]> Git Repo - linux.git/blob - fs/btrfs/ordered-data.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22
23 static struct kmem_cache *btrfs_ordered_extent_cache;
24
25 static u64 entry_end(struct btrfs_ordered_extent *entry)
26 {
27         if (entry->file_offset + entry->num_bytes < entry->file_offset)
28                 return (u64)-1;
29         return entry->file_offset + entry->num_bytes;
30 }
31
32 /* returns NULL if the insertion worked, or it returns the node it did find
33  * in the tree
34  */
35 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
36                                    struct rb_node *node)
37 {
38         struct rb_node **p = &root->rb_node;
39         struct rb_node *parent = NULL;
40         struct btrfs_ordered_extent *entry;
41
42         while (*p) {
43                 parent = *p;
44                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
45
46                 if (file_offset < entry->file_offset)
47                         p = &(*p)->rb_left;
48                 else if (file_offset >= entry_end(entry))
49                         p = &(*p)->rb_right;
50                 else
51                         return parent;
52         }
53
54         rb_link_node(node, parent, p);
55         rb_insert_color(node, root);
56         return NULL;
57 }
58
59 /*
60  * look for a given offset in the tree, and if it can't be found return the
61  * first lesser offset
62  */
63 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
64                                      struct rb_node **prev_ret)
65 {
66         struct rb_node *n = root->rb_node;
67         struct rb_node *prev = NULL;
68         struct rb_node *test;
69         struct btrfs_ordered_extent *entry;
70         struct btrfs_ordered_extent *prev_entry = NULL;
71
72         while (n) {
73                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
74                 prev = n;
75                 prev_entry = entry;
76
77                 if (file_offset < entry->file_offset)
78                         n = n->rb_left;
79                 else if (file_offset >= entry_end(entry))
80                         n = n->rb_right;
81                 else
82                         return n;
83         }
84         if (!prev_ret)
85                 return NULL;
86
87         while (prev && file_offset >= entry_end(prev_entry)) {
88                 test = rb_next(prev);
89                 if (!test)
90                         break;
91                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
92                                       rb_node);
93                 if (file_offset < entry_end(prev_entry))
94                         break;
95
96                 prev = test;
97         }
98         if (prev)
99                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
100                                       rb_node);
101         while (prev && file_offset < entry_end(prev_entry)) {
102                 test = rb_prev(prev);
103                 if (!test)
104                         break;
105                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106                                       rb_node);
107                 prev = test;
108         }
109         *prev_ret = prev;
110         return NULL;
111 }
112
113 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
114                           u64 len)
115 {
116         if (file_offset + len <= entry->file_offset ||
117             entry->file_offset + entry->num_bytes <= file_offset)
118                 return 0;
119         return 1;
120 }
121
122 /*
123  * look find the first ordered struct that has this offset, otherwise
124  * the first one less than this offset
125  */
126 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
127                                                   u64 file_offset)
128 {
129         struct rb_node *prev = NULL;
130         struct rb_node *ret;
131         struct btrfs_ordered_extent *entry;
132
133         if (inode->ordered_tree_last) {
134                 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
135                                  rb_node);
136                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
137                         return inode->ordered_tree_last;
138         }
139         ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
140         if (!ret)
141                 ret = prev;
142         if (ret)
143                 inode->ordered_tree_last = ret;
144         return ret;
145 }
146
147 static struct btrfs_ordered_extent *alloc_ordered_extent(
148                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
149                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
150                         u64 offset, unsigned long flags, int compress_type)
151 {
152         struct btrfs_ordered_extent *entry;
153         int ret;
154         u64 qgroup_rsv = 0;
155
156         if (flags &
157             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158                 /* For nocow write, we can release the qgroup rsv right now */
159                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
160                 if (ret < 0)
161                         return ERR_PTR(ret);
162         } else {
163                 /*
164                  * The ordered extent has reserved qgroup space, release now
165                  * and pass the reserved number for qgroup_record to free.
