1 // SPDX-License-Identifier: GPL-2.0
2 #include <test_progs.h>
13 struct bpf_align_test {
15 struct bpf_insn insns[MAX_INSNS];
21 enum bpf_prog_type prog_type;
22 /* Matches must be in order of increasing line */
23 struct bpf_reg_match matches[MAX_MATCHES];
26 static struct bpf_align_test tests[] = {
27 /* Four tests of known constants. These aren't staggeringly
28 * interesting since we track exact values now.
33 BPF_MOV64_IMM(BPF_REG_3, 2),
34 BPF_MOV64_IMM(BPF_REG_3, 4),
35 BPF_MOV64_IMM(BPF_REG_3, 8),
36 BPF_MOV64_IMM(BPF_REG_3, 16),
37 BPF_MOV64_IMM(BPF_REG_3, 32),
38 BPF_MOV64_IMM(BPF_REG_0, 0),
41 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
55 BPF_MOV64_IMM(BPF_REG_3, 1),
56 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
57 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
58 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
59 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
60 BPF_ALU64_IMM(BPF_RSH, BPF_REG_3, 4),
61 BPF_MOV64_IMM(BPF_REG_4, 32),
62 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
63 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
64 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
65 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
66 BPF_MOV64_IMM(BPF_REG_0, 0),
69 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
89 BPF_MOV64_IMM(BPF_REG_3, 4),
90 BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 4),
91 BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 2),
92 BPF_MOV64_IMM(BPF_REG_4, 8),
93 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
94 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2),
95 BPF_MOV64_IMM(BPF_REG_0, 0),
98 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
113 BPF_MOV64_IMM(BPF_REG_3, 7),
114 BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 1),
115 BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 2),
116 BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 4),
117 BPF_MOV64_IMM(BPF_REG_0, 0),
120 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
131 /* Tests using unknown values */
132 #define PREP_PKT_POINTERS \
133 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
134 offsetof(struct __sk_buff, data)), \
135 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
136 offsetof(struct __sk_buff, data_end))
138 #define LOAD_UNKNOWN(DST_REG) \
140 BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), \
141 BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), \
142 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 1), \
144 BPF_LDX_MEM(BPF_B, DST_REG, BPF_REG_2, 0)
147 .descr = "unknown shift",
149 LOAD_UNKNOWN(BPF_REG_3),
150 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
151 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
152 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
153 BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1),
154 LOAD_UNKNOWN(BPF_REG_4),
155 BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 5),
156 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
157 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
158 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
159 BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1),
160 BPF_MOV64_IMM(BPF_REG_0, 0),
163 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
165 {6, "R0_w", "pkt(off=8,r=8)"},
166 {6, "R3_w", "var_off=(0x0; 0xff)"},
167 {7, "R3_w", "var_off=(0x0; 0x1fe)"},
168 {8, "R3_w", "var_off=(0x0; 0x3fc)"},
169 {9, "R3_w", "var_off=(0x0; 0x7f8)"},
170 {10, "R3_w", "var_off=(0x0; 0xff0)"},
171 {12, "R3_w", "pkt_end()"},
172 {17, "R4_w", "var_off=(0x0; 0xff)"},
173 {18, "R4_w", "var_off=(0x0; 0x1fe0)"},
174 {19, "R4_w", "var_off=(0x0; 0xff0)"},
175 {20, "R4_w", "var_off=(0x0; 0x7f8)"},
176 {21, "R4_w", "var_off=(0x0; 0x3fc)"},
177 {22, "R4_w", "var_off=(0x0; 0x1fe)"},
181 .descr = "unknown mul",
183 LOAD_UNKNOWN(BPF_REG_3),
184 BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
185 BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 1),
186 BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
187 BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2),
188 BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
189 BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 4),
190 BPF_MOV64_REG(BPF_REG_4, BPF_REG_3),
191 BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 8),
192 BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2),
193 BPF_MOV64_IMM(BPF_REG_0, 0),
196 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
198 {6, "R3_w", "var_off=(0x0; 0xff)"},
199 {7, "R4_w", "var_off=(0x0; 0xff)"},
200 {8, "R4_w", "var_off=(0x0; 0xff)"},
201 {9, "R4_w", "var_off=(0x0; 0xff)"},
202 {10, "R4_w", "var_off=(0x0; 0x1fe)"},
203 {11, "R4_w", "var_off=(0x0; 0xff)"},
204 {12, "R4_w", "var_off=(0x0; 0x3fc)"},
205 {13, "R4_w", "var_off=(0x0; 0xff)"},
