]> Git Repo - linux.git/blob - include/linux/pagemap.h
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / include / linux / pagemap.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct folio_batch;
20
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22                                         pgoff_t start, pgoff_t end);
23
24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27             S_ISLNK(inode->i_mode))
28                 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32                 pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35
36 int write_inode_now(struct inode *, int sync);
37 int filemap_fdatawrite(struct address_space *);
38 int filemap_flush(struct address_space *);
39 int filemap_fdatawait_keep_errors(struct address_space *mapping);
40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
42                 loff_t start_byte, loff_t end_byte);
43 int filemap_invalidate_inode(struct inode *inode, bool flush,
44                              loff_t start, loff_t end);
45
46 static inline int filemap_fdatawait(struct address_space *mapping)
47 {
48         return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
49 }
50
51 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
52 int filemap_write_and_wait_range(struct address_space *mapping,
53                 loff_t lstart, loff_t lend);
54 int __filemap_fdatawrite_range(struct address_space *mapping,
55                 loff_t start, loff_t end, int sync_mode);
56 int filemap_fdatawrite_range(struct address_space *mapping,
57                 loff_t start, loff_t end);
58 int filemap_check_errors(struct address_space *mapping);
59 void __filemap_set_wb_err(struct address_space *mapping, int err);
60 int filemap_fdatawrite_wbc(struct address_space *mapping,
61                            struct writeback_control *wbc);
62 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
63
64 static inline int filemap_write_and_wait(struct address_space *mapping)
65 {
66         return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
67 }
68
69 /**
70  * filemap_set_wb_err - set a writeback error on an address_space
71  * @mapping: mapping in which to set writeback error
72  * @err: error to be set in mapping
73  *
74  * When writeback fails in some way, we must record that error so that
75  * userspace can be informed when fsync and the like are called.  We endeavor
76  * to report errors on any file that was open at the time of the error.  Some
77  * internal callers also need to know when writeback errors have occurred.
78  *
79  * When a writeback error occurs, most filesystems will want to call
80  * filemap_set_wb_err to record the error in the mapping so that it will be
81  * automatically reported whenever fsync is called on the file.
82  */
83 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
84 {
85         /* Fastpath for common case of no error */
86         if (unlikely(err))
87                 __filemap_set_wb_err(mapping, err);
88 }
89
90 /**
91  * filemap_check_wb_err - has an error occurred since the mark was sampled?
92  * @mapping: mapping to check for writeback errors
93  * @since: previously-sampled errseq_t
94  *
95  * Grab the errseq_t value from the mapping, and see if it has changed "since"
96  * the given value was sampled.
97  *
98  * If it has then report the latest error set, otherwise return 0.
99  */
100 static inline int filemap_check_wb_err(struct address_space *mapping,
101                                         errseq_t since)
102 {
103         return errseq_check(&mapping->wb_err, since);
104 }
105
106 /**
107  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
108  * @mapping: mapping to be sampled
109  *
110  * Writeback errors are always reported relative to a particular sample point
111  * in the past. This function provides those sample points.
112  */
113 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
114 {
115         return errseq_sample(&mapping->wb_err);
116 }
117
118 /**
119  * file_sample_sb_err - sample the current errseq_t to test for later errors
120  * @file: file pointer to be sampled
121  *
122  * Grab the most current superblock-level errseq_t value for the given
123  * struct file.
124  */
125 static inline errseq_t file_sample_sb_err(struct file *file)
126 {
127         return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
128 }
129
130 /*
131  * Flush file data before changing attributes.  Caller must hold any locks
132  * required to prevent further writes to this file until we're done setting
133  * flags.
134  */
135 static inline int inode_drain_writes(struct inode *inode)
136 {
137         inode_dio_wait(inode);
138         return filemap_write_and_wait(inode->i_mapping);
139 }
140
141 static inline bool mapping_empty(struct address_space *mapping)
142 {
143         return xa_empty(&mapping->i_pages);
144 }
145
146 /*
147  * mapping_shrinkable - test if page cache state allows inode reclaim
148  * @mapping: the page cache mapping
149  *
150  * This checks the mapping's cache state for the pupose of inode
151  * reclaim and LRU management.
152  *
153  * The caller is expected to hold the i_lock, but is not required to
154  * hold the i_pages lock, which usually protects cache state. That's
155  * because the i_lock and the list_lru lock that protect the inode and
156  * its LRU state don't nest inside the irq-safe i_pages lock.
157  *
158  * Cache deletions are performed under the i_lock, which ensures that
159  * when an inode goes empty, it will reliably get queued on the LRU.
160  *
161  * Cache additions do not acquire the i_lock and may race with this
162  * check, in which case we'll report the inode as shrinkable when it
163  * has cache pages. This is okay: the shrinker also checks the
164  * refcount and the referenced bit, which will be elevated or set in
165  * the process of adding new cache pages to an inode.
166  */
167 static inline bool mapping_shrinkable(struct address_space *mapping)
168 {
169         void *head;
170
171         /*
172          * On highmem systems, there could be lowmem pressure from the
173          * inodes before there is highmem pressure from the page
174          * cache. Make inodes shrinkable regardless of cache state.
175          */
176         if (IS_ENABLED(CONFIG_HIGHMEM))
177                 return true;
178
179         /* Cache completely empty? Shrink away. */
180         head = rcu_access_pointer(mapping->i_pages.xa_head);
181         if (!head)
182                 return true;
183
184         /*
185          * The xarray stores single offset-0 entries directly in the
186          * head pointer, which allows non-resident page cache entries
187          * to escape the shadow shrinker's list of xarray nodes. The
188          * inode shrinker needs to pick them up under memory pressure.
189          */
190         if (!xa_is_node(head) && xa_is_value(head))
191                 return true;
192
193         return false;
194 }
195
196 /*
197  * Bits in mapping->flags.
