]> Git Repo - linux.git/blob - fs/btrfs/file-item.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "bio.h"
17 #include "compression.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "file-item.h"
21
22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23                                    sizeof(struct btrfs_item) * 2) / \
24                                   size) - 1))
25
26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27                                        PAGE_SIZE))
28
29 /*
30  * Set inode's size according to filesystem options.
31  *
32  * @inode:      inode we want to update the disk_i_size for
33  * @new_i_size: i_size we want to set to, 0 if we use i_size
34  *
35  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36  * returns as it is perfectly fine with a file that has holes without hole file
37  * extent items.
38  *
39  * However without NO_HOLES we need to only return the area that is contiguous
40  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
41  * to an extent that has a gap in between.
42  *
43  * Finally new_i_size should only be set in the case of truncate where we're not
44  * ready to use i_size_read() as the limiter yet.
45  */
46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47 {
48         struct btrfs_fs_info *fs_info = inode->root->fs_info;
49         u64 start, end, i_size;
50         int ret;
51
52         spin_lock(&inode->lock);
53         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
54         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
55                 inode->disk_i_size = i_size;
56                 goto out_unlock;
57         }
58
59         ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
60                                          &end, EXTENT_DIRTY);
61         if (!ret && start == 0)
62                 i_size = min(i_size, end + 1);
63         else
64                 i_size = 0;
65         inode->disk_i_size = i_size;
66 out_unlock:
67         spin_unlock(&inode->lock);
68 }
69
70 /*
71  * Mark range within a file as having a new extent inserted.
72  *
73  * @inode: inode being modified
74  * @start: start file offset of the file extent we've inserted
75  * @len:   logical length of the file extent item
76  *
77  * Call when we are inserting a new file extent where there was none before.
78  * Does not need to call this in the case where we're replacing an existing file
79  * extent, however if not sure it's fine to call this multiple times.
80  *
81  * The start and len must match the file extent item, so thus must be sectorsize
82  * aligned.
83  */
84 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
85                                       u64 len)
86 {
87         if (len == 0)
88                 return 0;
89
90         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
91
92         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
93                 return 0;
94         return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95                               EXTENT_DIRTY, NULL);
96 }
97
98 /*
99  * Mark an inode range as not having a backing extent.
100  *
101  * @inode: inode being modified
102  * @start: start file offset of the file extent we've inserted
103  * @len:   logical length of the file extent item
104  *
105  * Called when we drop a file extent, for example when we truncate.  Doesn't
106  * need to be called for cases where we're replacing a file extent, like when
107  * we've COWed a file extent.
108  *
109  * The start and len must match the file extent item, so thus must be sectorsize
110  * aligned.
111  */
112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113                                         u64 len)
114 {
115         if (len == 0)
116                 return 0;
117
118         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
119                len == (u64)-1);
120
121         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
122                 return 0;
123         return clear_extent_bit(inode->file_extent_tree, start,
124                                 start + len - 1, EXTENT_DIRTY, NULL);
125 }
126
127 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
128 {
129         ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
130
131         return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
132 }
133
134 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
135 {
136         ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
137
138         return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
139 }
140
141 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
142 {
143         u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
144                                        fs_info->csum_size);
145
146         return csum_size_to_bytes(fs_info, max_csum_size);
147 }
148
149 /*
150  * Calculate the total size needed to allocate for an ordered sum structure
151  * spanning @bytes in the file.
152  */
153 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
154 {
155         return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
156 }
157
158 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
159                              struct btrfs_root *root,
160                              u64 objectid, u64 pos, u64 num_bytes)
161 {
162         int ret = 0;
163         struct btrfs_file_extent_item *item;
164         struct btrfs_key file_key;
165         struct btrfs_path *path;
166         struct extent_buffer *leaf;
167
168         path = btrfs_alloc_path();
169         if (!path)
170                 return -ENOMEM;
171         file_key.objectid = objectid;
172         file_key.offset = pos;
173         file_key.type = BTRFS_EXTENT_DATA_KEY;
174
175         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
176                                       sizeof(*item));
177         if (ret < 0)
178                 goto out;
179         leaf = path->nodes[0];
180         item = btrfs_item_ptr(leaf, path->slots[0],
181                               struct btrfs_file_extent_item);
182         btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
183         btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
184         btrfs_set_file_extent_offset(leaf, item, 0);
185         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
186         btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
187         btrfs_set_file_extent_generation(leaf, item, trans->transid);
188         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
189         btrfs_set_file_extent_compression(leaf, item, 0);
190         btrfs_set_file_extent_encryption(leaf, item, 0);
191         btrfs_set_file_extent_other_encoding(leaf, item, 0);
192
193         btrfs_mark_buffer_dirty(trans, leaf);
194 out:
195         btrfs_free_path(path);
196         return ret;
197 }
198
199 static struct btrfs_csum_item *
200 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
201                   struct btrfs_root *root,
202                   struct btrfs_path *path,
203                   u64 bytenr, int cow)
204 {
205         struct btrfs_fs_info *fs_info = root->fs_info;
206         int ret;