166                  */
167                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
168                 if (ret < 0)
169                         return ERR_PTR(ret);
170         }
171         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172         if (!entry)
173                 return ERR_PTR(-ENOMEM);
174
175         entry->file_offset = file_offset;
176         entry->num_bytes = num_bytes;
177         entry->ram_bytes = ram_bytes;
178         entry->disk_bytenr = disk_bytenr;
179         entry->disk_num_bytes = disk_num_bytes;
180         entry->offset = offset;
181         entry->bytes_left = num_bytes;
182         entry->inode = igrab(&inode->vfs_inode);
183         entry->compress_type = compress_type;
184         entry->truncated_len = (u64)-1;
185         entry->qgroup_rsv = qgroup_rsv;
186         entry->flags = flags;
187         refcount_set(&entry->refs, 1);
188         init_waitqueue_head(&entry->wait);
189         INIT_LIST_HEAD(&entry->list);
190         INIT_LIST_HEAD(&entry->log_list);
191         INIT_LIST_HEAD(&entry->root_extent_list);
192         INIT_LIST_HEAD(&entry->work_list);
193         INIT_LIST_HEAD(&entry->bioc_list);
194         init_completion(&entry->completion);
195
196         /*
197          * We don't need the count_max_extents here, we can assume that all of
198          * that work has been done at higher layers, so this is truly the
199          * smallest the extent is going to get.
200          */
201         spin_lock(&inode->lock);
202         btrfs_mod_outstanding_extents(inode, 1);
203         spin_unlock(&inode->lock);
204
205         return entry;
206 }
207
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210         struct btrfs_inode *inode = BTRFS_I(entry->inode);
211         struct btrfs_root *root = inode->root;
212         struct btrfs_fs_info *fs_info = root->fs_info;
213         struct rb_node *node;
214
215         trace_btrfs_ordered_extent_add(inode, entry);
216
217         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218                                  fs_info->delalloc_batch);
219
220         /* One ref for the tree. */
221         refcount_inc(&entry->refs);
222
223         spin_lock_irq(&inode->ordered_tree_lock);
224         node = tree_insert(&inode->ordered_tree, entry->file_offset,
225                            &entry->rb_node);
226         if (node)
227                 btrfs_panic(fs_info, -EEXIST,
228                                 "inconsistency in ordered tree at offset %llu",
229                                 entry->file_offset);
230         spin_unlock_irq(&inode->ordered_tree_lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240                 spin_unlock(&fs_info->ordered_root_lock);
241         }
242         spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265                         struct btrfs_inode *inode, u64 file_offset,
266                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267                         u64 disk_num_bytes, u64 offset, unsigned long flags,
268                         int compress_type)
269 {
270         struct btrfs_ordered_extent *entry;
271
272         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275                                      disk_bytenr, disk_num_bytes, offset, flags,
276                                      compress_type);
277         if (!IS_ERR(entry))
278                 insert_ordered_extent(entry);
279         return entry;
280 }
281
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288                            struct btrfs_ordered_sum *sum)
289 {
290         struct btrfs_inode *inode = BTRFS_I(entry->inode);
291
292         spin_lock_irq(&inode->ordered_tree_lock);
293         list_add_tail(&sum->list, &entry->list);
294         spin_unlock_irq(&inode->ordered_tree_lock);
295 }
296
297 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
298 {
299         if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
300                 mapping_set_error(ordered->inode->i_mapping, -EIO);
301 }
302
303 static void finish_ordered_fn(struct btrfs_work *work)
304 {
305         struct btrfs_ordered_extent *ordered_extent;
306
307         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
308         btrfs_finish_ordered_io(ordered_extent);
309 }
310
311 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
312                                       struct page *page, u64 file_offset,
313                                       u64 len, bool uptodate)
314 {
315         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
316         struct btrfs_fs_info *fs_info = inode->root->fs_info;
317
318         lockdep_assert_held(&inode->ordered_tree_lock);
319
320         if (page) {
321                 ASSERT(page->mapping);
322                 ASSERT(page_offset(page) <= file_offset);
323                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
324
325                 /*
326                  * Ordered (Private2) bit indicates whether we still have
327                  * pending io unfinished for the ordered extent.
328                  *
329                  * If there's no such bit, we need to skip to next range.
330                  */
331                 if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
332                                               file_offset, len))
333                         return false;
334                 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
335         }
336
337         /* Now we're fine to update the accounting. */
338         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
339                 btrfs_crit(fs_info,
340 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
341                            btrfs_root_id(inode->root), btrfs_ino(inode),
342                            ordered->file_offset, ordered->num_bytes,
343                            len, ordered->bytes_left);
344                 ordered->bytes_left = 0;
345         } else {
346                 ordered->bytes_left -= len;
347         }
348
349         if (!uptodate)
350                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
351
352         if (ordered->bytes_left)
353                 return false;
354
355         /*
356          * All the IO of the ordered extent is finished, we need to queue
357          * the finish_func to be executed.
