 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3606 if (sbinfo->max_inodes != shmem_default_max_inodes())
3607 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3608 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3609 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3610 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3611 seq_printf(seq, ",uid=%u",
3612 from_kuid_munged(&init_user_ns, sbinfo->uid));
3613 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3614 seq_printf(seq, ",gid=%u",
3615 from_kgid_munged(&init_user_ns, sbinfo->gid));
3616 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3617 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3619 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3621 shmem_show_mpol(seq, sbinfo->mpol);
3625 #define MFD_NAME_PREFIX "memfd:"
3626 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3627 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3629 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3631 SYSCALL_DEFINE2(memfd_create,
3632 const char __user *, uname,
3633 unsigned int, flags)
3635 struct shmem_inode_info *info;
3641 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3644 /* length includes terminating zero */
3645 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3648 if (len > MFD_NAME_MAX_LEN + 1)
3651 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3655 strcpy(name, MFD_NAME_PREFIX);
3656 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3661 /* terminating-zero may have changed after strnlen_user() returned */
3662 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3667 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3673 file = shmem_file_setup(name, 0, VM_NORESERVE);
3675 error = PTR_ERR(file);
3678 info = SHMEM_I(file_inode(file));
3679 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3680 file->f_flags |= O_RDWR | O_LARGEFILE;
3681 if (flags & MFD_ALLOW_SEALING)
3682 info->seals &= ~F_SEAL_SEAL;
3684 fd_install(fd, file);
3695 #endif /* CONFIG_TMPFS */
3697 static void shmem_put_super(struct super_block *sb)
3699 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3701 percpu_counter_destroy(&sbinfo->used_blocks);
3702 mpol_put(sbinfo->mpol);
3704 sb->s_fs_info = NULL;
3707 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3709 struct inode *inode;
3710 struct shmem_sb_info *sbinfo;
3713 /* Round up to L1_CACHE_BYTES to resist false sharing */
3714 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3715 L1_CACHE_BYTES), GFP_KERNEL);
3719 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3720 sbinfo->uid = current_fsuid();
3721 sbinfo->gid = current_fsgid();
3722 sb->s_fs_info = sbinfo;
3726 * Per default we only allow half of the physical ram per
3727 * tmpfs instance, limiting inodes to one per page of lowmem;
3728 * but the internal instance is left unlimited.
3730 if (!(sb->s_flags & MS_KERNMOUNT)) {
3731 sbinfo->max_blocks = shmem_default_max_blocks();
3732 sbinfo->max_inodes = shmem_default_max_inodes();
3733 if (shmem_parse_options(data, sbinfo, false)) {
3738 sb->s_flags |= MS_NOUSER;
3740 sb->s_export_op = &shmem_export_ops;
3741 sb->s_flags |= MS_NOSEC;
3743 sb->s_flags |= MS_NOUSER;
3746 spin_lock_init(&sbinfo->stat_lock);
3747 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3749 sbinfo->free_inodes = sbinfo->max_inodes;
3750 spin_lock_init(&sbinfo->shrinklist_lock);
3751 INIT_LIST_HEAD(&sbinfo->shrinklist);
3753 sb->s_maxbytes = MAX_LFS_FILESIZE;
3754 sb->s_blocksize = PAGE_SIZE;
3755 sb->s_blocksize_bits = PAGE_SHIFT;
3756 sb->s_magic = TMPFS_MAGIC;
3757 sb->s_op = &shmem_ops;