206 {14, "R4_w", "var_off=(0x0; 0x7f8)"},
207 {15, "R4_w", "var_off=(0x0; 0xff0)"},
211 .descr = "packet const offset",
214 BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
216 BPF_MOV64_IMM(BPF_REG_0, 0),
218 /* Skip over ethernet header. */
219 BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
220 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
221 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
222 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
225 BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 0),
226 BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 1),
227 BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 2),
228 BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 3),
229 BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 0),
230 BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 2),
231 BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
233 BPF_MOV64_IMM(BPF_REG_0, 0),
236 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
238 {2, "R5_w", "pkt(r=0)"},
239 {4, "R5_w", "pkt(off=14,r=0)"},
240 {5, "R4_w", "pkt(off=14,r=0)"},
241 {9, "R2", "pkt(r=18)"},
242 {10, "R5", "pkt(off=14,r=18)"},
243 {10, "R4_w", "var_off=(0x0; 0xff)"},
244 {13, "R4_w", "var_off=(0x0; 0xffff)"},
245 {14, "R4_w", "var_off=(0x0; 0xffff)"},
249 .descr = "packet variable offset",
251 LOAD_UNKNOWN(BPF_REG_6),
252 BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
254 /* First, add a constant to the R5 packet pointer,
255 * then a variable with a known alignment.
257 BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
258 BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
259 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
260 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
261 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
262 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
264 BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
266 /* Now, test in the other direction. Adding first
267 * the variable offset to R5, then the constant.
269 BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
270 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
271 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
272 BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
273 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
274 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
275 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
277 BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
279 /* Test multiple accumulations of unknown values
280 * into a packet pointer.
282 BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
283 BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
284 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
285 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
286 BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 4),
287 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
288 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
289 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
290 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
292 BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0),
294 BPF_MOV64_IMM(BPF_REG_0, 0),
297 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
299 /* Calculated offset in R6 has unknown value, but known
302 {6, "R2_w", "pkt(r=8)"},
303 {7, "R6_w", "var_off=(0x0; 0x3fc)"},
304 /* Offset is added to packet pointer R5, resulting in
305 * known fixed offset, and variable offset from R6.
307 {11, "R5_w", "pkt(id=1,off=14,"},
308 /* At the time the word size load is performed from R5,
309 * it's total offset is NET_IP_ALIGN + reg->off (0) +
310 * reg->aux_off (14) which is 16. Then the variable
311 * offset is considered using reg->aux_off_align which
312 * is 4 and meets the load's requirements.
314 {15, "R4", "var_off=(0x0; 0x3fc)"},
315 {15, "R5", "var_off=(0x0; 0x3fc)"},
316 /* Variable offset is added to R5 packet pointer,
317 * resulting in auxiliary alignment of 4. To avoid BPF
318 * verifier's precision backtracking logging
319 * interfering we also have a no-op R4 = R5
320 * instruction to validate R5 state. We also check
321 * that R4 is what it should be in such case.
323 {18, "R4_w", "var_off=(0x0; 0x3fc)"},
324 {18, "R5_w", "var_off=(0x0; 0x3fc)"},
325 /* Constant offset is added to R5, resulting in
328 {19, "R5_w", "pkt(id=2,off=14,"},
329 /* At the time the word size load is performed from R5,
330 * its total fixed offset is NET_IP_ALIGN + reg->off
331 * (14) which is 16. Then the variable offset is 4-byte
332 * aligned, so the total offset is 4-byte aligned and
333 * meets the load's requirements.
335 {24, "R4", "var_off=(0x0; 0x3fc)"},
336 {24, "R5", "var_off=(0x0; 0x3fc)"},
337 /* Constant offset is added to R5 packet pointer,
338 * resulting in reg->off value of 14.