358          */
359         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
360         cond_wake_up(&ordered->wait);
361         refcount_inc(&ordered->refs);
362         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
363         return true;
364 }
365
366 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
367 {
368         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
369         struct btrfs_fs_info *fs_info = inode->root->fs_info;
370         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
371                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
372
373         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
374         btrfs_queue_work(wq, &ordered->work);
375 }
376
377 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
378                                  struct page *page, u64 file_offset, u64 len,
379                                  bool uptodate)
380 {
381         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
382         unsigned long flags;
383         bool ret;
384
385         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
386
387         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
388         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
389         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
390
391         if (ret)
392                 btrfs_queue_ordered_fn(ordered);
393         return ret;
394 }
395
396 /*
397  * Mark all ordered extents io inside the specified range finished.
398  *
399  * @page:        The involved page for the operation.
400  *               For uncompressed buffered IO, the page status also needs to be
401  *               updated to indicate whether the pending ordered io is finished.
402  *               Can be NULL for direct IO and compressed write.
403  *               For these cases, callers are ensured they won't execute the
404  *               endio function twice.
405  *
406  * This function is called for endio, thus the range must have ordered
407  * extent(s) covering it.
408  */
409 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
410                                     struct page *page, u64 file_offset,
411                                     u64 num_bytes, bool uptodate)
412 {
413         struct rb_node *node;
414         struct btrfs_ordered_extent *entry = NULL;
415         unsigned long flags;
416         u64 cur = file_offset;
417
418         trace_btrfs_writepage_end_io_hook(inode, file_offset,
419                                           file_offset + num_bytes - 1,
420                                           uptodate);
421
422         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
423         while (cur < file_offset + num_bytes) {
424                 u64 entry_end;
425                 u64 end;
426                 u32 len;
427
428                 node = ordered_tree_search(inode, cur);
429                 /* No ordered extents at all */
430                 if (!node)
431                         break;
432
433                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
434                 entry_end = entry->file_offset + entry->num_bytes;
435                 /*
436                  * |<-- OE --->|  |
437                  *                cur
438                  * Go to next OE.
439                  */
440                 if (cur >= entry_end) {
441                         node = rb_next(node);
442                         /* No more ordered extents, exit */
443                         if (!node)
444                                 break;
445                         entry = rb_entry(node, struct btrfs_ordered_extent,
446                                          rb_node);
447
448                         /* Go to next ordered extent and continue */
449                         cur = entry->file_offset;
450                         continue;
451                 }
452                 /*
453                  * |    |<--- OE --->|
454                  * cur
455                  * Go to the start of OE.
456                  */
457                 if (cur < entry->file_offset) {
458                         cur = entry->file_offset;
459                         continue;
460                 }
461
462                 /*
463                  * Now we are definitely inside one ordered extent.
464                  *
465                  * |<--- OE --->|
466                  *      |
467                  *      cur
468                  */
469                 end = min(entry->file_offset + entry->num_bytes,
470                           file_offset + num_bytes) - 1;
471                 ASSERT(end + 1 - cur < U32_MAX);
472                 len = end + 1 - cur;
473
474                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
475                         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
476                         btrfs_queue_ordered_fn(entry);
477                         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
478                 }
479                 cur += len;
480         }
481         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
482 }
483
484 /*
485  * Finish IO for one ordered extent across a given range.  The range can only
486  * contain one ordered extent.
487  *
488  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
489  *               search and use the ordered extent directly.
490  *               Will be also used to store the finished ordered extent.
491  * @file_offset: File offset for the finished IO
492  * @io_size:     Length of the finish IO range
493  *
494  * Return true if the ordered extent is finished in the range, and update
495  * @cached.
496  * Return false otherwise.
497  *
498  * NOTE: The range can NOT cross multiple ordered extents.
499  * Thus caller should ensure the range doesn't cross ordered extents.