207         struct btrfs_key file_key;
208         struct btrfs_key found_key;
209         struct btrfs_csum_item *item;
210         struct extent_buffer *leaf;
211         u64 csum_offset = 0;
212         const u32 csum_size = fs_info->csum_size;
213         int csums_in_item;
214
215         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
216         file_key.offset = bytenr;
217         file_key.type = BTRFS_EXTENT_CSUM_KEY;
218         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
219         if (ret < 0)
220                 goto fail;
221         leaf = path->nodes[0];
222         if (ret > 0) {
223                 ret = 1;
224                 if (path->slots[0] == 0)
225                         goto fail;
226                 path->slots[0]--;
227                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
229                         goto fail;
230
231                 csum_offset = (bytenr - found_key.offset) >>
232                                 fs_info->sectorsize_bits;
233                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
234                 csums_in_item /= csum_size;
235
236                 if (csum_offset == csums_in_item) {
237                         ret = -EFBIG;
238                         goto fail;
239                 } else if (csum_offset > csums_in_item) {
240                         goto fail;
241                 }
242         }
243         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
244         item = (struct btrfs_csum_item *)((unsigned char *)item +
245                                           csum_offset * csum_size);
246         return item;
247 fail:
248         if (ret > 0)
249                 ret = -ENOENT;
250         return ERR_PTR(ret);
251 }
252
253 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
254                              struct btrfs_root *root,
255                              struct btrfs_path *path, u64 objectid,
256                              u64 offset, int mod)
257 {
258         struct btrfs_key file_key;
259         int ins_len = mod < 0 ? -1 : 0;
260         int cow = mod != 0;
261
262         file_key.objectid = objectid;
263         file_key.offset = offset;
264         file_key.type = BTRFS_EXTENT_DATA_KEY;
265
266         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
267 }
268
269 /*
270  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
271  * store the result to @dst.
272  *
273  * Return >0 for the number of sectors we found.
274  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
275  * for it. Caller may want to try next sector until one range is hit.
276  * Return <0 for fatal error.
277  */
278 static int search_csum_tree(struct btrfs_fs_info *fs_info,
279                             struct btrfs_path *path, u64 disk_bytenr,
280                             u64 len, u8 *dst)
281 {
282         struct btrfs_root *csum_root;
283         struct btrfs_csum_item *item = NULL;
284         struct btrfs_key key;
285         const u32 sectorsize = fs_info->sectorsize;
286         const u32 csum_size = fs_info->csum_size;
287         u32 itemsize;
288         int ret;
289         u64 csum_start;
290         u64 csum_len;
291
292         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
293                IS_ALIGNED(len, sectorsize));
294
295         /* Check if the current csum item covers disk_bytenr */
296         if (path->nodes[0]) {
297                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
298                                       struct btrfs_csum_item);
299                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
300                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
301
302                 csum_start = key.offset;
303                 csum_len = (itemsize / csum_size) * sectorsize;
304
305                 if (in_range(disk_bytenr, csum_start, csum_len))
306                         goto found;
307         }
308
309         /* Current item doesn't contain the desired range, search again */
310         btrfs_release_path(path);
311         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
312         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
313         if (IS_ERR(item)) {
314                 ret = PTR_ERR(item);
315                 goto out;
316         }
317         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
318         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
319
320         csum_start = key.offset;
321         csum_len = (itemsize / csum_size) * sectorsize;
322         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
323
324 found:
325         ret = (min(csum_start + csum_len, disk_bytenr + len) -
326                    disk_bytenr) >> fs_info->sectorsize_bits;
327         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
328                         ret * csum_size);
329 out:
330         if (ret == -ENOENT || ret == -EFBIG)
331                 ret = 0;
332         return ret;
333 }
334
335 /*
336  * Lookup the checksum for the read bio in csum tree.
337  *
338  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
339  */
340 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
341 {
342         struct btrfs_inode *inode = bbio->inode;
343         struct btrfs_fs_info *fs_info = inode->root->fs_info;
344         struct bio *bio = &bbio->bio;
345         struct btrfs_path *path;
346         const u32 sectorsize = fs_info->sectorsize;
347         const u32 csum_size = fs_info->csum_size;
348         u32 orig_len = bio->bi_iter.bi_size;
349         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
350         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
351         blk_status_t ret = BLK_STS_OK;
352         u32 bio_offset = 0;
353
354         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
355             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
356                 return BLK_STS_OK;
357
358         /*
359          * This function is only called for read bio.
360          *
361          * This means two things:
362          * - All our csums should only be in csum tree
363          *   No ordered extents csums, as ordered extents are only for write
364          *   path.
365          * - No need to bother any other info from bvec
366          *   Since we're looking up csums, the only important info is the
367          *   disk_bytenr and the length, which can be extracted from bi_iter
368          *   directly.
369          */
370         ASSERT(bio_op(bio) == REQ_OP_READ);
371         path = btrfs_alloc_path();
372         if (!path)
373                 return BLK_STS_RESOURCE;
374
375         if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
376                 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
377                 if (!bbio->csum) {
378                         btrfs_free_path(path);
379                         return BLK_STS_RESOURCE;
380                 }
381         } else {
382                 bbio->csum = bbio->csum_inline;
383         }
384
385         /*
386          * If requested number of sectors is larger than one leaf can contain,
387          * kick the readahead for csum tree.
