1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2009 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
11 #include "delayed-ref.h"
12 #include "transaction.h"
14 #include "space-info.h"
15 #include "tree-mod-log.h"
18 struct kmem_cache *btrfs_delayed_ref_head_cachep;
19 struct kmem_cache *btrfs_delayed_ref_node_cachep;
20 struct kmem_cache *btrfs_delayed_extent_op_cachep;
22 * delayed back reference update tracking. For subvolume trees
23 * we queue up extent allocations and backref maintenance for
24 * delayed processing. This avoids deep call chains where we
25 * add extents in the middle of btrfs_search_slot, and it allows
26 * us to buffer up frequently modified backrefs in an rb tree instead
27 * of hammering updates on the extent allocation tree.
30 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
33 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
37 spin_lock(&global_rsv->lock);
38 reserved = global_rsv->reserved;
39 spin_unlock(&global_rsv->lock);
42 * Since the global reserve is just kind of magic we don't really want
43 * to rely on it to save our bacon, so if our size is more than the
44 * delayed_refs_rsv and the global rsv then it's time to think about
47 spin_lock(&delayed_refs_rsv->lock);
48 reserved += delayed_refs_rsv->reserved;
49 if (delayed_refs_rsv->size >= reserved)
51 spin_unlock(&delayed_refs_rsv->lock);
56 * Release a ref head's reservation.
58 * @fs_info: the filesystem
59 * @nr_refs: number of delayed refs to drop
60 * @nr_csums: number of csum items to drop
62 * Drops the delayed ref head's count from the delayed refs rsv and free any
63 * excess reservation we had.
65 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
71 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
72 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
81 * Adjust the size of the delayed refs rsv.
83 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
84 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
85 * add it to the delayed_refs_rsv.
87 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89 struct btrfs_fs_info *fs_info = trans->fs_info;
90 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
91 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
95 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
96 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
97 trans->delayed_ref_csum_deletions);
103 * Try to take num_bytes from the transaction's local delayed reserve.
104 * If not possible, try to take as much as it's available. If the local
105 * reserve doesn't have enough reserved space, the delayed refs reserve
106 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
107 * by someone or if a transaction commit is triggered before that, the
108 * global block reserve will be used. We want to minimize using the
109 * global block reserve for cases we can account for in advance, to
110 * avoid exhausting it and reach -ENOSPC during a transaction commit.
112 spin_lock(&local_rsv->lock);
113 reserved_bytes = min(num_bytes, local_rsv->reserved);
114 local_rsv->reserved -= reserved_bytes;
115 local_rsv->full = (local_rsv->reserved >= local_rsv->size);
116 spin_unlock(&local_rsv->lock);
118 spin_lock(&delayed_rsv->lock);
119 delayed_rsv->size += num_bytes;
120 delayed_rsv->reserved += reserved_bytes;
121 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
122 spin_unlock(&delayed_rsv->lock);
123 trans->delayed_ref_updates = 0;
124 trans->delayed_ref_csum_deletions = 0;
128 * Adjust the size of the delayed refs block reserve for 1 block group item
129 * insertion, used after allocating a block group.
131 void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
133 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
135 spin_lock(&delayed_rsv->lock);
137 * Inserting a block group item does not require changing the free space
138 * tree, only the extent tree or the block group tree, so this is all we
141 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
142 delayed_rsv->full = false;
143 spin_unlock(&delayed_rsv->lock);
147 * Adjust the size of the delayed refs block reserve to release space for 1
148 * block group item insertion.
150 void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
152 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
153 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
156 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
158 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
163 * Adjust the size of the delayed refs block reserve for 1 block group item
166 void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
168 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
170 spin_lock(&delayed_rsv->lock);
172 * Updating a block group item does not result in new nodes/leaves and
173 * does not require changing the free space tree, only the extent tree
174 * or the block group tree, so this is all we need.
176 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
177 delayed_rsv->full = false;
178 spin_unlock(&delayed_rsv->lock);
182 * Adjust the size of the delayed refs block reserve to release space for 1
183 * block group item update.
185 void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
187 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
188 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
191 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
193 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
198 * Transfer bytes to our delayed refs rsv.