500  */
501 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
502                                     struct btrfs_ordered_extent **cached,
503                                     u64 file_offset, u64 io_size)
504 {
505         struct rb_node *node;
506         struct btrfs_ordered_extent *entry = NULL;
507         unsigned long flags;
508         bool finished = false;
509
510         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
511         if (cached && *cached) {
512                 entry = *cached;
513                 goto have_entry;
514         }
515
516         node = ordered_tree_search(inode, file_offset);
517         if (!node)
518                 goto out;
519
520         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
521 have_entry:
522         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
523                 goto out;
524
525         if (io_size > entry->bytes_left)
526                 btrfs_crit(inode->root->fs_info,
527                            "bad ordered accounting left %llu size %llu",
528                        entry->bytes_left, io_size);
529
530         entry->bytes_left -= io_size;
531
532         if (entry->bytes_left == 0) {
533                 /*
534                  * Ensure only one caller can set the flag and finished_ret
535                  * accordingly
536                  */
537                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
538                 /* test_and_set_bit implies a barrier */
539                 cond_wake_up_nomb(&entry->wait);
540         }
541 out:
542         if (finished && cached && entry) {
543                 *cached = entry;
544                 refcount_inc(&entry->refs);
545                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
546         }
547         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
548         return finished;
549 }
550
551 /*
552  * used to drop a reference on an ordered extent.  This will free
553  * the extent if the last reference is dropped
554  */
555 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
556 {
557         struct list_head *cur;
558         struct btrfs_ordered_sum *sum;
559
560         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
561
562         if (refcount_dec_and_test(&entry->refs)) {
563                 ASSERT(list_empty(&entry->root_extent_list));
564                 ASSERT(list_empty(&entry->log_list));
565                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
566                 if (entry->inode)
567                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
568                 while (!list_empty(&entry->list)) {
569                         cur = entry->list.next;
570                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
571                         list_del(&sum->list);
572                         kvfree(sum);
573                 }
574                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
575         }
576 }
577
578 /*
579  * remove an ordered extent from the tree.  No references are dropped
580  * and waiters are woken up.
581  */
582 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
583                                  struct btrfs_ordered_extent *entry)
584 {
585         struct btrfs_root *root = btrfs_inode->root;
586         struct btrfs_fs_info *fs_info = root->fs_info;
587         struct rb_node *node;
588         bool pending;
589         bool freespace_inode;
590
591         /*
592          * If this is a free space inode the thread has not acquired the ordered
593          * extents lockdep map.
594          */
595         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
596
597         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
598         /* This is paired with btrfs_alloc_ordered_extent. */
599         spin_lock(&btrfs_inode->lock);
600         btrfs_mod_outstanding_extents(btrfs_inode, -1);
601         spin_unlock(&btrfs_inode->lock);
602         if (root != fs_info->tree_root) {
603                 u64 release;
604
605                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
606                         release = entry->disk_num_bytes;
607                 else
608                         release = entry->num_bytes;
609                 btrfs_delalloc_release_metadata(btrfs_inode, release,
610                                                 test_bit(BTRFS_ORDERED_IOERR,
611                                                          &entry->flags));
612         }
613
614         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
615                                  fs_info->delalloc_batch);
616
617         spin_lock_irq(&btrfs_inode->ordered_tree_lock);
618         node = &entry->rb_node;
619         rb_erase(node, &btrfs_inode->ordered_tree);
620         RB_CLEAR_NODE(node);
621         if (btrfs_inode->ordered_tree_last == node)
622                 btrfs_inode->ordered_tree_last = NULL;
623         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
624         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
625         spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
626
627         /*
628          * The current running transaction is waiting on us, we need to let it
629          * know that we're complete and wake it up.
630          */
631         if (pending) {
632                 struct btrfs_transaction *trans;
633
634                 /*
635                  * The checks for trans are just a formality, it should be set,
636                  * but if it isn't we don't want to deref/assert under the spin
637                  * lock, so be nice and check if trans is set, but ASSERT() so
638                  * if it isn't set a developer will notice.
639                  */
640                 spin_lock(&fs_info->trans_lock);
641                 trans = fs_info->running_transaction;
642                 if (trans)
643                         refcount_inc(&trans->use_count);
644                 spin_unlock(&fs_info->trans_lock);
645
646                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
647                 if (trans) {
648                         if (atomic_dec_and_test(&trans->pending_ordered))
649                                 wake_up(&trans->pending_wait);
650                         btrfs_put_transaction(trans);
651                 }
652         }
653
654         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
655
656         spin_lock(&root->ordered_extent_lock);
657         list_del_init(&entry->root_extent_list);
658         root->nr_ordered_extents--;
659
660         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
661
662         if (!root->nr_ordered_extents) {
663                 spin_lock(&fs_info->ordered_root_lock);
664                 BUG_ON(list_empty(&root->ordered_root));
665                 list_del_init(&root->ordered_root);
666                 spin_unlock(&fs_info->ordered_root_lock);
667         }
668         spin_unlock(&root->ordered_extent_lock);
669         wake_up(&entry->wait);
670         if (!freespace_inode)
671                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
672 }
673
674 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
675 {
676         struct btrfs_ordered_extent *ordered;
677
678         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
679         btrfs_start_ordered_extent(ordered);
680         complete(&ordered->completion);
681 }
682
683 /*
684  * wait for all the ordered extents in a root.  This is done when balancing
685  * space between drives.
