]> Git Repo - linux.git/blob - fs/bcachefs/btree_cache.c
bcachefs: Improve stripe checksum error message
[linux.git] / fs / bcachefs / btree_cache.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "bkey_buf.h"
5 #include "btree_cache.h"
6 #include "btree_io.h"
7 #include "btree_iter.h"
8 #include "btree_locking.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "trace.h"
13
14 #include <linux/prefetch.h>
15 #include <linux/sched/mm.h>
16
17 const char * const bch2_btree_node_flags[] = {
18 #define x(f)    #f,
19         BTREE_FLAGS()
20 #undef x
21         NULL
22 };
23
24 void bch2_recalc_btree_reserve(struct bch_fs *c)
25 {
26         unsigned i, reserve = 16;
27
28         if (!c->btree_roots_known[0].b)
29                 reserve += 8;
30
31         for (i = 0; i < btree_id_nr_alive(c); i++) {
32                 struct btree_root *r = bch2_btree_id_root(c, i);
33
34                 if (r->b)
35                         reserve += min_t(unsigned, 1, r->b->c.level) * 8;
36         }
37
38         c->btree_cache.reserve = reserve;
39 }
40
41 static inline unsigned btree_cache_can_free(struct btree_cache *bc)
42 {
43         return max_t(int, 0, bc->used - bc->reserve);
44 }
45
46 static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
47 {
48         if (b->c.lock.readers)
49                 list_move(&b->list, &bc->freed_pcpu);
50         else
51                 list_move(&b->list, &bc->freed_nonpcpu);
52 }
53
54 static void btree_node_data_free(struct bch_fs *c, struct btree *b)
55 {
56         struct btree_cache *bc = &c->btree_cache;
57
58         EBUG_ON(btree_node_write_in_flight(b));
59
60         clear_btree_node_just_written(b);
61
62         kvpfree(b->data, btree_bytes(c));
63         b->data = NULL;
64 #ifdef __KERNEL__
65         kvfree(b->aux_data);
66 #else
67         munmap(b->aux_data, btree_aux_data_bytes(b));
68 #endif
69         b->aux_data = NULL;
70
71         bc->used--;
72
73         btree_node_to_freedlist(bc, b);
74 }
75
76 static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
77                                    const void *obj)
78 {
79         const struct btree *b = obj;
80         const u64 *v = arg->key;
81
82         return b->hash_val == *v ? 0 : 1;
83 }
84
85 static const struct rhashtable_params bch_btree_cache_params = {
86         .head_offset    = offsetof(struct btree, hash),
87         .key_offset     = offsetof(struct btree, hash_val),
88         .key_len        = sizeof(u64),
89         .obj_cmpfn      = bch2_btree_cache_cmp_fn,
90 };
91
92 static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
93 {
94         BUG_ON(b->data || b->aux_data);
95
96         b->data = kvpmalloc(btree_bytes(c), gfp);
97         if (!b->data)
98                 return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
99 #ifdef __KERNEL__
100         b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
101 #else
102         b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
103                            PROT_READ|PROT_WRITE|PROT_EXEC,
104                            MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
105         if (b->aux_data == MAP_FAILED)
106                 b->aux_data = NULL;
107 #endif
108         if (!b->aux_data) {
109                 kvpfree(b->data, btree_bytes(c));
110                 b->data = NULL;
111                 return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
112         }
113
114         return 0;
115 }
116
117 static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
118 {
119         struct btree *b;
120
121         b = kzalloc(sizeof(struct btree), gfp);
122         if (!b)
123                 return NULL;
124
125         bkey_btree_ptr_init(&b->key);
126         INIT_LIST_HEAD(&b->list);
127         INIT_LIST_HEAD(&b->write_blocked);
128         b->byte_order = ilog2(btree_bytes(c));
129         return b;
130 }
131
132 struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
133 {
134         struct btree_cache *bc = &c->btree_cache;
135         struct btree *b;
136
137         b = __btree_node_mem_alloc(c, GFP_KERNEL);
138         if (!b)
139                 return NULL;
140
141         if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
142                 kfree(b);
143                 return NULL;
144         }
145
146         bch2_btree_lock_init(&b->c, 0);
147
148         bc->used++;
149         list_add(&b->list, &bc->freeable);
150         return b;
151 }
152
153 /* Btree in memory cache - hash table */
154
155 void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
156 {
157         int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
158
159         BUG_ON(ret);
160
161         /* Cause future lookups for this node to fail: */
162         b->hash_val = 0;
163 }
164
165 int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
166 {
167         BUG_ON(b->hash_val);
168         b->hash_val = btree_ptr_hash_val(&b->key);
169
170         return rhashtable_lookup_insert_fast(&bc->table, &b->hash,
171                                              bch_btree_cache_params);
172 }
173
174 int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
175                                 unsigned level, enum btree_id id)
176 {
177         int ret;
178
179         b->c.level      = level;
180         b->c.btree_id   = id;
181
182         mutex_lock(&bc->lock);
183         ret = __bch2_btree_node_hash_insert(bc, b);
184         if (!ret)
185                 list_add_tail(&b->list, &bc->live);
186         mutex_unlock(&bc->lock);
187
188         return ret;
189 }
190
191 __flatten
192 static inline struct btree *btree_cache_find(struct btree_cache *bc,
193                                      const struct bkey_i *k)