388          */
389         if (nblocks > fs_info->csums_per_leaf)
390                 path->reada = READA_FORWARD;
391
392         /*
393          * the free space stuff is only read when it hasn't been
394          * updated in the current transaction.  So, we can safely
395          * read from the commit root and sidestep a nasty deadlock
396          * between reading the free space cache and updating the csum tree.
397          */
398         if (btrfs_is_free_space_inode(inode)) {
399                 path->search_commit_root = 1;
400                 path->skip_locking = 1;
401         }
402
403         while (bio_offset < orig_len) {
404                 int count;
405                 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
406                 u8 *csum_dst = bbio->csum +
407                         (bio_offset >> fs_info->sectorsize_bits) * csum_size;
408
409                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
410                                          orig_len - bio_offset, csum_dst);
411                 if (count < 0) {
412                         ret = errno_to_blk_status(count);
413                         if (bbio->csum != bbio->csum_inline)
414                                 kfree(bbio->csum);
415                         bbio->csum = NULL;
416                         break;
417                 }
418
419                 /*
420                  * We didn't find a csum for this range.  We need to make sure
421                  * we complain loudly about this, because we are not NODATASUM.
422                  *
423                  * However for the DATA_RELOC inode we could potentially be
424                  * relocating data extents for a NODATASUM inode, so the inode
425                  * itself won't be marked with NODATASUM, but the extent we're
426                  * copying is in fact NODATASUM.  If we don't find a csum we
427                  * assume this is the case.
428                  */
429                 if (count == 0) {
430                         memset(csum_dst, 0, csum_size);
431                         count = 1;
432
433                         if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
434                                 u64 file_offset = bbio->file_offset + bio_offset;
435
436                                 set_extent_bit(&inode->io_tree, file_offset,
437                                                file_offset + sectorsize - 1,
438                                                EXTENT_NODATASUM, NULL);
439                         } else {
440                                 btrfs_warn_rl(fs_info,
441                         "csum hole found for disk bytenr range [%llu, %llu)",
442                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
443                         }
444                 }
445                 bio_offset += count * sectorsize;
446         }
447
448         btrfs_free_path(path);
449         return ret;
450 }
451
452 /*
453  * Search for checksums for a given logical range.
454  *
455  * @root:               The root where to look for checksums.
456  * @start:              Logical address of target checksum range.
457  * @end:                End offset (inclusive) of the target checksum range.
458  * @list:               List for adding each checksum that was found.
459  *                      Can be NULL in case the caller only wants to check if
460  *                      there any checksums for the range.
461  * @nowait:             Indicate if the search must be non-blocking or not.
462  *
463  * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
464  * found.
465  */
466 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
467                             struct list_head *list, bool nowait)
468 {
469         struct btrfs_fs_info *fs_info = root->fs_info;
470         struct btrfs_key key;
471         struct btrfs_path *path;
472         struct extent_buffer *leaf;
473         struct btrfs_ordered_sum *sums;
474         struct btrfs_csum_item *item;
475         int ret;
476         bool found_csums = false;
477
478         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
479                IS_ALIGNED(end + 1, fs_info->sectorsize));
480
481         path = btrfs_alloc_path();
482         if (!path)
483                 return -ENOMEM;
484
485         path->nowait = nowait;
486
487         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
488         key.offset = start;
489         key.type = BTRFS_EXTENT_CSUM_KEY;
490
491         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
492         if (ret < 0)
493                 goto out;
494         if (ret > 0 && path->slots[0] > 0) {
495                 leaf = path->nodes[0];
496                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
497
498                 /*
499                  * There are two cases we can hit here for the previous csum
500                  * item:
501                  *
502                  *              |<- search range ->|
503                  *      |<- csum item ->|
504                  *
505                  * Or
506                  *                              |<- search range ->|
507                  *      |<- csum item ->|
508                  *
509                  * Check if the previous csum item covers the leading part of
510                  * the search range.  If so we have to start from previous csum
511                  * item.
