1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * linux/drivers/mmc/core/mmc_ops.h
5 * Copyright 2006-2007 Pierre Ossman
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
22 #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23 #define MMC_CACHE_FLUSH_TIMEOUT_MS (30 * 1000) /* 30s */
24 #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
26 static const u8 tuning_blk_pattern_4bit[] = {
27 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
37 static const u8 tuning_blk_pattern_8bit[] = {
38 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
56 int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
59 struct mmc_command cmd = {};
61 cmd.opcode = MMC_SEND_STATUS;
62 if (!mmc_host_is_spi(card->host))
63 cmd.arg = card->rca << 16;
64 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
66 err = mmc_wait_for_cmd(card->host, &cmd, retries);
70 /* NOTE: callers are required to understand the difference
71 * between "native" and SPI format status words!
74 *status = cmd.resp[0];
78 EXPORT_SYMBOL_GPL(__mmc_send_status);
80 int mmc_send_status(struct mmc_card *card, u32 *status)
82 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
84 EXPORT_SYMBOL_GPL(mmc_send_status);
86 static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
88 struct mmc_command cmd = {};
90 cmd.opcode = MMC_SELECT_CARD;
93 cmd.arg = card->rca << 16;
94 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
97 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
100 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
103 int mmc_select_card(struct mmc_card *card)
106 return _mmc_select_card(card->host, card);
109 int mmc_deselect_cards(struct mmc_host *host)
111 return _mmc_select_card(host, NULL);
115 * Write the value specified in the device tree or board code into the optional
116 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117 * drive strength of the DAT and CMD outputs. The actual meaning of a given
118 * value is hardware dependant.
119 * The presence of the DSR register can be determined from the CSD register,
122 int mmc_set_dsr(struct mmc_host *host)
124 struct mmc_command cmd = {};
126 cmd.opcode = MMC_SET_DSR;
128 cmd.arg = (host->dsr << 16) | 0xffff;
129 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
131 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
134 int mmc_go_idle(struct mmc_host *host)
137 struct mmc_command cmd = {};
140 * Non-SPI hosts need to prevent chipselect going active during
141 * GO_IDLE; that would put chips into SPI mode. Remind them of
142 * that in case of hardware that won't pull up DAT3/nCS otherwise.
144 * SPI hosts ignore ios.chip_select; it's managed according to
145 * rules that must accommodate non-MMC slaves which this layer
146 * won't even know about.
148 if (!mmc_host_is_spi(host)) {
149 mmc_set_chip_select(host, MMC_CS_HIGH);
153 cmd.opcode = MMC_GO_IDLE_STATE;
155 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
157 err = mmc_wait_for_cmd(host, &cmd, 0);
161 if (!mmc_host_is_spi(host)) {
162 mmc_set_chip_select(host, MMC_CS_DONTCARE);
166 host->use_spi_crc = 0;
171 int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
173 struct mmc_command cmd = {};
176 cmd.opcode = MMC_SEND_OP_COND;
177 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
180 for (i = 100; i; i--) {
181 err = mmc_wait_for_cmd(host, &cmd, 0);
185 /* wait until reset completes */
186 if (mmc_host_is_spi(host)) {
187 if (!(cmd.resp[0] & R1_SPI_IDLE))
190 if (cmd.resp[0] & MMC_CARD_BUSY)
199 * According to eMMC specification v5.1 section 6.4.3, we
200 * should issue CMD1 repeatedly in the idle state until
201 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 * the inactive mode after mmc_init_card() issued CMD0 when
203 * the eMMC device is busy.
205 if (!ocr && !mmc_host_is_spi(host))
206 cmd.arg = cmd.resp[0] | BIT(30);
209 if (rocr && !mmc_host_is_spi(host))
215 int mmc_set_relative_addr(struct mmc_card *card)
217 struct mmc_command cmd = {};
219 cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 cmd.arg = card->rca << 16;
221 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
223 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
227 mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
230 struct mmc_command cmd = {};
234 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
236 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
240 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
246 * NOTE: void *buf, caller for the buf is required to use DMA-capable
247 * buffer or on-stack buffer (with some overhead in callee).
250 mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 u32 opcode, void *buf, unsigned len)
253 struct mmc_request mrq = {};
254 struct mmc_command cmd = {};
255 struct mmc_data data = {};
256 struct scatterlist sg;
264 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
265 * rely on callers to never use this with "native" calls for reading
266 * CSD or CID. Native versions of those commands use the R2 type,
267 * not R1 plus a data block.
269 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
273 data.flags = MMC_DATA_READ;
277 sg_init_one(&sg, buf, len);
279 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
281 * The spec states that CSR and CID accesses have a timeout
282 * of 64 clock cycles.