194 {
195         u64 v = btree_ptr_hash_val(k);
196
197         return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
198 }
199
200 /*
201  * this version is for btree nodes that have already been freed (we're not
202  * reaping a real btree node)
203  */
204 static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush)
205 {
206         struct btree_cache *bc = &c->btree_cache;
207         int ret = 0;
208
209         lockdep_assert_held(&bc->lock);
210 wait_on_io:
211         if (b->flags & ((1U << BTREE_NODE_dirty)|
212                         (1U << BTREE_NODE_read_in_flight)|
213                         (1U << BTREE_NODE_write_in_flight))) {
214                 if (!flush)
215                         return -BCH_ERR_ENOMEM_btree_node_reclaim;
216
217                 /* XXX: waiting on IO with btree cache lock held */
218                 bch2_btree_node_wait_on_read(b);
219                 bch2_btree_node_wait_on_write(b);
220         }
221
222         if (!six_trylock_intent(&b->c.lock))
223                 return -BCH_ERR_ENOMEM_btree_node_reclaim;
224
225         if (!six_trylock_write(&b->c.lock))
226                 goto out_unlock_intent;
227
228         /* recheck under lock */
229         if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
230                         (1U << BTREE_NODE_write_in_flight))) {
231                 if (!flush)
232                         goto out_unlock;
233                 six_unlock_write(&b->c.lock);
234                 six_unlock_intent(&b->c.lock);
235                 goto wait_on_io;
236         }
237
238         if (btree_node_noevict(b) ||
239             btree_node_write_blocked(b) ||
240             btree_node_will_make_reachable(b))
241                 goto out_unlock;
242
243         if (btree_node_dirty(b)) {
244                 if (!flush)
245                         goto out_unlock;
246                 /*
247                  * Using the underscore version because we don't want to compact
248                  * bsets after the write, since this node is about to be evicted
249                  * - unless btree verify mode is enabled, since it runs out of
250                  * the post write cleanup:
251                  */
252                 if (bch2_verify_btree_ondisk)
253                         bch2_btree_node_write(c, b, SIX_LOCK_intent,
254                                               BTREE_WRITE_cache_reclaim);
255                 else
256                         __bch2_btree_node_write(c, b,
257                                                 BTREE_WRITE_cache_reclaim);
258
259                 six_unlock_write(&b->c.lock);
260                 six_unlock_intent(&b->c.lock);
261                 goto wait_on_io;
262         }
263 out:
264         if (b->hash_val && !ret)
265                 trace_and_count(c, btree_cache_reap, c, b);
266         return ret;
267 out_unlock:
268         six_unlock_write(&b->c.lock);
269 out_unlock_intent:
270         six_unlock_intent(&b->c.lock);
271         ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
272         goto out;
273 }
274
275 static int btree_node_reclaim(struct bch_fs *c, struct btree *b)
276 {
277         return __btree_node_reclaim(c, b, false);
278 }
279
280 static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
281 {
282         return __btree_node_reclaim(c, b, true);
283 }
284
285 static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
286                                            struct shrink_control *sc)
287 {
288         struct bch_fs *c = container_of(shrink, struct bch_fs,
289                                         btree_cache.shrink);
290         struct btree_cache *bc = &c->btree_cache;
291         struct btree *b, *t;
292         unsigned long nr = sc->nr_to_scan;
293         unsigned long can_free = 0;
294         unsigned long freed = 0;
295         unsigned long touched = 0;
296         unsigned i, flags;
297         unsigned long ret = SHRINK_STOP;
298         bool trigger_writes = atomic_read(&bc->dirty) + nr >=
299                 bc->used * 3 / 4;
300
301         if (bch2_btree_shrinker_disabled)
302                 return SHRINK_STOP;
303
304         mutex_lock(&bc->lock);
305         flags = memalloc_nofs_save();
306
307         /*
308          * It's _really_ critical that we don't free too many btree nodes - we
309          * have to always leave ourselves a reserve. The reserve is how we
310          * guarantee that allocating memory for a new btree node can always
311          * succeed, so that inserting keys into the btree can always succeed and
312          * IO can always make forward progress:
313          */
314         can_free = btree_cache_can_free(bc);
315         nr = min_t(unsigned long, nr, can_free);
316
317         i = 0;
318         list_for_each_entry_safe(b, t, &bc->freeable, list) {
319                 /*
320                  * Leave a few nodes on the freeable list, so that a btree split
321                  * won't have to hit the system allocator:
322                  */
323                 if (++i <= 3)
324                         continue;
325
326                 touched++;
327
328                 if (touched >= nr)
329                         goto out;
330
331                 if (!btree_node_reclaim(c, b)) {
332                         btree_node_data_free(c, b);
333                         six_unlock_write(&b->c.lock);
334                         six_unlock_intent(&b->c.lock);
335                         freed++;
336                 }
337         }
338 restart:
339         list_for_each_entry_safe(b, t, &bc->live, list) {
340                 touched++;
341
342                 if (btree_node_accessed(b)) {
