1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
29 #include <linux/iversion.h>
31 /* Radix tree tags for incore inode tree. */
33 /* inode is to be reclaimed */
34 #define XFS_ICI_RECLAIM_TAG 0
35 /* Inode has speculative preallocations (posteof or cow) to clean. */
36 #define XFS_ICI_BLOCKGC_TAG 1
39 * The goal for walking incore inodes. These can correspond with incore inode
40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
42 enum xfs_icwalk_goal {
43 /* Goals directly associated with tagged inodes. */
44 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
45 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
48 static int xfs_icwalk(struct xfs_mount *mp,
49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 static int xfs_icwalk_ag(struct xfs_perag *pag,
51 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
54 * Private inode cache walk flags for struct xfs_icwalk. Must not
55 * coincide with XFS_ICWALK_FLAGS_VALID.
58 /* Stop scanning after icw_scan_limit inodes. */
59 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
61 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
62 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
64 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 XFS_ICWALK_FLAG_UNION)
69 * Allocate and initialise an xfs_inode.
79 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
80 * and return NULL here on ENOMEM.
82 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
84 if (inode_init_always(mp->m_super, VFS_I(ip))) {
85 kmem_cache_free(xfs_inode_cache, ip);
89 /* VFS doesn't initialise i_mode or i_state! */
90 VFS_I(ip)->i_mode = 0;
91 VFS_I(ip)->i_state = 0;
92 mapping_set_large_folios(VFS_I(ip)->i_mapping);
94 XFS_STATS_INC(mp, vn_active);
95 ASSERT(atomic_read(&ip->i_pincount) == 0);
96 ASSERT(ip->i_ino == 0);
98 /* initialise the xfs inode */
101 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
103 memset(&ip->i_af, 0, sizeof(ip->i_af));
104 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
105 memset(&ip->i_df, 0, sizeof(ip->i_df));
107 ip->i_delayed_blks = 0;
108 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
113 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
114 INIT_LIST_HEAD(&ip->i_ioend_list);
115 spin_lock_init(&ip->i_ioend_lock);
116 ip->i_next_unlinked = NULLAGINO;
117 ip->i_prev_unlinked = 0;
123 xfs_inode_free_callback(
124 struct rcu_head *head)
126 struct inode *inode = container_of(head, struct inode, i_rcu);
127 struct xfs_inode *ip = XFS_I(inode);
129 switch (VFS_I(ip)->i_mode & S_IFMT) {
133 xfs_idestroy_fork(&ip->i_df);
137 xfs_ifork_zap_attr(ip);
140 xfs_idestroy_fork(ip->i_cowfp);
141 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
144 ASSERT(!test_bit(XFS_LI_IN_AIL,
145 &ip->i_itemp->ili_item.li_flags));
146 xfs_inode_item_destroy(ip);
150 kmem_cache_free(xfs_inode_cache, ip);
155 struct xfs_inode *ip)
157 /* asserts to verify all state is correct here */
158 ASSERT(atomic_read(&ip->i_pincount) == 0);
159 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
160 XFS_STATS_DEC(ip->i_mount, vn_active);
162 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
167 struct xfs_inode *ip)
169 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
172 * Because we use RCU freeing we need to ensure the inode always
173 * appears to be reclaimed with an invalid inode number when in the
174 * free state. The ip->i_flags_lock provides the barrier against lookup
177 spin_lock(&ip->i_flags_lock);
178 ip->i_flags = XFS_IRECLAIM;
180 spin_unlock(&ip->i_flags_lock);
182 __xfs_inode_free(ip);
186 * Queue background inode reclaim work if there are reclaimable inodes and there
187 * isn't reclaim work already scheduled or in progress.
190 xfs_reclaim_work_queue(
191 struct xfs_mount *mp)
195 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
196 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
197 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
203 * Background scanning to trim preallocated space. This is queued based on the
204 * 'speculative_prealloc_lifetime' tunable (5m by default).
208 struct xfs_perag *pag)
210 struct xfs_mount *mp = pag->pag_mount;
212 if (!xfs_is_blockgc_enabled(mp))
216 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
217 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
218 &pag->pag_blockgc_work,
219 msecs_to_jiffies(xfs_blockgc_secs * 1000));
223 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
225 xfs_perag_set_inode_tag(
226 struct xfs_perag *pag,
230 struct xfs_mount *mp = pag->pag_mount;
233 lockdep_assert_held(&pag->pag_ici_lock);
235 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
236 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
238 if (tag == XFS_ICI_RECLAIM_TAG)
239 pag->pag_ici_reclaimable++;
244 /* propagate the tag up into the perag radix tree */
245 spin_lock(&mp->m_perag_lock);
246 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
247 spin_unlock(&mp->m_perag_lock);
249 /* start background work */
251 case XFS_ICI_RECLAIM_TAG:
252 xfs_reclaim_work_queue(mp);
254 case XFS_ICI_BLOCKGC_TAG:
255 xfs_blockgc_queue(pag);
259 trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
262 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
264 xfs_perag_clear_inode_tag(
265 struct xfs_perag *pag,
269 struct xfs_mount *mp = pag->pag_mount;
271 lockdep_assert_held(&pag->pag_ici_lock);
274 * Reclaim can signal (with a null agino) that it cleared its own tag
275 * by removing the inode from the radix tree.
277 if (agino != NULLAGINO)
278 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
280 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
282 if (tag == XFS_ICI_RECLAIM_TAG)
283 pag->pag_ici_reclaimable--;
285 if (radix_tree_tagged(&pag->pag_ici_root, tag))
288 /* clear the tag from the perag radix tree */
289 spin_lock(&mp->m_perag_lock);
290 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
291 spin_unlock(&mp->m_perag_lock);
293 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
297 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
298 * part of the structure. This is made more complex by the fact we store
299 * information about the on-disk values in the VFS inode and so we can't just
300 * overwrite the values unconditionally. Hence we save the parameters we
301 * need to retain across reinitialisation, and rewrite them into the VFS inode
302 * after reinitialisation even if it fails.