512                  */
513                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
514                     key.type == BTRFS_EXTENT_CSUM_KEY) {
515                         if (bytes_to_csum_size(fs_info, start - key.offset) <
516                             btrfs_item_size(leaf, path->slots[0] - 1))
517                                 path->slots[0]--;
518                 }
519         }
520
521         while (start <= end) {
522                 u64 csum_end;
523
524                 leaf = path->nodes[0];
525                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
526                         ret = btrfs_next_leaf(root, path);
527                         if (ret < 0)
528                                 goto out;
529                         if (ret > 0)
530                                 break;
531                         leaf = path->nodes[0];
532                 }
533
534                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
535                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
536                     key.type != BTRFS_EXTENT_CSUM_KEY ||
537                     key.offset > end)
538                         break;
539
540                 if (key.offset > start)
541                         start = key.offset;
542
543                 csum_end = key.offset + csum_size_to_bytes(fs_info,
544                                         btrfs_item_size(leaf, path->slots[0]));
545                 if (csum_end <= start) {
546                         path->slots[0]++;
547                         continue;
548                 }
549
550                 found_csums = true;
551                 if (!list)
552                         goto out;
553
554                 csum_end = min(csum_end, end + 1);
555                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
556                                       struct btrfs_csum_item);
557                 while (start < csum_end) {
558                         unsigned long offset;
559                         size_t size;
560
561                         size = min_t(size_t, csum_end - start,
562                                      max_ordered_sum_bytes(fs_info));
563                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
564                                        GFP_NOFS);
565                         if (!sums) {
566                                 ret = -ENOMEM;
567                                 goto out;
568                         }
569
570                         sums->logical = start;
571                         sums->len = size;
572
573                         offset = bytes_to_csum_size(fs_info, start - key.offset);
574
575                         read_extent_buffer(path->nodes[0],
576                                            sums->sums,
577                                            ((unsigned long)item) + offset,
578                                            bytes_to_csum_size(fs_info, size));
579
580                         start += size;
581                         list_add_tail(&sums->list, list);
582                 }
583                 path->slots[0]++;
584         }
585 out:
586         btrfs_free_path(path);
587         if (ret < 0) {
588                 if (list) {
589                         struct btrfs_ordered_sum *tmp_sums;
590
591                         list_for_each_entry_safe(sums, tmp_sums, list, list)
592                                 kfree(sums);
593                 }
594
595                 return ret;
596         }
597
598         return found_csums ? 1 : 0;
599 }
600
601 /*
602  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
603  * we return the result.
604  *
605  * This version will set the corresponding bits in @csum_bitmap to represent
606  * that there is a csum found.
607  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
608  * in is large enough to contain all csums.
609  */
610 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
611                               u64 start, u64 end, u8 *csum_buf,
612                               unsigned long *csum_bitmap)
613 {
614         struct btrfs_fs_info *fs_info = root->fs_info;
615         struct btrfs_key key;
616         struct extent_buffer *leaf;
617         struct btrfs_csum_item *item;
618         const u64 orig_start = start;
619         bool free_path = false;
620         int ret;
621
622         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
623                IS_ALIGNED(end + 1, fs_info->sectorsize));
624
625         if (!path) {
626                 path = btrfs_alloc_path();
627                 if (!path)
628                         return -ENOMEM;
629                 free_path = true;
630         }
631
632         /* Check if we can reuse the previous path. */
633         if (path->nodes[0]) {
634                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
635
636                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
637                     key.type == BTRFS_EXTENT_CSUM_KEY &&
638                     key.offset <= start)
639                         goto search_forward;
640                 btrfs_release_path(path);
641         }
642
643         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
644         key.type = BTRFS_EXTENT_CSUM_KEY;
645         key.offset = start;
646
647         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
648         if (ret < 0)
649                 goto fail;
650         if (ret > 0 && path->slots[0] > 0) {
651                 leaf = path->nodes[0];
652                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
653
654                 /*
655                  * There are two cases we can hit here for the previous csum
656                  * item:
657                  *
658                  *              |<- search range ->|
659                  *      |<- csum item ->|
660                  *
661                  * Or
662                  *                              |<- search range ->|
663                  *      |<- csum item ->|
664                  *
665                  * Check if the previous csum item covers the leading part of
666                  * the search range.  If so we have to start from previous csum
667                  * item.
668                  */
669                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
670                     key.type == BTRFS_EXTENT_CSUM_KEY) {
671                         if (bytes_to_csum_size(fs_info, start - key.offset) <
672                             btrfs_item_size(leaf, path->slots[0] - 1))
673                                 path->slots[0]--;
674                 }
675         }
676
677 search_forward:
678         while (start <= end) {
679                 u64 csum_end;
680
681                 leaf = path->nodes[0];
682                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
683                         ret = btrfs_next_leaf(root, path);
684                         if (ret < 0)
685                                 goto fail;
686                         if (ret > 0)
687                                 break;
688                         leaf = path->nodes[0];
689                 }
690
691                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
692                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
693                     key.type != BTRFS_EXTENT_CSUM_KEY ||
694                     key.offset > end)
695                         break;
696
697                 if (key.offset > start)
698                         start = key.offset;
699
700                 csum_end = key.offset + csum_size_to_bytes(fs_info,
701                                         btrfs_item_size(leaf, path->slots[0]));
702                 if (csum_end <= start) {
703                         path->slots[0]++;
704                         continue;
705                 }
706
707                 csum_end = min(csum_end, end + 1);
708                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
709                                       struct btrfs_csum_item);
710                 while (start < csum_end) {
711                         unsigned long offset;
712                         size_t size;
713                         u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
714                                                 start - orig_start);
715
716                         size = min_t(size_t, csum_end - start, end + 1 - start);
717
718                         offset = bytes_to_csum_size(fs_info, start - key.offset);
719
720                         read_extent_buffer(path->nodes[0], csum_dest,
721                                            ((unsigned long)item) + offset,
722                                            bytes_to_csum_size(fs_info, size));
723
724                         bitmap_set(csum_bitmap,
725                                 (start - orig_start) >> fs_info->sectorsize_bits,
726                                 size >> fs_info->sectorsize_bits);
727
728                         start += size;
729                 }
730                 path->slots[0]++;
731         }
732         ret = 0;
733 fail:
734         if (free_path)
735                 btrfs_free_path(path);
736         return ret;
737 }
738
739 /*
740  * Calculate checksums of the data contained inside a bio.