343                         clear_btree_node_accessed(b);
344                 } else if (!btree_node_reclaim(c, b)) {
345                         freed++;
346                         btree_node_data_free(c, b);
347
348                         bch2_btree_node_hash_remove(bc, b);
349                         six_unlock_write(&b->c.lock);
350                         six_unlock_intent(&b->c.lock);
351
352                         if (freed == nr)
353                                 goto out_rotate;
354                 } else if (trigger_writes &&
355                            btree_node_dirty(b) &&
356                            !btree_node_will_make_reachable(b) &&
357                            !btree_node_write_blocked(b) &&
358                            six_trylock_read(&b->c.lock)) {
359                         list_move(&bc->live, &b->list);
360                         mutex_unlock(&bc->lock);
361                         __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
362                         six_unlock_read(&b->c.lock);
363                         if (touched >= nr)
364                                 goto out_nounlock;
365                         mutex_lock(&bc->lock);
366                         goto restart;
367                 }
368
369                 if (touched >= nr)
370                         break;
371         }
372 out_rotate:
373         if (&t->list != &bc->live)
374                 list_move_tail(&bc->live, &t->list);
375 out:
376         mutex_unlock(&bc->lock);
377 out_nounlock:
378         ret = freed;
379         memalloc_nofs_restore(flags);
380         trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
381         return ret;
382 }
383
384 static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
385                                             struct shrink_control *sc)
386 {
387         struct bch_fs *c = container_of(shrink, struct bch_fs,
388                                         btree_cache.shrink);
389         struct btree_cache *bc = &c->btree_cache;
390
391         if (bch2_btree_shrinker_disabled)
392                 return 0;
393
394         return btree_cache_can_free(bc);
395 }
396
397 void bch2_fs_btree_cache_exit(struct bch_fs *c)
398 {
399         struct btree_cache *bc = &c->btree_cache;
400         struct btree *b;
401         unsigned i, flags;
402
403         unregister_shrinker(&bc->shrink);
404
405         /* vfree() can allocate memory: */
406         flags = memalloc_nofs_save();
407         mutex_lock(&bc->lock);
408
409         if (c->verify_data)
410                 list_move(&c->verify_data->list, &bc->live);
411
412         kvpfree(c->verify_ondisk, btree_bytes(c));
413
414         for (i = 0; i < btree_id_nr_alive(c); i++) {
415                 struct btree_root *r = bch2_btree_id_root(c, i);
416
417                 if (r->b)
418                         list_add(&r->b->list, &bc->live);
419         }
420
421         list_splice(&bc->freeable, &bc->live);
422
423         while (!list_empty(&bc->live)) {
424                 b = list_first_entry(&bc->live, struct btree, list);
425
426                 BUG_ON(btree_node_read_in_flight(b) ||
427                        btree_node_write_in_flight(b));
428
429                 if (btree_node_dirty(b))
430                         bch2_btree_complete_write(c, b, btree_current_write(b));
431                 clear_btree_node_dirty_acct(c, b);
432
433                 btree_node_data_free(c, b);
434         }
435
436         BUG_ON(atomic_read(&c->btree_cache.dirty));
437
438         list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
439
440         while (!list_empty(&bc->freed_nonpcpu)) {
441                 b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
442                 list_del(&b->list);
443                 six_lock_exit(&b->c.lock);
444                 kfree(b);
445         }
446
447         mutex_unlock(&bc->lock);
448         memalloc_nofs_restore(flags);
449
450         if (bc->table_init_done)
451                 rhashtable_destroy(&bc->table);
452 }
453
454 int bch2_fs_btree_cache_init(struct bch_fs *c)
455 {
456         struct btree_cache *bc = &c->btree_cache;
457         unsigned i;
458         int ret = 0;
459
460         ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
461         if (ret)
462                 goto err;
463
464         bc->table_init_done = true;
465
466         bch2_recalc_btree_reserve(c);
467
468         for (i = 0; i < bc->reserve; i++)
469                 if (!__bch2_btree_node_mem_alloc(c))
470                         goto err;
471
472         list_splice_init(&bc->live, &bc->freeable);
473
474         mutex_init(&c->verify_lock);
475
476         bc->shrink.count_objects        = bch2_btree_cache_count;
477         bc->shrink.scan_objects         = bch2_btree_cache_scan;
478         bc->shrink.seeks                = 4;
479         ret = register_shrinker(&bc->shrink, "%s-btree_cache", c->name);
480         if (ret)
481                 goto err;
482
483         return 0;
484 err:
485         return -BCH_ERR_ENOMEM_fs_btree_cache_init;
486 }
487
488 void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
489 {
490         mutex_init(&bc->lock);
491         INIT_LIST_HEAD(&bc->live);
492         INIT_LIST_HEAD(&bc->freeable);
493         INIT_LIST_HEAD(&bc->freed_pcpu);
494         INIT_LIST_HEAD(&bc->freed_nonpcpu);
495 }
496
497 /*
498  * We can only have one thread cannibalizing other cached btree nodes at a time,
499  * or we'll deadlock. We use an open coded mutex to ensure that, which a
500  * cannibalize_bucket() will take. This means every time we unlock the root of
501  * the btree, we need to release this lock if we have it held.