200 * @fs_info: the filesystem
201 * @num_bytes: number of bytes to transfer
203 * This transfers up to the num_bytes amount, previously reserved, to the
204 * delayed_refs_rsv. Any extra bytes are returned to the space info.
206 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
209 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
212 spin_lock(&delayed_refs_rsv->lock);
213 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
214 u64 delta = delayed_refs_rsv->size -
215 delayed_refs_rsv->reserved;
216 if (num_bytes > delta) {
217 to_free = num_bytes - delta;
226 delayed_refs_rsv->reserved += num_bytes;
227 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
228 delayed_refs_rsv->full = true;
229 spin_unlock(&delayed_refs_rsv->lock);
232 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
235 btrfs_space_info_free_bytes_may_use(fs_info,
236 delayed_refs_rsv->space_info, to_free);
240 * Refill based on our delayed refs usage.
242 * @fs_info: the filesystem
243 * @flush: control how we can flush for this reservation.
245 * This will refill the delayed block_rsv up to 1 items size worth of space and
246 * will return -ENOSPC if we can't make the reservation.
248 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
249 enum btrfs_reserve_flush_enum flush)
251 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
252 struct btrfs_space_info *space_info = block_rsv->space_info;
253 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
259 spin_lock(&block_rsv->lock);
260 if (block_rsv->reserved < block_rsv->size) {
261 num_bytes = block_rsv->size - block_rsv->reserved;
262 num_bytes = min(num_bytes, limit);
264 spin_unlock(&block_rsv->lock);
269 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
274 * We may have raced with someone else, so check again if we the block
275 * reserve is still not full and release any excess space.
277 spin_lock(&block_rsv->lock);
278 if (block_rsv->reserved < block_rsv->size) {
279 u64 needed = block_rsv->size - block_rsv->reserved;
281 if (num_bytes >= needed) {
282 block_rsv->reserved += needed;
283 block_rsv->full = true;
284 to_free = num_bytes - needed;
285 refilled_bytes = needed;
287 block_rsv->reserved += num_bytes;
289 refilled_bytes = num_bytes;
295 spin_unlock(&block_rsv->lock);
298 btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
300 if (refilled_bytes > 0)
301 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
307 * compare two delayed data backrefs with same bytenr and type
309 static int comp_data_refs(struct btrfs_delayed_ref_node *ref1,
310 struct btrfs_delayed_ref_node *ref2)
312 if (ref1->data_ref.objectid < ref2->data_ref.objectid)
314 if (ref1->data_ref.objectid > ref2->data_ref.objectid)
316 if (ref1->data_ref.offset < ref2->data_ref.offset)
318 if (ref1->data_ref.offset > ref2->data_ref.offset)
323 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
324 struct btrfs_delayed_ref_node *ref2,
329 if (ref1->type < ref2->type)
331 if (ref1->type > ref2->type)
333 if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
334 ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
335 if (ref1->parent < ref2->parent)
337 if (ref1->parent > ref2->parent)
340 if (ref1->ref_root < ref2->ref_root)
342 if (ref1->ref_root > ref2->ref_root)
344 if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
345 ret = comp_data_refs(ref1, ref2);
350 if (ref1->seq < ref2->seq)
352 if (ref1->seq > ref2->seq)
358 /* insert a new ref to head ref rbtree */
359 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
360 struct rb_node *node)
362 struct rb_node **p = &root->rb_root.rb_node;
363 struct rb_node *parent_node = NULL;
364 struct btrfs_delayed_ref_head *entry;
365 struct btrfs_delayed_ref_head *ins;
367 bool leftmost = true;
369 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
370 bytenr = ins->bytenr;
373 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
376 if (bytenr < entry->bytenr) {
378 } else if (bytenr > entry->bytenr) {
386 rb_link_node(node, parent_node, p);
387 rb_insert_color_cached(node, root, leftmost);
391 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
392 struct btrfs_delayed_ref_node *ins)
394 struct rb_node **p = &root->rb_root.rb_node;
395 struct rb_node *node = &ins->ref_node;
396 struct rb_node *parent_node = NULL;
397 struct btrfs_delayed_ref_node *entry;
398 bool leftmost = true;
404 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
406 comp = comp_refs(ins, entry, true);
409 } else if (comp > 0) {
417 rb_link_node(node, parent_node, p);
418 rb_insert_color_cached(node, root, leftmost);
422 static struct btrfs_delayed_ref_head *find_first_ref_head(
423 struct btrfs_delayed_ref_root *dr)
426 struct btrfs_delayed_ref_head *entry;
428 n = rb_first_cached(&dr->href_root);
432 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
438 * Find a head entry based on bytenr. This returns the delayed ref head if it
439 * was able to find one, or NULL if nothing was in that spot. If return_bigger
440 * is given, the next bigger entry is returned if no exact match is found.