198  */
199 enum mapping_flags {
200         AS_EIO          = 0,    /* IO error on async write */
201         AS_ENOSPC       = 1,    /* ENOSPC on async write */
202         AS_MM_ALL_LOCKS = 2,    /* under mm_take_all_locks() */
203         AS_UNEVICTABLE  = 3,    /* e.g., ramdisk, SHM_LOCK */
204         AS_EXITING      = 4,    /* final truncate in progress */
205         /* writeback related tags are not used */
206         AS_NO_WRITEBACK_TAGS = 5,
207         AS_LARGE_FOLIO_SUPPORT = 6,
208         AS_RELEASE_ALWAYS,      /* Call ->release_folio(), even if no private data */
209         AS_STABLE_WRITES,       /* must wait for writeback before modifying
210                                    folio contents */
211         AS_UNMOVABLE,           /* The mapping cannot be moved, ever */
212 };
213
214 /**
215  * mapping_set_error - record a writeback error in the address_space
216  * @mapping: the mapping in which an error should be set
217  * @error: the error to set in the mapping
218  *
219  * When writeback fails in some way, we must record that error so that
220  * userspace can be informed when fsync and the like are called.  We endeavor
221  * to report errors on any file that was open at the time of the error.  Some
222  * internal callers also need to know when writeback errors have occurred.
223  *
224  * When a writeback error occurs, most filesystems will want to call
225  * mapping_set_error to record the error in the mapping so that it can be
226  * reported when the application calls fsync(2).
227  */
228 static inline void mapping_set_error(struct address_space *mapping, int error)
229 {
230         if (likely(!error))
231                 return;
232
233         /* Record in wb_err for checkers using errseq_t based tracking */
234         __filemap_set_wb_err(mapping, error);
235
236         /* Record it in superblock */
237         if (mapping->host)
238                 errseq_set(&mapping->host->i_sb->s_wb_err, error);
239
240         /* Record it in flags for now, for legacy callers */
241         if (error == -ENOSPC)
242                 set_bit(AS_ENOSPC, &mapping->flags);
243         else
244                 set_bit(AS_EIO, &mapping->flags);
245 }
246
247 static inline void mapping_set_unevictable(struct address_space *mapping)
248 {
249         set_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251
252 static inline void mapping_clear_unevictable(struct address_space *mapping)
253 {
254         clear_bit(AS_UNEVICTABLE, &mapping->flags);
255 }
256
257 static inline bool mapping_unevictable(struct address_space *mapping)
258 {
259         return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261
262 static inline void mapping_set_exiting(struct address_space *mapping)
263 {
264         set_bit(AS_EXITING, &mapping->flags);
265 }
266
267 static inline int mapping_exiting(struct address_space *mapping)
268 {
269         return test_bit(AS_EXITING, &mapping->flags);
270 }
271
272 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
273 {
274         set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
275 }
276
277 static inline int mapping_use_writeback_tags(struct address_space *mapping)
278 {
279         return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
280 }
281
282 static inline bool mapping_release_always(const struct address_space *mapping)
283 {
284         return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
285 }
286
287 static inline void mapping_set_release_always(struct address_space *mapping)
288 {
289         set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
290 }
291
292 static inline void mapping_clear_release_always(struct address_space *mapping)
293 {
294         clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296
297 static inline bool mapping_stable_writes(const struct address_space *mapping)
298 {
299         return test_bit(AS_STABLE_WRITES, &mapping->flags);
300 }
301
302 static inline void mapping_set_stable_writes(struct address_space *mapping)
303 {
304         set_bit(AS_STABLE_WRITES, &mapping->flags);
305 }
306
307 static inline void mapping_clear_stable_writes(struct address_space *mapping)
308 {
309         clear_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311
312 static inline void mapping_set_unmovable(struct address_space *mapping)
313 {
314         /*
315          * It's expected unmovable mappings are also unevictable. Compaction
316          * migrate scanner (isolate_migratepages_block()) relies on this to
317          * reduce page locking.
318          */
319         set_bit(AS_UNEVICTABLE, &mapping->flags);
320         set_bit(AS_UNMOVABLE, &mapping->flags);
321 }
322
323 static inline bool mapping_unmovable(struct address_space *mapping)
324 {
325         return test_bit(AS_UNMOVABLE, &mapping->flags);
326 }
327
328 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
329 {
330         return mapping->gfp_mask;
331 }
332
333 /* Restricts the given gfp_mask to what the mapping allows. */
334 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
335                 gfp_t gfp_mask)
336 {
337         return mapping_gfp_mask(mapping) & gfp_mask;
338 }
339
340 /*
341  * This is non-atomic.  Only to be used before the mapping is activated.
342  * Probably needs a barrier...
343  */
344 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
345 {
346         m->gfp_mask = mask;
347 }
348
349 /**
350  * mapping_set_large_folios() - Indicate the file supports large folios.
351  * @mapping: The file.
352  *
353  * The filesystem should call this function in its inode constructor to
354  * indicate that the VFS can use large folios to cache the contents of
355  * the file.
356  *
357  * Context: This should not be called while the inode is active as it
358  * is non-atomic.
359  */
360 static inline void mapping_set_large_folios(struct address_space *mapping)
361 {
362         __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
363 }
364
365 /*
366  * Large folio support currently depends on THP.  These dependencies are
367  * being worked on but are not yet fixed.
368  */
369 static inline bool mapping_large_folio_support(struct address_space *mapping)
370 {
371         return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
372                 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
373 }
374
375 static inline int filemap_nr_thps(struct address_space *mapping)
376 {
377 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
378         return atomic_read(&mapping->nr_thps);
379 #else
380         return 0;
381 #endif
382 }
383
384 static inline void filemap_nr_thps_inc(struct address_space *mapping)
385 {
386 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
387         if (!mapping_large_folio_support(mapping))
388                 atomic_inc(&mapping->nr_thps);
389 #else
390         WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
391 #endif
392 }
393
394 static inline void filemap_nr_thps_dec(struct address_space *mapping)
395 {
396 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
397         if (!mapping_large_folio_support(mapping))
398                 atomic_dec(&mapping->nr_thps);
399 #else
400         WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
401 #endif
402 }
403
404 struct address_space *page_mapping(struct page *);
405 struct address_space *folio_mapping(struct folio *);
406 struct address_space *swapcache_mapping(struct folio *);
407
408 /**
409  * folio_file_mapping - Find the mapping this folio belongs to.
410  * @folio: The folio.