741  */
742 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
743 {
744         struct btrfs_ordered_extent *ordered = bbio->ordered;
745         struct btrfs_inode *inode = bbio->inode;
746         struct btrfs_fs_info *fs_info = inode->root->fs_info;
747         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
748         struct bio *bio = &bbio->bio;
749         struct btrfs_ordered_sum *sums;
750         char *data;
751         struct bvec_iter iter;
752         struct bio_vec bvec;
753         int index;
754         unsigned int blockcount;
755         int i;
756         unsigned nofs_flag;
757
758         nofs_flag = memalloc_nofs_save();
759         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
760                        GFP_KERNEL);
761         memalloc_nofs_restore(nofs_flag);
762
763         if (!sums)
764                 return BLK_STS_RESOURCE;
765
766         sums->len = bio->bi_iter.bi_size;
767         INIT_LIST_HEAD(&sums->list);
768
769         sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
770         index = 0;
771
772         shash->tfm = fs_info->csum_shash;
773
774         bio_for_each_segment(bvec, bio, iter) {
775                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
776                                                  bvec.bv_len + fs_info->sectorsize
777                                                  - 1);
778
779                 for (i = 0; i < blockcount; i++) {
780                         data = bvec_kmap_local(&bvec);
781                         crypto_shash_digest(shash,
782                                             data + (i * fs_info->sectorsize),
783                                             fs_info->sectorsize,
784                                             sums->sums + index);
785                         kunmap_local(data);
786                         index += fs_info->csum_size;
787                 }
788
789         }
790
791         bbio->sums = sums;
792         btrfs_add_ordered_sum(ordered, sums);
793         return 0;
794 }
795
796 /*
797  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
798  * record the updated logical address on Zone Append completion.
799  * Allocate just the structure with an empty sums array here for that case.
800  */
801 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
802 {
803         bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
804         if (!bbio->sums)
805                 return BLK_STS_RESOURCE;
806         bbio->sums->len = bbio->bio.bi_iter.bi_size;
807         bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
808         btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
809         return 0;
810 }
811
812 /*
813  * Remove one checksum overlapping a range.
814  *
815  * This expects the key to describe the csum pointed to by the path, and it
816  * expects the csum to overlap the range [bytenr, len]
817  *
818  * The csum should not be entirely contained in the range and the range should
819  * not be entirely contained in the csum.
820  *
821  * This calls btrfs_truncate_item with the correct args based on the overlap,
822  * and fixes up the key as required.
823  */
824 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
825                                        struct btrfs_path *path,
826                                        struct btrfs_key *key,
827                                        u64 bytenr, u64 len)
828 {
829         struct btrfs_fs_info *fs_info = trans->fs_info;
830         struct extent_buffer *leaf;
831         const u32 csum_size = fs_info->csum_size;
832         u64 csum_end;
833         u64 end_byte = bytenr + len;
834         u32 blocksize_bits = fs_info->sectorsize_bits;
835
836         leaf = path->nodes[0];
837         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
838         csum_end <<= blocksize_bits;
839         csum_end += key->offset;
840
841         if (key->offset < bytenr && csum_end <= end_byte) {
842                 /*
843                  *         [ bytenr - len ]
844                  *         [   ]
845                  *   [csum     ]
846                  *   A simple truncate off the end of the item
847                  */
848                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
849                 new_size *= csum_size;
850                 btrfs_truncate_item(trans, path, new_size, 1);
851         } else if (key->offset >= bytenr && csum_end > end_byte &&
852                    end_byte > key->offset) {
853                 /*
854                  *         [ bytenr - len ]
855                  *                 [ ]
856                  *                 [csum     ]
857                  * we need to truncate from the beginning of the csum
858                  */
859                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
860                 new_size *= csum_size;
861
862                 btrfs_truncate_item(trans, path, new_size, 0);
863
864                 key->offset = end_byte;
865                 btrfs_set_item_key_safe(trans, path, key);
866         } else {
867                 BUG();
868         }
869 }
870
871 /*
872  * Delete the csum items from the csum tree for a given range of bytes.