442 static struct btrfs_delayed_ref_head *find_ref_head(
443 struct btrfs_delayed_ref_root *dr, u64 bytenr,
446 struct rb_root *root = &dr->href_root.rb_root;
448 struct btrfs_delayed_ref_head *entry;
453 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
455 if (bytenr < entry->bytenr)
457 else if (bytenr > entry->bytenr)
462 if (entry && return_bigger) {
463 if (bytenr > entry->bytenr) {
464 n = rb_next(&entry->href_node);
467 entry = rb_entry(n, struct btrfs_delayed_ref_head,
475 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
476 struct btrfs_delayed_ref_head *head)
478 lockdep_assert_held(&delayed_refs->lock);
479 if (mutex_trylock(&head->mutex))
482 refcount_inc(&head->refs);
483 spin_unlock(&delayed_refs->lock);
485 mutex_lock(&head->mutex);
486 spin_lock(&delayed_refs->lock);
487 if (RB_EMPTY_NODE(&head->href_node)) {
488 mutex_unlock(&head->mutex);
489 btrfs_put_delayed_ref_head(head);
492 btrfs_put_delayed_ref_head(head);
496 static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
497 struct btrfs_delayed_ref_root *delayed_refs,
498 struct btrfs_delayed_ref_head *head,
499 struct btrfs_delayed_ref_node *ref)
501 lockdep_assert_held(&head->lock);
502 rb_erase_cached(&ref->ref_node, &head->ref_tree);
503 RB_CLEAR_NODE(&ref->ref_node);
504 if (!list_empty(&ref->add_list))
505 list_del(&ref->add_list);
506 btrfs_put_delayed_ref(ref);
507 atomic_dec(&delayed_refs->num_entries);
508 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
511 static bool merge_ref(struct btrfs_fs_info *fs_info,
512 struct btrfs_delayed_ref_root *delayed_refs,
513 struct btrfs_delayed_ref_head *head,
514 struct btrfs_delayed_ref_node *ref,
517 struct btrfs_delayed_ref_node *next;
518 struct rb_node *node = rb_next(&ref->ref_node);
521 while (!done && node) {
524 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
525 node = rb_next(node);
526 if (seq && next->seq >= seq)
528 if (comp_refs(ref, next, false))
531 if (ref->action == next->action) {
534 if (ref->ref_mod < next->ref_mod) {
538 mod = -next->ref_mod;
541 drop_delayed_ref(fs_info, delayed_refs, head, next);
543 if (ref->ref_mod == 0) {
544 drop_delayed_ref(fs_info, delayed_refs, head, ref);
548 * Can't have multiples of the same ref on a tree block.
550 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
551 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
558 void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
559 struct btrfs_delayed_ref_root *delayed_refs,
560 struct btrfs_delayed_ref_head *head)
562 struct btrfs_delayed_ref_node *ref;
563 struct rb_node *node;
566 lockdep_assert_held(&head->lock);
568 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
571 /* We don't have too many refs to merge for data. */
575 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
577 for (node = rb_first_cached(&head->ref_tree); node;
578 node = rb_next(node)) {
579 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
580 if (seq && ref->seq >= seq)
582 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
587 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
590 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
592 if (min_seq != 0 && seq >= min_seq) {
594 "holding back delayed_ref %llu, lowest is %llu",
602 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
603 struct btrfs_delayed_ref_root *delayed_refs)
605 struct btrfs_delayed_ref_head *head;
607 lockdep_assert_held(&delayed_refs->lock);
609 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
611 if (!head && delayed_refs->run_delayed_start != 0) {
612 delayed_refs->run_delayed_start = 0;
613 head = find_first_ref_head(delayed_refs);
618 while (head->processing) {
619 struct rb_node *node;
621 node = rb_next(&head->href_node);
623 if (delayed_refs->run_delayed_start == 0)
625 delayed_refs->run_delayed_start = 0;
628 head = rb_entry(node, struct btrfs_delayed_ref_head,
632 head->processing = true;
633 WARN_ON(delayed_refs->num_heads_ready == 0);
634 delayed_refs->num_heads_ready--;
635 delayed_refs->run_delayed_start = head->bytenr +
640 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
641 struct btrfs_delayed_ref_head *head)
643 lockdep_assert_held(&delayed_refs->lock);
644 lockdep_assert_held(&head->lock);
646 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
647 RB_CLEAR_NODE(&head->href_node);
648 atomic_dec(&delayed_refs->num_entries);
649 delayed_refs->num_heads--;
650 if (!head->processing)
651 delayed_refs->num_heads_ready--;
655 * Helper to insert the ref_node to the tail or merge with tail.