502  */
503 void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c)
504 {
505         struct btree_cache *bc = &c->btree_cache;
506
507         if (bc->alloc_lock == current) {
508                 trace_and_count(c, btree_cache_cannibalize_unlock, c);
509                 bc->alloc_lock = NULL;
510                 closure_wake_up(&bc->alloc_wait);
511         }
512 }
513
514 int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl)
515 {
516         struct btree_cache *bc = &c->btree_cache;
517         struct task_struct *old;
518
519         old = cmpxchg(&bc->alloc_lock, NULL, current);
520         if (old == NULL || old == current)
521                 goto success;
522
523         if (!cl) {
524                 trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
525                 return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
526         }
527
528         closure_wait(&bc->alloc_wait, cl);
529
530         /* Try again, after adding ourselves to waitlist */
531         old = cmpxchg(&bc->alloc_lock, NULL, current);
532         if (old == NULL || old == current) {
533                 /* We raced */
534                 closure_wake_up(&bc->alloc_wait);
535                 goto success;
536         }
537
538         trace_and_count(c, btree_cache_cannibalize_lock_fail, c);
539         return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
540
541 success:
542         trace_and_count(c, btree_cache_cannibalize_lock, c);
543         return 0;
544 }
545
546 static struct btree *btree_node_cannibalize(struct bch_fs *c)
547 {
548         struct btree_cache *bc = &c->btree_cache;
549         struct btree *b;
550
551         list_for_each_entry_reverse(b, &bc->live, list)
552                 if (!btree_node_reclaim(c, b))
553                         return b;
554
555         while (1) {
556                 list_for_each_entry_reverse(b, &bc->live, list)
557                         if (!btree_node_write_and_reclaim(c, b))
558                                 return b;
559
560                 /*
561                  * Rare case: all nodes were intent-locked.
562                  * Just busy-wait.
563                  */
564                 WARN_ONCE(1, "btree cache cannibalize failed\n");
565                 cond_resched();
566         }
567 }
568
569 struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
570 {
571         struct bch_fs *c = trans->c;
572         struct btree_cache *bc = &c->btree_cache;
573         struct list_head *freed = pcpu_read_locks
574                 ? &bc->freed_pcpu
575                 : &bc->freed_nonpcpu;
576         struct btree *b, *b2;
577         u64 start_time = local_clock();
578         unsigned flags;
579
580         flags = memalloc_nofs_save();
581         mutex_lock(&bc->lock);
582
583         /*
584          * We never free struct btree itself, just the memory that holds the on
585          * disk node. Check the freed list before allocating a new one:
586          */
587         list_for_each_entry(b, freed, list)
588                 if (!btree_node_reclaim(c, b)) {
589                         list_del_init(&b->list);
590                         goto got_node;
591                 }
592
593         b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
594         if (!b) {
595                 mutex_unlock(&bc->lock);
596                 bch2_trans_unlock(trans);
597                 b = __btree_node_mem_alloc(c, GFP_KERNEL);
598                 if (!b)
599                         goto err;
600                 mutex_lock(&bc->lock);
601         }
602
603         bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0);
604
605         BUG_ON(!six_trylock_intent(&b->c.lock));
606         BUG_ON(!six_trylock_write(&b->c.lock));
607 got_node:
608
609         /*
610          * btree_free() doesn't free memory; it sticks the node on the end of
611          * the list. Check if there's any freed nodes there:
612          */
613         list_for_each_entry(b2, &bc->freeable, list)
614                 if (!btree_node_reclaim(c, b2)) {
615                         swap(b->data, b2->data);
616                         swap(b->aux_data, b2->aux_data);
617                         btree_node_to_freedlist(bc, b2);
618                         six_unlock_write(&b2->c.lock);
619                         six_unlock_intent(&b2->c.lock);
620                         goto got_mem;
621                 }
622
623         mutex_unlock(&bc->lock);
624
625         if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
626                 bch2_trans_unlock(trans);
627                 if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
628                         goto err;
629         }
630
631         mutex_lock(&bc->lock);
632         bc->used++;
633 got_mem:
634         mutex_unlock(&bc->lock);
635
636         BUG_ON(btree_node_hashed(b));
637         BUG_ON(btree_node_dirty(b));
638         BUG_ON(btree_node_write_in_flight(b));
639 out:
640         b->flags                = 0;
641         b->written              = 0;
642         b->nsets                = 0;
643         b->sib_u64s[0]          = 0;
644         b->sib_u64s[1]          = 0;
645         b->whiteout_u64s        = 0;
646         bch2_btree_keys_init(b);
647         set_btree_node_accessed(b);
648
649         bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
650                                start_time);