306 struct xfs_mount *mp,
310 uint32_t nlink = inode->i_nlink;
311 uint32_t generation = inode->i_generation;
312 uint64_t version = inode_peek_iversion(inode);
313 umode_t mode = inode->i_mode;
314 dev_t dev = inode->i_rdev;
315 kuid_t uid = inode->i_uid;
316 kgid_t gid = inode->i_gid;
318 error = inode_init_always(mp->m_super, inode);
320 set_nlink(inode, nlink);
321 inode->i_generation = generation;
322 inode_set_iversion_queried(inode, version);
323 inode->i_mode = mode;
327 mapping_set_large_folios(inode->i_mapping);
332 * Carefully nudge an inode whose VFS state has been torn down back into a
333 * usable state. Drops the i_flags_lock and the rcu read lock.
337 struct xfs_perag *pag,
338 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
340 struct xfs_mount *mp = ip->i_mount;
341 struct inode *inode = VFS_I(ip);
344 trace_xfs_iget_recycle(ip);
346 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
350 * We need to make it look like the inode is being reclaimed to prevent
351 * the actual reclaim workers from stomping over us while we recycle
352 * the inode. We can't clear the radix tree tag yet as it requires
353 * pag_ici_lock to be held exclusive.
355 ip->i_flags |= XFS_IRECLAIM;
357 spin_unlock(&ip->i_flags_lock);
360 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
361 error = xfs_reinit_inode(mp, inode);
362 xfs_iunlock(ip, XFS_ILOCK_EXCL);
365 * Re-initializing the inode failed, and we are in deep
366 * trouble. Try to re-add it to the reclaim list.
369 spin_lock(&ip->i_flags_lock);
370 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
371 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
372 spin_unlock(&ip->i_flags_lock);
375 trace_xfs_iget_recycle_fail(ip);
379 spin_lock(&pag->pag_ici_lock);
380 spin_lock(&ip->i_flags_lock);
383 * Clear the per-lifetime state in the inode as we are now effectively
384 * a new inode and need to return to the initial state before reuse
387 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
388 ip->i_flags |= XFS_INEW;
389 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
390 XFS_ICI_RECLAIM_TAG);
391 inode->i_state = I_NEW;
392 spin_unlock(&ip->i_flags_lock);
393 spin_unlock(&pag->pag_ici_lock);
399 * If we are allocating a new inode, then check what was returned is
400 * actually a free, empty inode. If we are not allocating an inode,
401 * then check we didn't find a free inode.
404 * 0 if the inode free state matches the lookup context
405 * -ENOENT if the inode is free and we are not allocating
406 * -EFSCORRUPTED if there is any state mismatch at all
409 xfs_iget_check_free_state(
410 struct xfs_inode *ip,
413 if (flags & XFS_IGET_CREATE) {
414 /* should be a free inode */
415 if (VFS_I(ip)->i_mode != 0) {
416 xfs_warn(ip->i_mount,
417 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
418 ip->i_ino, VFS_I(ip)->i_mode);
419 xfs_agno_mark_sick(ip->i_mount,
420 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
422 return -EFSCORRUPTED;
425 if (ip->i_nblocks != 0) {
426 xfs_warn(ip->i_mount,
427 "Corruption detected! Free inode 0x%llx has blocks allocated!",
429 xfs_agno_mark_sick(ip->i_mount,
430 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
432 return -EFSCORRUPTED;
437 /* should be an allocated inode */
438 if (VFS_I(ip)->i_mode == 0)
444 /* Make all pending inactivation work start immediately. */
446 xfs_inodegc_queue_all(
447 struct xfs_mount *mp)
449 struct xfs_inodegc *gc;
453 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
454 gc = per_cpu_ptr(mp->m_inodegc, cpu);
455 if (!llist_empty(&gc->list)) {
456 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
464 /* Wait for all queued work and collect errors */
466 xfs_inodegc_wait_all(
467 struct xfs_mount *mp)
472 flush_workqueue(mp->m_inodegc_wq);
473 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
474 struct xfs_inodegc *gc;
476 gc = per_cpu_ptr(mp->m_inodegc, cpu);
477 if (gc->error && !error)
486 * Check the validity of the inode we just found it the cache
490 struct xfs_perag *pag,
491 struct xfs_inode *ip,
494 int lock_flags) __releases(RCU)
496 struct inode *inode = VFS_I(ip);
497 struct xfs_mount *mp = ip->i_mount;
501 * check for re-use of an inode within an RCU grace period due to the
502 * radix tree nodes not being updated yet. We monitor for this by
503 * setting the inode number to zero before freeing the inode structure.
504 * If the inode has been reallocated and set up, then the inode number
505 * will not match, so check for that, too.
507 spin_lock(&ip->i_flags_lock);
508 if (ip->i_ino != ino)
512 * If we are racing with another cache hit that is currently
513 * instantiating this inode or currently recycling it out of
514 * reclaimable state, wait for the initialisation to complete
517 * If we're racing with the inactivation worker we also want to wait.
518 * If we're creating a new file, it's possible that the worker
519 * previously marked the inode as free on disk but hasn't finished
520 * updating the incore state yet. The AGI buffer will be dirty and
521 * locked to the icreate transaction, so a synchronous push of the
522 * inodegc workers would result in deadlock. For a regular iget, the
523 * worker is running already, so we might as well wait.
525 * XXX(hch): eventually we should do something equivalent to
526 * wait_on_inode to wait for these flags to be cleared
527 * instead of polling for it.
529 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
532 if (ip->i_flags & XFS_NEED_INACTIVE) {
533 /* Unlinked inodes cannot be re-grabbed. */
534 if (VFS_I(ip)->i_nlink == 0) {
538 goto out_inodegc_flush;
542 * Check the inode free state is valid. This also detects lookup
543 * racing with unlinks.