411  *
412  * For folios which are in the page cache, return the mapping that this
413  * page belongs to.  Folios in the swap cache return the mapping of the
414  * swap file or swap device where the data is stored.  This is different
415  * from the mapping returned by folio_mapping().  The only reason to
416  * use it is if, like NFS, you return 0 from ->activate_swapfile.
417  *
418  * Do not call this for folios which aren't in the page cache or swap cache.
419  */
420 static inline struct address_space *folio_file_mapping(struct folio *folio)
421 {
422         if (unlikely(folio_test_swapcache(folio)))
423                 return swapcache_mapping(folio);
424
425         return folio->mapping;
426 }
427
428 /**
429  * folio_flush_mapping - Find the file mapping this folio belongs to.
430  * @folio: The folio.
431  *
432  * For folios which are in the page cache, return the mapping that this
433  * page belongs to.  Anonymous folios return NULL, even if they're in
434  * the swap cache.  Other kinds of folio also return NULL.
435  *
436  * This is ONLY used by architecture cache flushing code.  If you aren't
437  * writing cache flushing code, you want either folio_mapping() or
438  * folio_file_mapping().
439  */
440 static inline struct address_space *folio_flush_mapping(struct folio *folio)
441 {
442         if (unlikely(folio_test_swapcache(folio)))
443                 return NULL;
444
445         return folio_mapping(folio);
446 }
447
448 static inline struct address_space *page_file_mapping(struct page *page)
449 {
450         return folio_file_mapping(page_folio(page));
451 }
452
453 /**
454  * folio_inode - Get the host inode for this folio.
455  * @folio: The folio.
456  *
457  * For folios which are in the page cache, return the inode that this folio
458  * belongs to.
459  *
460  * Do not call this for folios which aren't in the page cache.
461  */
462 static inline struct inode *folio_inode(struct folio *folio)
463 {
464         return folio->mapping->host;
465 }
466
467 /**
468  * folio_attach_private - Attach private data to a folio.
469  * @folio: Folio to attach data to.
470  * @data: Data to attach to folio.
471  *
472  * Attaching private data to a folio increments the page's reference count.
473  * The data must be detached before the folio will be freed.
474  */
475 static inline void folio_attach_private(struct folio *folio, void *data)
476 {
477         folio_get(folio);
478         folio->private = data;
479         folio_set_private(folio);
480 }
481
482 /**
483  * folio_change_private - Change private data on a folio.
484  * @folio: Folio to change the data on.
485  * @data: Data to set on the folio.
486  *
487  * Change the private data attached to a folio and return the old
488  * data.  The page must previously have had data attached and the data
489  * must be detached before the folio will be freed.
490  *
491  * Return: Data that was previously attached to the folio.
492  */
493 static inline void *folio_change_private(struct folio *folio, void *data)
494 {
495         void *old = folio_get_private(folio);
496
497         folio->private = data;
498         return old;
499 }
500
501 /**
502  * folio_detach_private - Detach private data from a folio.
503  * @folio: Folio to detach data from.
504  *
505  * Removes the data that was previously attached to the folio and decrements
506  * the refcount on the page.
507  *
508  * Return: Data that was attached to the folio.
509  */
510 static inline void *folio_detach_private(struct folio *folio)
511 {
512         void *data = folio_get_private(folio);
513
514         if (!folio_test_private(folio))
515                 return NULL;
516         folio_clear_private(folio);
517         folio->private = NULL;
518         folio_put(folio);
519
520         return data;
521 }
522
523 static inline void attach_page_private(struct page *page, void *data)
524 {
525         folio_attach_private(page_folio(page), data);
526 }
527
528 static inline void *detach_page_private(struct page *page)
529 {
530         return folio_detach_private(page_folio(page));
531 }
532
533 /*
534  * There are some parts of the kernel which assume that PMD entries
535  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
536  * limit the maximum allocation order to PMD size.  I'm not aware of any
537  * assumptions about maximum order if THP are disabled, but 8 seems like
538  * a good order (that's 1MB if you're using 4kB pages)
539  */
540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
541 #define MAX_PAGECACHE_ORDER     HPAGE_PMD_ORDER
542 #else
543 #define MAX_PAGECACHE_ORDER     8
544 #endif
545
546 #ifdef CONFIG_NUMA
547 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
548 #else
549 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
550 {
551         return folio_alloc_noprof(gfp, order);
552 }
553 #endif
554
555 #define filemap_alloc_folio(...)                                \
556         alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
557
558 static inline struct page *__page_cache_alloc(gfp_t gfp)
559 {
560         return &filemap_alloc_folio(gfp, 0)->page;
561 }
562
563 static inline gfp_t readahead_gfp_mask(struct address_space *x)
564 {
565         return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
566 }
567
568 typedef int filler_t(struct file *, struct folio *);
569
570 pgoff_t page_cache_next_miss(struct address_space *mapping,
571                              pgoff_t index, unsigned long max_scan);
572 pgoff_t page_cache_prev_miss(struct address_space *mapping,
573                              pgoff_t index, unsigned long max_scan);
574
575 /**
576  * typedef fgf_t - Flags for getting folios from the page cache.
577  *
578  * Most users of the page cache will not need to use these flags;
579  * there are convenience functions such as filemap_get_folio() and
580  * filemap_lock_folio().  For users which need more control over exactly
581  * what is done with the folios, these flags to __filemap_get_folio()
582  * are available.
583  *
584  * * %FGP_ACCESSED - The folio will be marked accessed.
585  * * %FGP_LOCK - The folio is returned locked.
586  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
587  *   added to the page cache and the VM's LRU list.  The folio is
588  *   returned locked.
589  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
590  *   folio is already in cache.  If the folio was allocated, unlock it
591  *   before returning so the caller can do the same dance.
592  * * %FGP_WRITE - The folio will be written to by the caller.
593  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
594  * * %FGP_NOWAIT - Don't block on the folio lock.
595  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
596  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
597  *   implementation.