3758 sb->s_time_gran = 1;
3759 #ifdef CONFIG_TMPFS_XATTR
3760 sb->s_xattr = shmem_xattr_handlers;
3762 #ifdef CONFIG_TMPFS_POSIX_ACL
3763 sb->s_flags |= MS_POSIXACL;
3765 uuid_gen(&sb->s_uuid);
3767 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3770 inode->i_uid = sbinfo->uid;
3771 inode->i_gid = sbinfo->gid;
3772 sb->s_root = d_make_root(inode);
3778 shmem_put_super(sb);
3782 static struct kmem_cache *shmem_inode_cachep;
3784 static struct inode *shmem_alloc_inode(struct super_block *sb)
3786 struct shmem_inode_info *info;
3787 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3790 return &info->vfs_inode;
3793 static void shmem_destroy_callback(struct rcu_head *head)
3795 struct inode *inode = container_of(head, struct inode, i_rcu);
3796 if (S_ISLNK(inode->i_mode))
3797 kfree(inode->i_link);
3798 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3801 static void shmem_destroy_inode(struct inode *inode)
3803 if (S_ISREG(inode->i_mode))
3804 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3805 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3808 static void shmem_init_inode(void *foo)
3810 struct shmem_inode_info *info = foo;
3811 inode_init_once(&info->vfs_inode);
3814 static int shmem_init_inodecache(void)
3816 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3817 sizeof(struct shmem_inode_info),
3818 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3822 static void shmem_destroy_inodecache(void)
3824 kmem_cache_destroy(shmem_inode_cachep);
3827 static const struct address_space_operations shmem_aops = {
3828 .writepage = shmem_writepage,
3829 .set_page_dirty = __set_page_dirty_no_writeback,
3831 .write_begin = shmem_write_begin,
3832 .write_end = shmem_write_end,
3834 #ifdef CONFIG_MIGRATION
3835 .migratepage = migrate_page,
3837 .error_remove_page = generic_error_remove_page,
3840 static const struct file_operations shmem_file_operations = {
3842 .get_unmapped_area = shmem_get_unmapped_area,
3844 .llseek = shmem_file_llseek,
3845 .read_iter = shmem_file_read_iter,
3846 .write_iter = generic_file_write_iter,
3847 .fsync = noop_fsync,
3848 .splice_read = generic_file_splice_read,
3849 .splice_write = iter_file_splice_write,
3850 .fallocate = shmem_fallocate,
3854 static const struct inode_operations shmem_inode_operations = {
3855 .getattr = shmem_getattr,
3856 .setattr = shmem_setattr,
3857 #ifdef CONFIG_TMPFS_XATTR
3858 .listxattr = shmem_listxattr,
3859 .set_acl = simple_set_acl,
3863 static const struct inode_operations shmem_dir_inode_operations = {
3865 .create = shmem_create,
3866 .lookup = simple_lookup,
3868 .unlink = shmem_unlink,
3869 .symlink = shmem_symlink,
3870 .mkdir = shmem_mkdir,
3871 .rmdir = shmem_rmdir,
3872 .mknod = shmem_mknod,
3873 .rename = shmem_rename2,
3874 .tmpfile = shmem_tmpfile,
3876 #ifdef CONFIG_TMPFS_XATTR
3877 .listxattr = shmem_listxattr,
3879 #ifdef CONFIG_TMPFS_POSIX_ACL
3880 .setattr = shmem_setattr,
3881 .set_acl = simple_set_acl,
3885 static const struct inode_operations shmem_special_inode_operations = {
3886 #ifdef CONFIG_TMPFS_XATTR
3887 .listxattr = shmem_listxattr,
3889 #ifdef CONFIG_TMPFS_POSIX_ACL
3890 .setattr = shmem_setattr,
3891 .set_acl = simple_set_acl,
3895 static const struct super_operations shmem_ops = {
3896 .alloc_inode = shmem_alloc_inode,
3897 .destroy_inode = shmem_destroy_inode,
3899 .statfs = shmem_statfs,
3900 .remount_fs = shmem_remount_fs,
3901 .show_options = shmem_show_options,
3903 .evict_inode = shmem_evict_inode,
3904 .drop_inode = generic_delete_inode,
3905 .put_super = shmem_put_super,
3906 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3907 .nr_cached_objects = shmem_unused_huge_count,