545 error = xfs_iget_check_free_state(ip, flags);
549 /* Skip inodes that have no vfs state. */
550 if ((flags & XFS_IGET_INCORE) &&
551 (ip->i_flags & XFS_IRECLAIMABLE))
554 /* The inode fits the selection criteria; process it. */
555 if (ip->i_flags & XFS_IRECLAIMABLE) {
556 /* Drops i_flags_lock and RCU read lock. */
557 error = xfs_iget_recycle(pag, ip);
558 if (error == -EAGAIN)
563 /* If the VFS inode is being torn down, pause and try again. */
567 /* We've got a live one. */
568 spin_unlock(&ip->i_flags_lock);
570 trace_xfs_iget_hit(ip);
574 xfs_ilock(ip, lock_flags);
576 if (!(flags & XFS_IGET_INCORE))
577 xfs_iflags_clear(ip, XFS_ISTALE);
578 XFS_STATS_INC(mp, xs_ig_found);
583 trace_xfs_iget_skip(ip);
584 XFS_STATS_INC(mp, xs_ig_frecycle);
587 spin_unlock(&ip->i_flags_lock);
592 spin_unlock(&ip->i_flags_lock);
595 * Do not wait for the workers, because the caller could hold an AGI
596 * buffer lock. We're just going to sleep in a loop anyway.
598 if (xfs_is_inodegc_enabled(mp))
599 xfs_inodegc_queue_all(mp);
605 struct xfs_mount *mp,
606 struct xfs_perag *pag,
609 struct xfs_inode **ipp,
613 struct xfs_inode *ip;
615 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
617 ip = xfs_inode_alloc(mp, ino);
621 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
626 * For version 5 superblocks, if we are initialising a new inode and we
627 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
628 * simply build the new inode core with a random generation number.
630 * For version 4 (and older) superblocks, log recovery is dependent on
631 * the i_flushiter field being initialised from the current on-disk
632 * value and hence we must also read the inode off disk even when
633 * initializing new inodes.
635 if (xfs_has_v3inodes(mp) &&
636 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
637 VFS_I(ip)->i_generation = get_random_u32();
641 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
645 error = xfs_inode_from_disk(ip,
646 xfs_buf_offset(bp, ip->i_imap.im_boffset));
648 xfs_buf_set_ref(bp, XFS_INO_REF);
650 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
651 xfs_trans_brelse(tp, bp);
657 trace_xfs_iget_miss(ip);
660 * Check the inode free state is valid. This also detects lookup
661 * racing with unlinks.
663 error = xfs_iget_check_free_state(ip, flags);
668 * Preload the radix tree so we can insert safely under the
669 * write spinlock. Note that we cannot sleep inside the preload
672 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
678 * Because the inode hasn't been added to the radix-tree yet it can't
679 * be found by another thread, so we can do the non-sleeping lock here.
682 if (!xfs_ilock_nowait(ip, lock_flags))
687 * These values must be set before inserting the inode into the radix
688 * tree as the moment it is inserted a concurrent lookup (allowed by the
689 * RCU locking mechanism) can find it and that lookup must see that this
690 * is an inode currently under construction (i.e. that XFS_INEW is set).
691 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
692 * memory barrier that ensures this detection works correctly at lookup
695 if (flags & XFS_IGET_DONTCACHE)
696 d_mark_dontcache(VFS_I(ip));
700 xfs_iflags_set(ip, XFS_INEW);
702 /* insert the new inode */
703 spin_lock(&pag->pag_ici_lock);
704 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
705 if (unlikely(error)) {
706 WARN_ON(error != -EEXIST);
707 XFS_STATS_INC(mp, xs_ig_dup);
709 goto out_preload_end;
711 spin_unlock(&pag->pag_ici_lock);
712 radix_tree_preload_end();
718 spin_unlock(&pag->pag_ici_lock);
719 radix_tree_preload_end();
721 xfs_iunlock(ip, lock_flags);
723 __destroy_inode(VFS_I(ip));
729 * Look up an inode by number in the given file system. The inode is looked up
730 * in the cache held in each AG. If the inode is found in the cache, initialise
731 * the vfs inode if necessary.
733 * If it is not in core, read it in from the file system's device, add it to the
734 * cache and initialise the vfs inode.
736 * The inode is locked according to the value of the lock_flags parameter.
737 * Inode lookup is only done during metadata operations and not as part of the
738 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
742 struct xfs_mount *mp,
743 struct xfs_trans *tp,
747 struct xfs_inode **ipp)
749 struct xfs_inode *ip;
750 struct xfs_perag *pag;
754 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
756 /* reject inode numbers outside existing AGs */
757 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
760 XFS_STATS_INC(mp, xs_ig_attempts);
762 /* get the perag structure and ensure that it's inode capable */
763 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
764 agino = XFS_INO_TO_AGINO(mp, ino);
769 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
772 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
774 goto out_error_or_again;
777 if (flags & XFS_IGET_INCORE) {
779 goto out_error_or_again;
781 XFS_STATS_INC(mp, xs_ig_missed);
783 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
786 goto out_error_or_again;
793 * If we have a real type for an on-disk inode, we can setup the inode
794 * now. If it's a new inode being created, xfs_init_new_inode will
797 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
798 xfs_setup_existing_inode(ip);
802 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
812 * Grab the inode for reclaim exclusively.
814 * We have found this inode via a lookup under RCU, so the inode may have
815 * already been freed, or it may be in the process of being recycled by
816 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
817 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
818 * will not be set. Hence we need to check for both these flag conditions to
819 * avoid inodes that are no longer reclaim candidates.
821 * Note: checking for other state flags here, under the i_flags_lock or not, is
822 * racy and should be avoided. Those races should be resolved only after we have
823 * ensured that we are able to reclaim this inode and the world can see that we
824 * are going to reclaim it.
826 * Return true if we grabbed it, false otherwise.
830 struct xfs_inode *ip,
831 struct xfs_icwalk *icw)
833 ASSERT(rcu_read_lock_held());
835 spin_lock(&ip->i_flags_lock);
836 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
837 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
838 /* not a reclaim candidate. */
839 spin_unlock(&ip->i_flags_lock);
843 /* Don't reclaim a sick inode unless the caller asked for it. */
845 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
846 spin_unlock(&ip->i_flags_lock);
850 __xfs_iflags_set(ip, XFS_IRECLAIM);
851 spin_unlock(&ip->i_flags_lock);
856 * Inode reclaim is non-blocking, so the default action if progress cannot be
857 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
858 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
859 * blocking anymore and hence we can wait for the inode to be able to reclaim
862 * We do no IO here - if callers require inodes to be cleaned they must push the
863 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
864 * done in the background in a non-blocking manner, and enables memory reclaim
865 * to make progress without blocking.