285 data.timeout_clks = 64;
287 mmc_set_data_timeout(&data, card);
289 mmc_wait_for_req(host, &mrq);
299 static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
304 cxd_tmp = kzalloc(16, GFP_KERNEL);
308 ret = mmc_send_cxd_data(NULL, host, opcode, cxd_tmp, 16);
312 for (i = 0; i < 4; i++)
313 cxd[i] = be32_to_cpu(cxd_tmp[i]);
320 int mmc_send_csd(struct mmc_card *card, u32 *csd)
322 if (mmc_host_is_spi(card->host))
323 return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
325 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
329 int mmc_send_cid(struct mmc_host *host, u32 *cid)
331 if (mmc_host_is_spi(host))
332 return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
334 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
337 int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
342 if (!card || !new_ext_csd)
345 if (!mmc_can_ext_csd(card))
349 * As the ext_csd is so large and mostly unused, we don't store the
350 * raw block in mmc_card.
352 ext_csd = kzalloc(512, GFP_KERNEL);
356 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
361 *new_ext_csd = ext_csd;
365 EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
367 int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
369 struct mmc_command cmd = {};
372 cmd.opcode = MMC_SPI_READ_OCR;
373 cmd.arg = highcap ? (1 << 30) : 0;
374 cmd.flags = MMC_RSP_SPI_R3;
376 err = mmc_wait_for_cmd(host, &cmd, 0);
382 int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
384 struct mmc_command cmd = {};
387 cmd.opcode = MMC_SPI_CRC_ON_OFF;
388 cmd.flags = MMC_RSP_SPI_R1;
391 err = mmc_wait_for_cmd(host, &cmd, 0);
393 host->use_spi_crc = use_crc;
397 static int mmc_switch_status_error(struct mmc_host *host, u32 status)
399 if (mmc_host_is_spi(host)) {
400 if (status & R1_SPI_ILLEGAL_COMMAND)
403 if (R1_STATUS(status))
404 pr_warn("%s: unexpected status %#x after switch\n",
405 mmc_hostname(host), status);
406 if (status & R1_SWITCH_ERROR)
412 /* Caller must hold re-tuning */
413 int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
418 err = mmc_send_status(card, &status);
419 if (!crc_err_fatal && err == -EILSEQ)
424 return mmc_switch_status_error(card->host, status);
427 static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
428 enum mmc_busy_cmd busy_cmd, bool *busy)
430 struct mmc_host *host = card->host;
434 if (host->ops->card_busy) {
435 *busy = host->ops->card_busy(host);
439 err = mmc_send_status(card, &status);
440 if (retry_crc_err && err == -EILSEQ) {
449 err = mmc_switch_status_error(card->host, status);
452 err = R1_STATUS(status) ? -EIO : 0;
463 *busy = !mmc_ready_for_data(status);
467 static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
468 bool send_status, bool retry_crc_err,
469 enum mmc_busy_cmd busy_cmd)
471 struct mmc_host *host = card->host;
473 unsigned long timeout;
474 unsigned int udelay = 32, udelay_max = 32768;
475 bool expired = false;
479 * In cases when not allowed to poll by using CMD13 or because we aren't
480 * capable of polling by using ->card_busy(), then rely on waiting the
481 * stated timeout to be sufficient.
483 if (!send_status && !host->ops->card_busy) {
484 mmc_delay(timeout_ms);
488 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
491 * Due to the possibility of being preempted while polling,
492 * check the expiration time first.
494 expired = time_after(jiffies, timeout);
496 err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
500 /* Timeout if the device still remains busy. */
501 if (expired && busy) {
502 pr_err("%s: Card stuck being busy! %s\n",
503 mmc_hostname(host), __func__);
507 /* Throttle the polling rate to avoid hogging the CPU. */
509 usleep_range(udelay, udelay * 2);
510 if (udelay < udelay_max)
518 int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
519 enum mmc_busy_cmd busy_cmd)
521 return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
525 * __mmc_switch - modify EXT_CSD register
526 * @card: the MMC card associated with the data transfer
527 * @set: cmd set values
528 * @index: EXT_CSD register index
529 * @value: value to program into EXT_CSD register
530 * @timeout_ms: timeout (ms) for operation performed by register write,
531 * timeout of zero implies maximum possible timeout
532 * @timing: new timing to change to
533 * @send_status: send status cmd to poll for busy
534 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
535 * @retries: number of retries
537 * Modifies the EXT_CSD register for selected card.