340 {26, "R5_w", "pkt(off=14,r=8)"},
341 /* Variable offset is added to R5, resulting in a
342 * variable offset of (4n). See comment for insn #18
345 {28, "R4_w", "var_off=(0x0; 0x3fc)"},
346 {28, "R5_w", "var_off=(0x0; 0x3fc)"},
347 /* Constant is added to R5 again, setting reg->off to 18. */
348 {29, "R5_w", "pkt(id=3,off=18,"},
349 /* And once more we add a variable; resulting var_off
350 * is still (4n), fixed offset is not changed.
351 * Also, we create a new reg->id.
353 {31, "R4_w", "var_off=(0x0; 0x7fc)"},
354 {31, "R5_w", "var_off=(0x0; 0x7fc)"},
355 /* At the time the word size load is performed from R5,
356 * its total fixed offset is NET_IP_ALIGN + reg->off (18)
357 * which is 20. Then the variable offset is (4n), so
358 * the total offset is 4-byte aligned and meets the
359 * load's requirements.
361 {35, "R4", "var_off=(0x0; 0x7fc)"},
362 {35, "R5", "var_off=(0x0; 0x7fc)"},
366 .descr = "packet variable offset 2",
368 /* Create an unknown offset, (4n+2)-aligned */
369 LOAD_UNKNOWN(BPF_REG_6),
370 BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
371 BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14),
372 /* Add it to the packet pointer */
373 BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
374 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
375 /* Check bounds and perform a read */
376 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
377 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
378 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
380 BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
381 /* Make a (4n) offset from the value we just read */
382 BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xff),
383 BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
384 /* Add it to the packet pointer */
385 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
386 /* Check bounds and perform a read */
387 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
388 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
389 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
391 BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
392 BPF_MOV64_IMM(BPF_REG_0, 0),
395 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
397 /* Calculated offset in R6 has unknown value, but known
400 {6, "R2_w", "pkt(r=8)"},
401 {7, "R6_w", "var_off=(0x0; 0x3fc)"},
402 /* Adding 14 makes R6 be (4n+2) */
403 {8, "R6_w", "var_off=(0x2; 0x7fc)"},
404 /* Packet pointer has (4n+2) offset */
405 {11, "R5_w", "var_off=(0x2; 0x7fc)"},
406 {12, "R4", "var_off=(0x2; 0x7fc)"},
407 /* At the time the word size load is performed from R5,
408 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
409 * which is 2. Then the variable offset is (4n+2), so
410 * the total offset is 4-byte aligned and meets the
411 * load's requirements.
413 {15, "R5", "var_off=(0x2; 0x7fc)"},
414 /* Newly read value in R6 was shifted left by 2, so has
415 * known alignment of 4.
417 {17, "R6_w", "var_off=(0x0; 0x3fc)"},
418 /* Added (4n) to packet pointer's (4n+2) var_off, giving
421 {19, "R5_w", "var_off=(0x2; 0xffc)"},
422 {20, "R4", "var_off=(0x2; 0xffc)"},
423 /* At the time the word size load is performed from R5,
424 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
425 * which is 2. Then the variable offset is (4n+2), so
426 * the total offset is 4-byte aligned and meets the
427 * load's requirements.
429 {23, "R5", "var_off=(0x2; 0xffc)"},
433 .descr = "dubious pointer arithmetic",
436 BPF_MOV64_IMM(BPF_REG_0, 0),
437 /* (ptr - ptr) << 2 */
438 BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
439 BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_2),
440 BPF_ALU64_IMM(BPF_LSH, BPF_REG_5, 2),
441 /* We have a (4n) value. Let's make a packet offset
442 * out of it. First add 14, to make it a (4n+2)
444 BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
445 /* Then make sure it's nonnegative */
446 BPF_JMP_IMM(BPF_JSGE, BPF_REG_5, 0, 1),
448 /* Add it to packet pointer */
449 BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
450 BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
451 /* Check bounds and perform a read */
452 BPF_MOV64_REG(BPF_REG_4, BPF_REG_6),
453 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
454 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
456 BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_6, 0),
459 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
462 {3, "R5_w", "pkt_end()"},
463 /* (ptr - ptr) << 2 == unknown, (4n) */
464 {5, "R5_w", "var_off=(0x0; 0xfffffffffffffffc)"},
465 /* (4n) + 14 == (4n+2). We blow our bounds, because
466 * the add could overflow.