869 struct xfs_inode *ip,
870 struct xfs_perag *pag)
872 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
874 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
876 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
880 * Check for log shutdown because aborting the inode can move the log
881 * tail and corrupt in memory state. This is fine if the log is shut
882 * down, but if the log is still active and only the mount is shut down
883 * then the in-memory log tail movement caused by the abort can be
884 * incorrectly propagated to disk.
886 if (xlog_is_shutdown(ip->i_mount->m_log)) {
888 xfs_iflush_shutdown_abort(ip);
891 if (xfs_ipincount(ip))
892 goto out_clear_flush;
893 if (!xfs_inode_clean(ip))
894 goto out_clear_flush;
896 xfs_iflags_clear(ip, XFS_IFLUSHING);
898 trace_xfs_inode_reclaiming(ip);
901 * Because we use RCU freeing we need to ensure the inode always appears
902 * to be reclaimed with an invalid inode number when in the free state.
903 * We do this as early as possible under the ILOCK so that
904 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
905 * detect races with us here. By doing this, we guarantee that once
906 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
907 * it will see either a valid inode that will serialise correctly, or it
908 * will see an invalid inode that it can skip.
910 spin_lock(&ip->i_flags_lock);
911 ip->i_flags = XFS_IRECLAIM;
915 spin_unlock(&ip->i_flags_lock);
917 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
918 xfs_iunlock(ip, XFS_ILOCK_EXCL);
920 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
922 * Remove the inode from the per-AG radix tree.
924 * Because radix_tree_delete won't complain even if the item was never
925 * added to the tree assert that it's been there before to catch
926 * problems with the inode life time early on.
928 spin_lock(&pag->pag_ici_lock);
929 if (!radix_tree_delete(&pag->pag_ici_root,
930 XFS_INO_TO_AGINO(ip->i_mount, ino)))
932 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
933 spin_unlock(&pag->pag_ici_lock);
936 * Here we do an (almost) spurious inode lock in order to coordinate
937 * with inode cache radix tree lookups. This is because the lookup
938 * can reference the inodes in the cache without taking references.
940 * We make that OK here by ensuring that we wait until the inode is
941 * unlocked after the lookup before we go ahead and free it.
943 xfs_ilock(ip, XFS_ILOCK_EXCL);
944 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
945 xfs_iunlock(ip, XFS_ILOCK_EXCL);
946 ASSERT(xfs_inode_clean(ip));
948 __xfs_inode_free(ip);
952 xfs_iflags_clear(ip, XFS_IFLUSHING);
954 xfs_iunlock(ip, XFS_ILOCK_EXCL);
956 xfs_iflags_clear(ip, XFS_IRECLAIM);
959 /* Reclaim sick inodes if we're unmounting or the fs went down. */
961 xfs_want_reclaim_sick(
962 struct xfs_mount *mp)
964 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
970 struct xfs_mount *mp)
972 struct xfs_icwalk icw = {
976 if (xfs_want_reclaim_sick(mp))
977 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
979 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
980 xfs_ail_push_all_sync(mp->m_ail);
981 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
986 * The shrinker infrastructure determines how many inodes we should scan for
987 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
988 * push the AIL here. We also want to proactively free up memory if we can to
989 * minimise the amount of work memory reclaim has to do so we kick the
990 * background reclaim if it isn't already scheduled.
993 xfs_reclaim_inodes_nr(
994 struct xfs_mount *mp,
995 unsigned long nr_to_scan)
997 struct xfs_icwalk icw = {
998 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
999 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1002 if (xfs_want_reclaim_sick(mp))
1003 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1005 /* kick background reclaimer and push the AIL */
1006 xfs_reclaim_work_queue(mp);
1007 xfs_ail_push_all(mp->m_ail);
1009 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1014 * Return the number of reclaimable inodes in the filesystem for
1015 * the shrinker to determine how much to reclaim.
1018 xfs_reclaim_inodes_count(
1019 struct xfs_mount *mp)
1021 struct xfs_perag *pag;
1022 xfs_agnumber_t ag = 0;
1023 long reclaimable = 0;
1025 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1026 ag = pag->pag_agno + 1;
1027 reclaimable += pag->pag_ici_reclaimable;
1034 xfs_icwalk_match_id(
1035 struct xfs_inode *ip,
1036 struct xfs_icwalk *icw)
1038 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1039 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1042 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1043 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1046 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1047 ip->i_projid != icw->icw_prid)
1054 * A union-based inode filtering algorithm. Process the inode if any of the
1055 * criteria match. This is for global/internal scans only.
1058 xfs_icwalk_match_id_union(
1059 struct xfs_inode *ip,
1060 struct xfs_icwalk *icw)
1062 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1063 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1066 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1067 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1070 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1071 ip->i_projid == icw->icw_prid)
1078 * Is this inode @ip eligible for eof/cow block reclamation, given some
1079 * filtering parameters @icw? The inode is eligible if @icw is null or
1080 * if the predicate functions match.
1084 struct xfs_inode *ip,
1085 struct xfs_icwalk *icw)
1092 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1093 match = xfs_icwalk_match_id_union(ip, icw);
1095 match = xfs_icwalk_match_id(ip, icw);
1099 /* skip the inode if the file size is too small */
1100 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1101 XFS_ISIZE(ip) < icw->icw_min_file_size)
1108 * This is a fast pass over the inode cache to try to get reclaim moving on as
1109 * many inodes as possible in a short period of time. It kicks itself every few
1110 * seconds, as well as being kicked by the inode cache shrinker when memory
1115 struct work_struct *work)
1117 struct xfs_mount *mp = container_of(to_delayed_work(work),
1118 struct xfs_mount, m_reclaim_work);
1120 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1121 xfs_reclaim_work_queue(mp);
1125 xfs_inode_free_eofblocks(
1126 struct xfs_inode *ip,
1127 struct xfs_icwalk *icw,
1128 unsigned int *lockflags)
1132 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1134 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1138 * If the mapping is dirty the operation can block and wait for some
1139 * time. Unless we are waiting, skip it.