651
652         memalloc_nofs_restore(flags);
653         return b;
654 err:
655         mutex_lock(&bc->lock);
656
657         /* Try to cannibalize another cached btree node: */
658         if (bc->alloc_lock == current) {
659                 b2 = btree_node_cannibalize(c);
660                 clear_btree_node_just_written(b2);
661                 bch2_btree_node_hash_remove(bc, b2);
662
663                 if (b) {
664                         swap(b->data, b2->data);
665                         swap(b->aux_data, b2->aux_data);
666                         btree_node_to_freedlist(bc, b2);
667                         six_unlock_write(&b2->c.lock);
668                         six_unlock_intent(&b2->c.lock);
669                 } else {
670                         b = b2;
671                         list_del_init(&b->list);
672                 }
673
674                 mutex_unlock(&bc->lock);
675
676                 trace_and_count(c, btree_cache_cannibalize, c);
677                 goto out;
678         }
679
680         mutex_unlock(&bc->lock);
681         memalloc_nofs_restore(flags);
682         return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
683 }
684
685 /* Slowpath, don't want it inlined into btree_iter_traverse() */
686 static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
687                                 struct btree_path *path,
688                                 const struct bkey_i *k,
689                                 enum btree_id btree_id,
690                                 unsigned level,
691                                 enum six_lock_type lock_type,
692                                 bool sync)
693 {
694         struct bch_fs *c = trans->c;
695         struct btree_cache *bc = &c->btree_cache;
696         struct btree *b;
697         u32 seq;
698
699         BUG_ON(level + 1 >= BTREE_MAX_DEPTH);
700         /*
701          * Parent node must be locked, else we could read in a btree node that's
702          * been freed:
703          */
704         if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
705                 trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
706                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
707         }
708
709         b = bch2_btree_node_mem_alloc(trans, level != 0);
710
711         if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
712                 trans->memory_allocation_failure = true;
713                 trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
714                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
715         }
716
717         if (IS_ERR(b))
718                 return b;
719
720         /*
721          * Btree nodes read in from disk should not have the accessed bit set
722          * initially, so that linear scans don't thrash the cache:
723          */
724         clear_btree_node_accessed(b);
725
726         bkey_copy(&b->key, k);
727         if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
728                 /* raced with another fill: */
729
730                 /* mark as unhashed... */
731                 b->hash_val = 0;
732
733                 mutex_lock(&bc->lock);
734                 list_add(&b->list, &bc->freeable);
735                 mutex_unlock(&bc->lock);
736
737                 six_unlock_write(&b->c.lock);
738                 six_unlock_intent(&b->c.lock);
739                 return NULL;
740         }
741
742         set_btree_node_read_in_flight(b);
743
744         six_unlock_write(&b->c.lock);
745         seq = six_lock_seq(&b->c.lock);
746         six_unlock_intent(&b->c.lock);
747
748         /* Unlock before doing IO: */
749         if (path && sync)
750                 bch2_trans_unlock_noassert(trans);
751
752         bch2_btree_node_read(c, b, sync);
753
754         if (!sync)
755                 return NULL;
756
757         if (path) {
758                 int ret = bch2_trans_relock(trans) ?:
759                         bch2_btree_path_relock_intent(trans, path);
760                 if (ret) {
761                         BUG_ON(!trans->restarted);
762                         return ERR_PTR(ret);
763                 }
764         }
765
766         if (!six_relock_type(&b->c.lock, lock_type, seq)) {
767                 if (path)
768                         trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path);
769                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill));
770         }
771
772         return b;
773 }
774
775 static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
776 {
777         struct printbuf buf = PRINTBUF;
778
779         if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
780                 return;
781
782         prt_printf(&buf,
783                "btree node header doesn't match ptr\n"
784                "btree %s level %u\n"
785                "ptr: ",
786                bch2_btree_id_str(b->c.btree_id), b->c.level);
787         bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
788
789         prt_printf(&buf, "\nheader: btree %s level %llu\n"
790                "min ",
791                bch2_btree_id_str(BTREE_NODE_ID(b->data)),
792                BTREE_NODE_LEVEL(b->data));
793         bch2_bpos_to_text(&buf, b->data->min_key);
794
795         prt_printf(&buf, "\nmax ");
796         bch2_bpos_to_text(&buf, b->data->max_key);