3908 .free_cached_objects = shmem_unused_huge_scan,
3912 static const struct vm_operations_struct shmem_vm_ops = {
3913 .fault = shmem_fault,
3914 .map_pages = filemap_map_pages,
3916 .set_policy = shmem_set_policy,
3917 .get_policy = shmem_get_policy,
3921 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3922 int flags, const char *dev_name, void *data)
3924 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3927 static struct file_system_type shmem_fs_type = {
3928 .owner = THIS_MODULE,
3930 .mount = shmem_mount,
3931 .kill_sb = kill_litter_super,
3932 .fs_flags = FS_USERNS_MOUNT,
3935 int __init shmem_init(void)
3939 /* If rootfs called this, don't re-init */
3940 if (shmem_inode_cachep)
3943 error = shmem_init_inodecache();
3947 error = register_filesystem(&shmem_fs_type);
3949 pr_err("Could not register tmpfs\n");
3953 shm_mnt = kern_mount(&shmem_fs_type);
3954 if (IS_ERR(shm_mnt)) {
3955 error = PTR_ERR(shm_mnt);
3956 pr_err("Could not kern_mount tmpfs\n");
3960 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3961 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3962 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3964 shmem_huge = 0; /* just in case it was patched */
3969 unregister_filesystem(&shmem_fs_type);
3971 shmem_destroy_inodecache();
3973 shm_mnt = ERR_PTR(error);
3977 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3978 static ssize_t shmem_enabled_show(struct kobject *kobj,
3979 struct kobj_attribute *attr, char *buf)
3983 SHMEM_HUGE_WITHIN_SIZE,
3991 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3992 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3994 count += sprintf(buf + count, fmt,
3995 shmem_format_huge(values[i]));
3997 buf[count - 1] = '\n';
4001 static ssize_t shmem_enabled_store(struct kobject *kobj,
4002 struct kobj_attribute *attr, const char *buf, size_t count)
4007 if (count + 1 > sizeof(tmp))
4009 memcpy(tmp, buf, count);
4011 if (count && tmp[count - 1] == '\n')
4012 tmp[count - 1] = '\0';
4014 huge = shmem_parse_huge(tmp);
4015 if (huge == -EINVAL)
4017 if (!has_transparent_hugepage() &&
4018 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4022 if (shmem_huge < SHMEM_HUGE_DENY)
4023 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4027 struct kobj_attribute shmem_enabled_attr =
4028 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4029 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4031 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4032 bool shmem_huge_enabled(struct vm_area_struct *vma)
4034 struct inode *inode = file_inode(vma->vm_file);
4035 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4039 if (shmem_huge == SHMEM_HUGE_FORCE)
4041 if (shmem_huge == SHMEM_HUGE_DENY)
4043 switch (sbinfo->huge) {
4044 case SHMEM_HUGE_NEVER:
4046 case SHMEM_HUGE_ALWAYS:
4048 case SHMEM_HUGE_WITHIN_SIZE:
4049 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4050 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4051 if (i_size >= HPAGE_PMD_SIZE &&
4052 i_size >> PAGE_SHIFT >= off)
4054 case SHMEM_HUGE_ADVISE:
4055 /* TODO: implement fadvise() hints */
4056 return (vma->vm_flags & VM_HUGEPAGE);
4062 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4064 #else /* !CONFIG_SHMEM */
4067 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4069 * This is intended for small system where the benefits of the full
4070 * shmem code (swap-backed and resource-limited) are outweighed by
4071 * their complexity. On systems without swap this code should be
4072 * effectively equivalent, but much lighter weight.