1141 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1144 if (!xfs_icwalk_match(ip, icw))
1148 * If the caller is waiting, return -EAGAIN to keep the background
1149 * scanner moving and revisit the inode in a subsequent pass.
1151 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1156 *lockflags |= XFS_IOLOCK_EXCL;
1158 if (xfs_can_free_eofblocks(ip, false))
1159 return xfs_free_eofblocks(ip);
1161 /* inode could be preallocated or append-only */
1162 trace_xfs_inode_free_eofblocks_invalid(ip);
1163 xfs_inode_clear_eofblocks_tag(ip);
1168 xfs_blockgc_set_iflag(
1169 struct xfs_inode *ip,
1170 unsigned long iflag)
1172 struct xfs_mount *mp = ip->i_mount;
1173 struct xfs_perag *pag;
1175 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1178 * Don't bother locking the AG and looking up in the radix trees
1179 * if we already know that we have the tag set.
1181 if (ip->i_flags & iflag)
1183 spin_lock(&ip->i_flags_lock);
1184 ip->i_flags |= iflag;
1185 spin_unlock(&ip->i_flags_lock);
1187 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1188 spin_lock(&pag->pag_ici_lock);
1190 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1191 XFS_ICI_BLOCKGC_TAG);
1193 spin_unlock(&pag->pag_ici_lock);
1198 xfs_inode_set_eofblocks_tag(
1201 trace_xfs_inode_set_eofblocks_tag(ip);
1202 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1206 xfs_blockgc_clear_iflag(
1207 struct xfs_inode *ip,
1208 unsigned long iflag)
1210 struct xfs_mount *mp = ip->i_mount;
1211 struct xfs_perag *pag;
1214 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1216 spin_lock(&ip->i_flags_lock);
1217 ip->i_flags &= ~iflag;
1218 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1219 spin_unlock(&ip->i_flags_lock);
1224 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1225 spin_lock(&pag->pag_ici_lock);
1227 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1228 XFS_ICI_BLOCKGC_TAG);
1230 spin_unlock(&pag->pag_ici_lock);
1235 xfs_inode_clear_eofblocks_tag(
1238 trace_xfs_inode_clear_eofblocks_tag(ip);
1239 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1243 * Set ourselves up to free CoW blocks from this file. If it's already clean
1244 * then we can bail out quickly, but otherwise we must back off if the file
1245 * is undergoing some kind of write.
1248 xfs_prep_free_cowblocks(
1249 struct xfs_inode *ip)
1252 * Just clear the tag if we have an empty cow fork or none at all. It's
1253 * possible the inode was fully unshared since it was originally tagged.
1255 if (!xfs_inode_has_cow_data(ip)) {
1256 trace_xfs_inode_free_cowblocks_invalid(ip);
1257 xfs_inode_clear_cowblocks_tag(ip);
1262 * If the mapping is dirty or under writeback we cannot touch the
1263 * CoW fork. Leave it alone if we're in the midst of a directio.
1265 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1266 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1267 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1268 atomic_read(&VFS_I(ip)->i_dio_count))
1275 * Automatic CoW Reservation Freeing
1277 * These functions automatically garbage collect leftover CoW reservations
1278 * that were made on behalf of a cowextsize hint when we start to run out
1279 * of quota or when the reservations sit around for too long. If the file
1280 * has dirty pages or is undergoing writeback, its CoW reservations will
1283 * The actual garbage collection piggybacks off the same code that runs
1284 * the speculative EOF preallocation garbage collector.
1287 xfs_inode_free_cowblocks(
1288 struct xfs_inode *ip,
1289 struct xfs_icwalk *icw,
1290 unsigned int *lockflags)
1295 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1297 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1300 if (!xfs_prep_free_cowblocks(ip))
1303 if (!xfs_icwalk_match(ip, icw))
1307 * If the caller is waiting, return -EAGAIN to keep the background
1308 * scanner moving and revisit the inode in a subsequent pass.
1310 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1311 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1316 *lockflags |= XFS_IOLOCK_EXCL;
1318 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1323 *lockflags |= XFS_MMAPLOCK_EXCL;
1326 * Check again, nobody else should be able to dirty blocks or change
1327 * the reflink iflag now that we have the first two locks held.
1329 if (xfs_prep_free_cowblocks(ip))
1330 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1335 xfs_inode_set_cowblocks_tag(
1338 trace_xfs_inode_set_cowblocks_tag(ip);
1339 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1343 xfs_inode_clear_cowblocks_tag(
1346 trace_xfs_inode_clear_cowblocks_tag(ip);
1347 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1350 /* Disable post-EOF and CoW block auto-reclamation. */
1353 struct xfs_mount *mp)
1355 struct xfs_perag *pag;
1356 xfs_agnumber_t agno;
1358 if (!xfs_clear_blockgc_enabled(mp))
1361 for_each_perag(mp, agno, pag)
1362 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1363 trace_xfs_blockgc_stop(mp, __return_address);
1366 /* Enable post-EOF and CoW block auto-reclamation. */
1369 struct xfs_mount *mp)
1371 struct xfs_perag *pag;
1372 xfs_agnumber_t agno;
1374 if (xfs_set_blockgc_enabled(mp))
1377 trace_xfs_blockgc_start(mp, __return_address);
1378 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1379 xfs_blockgc_queue(pag);
1382 /* Don't try to run block gc on an inode that's in any of these states. */
1383 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1384 XFS_NEED_INACTIVE | \
1385 XFS_INACTIVATING | \
1386 XFS_IRECLAIMABLE | \
1389 * Decide if the given @ip is eligible for garbage collection of speculative
1390 * preallocations, and grab it if so. Returns true if it's ready to go or
1391 * false if we should just ignore it.