797
798         bch2_fs_inconsistent(c, "%s", buf.buf);
799         printbuf_exit(&buf);
800 }
801
802 static inline void btree_check_header(struct bch_fs *c, struct btree *b)
803 {
804         if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
805             b->c.level != BTREE_NODE_LEVEL(b->data) ||
806             !bpos_eq(b->data->max_key, b->key.k.p) ||
807             (b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
808              !bpos_eq(b->data->min_key,
809                       bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
810                 btree_bad_header(c, b);
811 }
812
813 static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
814                                            const struct bkey_i *k, unsigned level,
815                                            enum six_lock_type lock_type,
816                                            unsigned long trace_ip)
817 {
818         struct bch_fs *c = trans->c;
819         struct btree_cache *bc = &c->btree_cache;
820         struct btree *b;
821         struct bset_tree *t;
822         bool need_relock = false;
823         int ret;
824
825         EBUG_ON(level >= BTREE_MAX_DEPTH);
826 retry:
827         b = btree_cache_find(bc, k);
828         if (unlikely(!b)) {
829                 /*
830                  * We must have the parent locked to call bch2_btree_node_fill(),
831                  * else we could read in a btree node from disk that's been
832                  * freed:
833                  */
834                 b = bch2_btree_node_fill(trans, path, k, path->btree_id,
835                                          level, lock_type, true);
836                 need_relock = true;
837
838                 /* We raced and found the btree node in the cache */
839                 if (!b)
840                         goto retry;
841
842                 if (IS_ERR(b))
843                         return b;
844         } else {
845                 if (btree_node_read_locked(path, level + 1))
846                         btree_node_unlock(trans, path, level + 1);
847
848                 ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
849                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
850                         return ERR_PTR(ret);
851
852                 BUG_ON(ret);
853
854                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
855                              b->c.level != level ||
856                              race_fault())) {
857                         six_unlock_type(&b->c.lock, lock_type);
858                         if (bch2_btree_node_relock(trans, path, level + 1))
859                                 goto retry;
860
861                         trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
862                         return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
863                 }
864
865                 /* avoid atomic set bit if it's not needed: */
866                 if (!btree_node_accessed(b))
867                         set_btree_node_accessed(b);
868         }
869
870         if (unlikely(btree_node_read_in_flight(b))) {
871                 u32 seq = six_lock_seq(&b->c.lock);
872
873                 six_unlock_type(&b->c.lock, lock_type);
874                 bch2_trans_unlock(trans);
875                 need_relock = true;
876
877                 bch2_btree_node_wait_on_read(b);
878
879                 /*
880                  * should_be_locked is not set on this path yet, so we need to
881                  * relock it specifically:
882                  */
883                 if (!six_relock_type(&b->c.lock, lock_type, seq))
884                         goto retry;
885         }
886
887         if (unlikely(need_relock)) {
888                 ret = bch2_trans_relock(trans) ?:
889                         bch2_btree_path_relock_intent(trans, path);
890                 if (ret) {
891                         six_unlock_type(&b->c.lock, lock_type);
892                         return ERR_PTR(ret);
893                 }
894         }
895
896         prefetch(b->aux_data);
897
898         for_each_bset(b, t) {
899                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
900
901                 prefetch(p + L1_CACHE_BYTES * 0);
902                 prefetch(p + L1_CACHE_BYTES * 1);
903                 prefetch(p + L1_CACHE_BYTES * 2);
904         }
905
906         if (unlikely(btree_node_read_error(b))) {
907                 six_unlock_type(&b->c.lock, lock_type);
908                 return ERR_PTR(-EIO);
909         }
910
911         EBUG_ON(b->c.btree_id != path->btree_id);
912         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
913         btree_check_header(c, b);
914
915         return b;
916 }
917
918 /**
919  * bch2_btree_node_get - find a btree node in the cache and lock it, reading it
920  * in from disk if necessary.
921  *
922  * @trans:      btree transaction object
923  * @path:       btree_path being traversed
924  * @k:          pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
925  * @level:      level of btree node being looked up (0 == leaf node)
926  * @lock_type:  SIX_LOCK_read or SIX_LOCK_intent
927  * @trace_ip:   ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
928  *
929  * The btree node will have either a read or a write lock held, depending on
930  * the @write parameter.