598  */
599 typedef unsigned int __bitwise fgf_t;
600
601 #define FGP_ACCESSED            ((__force fgf_t)0x00000001)
602 #define FGP_LOCK                ((__force fgf_t)0x00000002)
603 #define FGP_CREAT               ((__force fgf_t)0x00000004)
604 #define FGP_WRITE               ((__force fgf_t)0x00000008)
605 #define FGP_NOFS                ((__force fgf_t)0x00000010)
606 #define FGP_NOWAIT              ((__force fgf_t)0x00000020)
607 #define FGP_FOR_MMAP            ((__force fgf_t)0x00000040)
608 #define FGP_STABLE              ((__force fgf_t)0x00000080)
609 #define FGF_GET_ORDER(fgf)      (((__force unsigned)fgf) >> 26) /* top 6 bits */
610
611 #define FGP_WRITEBEGIN          (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
612
613 /**
614  * fgf_set_order - Encode a length in the fgf_t flags.
615  * @size: The suggested size of the folio to create.
616  *
617  * The caller of __filemap_get_folio() can use this to suggest a preferred
618  * size for the folio that is created.  If there is already a folio at
619  * the index, it will be returned, no matter what its size.  If a folio
620  * is freshly created, it may be of a different size than requested
621  * due to alignment constraints, memory pressure, or the presence of
622  * other folios at nearby indices.
623  */
624 static inline fgf_t fgf_set_order(size_t size)
625 {
626         unsigned int shift = ilog2(size);
627
628         if (shift <= PAGE_SHIFT)
629                 return 0;
630         return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
631 }
632
633 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
634 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
635                 fgf_t fgp_flags, gfp_t gfp);
636 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
637                 fgf_t fgp_flags, gfp_t gfp);
638
639 /**
640  * filemap_get_folio - Find and get a folio.
641  * @mapping: The address_space to search.
642  * @index: The page index.
643  *
644  * Looks up the page cache entry at @mapping & @index.  If a folio is
645  * present, it is returned with an increased refcount.
646  *
647  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
648  * this index.  Will not return a shadow, swap or DAX entry.
649  */
650 static inline struct folio *filemap_get_folio(struct address_space *mapping,
651                                         pgoff_t index)
652 {
653         return __filemap_get_folio(mapping, index, 0, 0);
654 }
655
656 /**
657  * filemap_lock_folio - Find and lock a folio.
658  * @mapping: The address_space to search.
659  * @index: The page index.
660  *
661  * Looks up the page cache entry at @mapping & @index.  If a folio is
662  * present, it is returned locked with an increased refcount.
663  *
664  * Context: May sleep.
665  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
666  * this index.  Will not return a shadow, swap or DAX entry.
667  */
668 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
669                                         pgoff_t index)
670 {
671         return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
672 }
673
674 /**
675  * filemap_grab_folio - grab a folio from the page cache
676  * @mapping: The address space to search
677  * @index: The page index
678  *
679  * Looks up the page cache entry at @mapping & @index. If no folio is found,
680  * a new folio is created. The folio is locked, marked as accessed, and
681  * returned.
682  *
683  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
684  * and failed to create a folio.
685  */
686 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
687                                         pgoff_t index)
688 {
689         return __filemap_get_folio(mapping, index,
690                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
691                         mapping_gfp_mask(mapping));
692 }
693
694 /**
695  * find_get_page - find and get a page reference
696  * @mapping: the address_space to search
697  * @offset: the page index
698  *
699  * Looks up the page cache slot at @mapping & @offset.  If there is a
700  * page cache page, it is returned with an increased refcount.
701  *
702  * Otherwise, %NULL is returned.
703  */
704 static inline struct page *find_get_page(struct address_space *mapping,
705                                         pgoff_t offset)
706 {
707         return pagecache_get_page(mapping, offset, 0, 0);
708 }
709
710 static inline struct page *find_get_page_flags(struct address_space *mapping,
711                                         pgoff_t offset, fgf_t fgp_flags)
712 {
713         return pagecache_get_page(mapping, offset, fgp_flags, 0);
714 }
715
716 /**
717  * find_lock_page - locate, pin and lock a pagecache page
718  * @mapping: the address_space to search
719  * @index: the page index
720  *
721  * Looks up the page cache entry at @mapping & @index.  If there is a
722  * page cache page, it is returned locked and with an increased
723  * refcount.
724  *
725  * Context: May sleep.
726  * Return: A struct page or %NULL if there is no page in the cache for this
727  * index.
728  */
729 static inline struct page *find_lock_page(struct address_space *mapping,
730                                         pgoff_t index)
731 {
732         return pagecache_get_page(mapping, index, FGP_LOCK, 0);
733 }
734
735 /**
736  * find_or_create_page - locate or add a pagecache page
737  * @mapping: the page's address_space
738  * @index: the page's index into the mapping
739  * @gfp_mask: page allocation mode
740  *
741  * Looks up the page cache slot at @mapping & @offset.  If there is a
742  * page cache page, it is returned locked and with an increased
743  * refcount.
744  *
745  * If the page is not present, a new page is allocated using @gfp_mask
746  * and added to the page cache and the VM's LRU list.  The page is
747  * returned locked and with an increased refcount.
748  *
749  * On memory exhaustion, %NULL is returned.
750  *
751  * find_or_create_page() may sleep, even if @gfp_flags specifies an
752  * atomic allocation!
753  */
754 static inline struct page *find_or_create_page(struct address_space *mapping,
755                                         pgoff_t index, gfp_t gfp_mask)
756 {
757         return pagecache_get_page(mapping, index,
758                                         FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
759                                         gfp_mask);
760 }
761
762 /**
763  * grab_cache_page_nowait - returns locked page at given index in given cache
764  * @mapping: target address_space
765  * @index: the page index
766  *
767  * Same as grab_cache_page(), but do not wait if the page is unavailable.
768  * This is intended for speculative data generators, where the data can
769  * be regenerated if the page couldn't be grabbed.  This routine should
770  * be safe to call while holding the lock for another page.
771  *
772  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
773  * and deadlock against the caller's locked page.
774  */
775 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
776                                 pgoff_t index)
777 {
778         return pagecache_get_page(mapping, index,
779                         FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
780                         mapping_gfp_mask(mapping));
781 }
782
783 #define swapcache_index(folio)  __page_file_index(&(folio)->page)
784
785 /**
786  * folio_index - File index of a folio.
787  * @folio: The folio.
788  *
789  * For a folio which is either in the page cache or the swap cache,
790  * return its index within the address_space it belongs to.  If you know
791  * the page is definitely in the page cache, you can look at the folio's
792  * index directly.