1395 struct xfs_inode *ip)
1397 struct inode *inode = VFS_I(ip);
1399 ASSERT(rcu_read_lock_held());
1401 /* Check for stale RCU freed inode */
1402 spin_lock(&ip->i_flags_lock);
1404 goto out_unlock_noent;
1406 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1407 goto out_unlock_noent;
1408 spin_unlock(&ip->i_flags_lock);
1410 /* nothing to sync during shutdown */
1411 if (xfs_is_shutdown(ip->i_mount))
1414 /* If we can't grab the inode, it must on it's way to reclaim. */
1418 /* inode is valid */
1422 spin_unlock(&ip->i_flags_lock);
1426 /* Scan one incore inode for block preallocations that we can remove. */
1428 xfs_blockgc_scan_inode(
1429 struct xfs_inode *ip,
1430 struct xfs_icwalk *icw)
1432 unsigned int lockflags = 0;
1435 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1439 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1442 xfs_iunlock(ip, lockflags);
1447 /* Background worker that trims preallocated space. */
1450 struct work_struct *work)
1452 struct xfs_perag *pag = container_of(to_delayed_work(work),
1453 struct xfs_perag, pag_blockgc_work);
1454 struct xfs_mount *mp = pag->pag_mount;
1457 trace_xfs_blockgc_worker(mp, __return_address);
1459 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1461 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1462 pag->pag_agno, error);
1463 xfs_blockgc_queue(pag);
1467 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1471 xfs_blockgc_free_space(
1472 struct xfs_mount *mp,
1473 struct xfs_icwalk *icw)
1477 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1479 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1483 return xfs_inodegc_flush(mp);
1487 * Reclaim all the free space that we can by scheduling the background blockgc
1488 * and inodegc workers immediately and waiting for them all to clear.
1491 xfs_blockgc_flush_all(
1492 struct xfs_mount *mp)
1494 struct xfs_perag *pag;
1495 xfs_agnumber_t agno;
1497 trace_xfs_blockgc_flush_all(mp, __return_address);
1500 * For each blockgc worker, move its queue time up to now. If it
1501 * wasn't queued, it will not be requeued. Then flush whatever's
1504 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1505 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1506 &pag->pag_blockgc_work, 0);
1508 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1509 flush_delayed_work(&pag->pag_blockgc_work);
1511 return xfs_inodegc_flush(mp);
1515 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1516 * quota caused an allocation failure, so we make a best effort by including
1517 * each quota under low free space conditions (less than 1% free space) in the
1520 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1521 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1525 xfs_blockgc_free_dquots(
1526 struct xfs_mount *mp,
1527 struct xfs_dquot *udqp,
1528 struct xfs_dquot *gdqp,
1529 struct xfs_dquot *pdqp,
1530 unsigned int iwalk_flags)
1532 struct xfs_icwalk icw = {0};
1533 bool do_work = false;
1535 if (!udqp && !gdqp && !pdqp)
1539 * Run a scan to free blocks using the union filter to cover all
1540 * applicable quotas in a single scan.
1542 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1544 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1545 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1546 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1550 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1551 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1552 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1556 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1557 icw.icw_prid = pdqp->q_id;
1558 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1565 return xfs_blockgc_free_space(mp, &icw);
1568 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1570 xfs_blockgc_free_quota(
1571 struct xfs_inode *ip,
1572 unsigned int iwalk_flags)
1574 return xfs_blockgc_free_dquots(ip->i_mount,
1575 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1576 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1577 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1580 /* XFS Inode Cache Walking Code */
1583 * The inode lookup is done in batches to keep the amount of lock traffic and
1584 * radix tree lookups to a minimum. The batch size is a trade off between
1585 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1588 #define XFS_LOOKUP_BATCH 32
1592 * Decide if we want to grab this inode in anticipation of doing work towards
1597 enum xfs_icwalk_goal goal,
1598 struct xfs_inode *ip,
1599 struct xfs_icwalk *icw)
1602 case XFS_ICWALK_BLOCKGC:
1603 return xfs_blockgc_igrab(ip);
1604 case XFS_ICWALK_RECLAIM:
1605 return xfs_reclaim_igrab(ip, icw);
1612 * Process an inode. Each processing function must handle any state changes
1613 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1616 xfs_icwalk_process_inode(
1617 enum xfs_icwalk_goal goal,
1618 struct xfs_inode *ip,
1619 struct xfs_perag *pag,
1620 struct xfs_icwalk *icw)
1625 case XFS_ICWALK_BLOCKGC:
1626 error = xfs_blockgc_scan_inode(ip, icw);
1628 case XFS_ICWALK_RECLAIM:
1629 xfs_reclaim_inode(ip, pag);
1636 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1637 * process them in some manner.
1641 struct xfs_perag *pag,
1642 enum xfs_icwalk_goal goal,
1643 struct xfs_icwalk *icw)
1645 struct xfs_mount *mp = pag->pag_mount;
1646 uint32_t first_index;
1655 if (goal == XFS_ICWALK_RECLAIM)
1656 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1661 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1667 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1668 (void **) batch, first_index,
1669 XFS_LOOKUP_BATCH, goal);
1677 * Grab the inodes before we drop the lock. if we found
1678 * nothing, nr == 0 and the loop will be skipped.
1680 for (i = 0; i < nr_found; i++) {
1681 struct xfs_inode *ip = batch[i];
1683 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1687 * Update the index for the next lookup. Catch
1688 * overflows into the next AG range which can occur if
1689 * we have inodes in the last block of the AG and we
1690 * are currently pointing to the last inode.
1692 * Because we may see inodes that are from the wrong AG
1693 * due to RCU freeing and reallocation, only update the
1694 * index if it lies in this AG. It was a race that lead
1695 * us to see this inode, so another lookup from the
1696 * same index will not find it again.