539 int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
540 unsigned int timeout_ms, unsigned char timing,
541 bool send_status, bool retry_crc_err, unsigned int retries)
543 struct mmc_host *host = card->host;
545 struct mmc_command cmd = {};
546 bool use_r1b_resp = true;
547 unsigned char old_timing = host->ios.timing;
549 mmc_retune_hold(host);
552 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
554 timeout_ms = card->ext_csd.generic_cmd6_time;
558 * If the max_busy_timeout of the host is specified, make sure it's
559 * enough to fit the used timeout_ms. In case it's not, let's instruct
560 * the host to avoid HW busy detection, by converting to a R1 response
561 * instead of a R1B. Note, some hosts requires R1B, which also means
562 * they are on their own when it comes to deal with the busy timeout.
564 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
565 (timeout_ms > host->max_busy_timeout))
566 use_r1b_resp = false;
568 cmd.opcode = MMC_SWITCH;
569 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
573 cmd.flags = MMC_CMD_AC;
575 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
576 cmd.busy_timeout = timeout_ms;
578 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
581 err = mmc_wait_for_cmd(host, &cmd, retries);
585 /*If SPI or used HW busy detection above, then we don't need to poll. */
586 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
587 mmc_host_is_spi(host))
590 /* Let's try to poll to find out when the command is completed. */
591 err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
597 /* Switch to new timing before check switch status. */
599 mmc_set_timing(host, timing);
602 err = mmc_switch_status(card, true);
604 mmc_set_timing(host, old_timing);
607 mmc_retune_release(host);
612 int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
613 unsigned int timeout_ms)
615 return __mmc_switch(card, set, index, value, timeout_ms, 0,
616 true, false, MMC_CMD_RETRIES);
618 EXPORT_SYMBOL_GPL(mmc_switch);
620 int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
622 struct mmc_request mrq = {};
623 struct mmc_command cmd = {};
624 struct mmc_data data = {};
625 struct scatterlist sg;
626 struct mmc_ios *ios = &host->ios;
627 const u8 *tuning_block_pattern;
631 if (ios->bus_width == MMC_BUS_WIDTH_8) {
632 tuning_block_pattern = tuning_blk_pattern_8bit;
633 size = sizeof(tuning_blk_pattern_8bit);
634 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
635 tuning_block_pattern = tuning_blk_pattern_4bit;
636 size = sizeof(tuning_blk_pattern_4bit);
640 data_buf = kzalloc(size, GFP_KERNEL);
648 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
652 data.flags = MMC_DATA_READ;
655 * According to the tuning specs, Tuning process
656 * is normally shorter 40 executions of CMD19,
657 * and timeout value should be shorter than 150 ms
659 data.timeout_ns = 150 * NSEC_PER_MSEC;
663 sg_init_one(&sg, data_buf, size);
665 mmc_wait_for_req(host, &mrq);
668 *cmd_error = cmd.error;
680 if (memcmp(data_buf, tuning_block_pattern, size))
687 EXPORT_SYMBOL_GPL(mmc_send_tuning);
689 int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
691 struct mmc_command cmd = {};
694 * eMMC specification specifies that CMD12 can be used to stop a tuning
695 * command, but SD specification does not, so do nothing unless it is
698 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
701 cmd.opcode = MMC_STOP_TRANSMISSION;
702 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
705 * For drivers that override R1 to R1b, set an arbitrary timeout based
706 * on the tuning timeout i.e. 150ms.
708 cmd.busy_timeout = 150;
710 return mmc_wait_for_cmd(host, &cmd, 0);
712 EXPORT_SYMBOL_GPL(mmc_abort_tuning);
715 mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
718 struct mmc_request mrq = {};
719 struct mmc_command cmd = {};
720 struct mmc_data data = {};
721 struct scatterlist sg;
725 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
726 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
728 /* dma onto stack is unsafe/nonportable, but callers to this
729 * routine normally provide temporary on-stack buffers ...
731 data_buf = kmalloc(len, GFP_KERNEL);
736 test_buf = testdata_8bit;
738 test_buf = testdata_4bit;
740 pr_err("%s: Invalid bus_width %d\n",
741 mmc_hostname(host), len);
746 if (opcode == MMC_BUS_TEST_W)
747 memcpy(data_buf, test_buf, len);
754 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
755 * rely on callers to never use this with "native" calls for reading
756 * CSD or CID. Native versions of those commands use the R2 type,
757 * not R1 plus a data block.
759 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
763 if (opcode == MMC_BUS_TEST_R)
764 data.flags = MMC_DATA_READ;
766 data.flags = MMC_DATA_WRITE;
770 mmc_set_data_timeout(&data, card);
771 sg_init_one(&sg, data_buf, len);
772 mmc_wait_for_req(host, &mrq);
774 if (opcode == MMC_BUS_TEST_R) {
775 for (i = 0; i < len / 4; i++)
776 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
791 int mmc_bus_test(struct mmc_card *card, u8 bus_width)
795 if (bus_width == MMC_BUS_WIDTH_8)
797 else if (bus_width == MMC_BUS_WIDTH_4)
799 else if (bus_width == MMC_BUS_WIDTH_1)
800 return 0; /* no need for test */
805 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
806 * is a problem. This improves chances that the test will work.