873  */
874 int btrfs_del_csums(struct btrfs_trans_handle *trans,
875                     struct btrfs_root *root, u64 bytenr, u64 len)
876 {
877         struct btrfs_fs_info *fs_info = trans->fs_info;
878         struct btrfs_path *path;
879         struct btrfs_key key;
880         u64 end_byte = bytenr + len;
881         u64 csum_end;
882         struct extent_buffer *leaf;
883         int ret = 0;
884         const u32 csum_size = fs_info->csum_size;
885         u32 blocksize_bits = fs_info->sectorsize_bits;
886
887         ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
888                btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
889
890         path = btrfs_alloc_path();
891         if (!path)
892                 return -ENOMEM;
893
894         while (1) {
895                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
896                 key.offset = end_byte - 1;
897                 key.type = BTRFS_EXTENT_CSUM_KEY;
898
899                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
900                 if (ret > 0) {
901                         ret = 0;
902                         if (path->slots[0] == 0)
903                                 break;
904                         path->slots[0]--;
905                 } else if (ret < 0) {
906                         break;
907                 }
908
909                 leaf = path->nodes[0];
910                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
911
912                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
913                     key.type != BTRFS_EXTENT_CSUM_KEY) {
914                         break;
915                 }
916
917                 if (key.offset >= end_byte)
918                         break;
919
920                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
921                 csum_end <<= blocksize_bits;
922                 csum_end += key.offset;
923
924                 /* this csum ends before we start, we're done */
925                 if (csum_end <= bytenr)
926                         break;
927
928                 /* delete the entire item, it is inside our range */
929                 if (key.offset >= bytenr && csum_end <= end_byte) {
930                         int del_nr = 1;
931
932                         /*
933                          * Check how many csum items preceding this one in this
934                          * leaf correspond to our range and then delete them all
935                          * at once.
936                          */
937                         if (key.offset > bytenr && path->slots[0] > 0) {
938                                 int slot = path->slots[0] - 1;
939
940                                 while (slot >= 0) {
941                                         struct btrfs_key pk;
942
943                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
944                                         if (pk.offset < bytenr ||
945                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
946                                             pk.objectid !=
947                                             BTRFS_EXTENT_CSUM_OBJECTID)
948                                                 break;
949                                         path->slots[0] = slot;
950                                         del_nr++;
951                                         key.offset = pk.offset;
952                                         slot--;
953                                 }
954                         }
955                         ret = btrfs_del_items(trans, root, path,
956                                               path->slots[0], del_nr);
957                         if (ret)
958                                 break;
959                         if (key.offset == bytenr)
960                                 break;
961                 } else if (key.offset < bytenr && csum_end > end_byte) {
962                         unsigned long offset;
963                         unsigned long shift_len;
964                         unsigned long item_offset;
965                         /*
966                          *        [ bytenr - len ]
967                          *     [csum                ]
968                          *
969                          * Our bytes are in the middle of the csum,
970                          * we need to split this item and insert a new one.
971                          *
972                          * But we can't drop the path because the
973                          * csum could change, get removed, extended etc.
974                          *
975                          * The trick here is the max size of a csum item leaves
976                          * enough room in the tree block for a single
977                          * item header.  So, we split the item in place,
978                          * adding a new header pointing to the existing
979                          * bytes.  Then we loop around again and we have
980                          * a nicely formed csum item that we can neatly
981                          * truncate.
982                          */
983                         offset = (bytenr - key.offset) >> blocksize_bits;
984                         offset *= csum_size;
985
986                         shift_len = (len >> blocksize_bits) * csum_size;
987
988                         item_offset = btrfs_item_ptr_offset(leaf,
989                                                             path->slots[0]);
990
991                         memzero_extent_buffer(leaf, item_offset + offset,
992                                              shift_len);
993                         key.offset = bytenr;
994
995                         /*
996                          * btrfs_split_item returns -EAGAIN when the
997                          * item changed size or key
998                          */
999                         ret = btrfs_split_item(trans, root, path, &key, offset);
1000                         if (ret && ret != -EAGAIN) {
1001                                 btrfs_abort_transaction(trans, ret);
1002                                 break;
1003                         }
1004                         ret = 0;
1005
1006                         key.offset = end_byte - 1;
1007                 } else {
1008                         truncate_one_csum(trans, path, &key, bytenr, len);
1009                         if (key.offset < bytenr)
1010                                 break;
1011                 }
1012                 btrfs_release_path(path);
1013         }
1014         btrfs_free_path(path);
1015         return ret;
1016 }
1017
1018 static int find_next_csum_offset(struct btrfs_root *root,
1019                                  struct btrfs_path *path,
1020                                  u64 *next_offset)
1021 {
1022         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1023         struct btrfs_key found_key;
1024         int slot = path->slots[0] + 1;
1025         int ret;
1026
1027         if (nritems == 0 || slot >= nritems) {