468 {6, "R5_w", "var_off=(0x2; 0xfffffffffffffffc)"},
470 {9, "R5", "var_off=(0x2; 0x7ffffffffffffffc)"},
471 /* packet pointer + nonnegative (4n+2) */
472 {11, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"},
473 {12, "R4_w", "var_off=(0x2; 0x7ffffffffffffffc)"},
474 /* NET_IP_ALIGN + (4n+2) == (4n), alignment is fine.
475 * We checked the bounds, but it might have been able
476 * to overflow if the packet pointer started in the
477 * upper half of the address space.
478 * So we did not get a 'range' on R6, and the access
481 {15, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"},
485 .descr = "variable subtraction",
487 /* Create an unknown offset, (4n+2)-aligned */
488 LOAD_UNKNOWN(BPF_REG_6),
489 BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
490 BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
491 BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14),
492 /* Create another unknown, (4n)-aligned, and subtract
493 * it from the first one
495 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2),
496 BPF_ALU64_REG(BPF_SUB, BPF_REG_6, BPF_REG_7),
497 /* Bounds-check the result */
498 BPF_JMP_IMM(BPF_JSGE, BPF_REG_6, 0, 1),
500 /* Add it to the packet pointer */
501 BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
502 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6),
503 /* Check bounds and perform a read */
504 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
505 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
506 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
508 BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
511 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
513 /* Calculated offset in R6 has unknown value, but known
516 {6, "R2_w", "pkt(r=8)"},
517 {8, "R6_w", "var_off=(0x0; 0x3fc)"},
518 /* Adding 14 makes R6 be (4n+2) */
519 {9, "R6_w", "var_off=(0x2; 0x7fc)"},
520 /* New unknown value in R7 is (4n) */
521 {10, "R7_w", "var_off=(0x0; 0x3fc)"},
522 /* Subtracting it from R6 blows our unsigned bounds */
523 {11, "R6", "var_off=(0x2; 0xfffffffffffffffc)"},
525 {14, "R6", "var_off=(0x2; 0x7fc)"},
526 /* At the time the word size load is performed from R5,
527 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
528 * which is 2. Then the variable offset is (4n+2), so
529 * the total offset is 4-byte aligned and meets the
530 * load's requirements.
532 {20, "R5", "var_off=(0x2; 0x7fc)"},
536 .descr = "pointer variable subtraction",
538 /* Create an unknown offset, (4n+2)-aligned and bounded
541 LOAD_UNKNOWN(BPF_REG_6),
542 BPF_MOV64_REG(BPF_REG_7, BPF_REG_6),
543 BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xf),
544 BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2),
545 BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14),
546 /* Subtract it from the packet pointer */
547 BPF_MOV64_REG(BPF_REG_5, BPF_REG_2),
548 BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_6),
549 /* Create another unknown, (4n)-aligned and >= 74.
550 * That in fact means >= 76, since 74 % 4 == 2
552 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2),
553 BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 76),
554 /* Add it to the packet pointer */
555 BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_7),
556 /* Check bounds and perform a read */
557 BPF_MOV64_REG(BPF_REG_4, BPF_REG_5),
558 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
559 BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1),
561 BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0),
564 .prog_type = BPF_PROG_TYPE_SCHED_CLS,
566 /* Calculated offset in R6 has unknown value, but known
569 {6, "R2_w", "pkt(r=8)"},
570 {9, "R6_w", "var_off=(0x0; 0x3c)"},
571 /* Adding 14 makes R6 be (4n+2) */
572 {10, "R6_w", "var_off=(0x2; 0x7c)"},
573 /* Subtracting from packet pointer overflows ubounds */
574 {13, "R5_w", "var_off=(0xffffffffffffff82; 0x7c)"},
575 /* New unknown value in R7 is (4n), >= 76 */
576 {14, "R7_w", "var_off=(0x0; 0x7fc)"},
577 /* Adding it to packet pointer gives nice bounds again */
578 {16, "R5_w", "var_off=(0x2; 0x7fc)"},
579 /* At the time the word size load is performed from R5,
580 * its total fixed offset is NET_IP_ALIGN + reg->off (0)
581 * which is 2. Then the variable offset is (4n+2), so
582 * the total offset is 4-byte aligned and meets the
583 * load's requirements.