1698 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1700 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1701 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1705 /* unlock now we've grabbed the inodes. */
1708 for (i = 0; i < nr_found; i++) {
1711 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1713 if (error == -EAGAIN) {
1717 if (error && last_error != -EFSCORRUPTED)
1721 /* bail out if the filesystem is corrupted. */
1722 if (error == -EFSCORRUPTED)
1727 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1728 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1729 if (icw->icw_scan_limit <= 0)
1732 } while (nr_found && !done);
1734 if (goal == XFS_ICWALK_RECLAIM) {
1737 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1747 /* Walk all incore inodes to achieve a given goal. */
1750 struct xfs_mount *mp,
1751 enum xfs_icwalk_goal goal,
1752 struct xfs_icwalk *icw)
1754 struct xfs_perag *pag;
1757 xfs_agnumber_t agno;
1759 for_each_perag_tag(mp, agno, pag, goal) {
1760 error = xfs_icwalk_ag(pag, goal, icw);
1763 if (error == -EFSCORRUPTED) {
1764 xfs_perag_rele(pag);
1770 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1776 struct xfs_inode *ip,
1779 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1780 struct xfs_bmbt_irec got;
1781 struct xfs_iext_cursor icur;
1783 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1786 if (isnullstartblock(got.br_startblock)) {
1787 xfs_warn(ip->i_mount,
1788 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1790 whichfork == XFS_DATA_FORK ? "data" : "cow",
1791 got.br_startoff, got.br_blockcount);
1793 } while (xfs_iext_next_extent(ifp, &icur, &got));
1796 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1799 /* Schedule the inode for reclaim. */
1801 xfs_inodegc_set_reclaimable(
1802 struct xfs_inode *ip)
1804 struct xfs_mount *mp = ip->i_mount;
1805 struct xfs_perag *pag;
1807 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1808 xfs_check_delalloc(ip, XFS_DATA_FORK);
1809 xfs_check_delalloc(ip, XFS_COW_FORK);
1813 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1814 spin_lock(&pag->pag_ici_lock);
1815 spin_lock(&ip->i_flags_lock);
1817 trace_xfs_inode_set_reclaimable(ip);
1818 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1819 ip->i_flags |= XFS_IRECLAIMABLE;
1820 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1821 XFS_ICI_RECLAIM_TAG);
1823 spin_unlock(&ip->i_flags_lock);
1824 spin_unlock(&pag->pag_ici_lock);
1829 * Free all speculative preallocations and possibly even the inode itself.
1830 * This is the last chance to make changes to an otherwise unreferenced file
1831 * before incore reclamation happens.
1834 xfs_inodegc_inactivate(
1835 struct xfs_inode *ip)
1839 trace_xfs_inode_inactivating(ip);
1840 error = xfs_inactive(ip);
1841 xfs_inodegc_set_reclaimable(ip);
1848 struct work_struct *work)
1850 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1851 struct xfs_inodegc, work);
1852 struct llist_node *node = llist_del_all(&gc->list);
1853 struct xfs_inode *ip, *n;
1854 struct xfs_mount *mp = gc->mp;
1855 unsigned int nofs_flag;
1858 * Clear the cpu mask bit and ensure that we have seen the latest
1859 * update of the gc structure associated with this CPU. This matches
1860 * with the release semantics used when setting the cpumask bit in
1861 * xfs_inodegc_queue.
1863 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1864 smp_mb__after_atomic();
1866 WRITE_ONCE(gc->items, 0);
1872 * We can allocate memory here while doing writeback on behalf of
1873 * memory reclaim. To avoid memory allocation deadlocks set the
1874 * task-wide nofs context for the following operations.
1876 nofs_flag = memalloc_nofs_save();
1878 ip = llist_entry(node, struct xfs_inode, i_gclist);
1879 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1881 WRITE_ONCE(gc->shrinker_hits, 0);
1882 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1885 xfs_iflags_set(ip, XFS_INACTIVATING);
1886 error = xfs_inodegc_inactivate(ip);
1887 if (error && !gc->error)
1891 memalloc_nofs_restore(nofs_flag);
1895 * Expedite all pending inodegc work to run immediately. This does not wait for
1896 * completion of the work.
1900 struct xfs_mount *mp)
1902 if (!xfs_is_inodegc_enabled(mp))
1904 trace_xfs_inodegc_push(mp, __return_address);
1905 xfs_inodegc_queue_all(mp);
1909 * Force all currently queued inode inactivation work to run immediately and
1910 * wait for the work to finish.
1914 struct xfs_mount *mp)
1916 xfs_inodegc_push(mp);
1917 trace_xfs_inodegc_flush(mp, __return_address);
1918 return xfs_inodegc_wait_all(mp);
1922 * Flush all the pending work and then disable the inode inactivation background
1923 * workers and wait for them to stop. Caller must hold sb->s_umount to
1924 * coordinate changes in the inodegc_enabled state.
1928 struct xfs_mount *mp)
1932 if (!xfs_clear_inodegc_enabled(mp))
1936 * Drain all pending inodegc work, including inodes that could be
1937 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1938 * threads that sample the inodegc state just prior to us clearing it.
1939 * The inodegc flag state prevents new threads from queuing more
1940 * inodes, so we queue pending work items and flush the workqueue until
1941 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
1942 * here because it does not allow other unserialized mechanisms to
1943 * reschedule inodegc work while this draining is in progress.
1945 xfs_inodegc_queue_all(mp);
1947 flush_workqueue(mp->m_inodegc_wq);
1948 rerun = xfs_inodegc_queue_all(mp);
1951 trace_xfs_inodegc_stop(mp, __return_address);
1955 * Enable the inode inactivation background workers and schedule deferred inode
1956 * inactivation work if there is any. Caller must hold sb->s_umount to
1957 * coordinate changes in the inodegc_enabled state.
1961 struct xfs_mount *mp)
1963 if (xfs_set_inodegc_enabled(mp))
1966 trace_xfs_inodegc_start(mp, __return_address);
1967 xfs_inodegc_queue_all(mp);
1970 #ifdef CONFIG_XFS_RT
1972 xfs_inodegc_want_queue_rt_file(
1973 struct xfs_inode *ip)
1975 struct xfs_mount *mp = ip->i_mount;
1977 if (!XFS_IS_REALTIME_INODE(ip))
1980 if (__percpu_counter_compare(&mp->m_frextents,
1981 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1982 XFS_FDBLOCKS_BATCH) < 0)
1988 # define xfs_inodegc_want_queue_rt_file(ip) (false)
1989 #endif /* CONFIG_XFS_RT */
1992 * Schedule the inactivation worker when:
1994 * - We've accumulated more than one inode cluster buffer's worth of inodes.