1028                 ret = btrfs_next_leaf(root, path);
1029                 if (ret < 0) {
1030                         return ret;
1031                 } else if (ret > 0) {
1032                         *next_offset = (u64)-1;
1033                         return 0;
1034                 }
1035                 slot = path->slots[0];
1036         }
1037
1038         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1039
1040         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1041             found_key.type != BTRFS_EXTENT_CSUM_KEY)
1042                 *next_offset = (u64)-1;
1043         else
1044                 *next_offset = found_key.offset;
1045
1046         return 0;
1047 }
1048
1049 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1050                            struct btrfs_root *root,
1051                            struct btrfs_ordered_sum *sums)
1052 {
1053         struct btrfs_fs_info *fs_info = root->fs_info;
1054         struct btrfs_key file_key;
1055         struct btrfs_key found_key;
1056         struct btrfs_path *path;
1057         struct btrfs_csum_item *item;
1058         struct btrfs_csum_item *item_end;
1059         struct extent_buffer *leaf = NULL;
1060         u64 next_offset;
1061         u64 total_bytes = 0;
1062         u64 csum_offset;
1063         u64 bytenr;
1064         u32 ins_size;
1065         int index = 0;
1066         int found_next;
1067         int ret;
1068         const u32 csum_size = fs_info->csum_size;
1069
1070         path = btrfs_alloc_path();
1071         if (!path)
1072                 return -ENOMEM;
1073 again:
1074         next_offset = (u64)-1;
1075         found_next = 0;
1076         bytenr = sums->logical + total_bytes;
1077         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1078         file_key.offset = bytenr;
1079         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1080
1081         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1082         if (!IS_ERR(item)) {
1083                 ret = 0;
1084                 leaf = path->nodes[0];
1085                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1086                                           struct btrfs_csum_item);
1087                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1088                            btrfs_item_size(leaf, path->slots[0]));
1089                 goto found;
1090         }
1091         ret = PTR_ERR(item);
1092         if (ret != -EFBIG && ret != -ENOENT)
1093                 goto out;
1094
1095         if (ret == -EFBIG) {
1096                 u32 item_size;
1097                 /* we found one, but it isn't big enough yet */
1098                 leaf = path->nodes[0];
1099                 item_size = btrfs_item_size(leaf, path->slots[0]);
1100                 if ((item_size / csum_size) >=
1101                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1102                         /* already at max size, make a new one */
1103                         goto insert;
1104                 }
1105         } else {
1106                 /* We didn't find a csum item, insert one. */
1107                 ret = find_next_csum_offset(root, path, &next_offset);
1108                 if (ret < 0)
1109                         goto out;
1110                 found_next = 1;
1111                 goto insert;
1112         }
1113
1114         /*
1115          * At this point, we know the tree has a checksum item that ends at an
1116          * offset matching the start of the checksum range we want to insert.
1117          * We try to extend that item as much as possible and then add as many
1118          * checksums to it as they fit.
1119          *
1120          * First check if the leaf has enough free space for at least one
1121          * checksum. If it has go directly to the item extension code, otherwise
1122          * release the path and do a search for insertion before the extension.
1123          */
1124         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1125                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1126                 csum_offset = (bytenr - found_key.offset) >>
1127                         fs_info->sectorsize_bits;
1128                 goto extend_csum;
1129         }
1130
1131         btrfs_release_path(path);
1132         path->search_for_extension = 1;
1133         ret = btrfs_search_slot(trans, root, &file_key, path,
1134                                 csum_size, 1);
1135         path->search_for_extension = 0;
1136         if (ret < 0)
1137                 goto out;
1138
1139         if (ret > 0) {
1140                 if (path->slots[0] == 0)
1141                         goto insert;
1142                 path->slots[0]--;
1143         }
1144
1145         leaf = path->nodes[0];
1146         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1147         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1148
1149         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1150             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1151             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1152                 goto insert;
1153         }
1154
1155 extend_csum:
1156         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1157             csum_size) {
1158                 int extend_nr;
1159                 u64 tmp;
1160                 u32 diff;
1161
1162                 tmp = sums->len - total_bytes;
1163                 tmp >>= fs_info->sectorsize_bits;
1164                 WARN_ON(tmp < 1);
1165                 extend_nr = max_t(int, 1, tmp);
1166
1167                 /*
1168                  * A log tree can already have checksum items with a subset of
1169                  * the checksums we are trying to log. This can happen after
1170                  * doing a sequence of partial writes into prealloc extents and
1171                  * fsyncs in between, with a full fsync logging a larger subrange
1172                  * of an extent for which a previous fast fsync logged a smaller
1173                  * subrange. And this happens in particular due to merging file
1174                  * extent items when we complete an ordered extent for a range
1175                  * covered by a prealloc extent - this is done at
1176                  * btrfs_mark_extent_written().
1177                  *
1178                  * So if we try to extend the previous checksum item, which has
1179                  * a range that ends at the start of the range we want to insert,
1180                  * make sure we don't extend beyond the start offset of the next
1181                  * checksum item. If we are at the last item in the leaf, then
1182                  * forget the optimization of extending and add a new checksum
1183                  * item - it is not worth the complexity of releasing the path,
1184                  * getting the first key for the next leaf, repeat the btree
1185                  * search, etc, because log trees are temporary anyway and it
1186                  * would only save a few bytes of leaf space.