686  */
687 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
688                                const u64 range_start, const u64 range_len)
689 {
690         struct btrfs_fs_info *fs_info = root->fs_info;
691         LIST_HEAD(splice);
692         LIST_HEAD(skipped);
693         LIST_HEAD(works);
694         struct btrfs_ordered_extent *ordered, *next;
695         u64 count = 0;
696         const u64 range_end = range_start + range_len;
697
698         mutex_lock(&root->ordered_extent_mutex);
699         spin_lock(&root->ordered_extent_lock);
700         list_splice_init(&root->ordered_extents, &splice);
701         while (!list_empty(&splice) && nr) {
702                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
703                                            root_extent_list);
704
705                 if (range_end <= ordered->disk_bytenr ||
706                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
707                         list_move_tail(&ordered->root_extent_list, &skipped);
708                         cond_resched_lock(&root->ordered_extent_lock);
709                         continue;
710                 }
711
712                 list_move_tail(&ordered->root_extent_list,
713                                &root->ordered_extents);
714                 refcount_inc(&ordered->refs);
715                 spin_unlock(&root->ordered_extent_lock);
716
717                 btrfs_init_work(&ordered->flush_work,
718                                 btrfs_run_ordered_extent_work, NULL);
719                 list_add_tail(&ordered->work_list, &works);
720                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
721
722                 cond_resched();
723                 spin_lock(&root->ordered_extent_lock);
724                 if (nr != U64_MAX)
725                         nr--;
726                 count++;
727         }
728         list_splice_tail(&skipped, &root->ordered_extents);
729         list_splice_tail(&splice, &root->ordered_extents);
730         spin_unlock(&root->ordered_extent_lock);
731
732         list_for_each_entry_safe(ordered, next, &works, work_list) {
733                 list_del_init(&ordered->work_list);
734                 wait_for_completion(&ordered->completion);
735                 btrfs_put_ordered_extent(ordered);
736                 cond_resched();
737         }
738         mutex_unlock(&root->ordered_extent_mutex);
739
740         return count;
741 }
742
743 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
744                              const u64 range_start, const u64 range_len)
745 {
746         struct btrfs_root *root;
747         LIST_HEAD(splice);
748         u64 done;
749
750         mutex_lock(&fs_info->ordered_operations_mutex);
751         spin_lock(&fs_info->ordered_root_lock);
752         list_splice_init(&fs_info->ordered_roots, &splice);
753         while (!list_empty(&splice) && nr) {
754                 root = list_first_entry(&splice, struct btrfs_root,
755                                         ordered_root);
756                 root = btrfs_grab_root(root);
757                 BUG_ON(!root);
758                 list_move_tail(&root->ordered_root,
759                                &fs_info->ordered_roots);
760                 spin_unlock(&fs_info->ordered_root_lock);
761
762                 done = btrfs_wait_ordered_extents(root, nr,
763                                                   range_start, range_len);
764                 btrfs_put_root(root);
765
766                 spin_lock(&fs_info->ordered_root_lock);
767                 if (nr != U64_MAX) {
768                         nr -= done;
769                 }
770         }
771         list_splice_tail(&splice, &fs_info->ordered_roots);
772         spin_unlock(&fs_info->ordered_root_lock);
773         mutex_unlock(&fs_info->ordered_operations_mutex);
774 }
775
776 /*
777  * Start IO and wait for a given ordered extent to finish.
778  *
779  * Wait on page writeback for all the pages in the extent and the IO completion
780  * code to insert metadata into the btree corresponding to the extent.
781  */
782 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
783 {
784         u64 start = entry->file_offset;
785         u64 end = start + entry->num_bytes - 1;
786         struct btrfs_inode *inode = BTRFS_I(entry->inode);
787         bool freespace_inode;
788
789         trace_btrfs_ordered_extent_start(inode, entry);
790
791         /*
792          * If this is a free space inode do not take the ordered extents lockdep
793          * map.
794          */
795         freespace_inode = btrfs_is_free_space_inode(inode);
796
797         /*
798          * pages in the range can be dirty, clean or writeback.  We
799          * start IO on any dirty ones so the wait doesn't stall waiting
800          * for the flusher thread to find them
801          */
802         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
803                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
804
805         if (!freespace_inode)
806                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
807         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
808 }
809
810 /*
811  * Used to wait on ordered extents across a large range of bytes.