793  *
794  * Return: The index (offset in units of pages) of a folio in its file.
795  */
796 static inline pgoff_t folio_index(struct folio *folio)
797 {
798         if (unlikely(folio_test_swapcache(folio)))
799                 return swapcache_index(folio);
800         return folio->index;
801 }
802
803 /**
804  * folio_next_index - Get the index of the next folio.
805  * @folio: The current folio.
806  *
807  * Return: The index of the folio which follows this folio in the file.
808  */
809 static inline pgoff_t folio_next_index(struct folio *folio)
810 {
811         return folio->index + folio_nr_pages(folio);
812 }
813
814 /**
815  * folio_file_page - The page for a particular index.
816  * @folio: The folio which contains this index.
817  * @index: The index we want to look up.
818  *
819  * Sometimes after looking up a folio in the page cache, we need to
820  * obtain the specific page for an index (eg a page fault).
821  *
822  * Return: The page containing the file data for this index.
823  */
824 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
825 {
826         return folio_page(folio, index & (folio_nr_pages(folio) - 1));
827 }
828
829 /**
830  * folio_contains - Does this folio contain this index?
831  * @folio: The folio.
832  * @index: The page index within the file.
833  *
834  * Context: The caller should have the page locked in order to prevent
835  * (eg) shmem from moving the page between the page cache and swap cache
836  * and changing its index in the middle of the operation.
837  * Return: true or false.
838  */
839 static inline bool folio_contains(struct folio *folio, pgoff_t index)
840 {
841         return index - folio_index(folio) < folio_nr_pages(folio);
842 }
843
844 /*
845  * Given the page we found in the page cache, return the page corresponding
846  * to this index in the file
847  */
848 static inline struct page *find_subpage(struct page *head, pgoff_t index)
849 {
850         /* HugeTLBfs wants the head page regardless */
851         if (PageHuge(head))
852                 return head;
853
854         return head + (index & (thp_nr_pages(head) - 1));
855 }
856
857 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
858                 pgoff_t end, struct folio_batch *fbatch);
859 unsigned filemap_get_folios_contig(struct address_space *mapping,
860                 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
861 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
862                 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
863
864 struct page *grab_cache_page_write_begin(struct address_space *mapping,
865                         pgoff_t index);
866
867 /*
868  * Returns locked page at given index in given cache, creating it if needed.
869  */
870 static inline struct page *grab_cache_page(struct address_space *mapping,
871                                                                 pgoff_t index)
872 {
873         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
874 }
875
876 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
877                 filler_t *filler, struct file *file);
878 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
879                 gfp_t flags);
880 struct page *read_cache_page(struct address_space *, pgoff_t index,
881                 filler_t *filler, struct file *file);
882 extern struct page * read_cache_page_gfp(struct address_space *mapping,
883                                 pgoff_t index, gfp_t gfp_mask);
884
885 static inline struct page *read_mapping_page(struct address_space *mapping,
886                                 pgoff_t index, struct file *file)
887 {
888         return read_cache_page(mapping, index, NULL, file);
889 }
890
891 static inline struct folio *read_mapping_folio(struct address_space *mapping,
892                                 pgoff_t index, struct file *file)
893 {
894         return read_cache_folio(mapping, index, NULL, file);
895 }
896
897 /*
898  * Get the offset in PAGE_SIZE (even for hugetlb pages).
899  */
900 static inline pgoff_t page_to_pgoff(struct page *page)
901 {
902         struct page *head;
903
904         if (likely(!PageTransTail(page)))
905                 return page->index;
906
907         head = compound_head(page);
908         /*
909          *  We don't initialize ->index for tail pages: calculate based on
910          *  head page
911          */
912         return head->index + page - head;
913 }
914
915 /*
916  * Return byte-offset into filesystem object for page.
917  */
918 static inline loff_t page_offset(struct page *page)
919 {
920         return ((loff_t)page->index) << PAGE_SHIFT;
921 }
922
923 static inline loff_t page_file_offset(struct page *page)
924 {
925         return ((loff_t)page_index(page)) << PAGE_SHIFT;
926 }
927
928 /**
929  * folio_pos - Returns the byte position of this folio in its file.
930  * @folio: The folio.
931  */
932 static inline loff_t folio_pos(struct folio *folio)
933 {
934         return page_offset(&folio->page);
935 }
936
937 /**
938  * folio_file_pos - Returns the byte position of this folio in its file.
939  * @folio: The folio.
940  *
941  * This differs from folio_pos() for folios which belong to a swap file.
942  * NFS is the only filesystem today which needs to use folio_file_pos().
943  */
944 static inline loff_t folio_file_pos(struct folio *folio)
945 {
946         return page_file_offset(&folio->page);
947 }
948
949 /*
950  * Get the offset in PAGE_SIZE (even for hugetlb folios).
951  */
952 static inline pgoff_t folio_pgoff(struct folio *folio)
953 {
954         return folio->index;
955 }
956
957 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
958                                         unsigned long address)
959 {
960         pgoff_t pgoff;
961         pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
962         pgoff += vma->vm_pgoff;
963         return pgoff;
964 }
965
966 struct wait_page_key {
967         struct folio *folio;
968         int bit_nr;
969         int page_match;
970 };
971
972 struct wait_page_queue {
973         struct folio *folio;
974         int bit_nr;
975         wait_queue_entry_t wait;
976 };
977
978 static inline bool wake_page_match(struct wait_page_queue *wait_page,
979                                   struct wait_page_key *key)
980 {
981         if (wait_page->folio != key->folio)
982                return false;
983         key->page_match = 1;
984
985         if (wait_page->bit_nr != key->bit_nr)
986                 return false;
987
988         return true;
989 }
990
991 void __folio_lock(struct folio *folio);
992 int __folio_lock_killable(struct folio *folio);
993 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
994 void unlock_page(struct page *page);
995 void folio_unlock(struct folio *folio);
996
997 /**
998  * folio_trylock() - Attempt to lock a folio.
999  * @folio: The folio to attempt to lock.
1000  *
1001  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1002  * when the locks are being taken in the wrong order, or if making
1003  * progress through a batch of folios is more important than processing
1004  * them in order).  Usually folio_lock() is the correct function to call.
1005  *
1006  * Context: Any context.