1187                  */
1188                 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1189                         if (path->slots[0] + 1 >=
1190                             btrfs_header_nritems(path->nodes[0])) {
1191                                 ret = find_next_csum_offset(root, path, &next_offset);
1192                                 if (ret < 0)
1193                                         goto out;
1194                                 found_next = 1;
1195                                 goto insert;
1196                         }
1197
1198                         ret = find_next_csum_offset(root, path, &next_offset);
1199                         if (ret < 0)
1200                                 goto out;
1201
1202                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1203                         if (tmp <= INT_MAX)
1204                                 extend_nr = min_t(int, extend_nr, tmp);
1205                 }
1206
1207                 diff = (csum_offset + extend_nr) * csum_size;
1208                 diff = min(diff,
1209                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1210
1211                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1212                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1213                 diff /= csum_size;
1214                 diff *= csum_size;
1215
1216                 btrfs_extend_item(trans, path, diff);
1217                 ret = 0;
1218                 goto csum;
1219         }
1220
1221 insert:
1222         btrfs_release_path(path);
1223         csum_offset = 0;
1224         if (found_next) {
1225                 u64 tmp;
1226
1227                 tmp = sums->len - total_bytes;
1228                 tmp >>= fs_info->sectorsize_bits;
1229                 tmp = min(tmp, (next_offset - file_key.offset) >>
1230                                          fs_info->sectorsize_bits);
1231
1232                 tmp = max_t(u64, 1, tmp);
1233                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1234                 ins_size = csum_size * tmp;
1235         } else {
1236                 ins_size = csum_size;
1237         }
1238         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1239                                       ins_size);
1240         if (ret < 0)
1241                 goto out;
1242         leaf = path->nodes[0];
1243 csum:
1244         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1245         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1246                                       btrfs_item_size(leaf, path->slots[0]));
1247         item = (struct btrfs_csum_item *)((unsigned char *)item +
1248                                           csum_offset * csum_size);
1249 found:
1250         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1251         ins_size *= csum_size;
1252         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1253                               ins_size);
1254         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1255                             ins_size);
1256
1257         index += ins_size;
1258         ins_size /= csum_size;
1259         total_bytes += ins_size * fs_info->sectorsize;
1260
1261         btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1262         if (total_bytes < sums->len) {
1263                 btrfs_release_path(path);
1264                 cond_resched();
1265                 goto again;
1266         }
1267 out:
1268         btrfs_free_path(path);
1269         return ret;
1270 }
1271
1272 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1273                                      const struct btrfs_path *path,
1274                                      struct btrfs_file_extent_item *fi,
1275                                      struct extent_map *em)
1276 {
1277         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1278         struct btrfs_root *root = inode->root;
1279         struct extent_buffer *leaf = path->nodes[0];
1280         const int slot = path->slots[0];
1281         struct btrfs_key key;
1282         u64 extent_start;
1283         u64 bytenr;
1284         u8 type = btrfs_file_extent_type(leaf, fi);
1285         int compress_type = btrfs_file_extent_compression(leaf, fi);
1286
1287         btrfs_item_key_to_cpu(leaf, &key, slot);
1288         extent_start = key.offset;
1289         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1290         em->generation = btrfs_file_extent_generation(leaf, fi);
1291         if (type == BTRFS_FILE_EXTENT_REG ||
1292             type == BTRFS_FILE_EXTENT_PREALLOC) {
1293                 em->start = extent_start;
1294                 em->len = btrfs_file_extent_end(path) - extent_start;
1295                 em->orig_start = extent_start -
1296                         btrfs_file_extent_offset(leaf, fi);
1297                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1298                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1299                 if (bytenr == 0) {
1300                         em->block_start = EXTENT_MAP_HOLE;
1301                         return;
1302                 }
1303                 if (compress_type != BTRFS_COMPRESS_NONE) {
1304                         extent_map_set_compression(em, compress_type);
1305                         em->block_start = bytenr;
1306                         em->block_len = em->orig_block_len;
1307                 } else {
1308                         bytenr += btrfs_file_extent_offset(leaf, fi);
1309                         em->block_start = bytenr;
1310                         em->block_len = em->len;
1311                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1312                                 em->flags |= EXTENT_FLAG_PREALLOC;
1313                 }
1314         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1315                 /* Tree-checker has ensured this. */
1316                 ASSERT(extent_start == 0);
1317
1318                 em->block_start = EXTENT_MAP_INLINE;
1319                 em->start = 0;
1320                 em->len = fs_info->sectorsize;
1321                 /*
1322                  * Initialize orig_start and block_len with the same values
1323                  * as in inode.c:btrfs_get_extent().
1324                  */
1325                 em->orig_start = EXTENT_MAP_HOLE;
1326                 em->block_len = (u64)-1;
1327                 extent_map_set_compression(em, compress_type);
1328         } else {
1329                 btrfs_err(fs_info,
1330                           "unknown file extent item type %d, inode %llu, offset %llu, "
1331                           "root %llu", type, btrfs_ino(inode), extent_start,
1332                           btrfs_root_id(root));
1333         }
1334 }
1335
1336 /*
1337  * Returns the end offset (non inclusive) of the file extent item the given path
1338  * points to. If it points to an inline extent, the returned offset is rounded
1339  * up to the sector size.
1340  */
1341 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1342 {
1343         const struct extent_buffer *leaf = path->nodes[0];
1344         const int slot = path->slots[0];
1345         struct btrfs_file_extent_item *fi;
1346         struct btrfs_key key;
1347         u64 end;
1348
1349         btrfs_item_key_to_cpu(leaf, &key, slot);
1350         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1351         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1352
1353         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1354                 end = leaf->fs_info->sectorsize;
1355         else
1356                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1357
1358         return end;
1359 }
This page took 0.116452 seconds and 4 git commands to generate.