812  */
813 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
814 {
815         int ret = 0;
816         int ret_wb = 0;
817         u64 end;
818         u64 orig_end;
819         struct btrfs_ordered_extent *ordered;
820
821         if (start + len < start) {
822                 orig_end = OFFSET_MAX;
823         } else {
824                 orig_end = start + len - 1;
825                 if (orig_end > OFFSET_MAX)
826                         orig_end = OFFSET_MAX;
827         }
828
829         /* start IO across the range first to instantiate any delalloc
830          * extents
831          */
832         ret = btrfs_fdatawrite_range(inode, start, orig_end);
833         if (ret)
834                 return ret;
835
836         /*
837          * If we have a writeback error don't return immediately. Wait first
838          * for any ordered extents that haven't completed yet. This is to make
839          * sure no one can dirty the same page ranges and call writepages()
840          * before the ordered extents complete - to avoid failures (-EEXIST)
841          * when adding the new ordered extents to the ordered tree.
842          */
843         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
844
845         end = orig_end;
846         while (1) {
847                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
848                 if (!ordered)
849                         break;
850                 if (ordered->file_offset > orig_end) {
851                         btrfs_put_ordered_extent(ordered);
852                         break;
853                 }
854                 if (ordered->file_offset + ordered->num_bytes <= start) {
855                         btrfs_put_ordered_extent(ordered);
856                         break;
857                 }
858                 btrfs_start_ordered_extent(ordered);
859                 end = ordered->file_offset;
860                 /*
861                  * If the ordered extent had an error save the error but don't
862                  * exit without waiting first for all other ordered extents in
863                  * the range to complete.
864                  */
865                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
866                         ret = -EIO;
867                 btrfs_put_ordered_extent(ordered);
868                 if (end == 0 || end == start)
869                         break;
870                 end--;
871         }
872         return ret_wb ? ret_wb : ret;
873 }
874
875 /*
876  * find an ordered extent corresponding to file_offset.  return NULL if
877  * nothing is found, otherwise take a reference on the extent and return it
878  */
879 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
880                                                          u64 file_offset)
881 {
882         struct rb_node *node;
883         struct btrfs_ordered_extent *entry = NULL;
884         unsigned long flags;
885
886         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
887         node = ordered_tree_search(inode, file_offset);
888         if (!node)
889                 goto out;
890
891         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
892         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
893                 entry = NULL;
894         if (entry) {
895                 refcount_inc(&entry->refs);
896                 trace_btrfs_ordered_extent_lookup(inode, entry);
897         }
898 out:
899         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
900         return entry;
901 }
902
903 /* Since the DIO code tries to lock a wide area we need to look for any ordered
904  * extents that exist in the range, rather than just the start of the range.
905  */
906 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
907                 struct btrfs_inode *inode, u64 file_offset, u64 len)
908 {
909         struct rb_node *node;
910         struct btrfs_ordered_extent *entry = NULL;
911
912         spin_lock_irq(&inode->ordered_tree_lock);
913         node = ordered_tree_search(inode, file_offset);
914         if (!node) {
915                 node = ordered_tree_search(inode, file_offset + len);
916                 if (!node)
917                         goto out;
918         }
919
920         while (1) {
921                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
922                 if (range_overlaps(entry, file_offset, len))
923                         break;
924
925                 if (entry->file_offset >= file_offset + len) {
926                         entry = NULL;
927                         break;
928                 }
929                 entry = NULL;
930                 node = rb_next(node);
931                 if (!node)
932                         break;
933         }
934 out:
935         if (entry) {
936                 refcount_inc(&entry->refs);
937                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
938         }
939         spin_unlock_irq(&inode->ordered_tree_lock);
940         return entry;
941 }
942
943 /*
944  * Adds all ordered extents to the given list. The list ends up sorted by the
945  * file_offset of the ordered extents.
946  */
947 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
948                                            struct list_head *list)
949 {
950         struct rb_node *n;
951
952         ASSERT(inode_is_locked(&inode->vfs_inode));
953
954         spin_lock_irq(&inode->ordered_tree_lock);
955         for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
956                 struct btrfs_ordered_extent *ordered;
957
958                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
959
960                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
961                         continue;
962
963                 ASSERT(list_empty(&ordered->log_list));
964                 list_add_tail(&ordered->log_list, list);
965                 refcount_inc(&ordered->refs);
966                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
967         }
968         spin_unlock_irq(&inode->ordered_tree_lock);
969 }
970
971 /*
972  * lookup and return any extent before 'file_offset'.  NULL is returned
973  * if none is found
974  */
975 struct btrfs_ordered_extent *
976 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
977 {
978         struct rb_node *node;
979         struct btrfs_ordered_extent *entry = NULL;
980
981         spin_lock_irq(&inode->ordered_tree_lock);
982         node = ordered_tree_search(inode, file_offset);
983         if (!node)
984                 goto out;
985
986         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
987         refcount_inc(&entry->refs);
988         trace_btrfs_ordered_extent_lookup_first(inode, entry);
989 out:
990         spin_unlock_irq(&inode->ordered_tree_lock);
991         return entry;
992 }
993
994 /*
995  * Lookup the first ordered extent that overlaps the range
996  * [@file_offset, @file_offset + @len).