1007  * Return: Whether the lock was successfully acquired.
1008  */
1009 static inline bool folio_trylock(struct folio *folio)
1010 {
1011         return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1012 }
1013
1014 /*
1015  * Return true if the page was successfully locked
1016  */
1017 static inline bool trylock_page(struct page *page)
1018 {
1019         return folio_trylock(page_folio(page));
1020 }
1021
1022 /**
1023  * folio_lock() - Lock this folio.
1024  * @folio: The folio to lock.
1025  *
1026  * The folio lock protects against many things, probably more than it
1027  * should.  It is primarily held while a folio is being brought uptodate,
1028  * either from its backing file or from swap.  It is also held while a
1029  * folio is being truncated from its address_space, so holding the lock
1030  * is sufficient to keep folio->mapping stable.
1031  *
1032  * The folio lock is also held while write() is modifying the page to
1033  * provide POSIX atomicity guarantees (as long as the write does not
1034  * cross a page boundary).  Other modifications to the data in the folio
1035  * do not hold the folio lock and can race with writes, eg DMA and stores
1036  * to mapped pages.
1037  *
1038  * Context: May sleep.  If you need to acquire the locks of two or
1039  * more folios, they must be in order of ascending index, if they are
1040  * in the same address_space.  If they are in different address_spaces,
1041  * acquire the lock of the folio which belongs to the address_space which
1042  * has the lowest address in memory first.
1043  */
1044 static inline void folio_lock(struct folio *folio)
1045 {
1046         might_sleep();
1047         if (!folio_trylock(folio))
1048                 __folio_lock(folio);
1049 }
1050
1051 /**
1052  * lock_page() - Lock the folio containing this page.
1053  * @page: The page to lock.
1054  *
1055  * See folio_lock() for a description of what the lock protects.
1056  * This is a legacy function and new code should probably use folio_lock()
1057  * instead.
1058  *
1059  * Context: May sleep.  Pages in the same folio share a lock, so do not
1060  * attempt to lock two pages which share a folio.
1061  */
1062 static inline void lock_page(struct page *page)
1063 {
1064         struct folio *folio;
1065         might_sleep();
1066
1067         folio = page_folio(page);
1068         if (!folio_trylock(folio))
1069                 __folio_lock(folio);
1070 }
1071
1072 /**
1073  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1074  * @folio: The folio to lock.
1075  *
1076  * Attempts to lock the folio, like folio_lock(), except that the sleep
1077  * to acquire the lock is interruptible by a fatal signal.
1078  *
1079  * Context: May sleep; see folio_lock().
1080  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1081  */
1082 static inline int folio_lock_killable(struct folio *folio)
1083 {
1084         might_sleep();
1085         if (!folio_trylock(folio))
1086                 return __folio_lock_killable(folio);
1087         return 0;
1088 }
1089
1090 /*
1091  * folio_lock_or_retry - Lock the folio, unless this would block and the
1092  * caller indicated that it can handle a retry.
1093  *
1094  * Return value and mmap_lock implications depend on flags; see
1095  * __folio_lock_or_retry().
1096  */
1097 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1098                                              struct vm_fault *vmf)
1099 {
1100         might_sleep();
1101         if (!folio_trylock(folio))
1102                 return __folio_lock_or_retry(folio, vmf);
1103         return 0;
1104 }
1105
1106 /*
1107  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1108  * and should not be used directly.
1109  */
1110 void folio_wait_bit(struct folio *folio, int bit_nr);
1111 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1112
1113 /* 
1114  * Wait for a folio to be unlocked.
1115  *
1116  * This must be called with the caller "holding" the folio,
1117  * ie with increased folio reference count so that the folio won't
1118  * go away during the wait.
1119  */
1120 static inline void folio_wait_locked(struct folio *folio)
1121 {
1122         if (folio_test_locked(folio))
1123                 folio_wait_bit(folio, PG_locked);
1124 }
1125
1126 static inline int folio_wait_locked_killable(struct folio *folio)
1127 {
1128         if (!folio_test_locked(folio))
1129                 return 0;
1130         return folio_wait_bit_killable(folio, PG_locked);
1131 }
1132
1133 static inline void wait_on_page_locked(struct page *page)
1134 {
1135         folio_wait_locked(page_folio(page));
1136 }
1137
1138 void folio_end_read(struct folio *folio, bool success);
1139 void wait_on_page_writeback(struct page *page);
1140 void folio_wait_writeback(struct folio *folio);
1141 int folio_wait_writeback_killable(struct folio *folio);
1142 void end_page_writeback(struct page *page);
1143 void folio_end_writeback(struct folio *folio);
1144 void wait_for_stable_page(struct page *page);
1145 void folio_wait_stable(struct folio *folio);
1146 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1147 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1148 void __folio_cancel_dirty(struct folio *folio);
1149 static inline void folio_cancel_dirty(struct folio *folio)
1150 {
1151         /* Avoid atomic ops, locking, etc. when not actually needed. */
1152         if (folio_test_dirty(folio))
1153                 __folio_cancel_dirty(folio);
1154 }
1155 bool folio_clear_dirty_for_io(struct folio *folio);
1156 bool clear_page_dirty_for_io(struct page *page);
1157 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1158 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1159
1160 #ifdef CONFIG_MIGRATION
1161 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1162                 struct folio *src, enum migrate_mode mode);
1163 #else
1164 #define filemap_migrate_folio NULL
1165 #endif
1166 void folio_end_private_2(struct folio *folio);
1167 void folio_wait_private_2(struct folio *folio);
1168 int folio_wait_private_2_killable(struct folio *folio);
1169
1170 /*
1171  * Add an arbitrary waiter to a page's wait queue
1172  */
1173 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1174
1175 /*
1176  * Fault in userspace address range.