931  *
932  * Returns: btree node or ERR_PTR()
933  */
934 struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
935                                   const struct bkey_i *k, unsigned level,
936                                   enum six_lock_type lock_type,
937                                   unsigned long trace_ip)
938 {
939         struct bch_fs *c = trans->c;
940         struct btree *b;
941         struct bset_tree *t;
942         int ret;
943
944         EBUG_ON(level >= BTREE_MAX_DEPTH);
945
946         b = btree_node_mem_ptr(k);
947
948         /*
949          * Check b->hash_val _before_ calling btree_node_lock() - this might not
950          * be the node we want anymore, and trying to lock the wrong node could
951          * cause an unneccessary transaction restart:
952          */
953         if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
954                      !b ||
955                      b->hash_val != btree_ptr_hash_val(k)))
956                 return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
957
958         if (btree_node_read_locked(path, level + 1))
959                 btree_node_unlock(trans, path, level + 1);
960
961         ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
962         if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
963                 return ERR_PTR(ret);
964
965         BUG_ON(ret);
966
967         if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
968                      b->c.level != level ||
969                      race_fault())) {
970                 six_unlock_type(&b->c.lock, lock_type);
971                 if (bch2_btree_node_relock(trans, path, level + 1))
972                         return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
973
974                 trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
975                 return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
976         }
977
978         if (unlikely(btree_node_read_in_flight(b))) {
979                 six_unlock_type(&b->c.lock, lock_type);
980                 return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
981         }
982
983         prefetch(b->aux_data);
984
985         for_each_bset(b, t) {
986                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
987
988                 prefetch(p + L1_CACHE_BYTES * 0);
989                 prefetch(p + L1_CACHE_BYTES * 1);
990                 prefetch(p + L1_CACHE_BYTES * 2);
991         }
992
993         /* avoid atomic set bit if it's not needed: */
994         if (!btree_node_accessed(b))
995                 set_btree_node_accessed(b);
996
997         if (unlikely(btree_node_read_error(b))) {
998                 six_unlock_type(&b->c.lock, lock_type);
999                 return ERR_PTR(-EIO);
1000         }
1001
1002         EBUG_ON(b->c.btree_id != path->btree_id);
1003         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1004         btree_check_header(c, b);
1005
1006         return b;
1007 }
1008
1009 struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
1010                                          const struct bkey_i *k,
1011                                          enum btree_id btree_id,
1012                                          unsigned level,
1013                                          bool nofill)
1014 {
1015         struct bch_fs *c = trans->c;
1016         struct btree_cache *bc = &c->btree_cache;
1017         struct btree *b;
1018         struct bset_tree *t;
1019         int ret;
1020
1021         EBUG_ON(level >= BTREE_MAX_DEPTH);
1022
1023         if (c->opts.btree_node_mem_ptr_optimization) {
1024                 b = btree_node_mem_ptr(k);
1025                 if (b)
1026                         goto lock_node;
1027         }
1028 retry:
1029         b = btree_cache_find(bc, k);
1030         if (unlikely(!b)) {
1031                 if (nofill)
1032                         goto out;
1033
1034                 b = bch2_btree_node_fill(trans, NULL, k, btree_id,
1035                                          level, SIX_LOCK_read, true);
1036
1037                 /* We raced and found the btree node in the cache */
1038                 if (!b)
1039                         goto retry;
1040
1041                 if (IS_ERR(b) &&
1042                     !bch2_btree_cache_cannibalize_lock(c, NULL))
1043                         goto retry;
1044
1045                 if (IS_ERR(b))
1046                         goto out;
1047         } else {
1048 lock_node:
1049                 ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
1050                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
1051                         return ERR_PTR(ret);
1052
1053                 BUG_ON(ret);
1054
1055                 if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
1056                              b->c.btree_id != btree_id ||
1057                              b->c.level != level)) {
1058                         six_unlock_read(&b->c.lock);
1059                         goto retry;
1060                 }
1061         }
1062
1063         /* XXX: waiting on IO with btree locks held: */
1064         __bch2_btree_node_wait_on_read(b);
1065
1066         prefetch(b->aux_data);
1067
1068         for_each_bset(b, t) {
1069                 void *p = (u64 *) b->aux_data + t->aux_data_offset;
1070