997  *
998  * The difference between this and btrfs_lookup_first_ordered_extent() is
999  * that this one won't return any ordered extent that does not overlap the range.
1000  * And the difference against btrfs_lookup_ordered_extent() is, this function
1001  * ensures the first ordered extent gets returned.
1002  */
1003 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1004                         struct btrfs_inode *inode, u64 file_offset, u64 len)
1005 {
1006         struct rb_node *node;
1007         struct rb_node *cur;
1008         struct rb_node *prev;
1009         struct rb_node *next;
1010         struct btrfs_ordered_extent *entry = NULL;
1011
1012         spin_lock_irq(&inode->ordered_tree_lock);
1013         node = inode->ordered_tree.rb_node;
1014         /*
1015          * Here we don't want to use tree_search() which will use tree->last
1016          * and screw up the search order.
1017          * And __tree_search() can't return the adjacent ordered extents
1018          * either, thus here we do our own search.
1019          */
1020         while (node) {
1021                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1022
1023                 if (file_offset < entry->file_offset) {
1024                         node = node->rb_left;
1025                 } else if (file_offset >= entry_end(entry)) {
1026                         node = node->rb_right;
1027                 } else {
1028                         /*
1029                          * Direct hit, got an ordered extent that starts at
1030                          * @file_offset
1031                          */
1032                         goto out;
1033                 }
1034         }
1035         if (!entry) {
1036                 /* Empty tree */
1037                 goto out;
1038         }
1039
1040         cur = &entry->rb_node;
1041         /* We got an entry around @file_offset, check adjacent entries */
1042         if (entry->file_offset < file_offset) {
1043                 prev = cur;
1044                 next = rb_next(cur);
1045         } else {
1046                 prev = rb_prev(cur);
1047                 next = cur;
1048         }
1049         if (prev) {
1050                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1051                 if (range_overlaps(entry, file_offset, len))
1052                         goto out;
1053         }
1054         if (next) {
1055                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1056                 if (range_overlaps(entry, file_offset, len))
1057                         goto out;
1058         }
1059         /* No ordered extent in the range */
1060         entry = NULL;
1061 out:
1062         if (entry) {
1063                 refcount_inc(&entry->refs);
1064                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1065         }
1066
1067         spin_unlock_irq(&inode->ordered_tree_lock);
1068         return entry;
1069 }
1070
1071 /*
1072  * Lock the passed range and ensures all pending ordered extents in it are run
1073  * to completion.
1074  *
1075  * @inode:        Inode whose ordered tree is to be searched
1076  * @start:        Beginning of range to flush
1077  * @end:          Last byte of range to lock
1078  * @cached_state: If passed, will return the extent state responsible for the
1079  *                locked range. It's the caller's responsibility to free the
1080  *                cached state.
1081  *
1082  * Always return with the given range locked, ensuring after it's called no
1083  * order extent can be pending.
1084  */
1085 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1086                                         u64 end,
1087                                         struct extent_state **cached_state)
1088 {
1089         struct btrfs_ordered_extent *ordered;
1090         struct extent_state *cache = NULL;
1091         struct extent_state **cachedp = &cache;
1092
1093         if (cached_state)
1094                 cachedp = cached_state;
1095
1096         while (1) {
1097                 lock_extent(&inode->io_tree, start, end, cachedp);
1098                 ordered = btrfs_lookup_ordered_range(inode, start,
1099                                                      end - start + 1);
1100                 if (!ordered) {
1101                         /*
1102                          * If no external cached_state has been passed then
1103                          * decrement the extra ref taken for cachedp since we
1104                          * aren't exposing it outside of this function
1105                          */
1106                         if (!cached_state)
1107                                 refcount_dec(&cache->refs);
1108                         break;
1109                 }
1110                 unlock_extent(&inode->io_tree, start, end, cachedp);
1111                 btrfs_start_ordered_extent(ordered);
1112                 btrfs_put_ordered_extent(ordered);
1113         }
1114 }
1115
1116 /*
1117  * Lock the passed range and ensure all pending ordered extents in it are run
1118  * to completion in nowait mode.