1177  */
1178 size_t fault_in_writeable(char __user *uaddr, size_t size);
1179 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1180 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1181 size_t fault_in_readable(const char __user *uaddr, size_t size);
1182
1183 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1184                 pgoff_t index, gfp_t gfp);
1185 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1186                 pgoff_t index, gfp_t gfp);
1187 void filemap_remove_folio(struct folio *folio);
1188 void __filemap_remove_folio(struct folio *folio, void *shadow);
1189 void replace_page_cache_folio(struct folio *old, struct folio *new);
1190 void delete_from_page_cache_batch(struct address_space *mapping,
1191                                   struct folio_batch *fbatch);
1192 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1193 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1194                 int whence);
1195
1196 /* Must be non-static for BPF error injection */
1197 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1198                 pgoff_t index, gfp_t gfp, void **shadowp);
1199
1200 bool filemap_range_has_writeback(struct address_space *mapping,
1201                                  loff_t start_byte, loff_t end_byte);
1202
1203 /**
1204  * filemap_range_needs_writeback - check if range potentially needs writeback
1205  * @mapping:           address space within which to check
1206  * @start_byte:        offset in bytes where the range starts
1207  * @end_byte:          offset in bytes where the range ends (inclusive)
1208  *
1209  * Find at least one page in the range supplied, usually used to check if
1210  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1211  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1212  * filemap_write_and_wait_range() before proceeding.
1213  *
1214  * Return: %true if the caller should do filemap_write_and_wait_range() before
1215  * doing O_DIRECT to a page in this range, %false otherwise.
1216  */
1217 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1218                                                  loff_t start_byte,
1219                                                  loff_t end_byte)
1220 {
1221         if (!mapping->nrpages)
1222                 return false;
1223         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1224             !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1225                 return false;
1226         return filemap_range_has_writeback(mapping, start_byte, end_byte);
1227 }
1228
1229 /**
1230  * struct readahead_control - Describes a readahead request.
1231  *
1232  * A readahead request is for consecutive pages.  Filesystems which
1233  * implement the ->readahead method should call readahead_page() or
1234  * readahead_page_batch() in a loop and attempt to start I/O against
1235  * each page in the request.
1236  *
1237  * Most of the fields in this struct are private and should be accessed
1238  * by the functions below.
1239  *
1240  * @file: The file, used primarily by network filesystems for authentication.
1241  *        May be NULL if invoked internally by the filesystem.
1242  * @mapping: Readahead this filesystem object.
1243  * @ra: File readahead state.  May be NULL.
1244  */
1245 struct readahead_control {
1246         struct file *file;
1247         struct address_space *mapping;
1248         struct file_ra_state *ra;
1249 /* private: use the readahead_* accessors instead */
1250         pgoff_t _index;
1251         unsigned int _nr_pages;
1252         unsigned int _batch_count;
1253         bool _workingset;
1254         unsigned long _pflags;
1255 };
1256
1257 #define DEFINE_READAHEAD(ractl, f, r, m, i)                             \
1258         struct readahead_control ractl = {                              \
1259                 .file = f,                                              \
1260                 .mapping = m,                                           \
1261                 .ra = r,                                                \
1262                 ._index = i,                                            \
1263         }
1264
1265 #define VM_READAHEAD_PAGES      (SZ_128K / PAGE_SIZE)
1266
1267 void page_cache_ra_unbounded(struct readahead_control *,
1268                 unsigned long nr_to_read, unsigned long lookahead_count);
1269 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1270 void page_cache_async_ra(struct readahead_control *, struct folio *,
1271                 unsigned long req_count);
1272 void readahead_expand(struct readahead_control *ractl,
1273                       loff_t new_start, size_t new_len);
1274
1275 /**
1276  * page_cache_sync_readahead - generic file readahead
1277  * @mapping: address_space which holds the pagecache and I/O vectors
1278  * @ra: file_ra_state which holds the readahead state
1279  * @file: Used by the filesystem for authentication.
1280  * @index: Index of first page to be read.
1281  * @req_count: Total number of pages being read by the caller.
1282  *
1283  * page_cache_sync_readahead() should be called when a cache miss happened:
1284  * it will submit the read.  The readahead logic may decide to piggyback more
1285  * pages onto the read request if access patterns suggest it will improve
1286  * performance.
1287  */
1288 static inline
1289 void page_cache_sync_readahead(struct address_space *mapping,
1290                 struct file_ra_state *ra, struct file *file, pgoff_t index,
1291                 unsigned long req_count)
1292 {
1293         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1294         page_cache_sync_ra(&ractl, req_count);
1295 }
1296
1297 /**
1298  * page_cache_async_readahead - file readahead for marked pages
1299  * @mapping: address_space which holds the pagecache and I/O vectors
1300  * @ra: file_ra_state which holds the readahead state
1301  * @file: Used by the filesystem for authentication.
1302  * @folio: The folio at @index which triggered the readahead call.
1303  * @index: Index of first page to be read.
1304  * @req_count: Total number of pages being read by the caller.
1305  *
1306  * page_cache_async_readahead() should be called when a page is used which
1307  * is marked as PageReadahead; this is a marker to suggest that the application
1308  * has used up enough of the readahead window that we should start pulling in
1309  * more pages.
1310  */
1311 static inline
1312 void page_cache_async_readahead(struct address_space *mapping,
1313                 struct file_ra_state *ra, struct file *file,
1314                 struct folio *folio, pgoff_t index, unsigned long req_count)
1315 {
1316         DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1317         page_cache_async_ra(&ractl, folio, req_count);
1318 }
1319
1320 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1321 {
1322         struct folio *folio;
1323
1324         BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1325         ractl->_nr_pages -= ractl->_batch_count;
1326         ractl->_index += ractl->_batch_count;
1327
1328         if (!ractl->_nr_pages) {
1329                 ractl->_batch_count = 0;
1330                 return NULL;
1331         }
1332
1333         folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1334         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1335         ractl->_batch_count = folio_nr_pages(folio);
1336
1337         return folio;
1338 }
1339
1340 /**
1341  * readahead_page - Get the next page to read.
1342  * @ractl: The current readahead request.
1343  *
1344  * Context: The page is locked and has an elevated refcount.  The caller
1345  * should decreases the refcount once the page has been submitted for I/O
1346  * and unlock the page once all I/O to that page has completed.
1347  * Return: A pointer to the next page, or %NULL if we are done.
1348  */
1349 static inline struct page *readahead_page(struct readahead_control *ractl)
1350 {
1351         struct folio *folio = __readahead_folio(ractl);
1352
1353         return &folio->page;
1354 }
1355
1356 /**
1357  * readahead_folio - Get the next folio to read.