1071                 prefetch(p + L1_CACHE_BYTES * 0);
1072                 prefetch(p + L1_CACHE_BYTES * 1);
1073                 prefetch(p + L1_CACHE_BYTES * 2);
1074         }
1075
1076         /* avoid atomic set bit if it's not needed: */
1077         if (!btree_node_accessed(b))
1078                 set_btree_node_accessed(b);
1079
1080         if (unlikely(btree_node_read_error(b))) {
1081                 six_unlock_read(&b->c.lock);
1082                 b = ERR_PTR(-EIO);
1083                 goto out;
1084         }
1085
1086         EBUG_ON(b->c.btree_id != btree_id);
1087         EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
1088         btree_check_header(c, b);
1089 out:
1090         bch2_btree_cache_cannibalize_unlock(c);
1091         return b;
1092 }
1093
1094 int bch2_btree_node_prefetch(struct btree_trans *trans,
1095                              struct btree_path *path,
1096                              const struct bkey_i *k,
1097                              enum btree_id btree_id, unsigned level)
1098 {
1099         struct bch_fs *c = trans->c;
1100         struct btree_cache *bc = &c->btree_cache;
1101         struct btree *b;
1102
1103         BUG_ON(trans && !btree_node_locked(path, level + 1));
1104         BUG_ON(level >= BTREE_MAX_DEPTH);
1105
1106         b = btree_cache_find(bc, k);
1107         if (b)
1108                 return 0;
1109
1110         b = bch2_btree_node_fill(trans, path, k, btree_id,
1111                                  level, SIX_LOCK_read, false);
1112         return PTR_ERR_OR_ZERO(b);
1113 }
1114
1115 void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
1116 {
1117         struct bch_fs *c = trans->c;
1118         struct btree_cache *bc = &c->btree_cache;
1119         struct btree *b;
1120
1121         b = btree_cache_find(bc, k);
1122         if (!b)
1123                 return;
1124 wait_on_io:
1125         /* not allowed to wait on io with btree locks held: */
1126
1127         /* XXX we're called from btree_gc which will be holding other btree
1128          * nodes locked
1129          */
1130         __bch2_btree_node_wait_on_read(b);
1131         __bch2_btree_node_wait_on_write(b);
1132
1133         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
1134         btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
1135
1136         if (btree_node_dirty(b)) {
1137                 __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
1138                 six_unlock_write(&b->c.lock);
1139                 six_unlock_intent(&b->c.lock);
1140                 goto wait_on_io;
1141         }
1142
1143         BUG_ON(btree_node_dirty(b));
1144
1145         mutex_lock(&bc->lock);
1146         btree_node_data_free(c, b);
1147         bch2_btree_node_hash_remove(bc, b);
1148         mutex_unlock(&bc->lock);
1149
1150         six_unlock_write(&b->c.lock);
1151         six_unlock_intent(&b->c.lock);
1152 }
1153
1154 const char *bch2_btree_id_str(enum btree_id btree)
1155 {
1156         return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
1157 }
1158
1159 void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1160 {
1161         prt_printf(out, "%s level %u/%u\n  ",
1162                bch2_btree_id_str(b->c.btree_id),
1163                b->c.level,
1164                bch2_btree_id_root(c, b->c.btree_id)->level);
1165         bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1166 }
1167
1168 void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
1169 {
1170         struct bset_stats stats;
1171
1172         memset(&stats, 0, sizeof(stats));
1173
1174         bch2_btree_keys_stats(b, &stats);
1175
1176         prt_printf(out, "l %u ", b->c.level);
1177         bch2_bpos_to_text(out, b->data->min_key);
1178         prt_printf(out, " - ");
1179         bch2_bpos_to_text(out, b->data->max_key);
1180         prt_printf(out, ":\n"
1181                "    ptrs: ");
1182         bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
1183         prt_newline(out);
1184
1185         prt_printf(out,
1186                "    format: ");
1187         bch2_bkey_format_to_text(out, &b->format);
1188
1189         prt_printf(out,
1190                "    unpack fn len: %u\n"
1191                "    bytes used %zu/%zu (%zu%% full)\n"
1192                "    sib u64s: %u, %u (merge threshold %u)\n"
1193                "    nr packed keys %u\n"
1194                "    nr unpacked keys %u\n"
1195                "    floats %zu\n"
1196                "    failed unpacked %zu\n",
1197                b->unpack_fn_len,
1198                b->nr.live_u64s * sizeof(u64),
1199                btree_bytes(c) - sizeof(struct btree_node),
1200                b->nr.live_u64s * 100 / btree_max_u64s(c),
1201                b->sib_u64s[0],
1202                b->sib_u64s[1],
1203                c->btree_foreground_merge_threshold,
1204                b->nr.packed_keys,
1205                b->nr.unpacked_keys,
1206                stats.floats,
1207                stats.failed);
1208 }
1209
1210 void bch2_btree_cache_to_text(struct printbuf *out, const struct bch_fs *c)
1211 {
1212         prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used);
1213         prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty));
1214         prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock);
1215 }
This page took 0.109749 seconds and 4 git commands to generate.