1995 * - There is less than 5% free space left.
1996 * - Any of the quotas for this inode are near an enforcement limit.
1999 xfs_inodegc_want_queue_work(
2000 struct xfs_inode *ip,
2003 struct xfs_mount *mp = ip->i_mount;
2005 if (items > mp->m_ino_geo.inodes_per_cluster)
2008 if (__percpu_counter_compare(&mp->m_fdblocks,
2009 mp->m_low_space[XFS_LOWSP_5_PCNT],
2010 XFS_FDBLOCKS_BATCH) < 0)
2013 if (xfs_inodegc_want_queue_rt_file(ip))
2016 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2019 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2022 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2029 * Upper bound on the number of inodes in each AG that can be queued for
2030 * inactivation at any given time, to avoid monopolizing the workqueue.
2032 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2035 * Make the frontend wait for inactivations when:
2037 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2038 * - The queue depth exceeds the maximum allowable percpu backlog.
2040 * Note: If we are in a NOFS context here (e.g. current thread is running a
2041 * transaction) the we don't want to block here as inodegc progress may require
2042 * filesystem resources we hold to make progress and that could result in a
2043 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2046 xfs_inodegc_want_flush_work(
2047 struct xfs_inode *ip,
2049 unsigned int shrinker_hits)
2051 if (current->flags & PF_MEMALLOC_NOFS)
2054 if (shrinker_hits > 0)
2057 if (items > XFS_INODEGC_MAX_BACKLOG)
2064 * Queue a background inactivation worker if there are inodes that need to be
2065 * inactivated and higher level xfs code hasn't disabled the background
2070 struct xfs_inode *ip)
2072 struct xfs_mount *mp = ip->i_mount;
2073 struct xfs_inodegc *gc;
2075 unsigned int shrinker_hits;
2076 unsigned int cpu_nr;
2077 unsigned long queue_delay = 1;
2079 trace_xfs_inode_set_need_inactive(ip);
2080 spin_lock(&ip->i_flags_lock);
2081 ip->i_flags |= XFS_NEED_INACTIVE;
2082 spin_unlock(&ip->i_flags_lock);
2085 gc = this_cpu_ptr(mp->m_inodegc);
2086 llist_add(&ip->i_gclist, &gc->list);
2087 items = READ_ONCE(gc->items);
2088 WRITE_ONCE(gc->items, items + 1);
2089 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2092 * Ensure the list add is always seen by anyone who finds the cpumask
2093 * bit set. This effectively gives the cpumask bit set operation
2094 * release ordering semantics.
2096 smp_mb__before_atomic();
2097 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2098 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2101 * We queue the work while holding the current CPU so that the work
2102 * is scheduled to run on this CPU.
2104 if (!xfs_is_inodegc_enabled(mp)) {
2109 if (xfs_inodegc_want_queue_work(ip, items))
2112 trace_xfs_inodegc_queue(mp, __return_address);
2113 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2117 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2118 trace_xfs_inodegc_throttle(mp, __return_address);
2119 flush_delayed_work(&gc->work);
2124 * We set the inode flag atomically with the radix tree tag. Once we get tag
2125 * lookups on the radix tree, this inode flag can go away.
2127 * We always use background reclaim here because even if the inode is clean, it
2128 * still may be under IO and hence we have wait for IO completion to occur
2129 * before we can reclaim the inode. The background reclaim path handles this
2130 * more efficiently than we can here, so simply let background reclaim tear down
2134 xfs_inode_mark_reclaimable(
2135 struct xfs_inode *ip)
2137 struct xfs_mount *mp = ip->i_mount;
2140 XFS_STATS_INC(mp, vn_reclaim);
2143 * We should never get here with any of the reclaim flags already set.
2145 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2147 need_inactive = xfs_inode_needs_inactive(ip);
2148 if (need_inactive) {
2149 xfs_inodegc_queue(ip);
2153 /* Going straight to reclaim, so drop the dquots. */
2154 xfs_qm_dqdetach(ip);
2155 xfs_inodegc_set_reclaimable(ip);
2159 * Register a phony shrinker so that we can run background inodegc sooner when
2160 * there's memory pressure. Inactivation does not itself free any memory but
2161 * it does make inodes reclaimable, which eventually frees memory.
2163 * The count function, seek value, and batch value are crafted to trigger the
2164 * scan function during the second round of scanning. Hopefully this means
2165 * that we reclaimed enough memory that initiating metadata transactions won't
2166 * make things worse.
2168 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2169 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2171 static unsigned long
2172 xfs_inodegc_shrinker_count(
2173 struct shrinker *shrink,
2174 struct shrink_control *sc)
2176 struct xfs_mount *mp = shrink->private_data;
2177 struct xfs_inodegc *gc;
2180 if (!xfs_is_inodegc_enabled(mp))
2183 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2184 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2185 if (!llist_empty(&gc->list))
2186 return XFS_INODEGC_SHRINKER_COUNT;
2192 static unsigned long
2193 xfs_inodegc_shrinker_scan(
2194 struct shrinker *shrink,
2195 struct shrink_control *sc)
2197 struct xfs_mount *mp = shrink->private_data;
2198 struct xfs_inodegc *gc;
2200 bool no_items = true;
2202 if (!xfs_is_inodegc_enabled(mp))
2205 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2207 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2208 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2209 if (!llist_empty(&gc->list)) {
2210 unsigned int h = READ_ONCE(gc->shrinker_hits);
2212 WRITE_ONCE(gc->shrinker_hits, h + 1);
2213 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2219 * If there are no inodes to inactivate, we don't want the shrinker
2220 * to think there's deferred work to call us back about.
2228 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2230 xfs_inodegc_register_shrinker(
2231 struct xfs_mount *mp)
2233 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2236 if (!mp->m_inodegc_shrinker)
2239 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2240 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2241 mp->m_inodegc_shrinker->seeks = 0;
2242 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2243 mp->m_inodegc_shrinker->private_data = mp;
2245 shrinker_register(mp->m_inodegc_shrinker);