1358  * @ractl: The current readahead request.
1359  *
1360  * Context: The folio is locked.  The caller should unlock the folio once
1361  * all I/O to that folio has completed.
1362  * Return: A pointer to the next folio, or %NULL if we are done.
1363  */
1364 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1365 {
1366         struct folio *folio = __readahead_folio(ractl);
1367
1368         if (folio)
1369                 folio_put(folio);
1370         return folio;
1371 }
1372
1373 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1374                 struct page **array, unsigned int array_sz)
1375 {
1376         unsigned int i = 0;
1377         XA_STATE(xas, &rac->mapping->i_pages, 0);
1378         struct page *page;
1379
1380         BUG_ON(rac->_batch_count > rac->_nr_pages);
1381         rac->_nr_pages -= rac->_batch_count;
1382         rac->_index += rac->_batch_count;
1383         rac->_batch_count = 0;
1384
1385         xas_set(&xas, rac->_index);
1386         rcu_read_lock();
1387         xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1388                 if (xas_retry(&xas, page))
1389                         continue;
1390                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1391                 VM_BUG_ON_PAGE(PageTail(page), page);
1392                 array[i++] = page;
1393                 rac->_batch_count += thp_nr_pages(page);
1394                 if (i == array_sz)
1395                         break;
1396         }
1397         rcu_read_unlock();
1398
1399         return i;
1400 }
1401
1402 /**
1403  * readahead_page_batch - Get a batch of pages to read.
1404  * @rac: The current readahead request.
1405  * @array: An array of pointers to struct page.
1406  *
1407  * Context: The pages are locked and have an elevated refcount.  The caller
1408  * should decreases the refcount once the page has been submitted for I/O
1409  * and unlock the page once all I/O to that page has completed.
1410  * Return: The number of pages placed in the array.  0 indicates the request
1411  * is complete.
1412  */
1413 #define readahead_page_batch(rac, array)                                \
1414         __readahead_batch(rac, array, ARRAY_SIZE(array))
1415
1416 /**
1417  * readahead_pos - The byte offset into the file of this readahead request.
1418  * @rac: The readahead request.
1419  */
1420 static inline loff_t readahead_pos(struct readahead_control *rac)
1421 {
1422         return (loff_t)rac->_index * PAGE_SIZE;
1423 }
1424
1425 /**
1426  * readahead_length - The number of bytes in this readahead request.
1427  * @rac: The readahead request.
1428  */
1429 static inline size_t readahead_length(struct readahead_control *rac)
1430 {
1431         return rac->_nr_pages * PAGE_SIZE;
1432 }
1433
1434 /**
1435  * readahead_index - The index of the first page in this readahead request.
1436  * @rac: The readahead request.
1437  */
1438 static inline pgoff_t readahead_index(struct readahead_control *rac)
1439 {
1440         return rac->_index;
1441 }
1442
1443 /**
1444  * readahead_count - The number of pages in this readahead request.
1445  * @rac: The readahead request.
1446  */
1447 static inline unsigned int readahead_count(struct readahead_control *rac)
1448 {
1449         return rac->_nr_pages;
1450 }
1451
1452 /**
1453  * readahead_batch_length - The number of bytes in the current batch.
1454  * @rac: The readahead request.
1455  */
1456 static inline size_t readahead_batch_length(struct readahead_control *rac)
1457 {
1458         return rac->_batch_count * PAGE_SIZE;
1459 }
1460
1461 static inline unsigned long dir_pages(struct inode *inode)
1462 {
1463         return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1464                                PAGE_SHIFT;
1465 }
1466
1467 /**
1468  * folio_mkwrite_check_truncate - check if folio was truncated
1469  * @folio: the folio to check
1470  * @inode: the inode to check the folio against
1471  *
1472  * Return: the number of bytes in the folio up to EOF,
1473  * or -EFAULT if the folio was truncated.
1474  */
1475 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1476                                               struct inode *inode)
1477 {
1478         loff_t size = i_size_read(inode);
1479         pgoff_t index = size >> PAGE_SHIFT;
1480         size_t offset = offset_in_folio(folio, size);
1481
1482         if (!folio->mapping)
1483                 return -EFAULT;
1484
1485         /* folio is wholly inside EOF */
1486         if (folio_next_index(folio) - 1 < index)
1487                 return folio_size(folio);
1488         /* folio is wholly past EOF */
1489         if (folio->index > index || !offset)
1490                 return -EFAULT;
1491         /* folio is partially inside EOF */
1492         return offset;
1493 }
1494
1495 /**
1496  * page_mkwrite_check_truncate - check if page was truncated
1497  * @page: the page to check
1498  * @inode: the inode to check the page against
1499  *
1500  * Returns the number of bytes in the page up to EOF,
1501  * or -EFAULT if the page was truncated.
1502  */
1503 static inline int page_mkwrite_check_truncate(struct page *page,
1504                                               struct inode *inode)
1505 {
1506         loff_t size = i_size_read(inode);
1507         pgoff_t index = size >> PAGE_SHIFT;
1508         int offset = offset_in_page(size);
1509
1510         if (page->mapping != inode->i_mapping)
1511                 return -EFAULT;
1512
1513         /* page is wholly inside EOF */
1514         if (page->index < index)
1515                 return PAGE_SIZE;
1516         /* page is wholly past EOF */
1517         if (page->index > index || !offset)
1518                 return -EFAULT;
1519         /* page is partially inside EOF */
1520         return offset;
1521 }
1522
1523 /**
1524  * i_blocks_per_folio - How many blocks fit in this folio.
1525  * @inode: The inode which contains the blocks.
1526  * @folio: The folio.
1527  *
1528  * If the block size is larger than the size of this folio, return zero.
1529  *
1530  * Context: The caller should hold a refcount on the folio to prevent it
1531  * from being split.
1532  * Return: The number of filesystem blocks covered by this folio.
1533  */
1534 static inline
1535 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1536 {
1537         return folio_size(folio) >> inode->i_blkbits;
1538 }
1539
1540 static inline
1541 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1542 {
1543         return i_blocks_per_folio(inode, page_folio(page));
1544 }
1545 #endif /* _LINUX_PAGEMAP_H */
This page took 0.128209 seconds and 4 git commands to generate.