4075 static struct file_system_type shmem_fs_type = {
4077 .mount = ramfs_mount,
4078 .kill_sb = kill_litter_super,
4079 .fs_flags = FS_USERNS_MOUNT,
4082 int __init shmem_init(void)
4084 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4086 shm_mnt = kern_mount(&shmem_fs_type);
4087 BUG_ON(IS_ERR(shm_mnt));
4092 int shmem_unuse(swp_entry_t swap, struct page *page)
4097 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4102 void shmem_unlock_mapping(struct address_space *mapping)
4107 unsigned long shmem_get_unmapped_area(struct file *file,
4108 unsigned long addr, unsigned long len,
4109 unsigned long pgoff, unsigned long flags)
4111 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4115 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4117 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4119 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4121 #define shmem_vm_ops generic_file_vm_ops
4122 #define shmem_file_operations ramfs_file_operations
4123 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4124 #define shmem_acct_size(flags, size) 0
4125 #define shmem_unacct_size(flags, size) do {} while (0)
4127 #endif /* CONFIG_SHMEM */
4131 static const struct dentry_operations anon_ops = {
4132 .d_dname = simple_dname
4135 static struct file *__shmem_file_setup(const char *name, loff_t size,
4136 unsigned long flags, unsigned int i_flags)
4139 struct inode *inode;
4141 struct super_block *sb;
4144 if (IS_ERR(shm_mnt))
4145 return ERR_CAST(shm_mnt);
4147 if (size < 0 || size > MAX_LFS_FILESIZE)
4148 return ERR_PTR(-EINVAL);
4150 if (shmem_acct_size(flags, size))
4151 return ERR_PTR(-ENOMEM);
4153 res = ERR_PTR(-ENOMEM);
4155 this.len = strlen(name);
4156 this.hash = 0; /* will go */
4157 sb = shm_mnt->mnt_sb;
4158 path.mnt = mntget(shm_mnt);
4159 path.dentry = d_alloc_pseudo(sb, &this);
4162 d_set_d_op(path.dentry, &anon_ops);
4164 res = ERR_PTR(-ENOSPC);
4165 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4169 inode->i_flags |= i_flags;
4170 d_instantiate(path.dentry, inode);
4171 inode->i_size = size;
4172 clear_nlink(inode); /* It is unlinked */
4173 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4177 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4178 &shmem_file_operations);
4185 shmem_unacct_size(flags, size);
4192 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4193 * kernel internal. There will be NO LSM permission checks against the
4194 * underlying inode. So users of this interface must do LSM checks at a
4195 * higher layer. The users are the big_key and shm implementations. LSM
4196 * checks are provided at the key or shm level rather than the inode.
4197 * @name: name for dentry (to be seen in /proc/<pid>/maps
4198 * @size: size to be set for the file
4199 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4201 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4203 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4207 * shmem_file_setup - get an unlinked file living in tmpfs
4208 * @name: name for dentry (to be seen in /proc/<pid>/maps
4209 * @size: size to be set for the file
4210 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4212 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4214 return __shmem_file_setup(name, size, flags, 0);
4216 EXPORT_SYMBOL_GPL(shmem_file_setup);
4219 * shmem_zero_setup - setup a shared anonymous mapping
4220 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4222 int shmem_zero_setup(struct vm_area_struct *vma)
4225 loff_t size = vma->vm_end - vma->vm_start;
4228 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4229 * between XFS directory reading and selinux: since this file is only
4230 * accessible to the user through its mapping, use S_PRIVATE flag to
4231 * bypass file security, in the same way as shmem_kernel_file_setup().
4233 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4235 return PTR_ERR(file);
4239 vma->vm_file = file;
4240 vma->vm_ops = &shmem_vm_ops;
4242 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4243 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4244 (vma->vm_end & HPAGE_PMD_MASK)) {
4245 khugepaged_enter(vma, vma->vm_flags);
4252 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4253 * @mapping: the page's address_space
4254 * @index: the page index
4255 * @gfp: the page allocator flags to use if allocating
4257 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4258 * with any new page allocations done using the specified allocation flags.
4259 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4260 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4261 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4263 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4264 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4266 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4267 pgoff_t index, gfp_t gfp)
4270 struct inode *inode = mapping->host;
4274 BUG_ON(mapping->a_ops != &shmem_aops);
4275 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4276 gfp, NULL, NULL, NULL);
4278 page = ERR_PTR(error);
4284 * The tiny !SHMEM case uses ramfs without swap
4286 return read_cache_page_gfp(mapping, index, gfp);
4289 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);