1119  *
1120  * Return true if btrfs_lock_ordered_range does not return any extents,
1121  * otherwise false.
1122  */
1123 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1124                                   struct extent_state **cached_state)
1125 {
1126         struct btrfs_ordered_extent *ordered;
1127
1128         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1129                 return false;
1130
1131         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1132         if (!ordered)
1133                 return true;
1134
1135         btrfs_put_ordered_extent(ordered);
1136         unlock_extent(&inode->io_tree, start, end, cached_state);
1137
1138         return false;
1139 }
1140
1141 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1142 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1143                         struct btrfs_ordered_extent *ordered, u64 len)
1144 {
1145         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1146         struct btrfs_root *root = inode->root;
1147         struct btrfs_fs_info *fs_info = root->fs_info;
1148         u64 file_offset = ordered->file_offset;
1149         u64 disk_bytenr = ordered->disk_bytenr;
1150         unsigned long flags = ordered->flags;
1151         struct btrfs_ordered_sum *sum, *tmpsum;
1152         struct btrfs_ordered_extent *new;
1153         struct rb_node *node;
1154         u64 offset = 0;
1155
1156         trace_btrfs_ordered_extent_split(inode, ordered);
1157
1158         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1159
1160         /*
1161          * The entire bio must be covered by the ordered extent, but we can't
1162          * reduce the original extent to a zero length either.
1163          */
1164         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1165                 return ERR_PTR(-EINVAL);
1166         /* We cannot split partially completed ordered extents. */
1167         if (ordered->bytes_left) {
1168                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1169                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1170                         return ERR_PTR(-EINVAL);
1171         }
1172         /* We cannot split a compressed ordered extent. */
1173         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1174                 return ERR_PTR(-EINVAL);
1175
1176         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1177                                    len, 0, flags, ordered->compress_type);
1178         if (IS_ERR(new))
1179                 return new;
1180
1181         /* One ref for the tree. */
1182         refcount_inc(&new->refs);
1183
1184         spin_lock_irq(&root->ordered_extent_lock);
1185         spin_lock(&inode->ordered_tree_lock);
1186         /* Remove from tree once */
1187         node = &ordered->rb_node;
1188         rb_erase(node, &inode->ordered_tree);
1189         RB_CLEAR_NODE(node);
1190         if (inode->ordered_tree_last == node)
1191                 inode->ordered_tree_last = NULL;
1192
1193         ordered->file_offset += len;
1194         ordered->disk_bytenr += len;
1195         ordered->num_bytes -= len;
1196         ordered->disk_num_bytes -= len;
1197         ordered->ram_bytes -= len;
1198
1199         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1200                 ASSERT(ordered->bytes_left == 0);
1201                 new->bytes_left = 0;
1202         } else {
1203                 ordered->bytes_left -= len;
1204         }
1205
1206         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1207                 if (ordered->truncated_len > len) {
1208                         ordered->truncated_len -= len;
1209                 } else {
1210                         new->truncated_len = ordered->truncated_len;
1211                         ordered->truncated_len = 0;
1212                 }
1213         }
1214
1215         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1216                 if (offset == len)
1217                         break;
1218                 list_move_tail(&sum->list, &new->list);
1219                 offset += sum->len;
1220         }
1221
1222         /* Re-insert the node */
1223         node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1224                            &ordered->rb_node);
1225         if (node)
1226                 btrfs_panic(fs_info, -EEXIST,
1227                         "zoned: inconsistency in ordered tree at offset %llu",
1228                         ordered->file_offset);
1229
1230         node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1231         if (node)
1232                 btrfs_panic(fs_info, -EEXIST,
1233                         "zoned: inconsistency in ordered tree at offset %llu",
1234                         new->file_offset);
1235         spin_unlock(&inode->ordered_tree_lock);
1236
1237         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1238         root->nr_ordered_extents++;
1239         spin_unlock_irq(&root->ordered_extent_lock);
1240         return new;
1241 }
1242
1243 int __init ordered_data_init(void)
1244 {
1245         btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1246         if (!btrfs_ordered_extent_cache)
1247                 return -ENOMEM;
1248
1249         return 0;
1250 }
1251
1252 void __cold ordered_data_exit(void)
1253 {
1254         kmem_cache_destroy(btrfs_ordered_extent_cache);
1255 }
This page took 0.106089 seconds and 4 git commands to generate.