808 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
809 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
812 static int mmc_send_hpi_cmd(struct mmc_card *card)
814 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
815 struct mmc_host *host = card->host;
816 bool use_r1b_resp = true;
817 struct mmc_command cmd = {};
820 cmd.opcode = card->ext_csd.hpi_cmd;
821 cmd.arg = card->rca << 16 | 1;
824 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
825 * In case it doesn't, let's instruct the host to avoid HW busy
826 * detection, by using a R1 response instead of R1B.
828 if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
829 use_r1b_resp = false;
831 if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
832 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
833 cmd.busy_timeout = busy_timeout_ms;
835 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
836 use_r1b_resp = false;
839 err = mmc_wait_for_cmd(host, &cmd, 0);
841 pr_warn("%s: HPI error %d. Command response %#x\n",
842 mmc_hostname(host), err, cmd.resp[0]);
846 /* No need to poll when using HW busy detection. */
847 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
850 /* Let's poll to find out when the HPI request completes. */
851 return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
855 * mmc_interrupt_hpi - Issue for High priority Interrupt
856 * @card: the MMC card associated with the HPI transfer
858 * Issued High Priority Interrupt, and check for card status
859 * until out-of prg-state.
861 static int mmc_interrupt_hpi(struct mmc_card *card)
866 if (!card->ext_csd.hpi_en) {
867 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
871 err = mmc_send_status(card, &status);
873 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
877 switch (R1_CURRENT_STATE(status)) {
883 * In idle and transfer states, HPI is not needed and the caller
884 * can issue the next intended command immediately
890 /* In all other states, it's illegal to issue HPI */
891 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
892 mmc_hostname(card->host), R1_CURRENT_STATE(status));
897 err = mmc_send_hpi_cmd(card);
902 int mmc_can_ext_csd(struct mmc_card *card)
904 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
907 static int mmc_read_bkops_status(struct mmc_card *card)
912 err = mmc_get_ext_csd(card, &ext_csd);
916 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
917 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
923 * mmc_run_bkops - Run BKOPS for supported cards
924 * @card: MMC card to run BKOPS for
926 * Run background operations synchronously for cards having manual BKOPS
927 * enabled and in case it reports urgent BKOPS level.
929 void mmc_run_bkops(struct mmc_card *card)
933 if (!card->ext_csd.man_bkops_en)
936 err = mmc_read_bkops_status(card);
938 pr_err("%s: Failed to read bkops status: %d\n",
939 mmc_hostname(card->host), err);
943 if (!card->ext_csd.raw_bkops_status ||
944 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
947 mmc_retune_hold(card->host);
950 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
951 * synchronously. Future wise, we may consider to start BKOPS, for less
952 * urgent levels by using an asynchronous background task, when idle.
954 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
955 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
957 pr_warn("%s: Error %d starting bkops\n",
958 mmc_hostname(card->host), err);
960 mmc_retune_release(card->host);
962 EXPORT_SYMBOL(mmc_run_bkops);
965 * Flush the cache to the non-volatile storage.
967 int mmc_flush_cache(struct mmc_card *card)
971 if (mmc_cache_enabled(card->host)) {
972 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
973 EXT_CSD_FLUSH_CACHE, 1,
974 MMC_CACHE_FLUSH_TIMEOUT_MS);
976 pr_err("%s: cache flush error %d\n",
977 mmc_hostname(card->host), err);
982 EXPORT_SYMBOL(mmc_flush_cache);
984 static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
986 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
989 if (!card->ext_csd.cmdq_support)
992 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
993 val, card->ext_csd.generic_cmd6_time);
995 card->ext_csd.cmdq_en = enable;
1000 int mmc_cmdq_enable(struct mmc_card *card)
1002 return mmc_cmdq_switch(card, true);
1004 EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1006 int mmc_cmdq_disable(struct mmc_card *card)
1008 return mmc_cmdq_switch(card, false);
1010 EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1012 int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1014 struct mmc_host *host = card->host;
1017 if (!mmc_can_sanitize(card)) {
1018 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1023 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1025 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1027 mmc_retune_hold(host);
1029 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1030 1, timeout_ms, 0, true, false, 0);
1032 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1035 * If the sanitize operation timed out, the card is probably still busy
1036 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1037 * it with a HPI command to get back into R1_STATE_TRAN.
1039 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1040 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1042 mmc_retune_release(host);
1044 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1047 EXPORT_SYMBOL_GPL(mmc_sanitize);