585 {20, "R5", "var_off=(0x2; 0x7fc)"},
590 static int probe_filter_length(const struct bpf_insn *fp)
594 for (len = MAX_INSNS - 1; len > 0; --len)
595 if (fp[len].code != 0 || fp[len].imm != 0)
600 static char bpf_vlog[32768];
602 static int do_test_single(struct bpf_align_test *test)
604 struct bpf_insn *prog = test->insns;
605 int prog_type = test->prog_type;
606 char bpf_vlog_copy[32768];
607 LIBBPF_OPTS(bpf_prog_load_opts, opts,
608 .prog_flags = BPF_F_STRICT_ALIGNMENT,
610 .log_size = sizeof(bpf_vlog),
613 const char *line_ptr;
619 prog_len = probe_filter_length(prog);
620 fd_prog = bpf_prog_load(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL",
621 prog, prog_len, &opts);
622 if (fd_prog < 0 && test->result != REJECT) {
623 printf("Failed to load program.\n");
624 printf("%s", bpf_vlog);
626 } else if (fd_prog >= 0 && test->result == REJECT) {
627 printf("Unexpected success to load!\n");
628 printf("%s", bpf_vlog);
633 /* We make a local copy so that we can strtok() it */
634 strncpy(bpf_vlog_copy, bpf_vlog, sizeof(bpf_vlog_copy));
635 line_ptr = strtok(bpf_vlog_copy, "\n");
636 for (i = 0; i < MAX_MATCHES; i++) {
637 struct bpf_reg_match m = test->matches[i];
645 sscanf(line_ptr, "%u: ", &cur_line);
647 sscanf(line_ptr, "from %u to %u: ", &tmp, &cur_line);
648 if (cur_line == m.line)
650 line_ptr = strtok(NULL, "\n");
653 printf("Failed to find line %u for match: %s=%s\n",
654 m.line, m.reg, m.match);
656 printf("%s", bpf_vlog);
659 /* Check the next line as well in case the previous line
660 * did not have a corresponding bpf insn. Example:
662 * 0: R1=ctx() R10=fp0
663 * 0: (b7) r3 = 2 ; R3_w=2
665 * Sometimes it's actually two lines below, e.g. when
666 * searching for "6: R3_w=scalar(umax=255,var_off=(0x0; 0xff))":
667 * from 4 to 6: R0_w=pkt(off=8,r=8) R1=ctx() R2_w=pkt(r=8) R3_w=pkt_end() R10=fp0
668 * 6: R0_w=pkt(off=8,r=8) R1=ctx() R2_w=pkt(r=8) R3_w=pkt_end() R10=fp0
669 * 6: (71) r3 = *(u8 *)(r2 +0) ; R2_w=pkt(r=8) R3_w=scalar(umax=255,var_off=(0x0; 0xff))
671 while (!(p = strstr(line_ptr, m.reg)) || !strstr(p, m.match)) {
673 line_ptr = strtok(NULL, "\n");
674 sscanf(line_ptr ?: "", "%u: ", &cur_line);
675 if (!line_ptr || cur_line != m.line)
678 if (cur_line != m.line || !line_ptr || !(p = strstr(line_ptr, m.reg)) || !strstr(p, m.match)) {
679 printf("Failed to find match %u: %s=%s\n", m.line, m.reg, m.match);
681 printf("%s", bpf_vlog);
691 void test_align(void)
695 for (i = 0; i < ARRAY_SIZE(tests); i++) {
696 struct bpf_align_test *test = &tests[i];
698 if (!test__start_subtest(test->descr))
701 ASSERT_OK(do_test_single(test), test->descr);