657 * Return false if the ref was inserted.
658 * Return true if the ref was merged into an existing one (and therefore can be
659 * freed by the caller).
661 static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
662 struct btrfs_delayed_ref_head *href,
663 struct btrfs_delayed_ref_node *ref)
665 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
666 struct btrfs_delayed_ref_node *exist;
669 spin_lock(&href->lock);
670 exist = tree_insert(&href->ref_tree, ref);
672 if (ref->action == BTRFS_ADD_DELAYED_REF)
673 list_add_tail(&ref->add_list, &href->ref_add_list);
674 atomic_inc(&root->num_entries);
675 spin_unlock(&href->lock);
676 trans->delayed_ref_updates++;
680 /* Now we are sure we can merge */
681 if (exist->action == ref->action) {
684 /* Need to change action */
685 if (exist->ref_mod < ref->ref_mod) {
686 exist->action = ref->action;
687 mod = -exist->ref_mod;
688 exist->ref_mod = ref->ref_mod;
689 if (ref->action == BTRFS_ADD_DELAYED_REF)
690 list_add_tail(&exist->add_list,
691 &href->ref_add_list);
692 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
693 ASSERT(!list_empty(&exist->add_list));
694 list_del(&exist->add_list);
701 exist->ref_mod += mod;
703 /* remove existing tail if its ref_mod is zero */
704 if (exist->ref_mod == 0)
705 drop_delayed_ref(trans->fs_info, root, href, exist);
706 spin_unlock(&href->lock);
711 * helper function to update the accounting in the head ref
712 * existing and update must have the same bytenr
714 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
715 struct btrfs_delayed_ref_head *existing,
716 struct btrfs_delayed_ref_head *update)
718 struct btrfs_delayed_ref_root *delayed_refs =
719 &trans->transaction->delayed_refs;
720 struct btrfs_fs_info *fs_info = trans->fs_info;
723 BUG_ON(existing->is_data != update->is_data);
725 spin_lock(&existing->lock);
728 * When freeing an extent, we may not know the owning root when we
729 * first create the head_ref. However, some deref before the last deref
730 * will know it, so we just need to update the head_ref accordingly.
732 if (!existing->owning_root)
733 existing->owning_root = update->owning_root;
735 if (update->must_insert_reserved) {
736 /* if the extent was freed and then
737 * reallocated before the delayed ref
738 * entries were processed, we can end up
739 * with an existing head ref without
740 * the must_insert_reserved flag set.
743 existing->must_insert_reserved = update->must_insert_reserved;
744 existing->owning_root = update->owning_root;
747 * update the num_bytes so we make sure the accounting
750 existing->num_bytes = update->num_bytes;
754 if (update->extent_op) {
755 if (!existing->extent_op) {
756 existing->extent_op = update->extent_op;
758 if (update->extent_op->update_key) {
759 memcpy(&existing->extent_op->key,
760 &update->extent_op->key,
761 sizeof(update->extent_op->key));
762 existing->extent_op->update_key = true;
764 if (update->extent_op->update_flags) {
765 existing->extent_op->flags_to_set |=
766 update->extent_op->flags_to_set;
767 existing->extent_op->update_flags = true;
769 btrfs_free_delayed_extent_op(update->extent_op);
773 * update the reference mod on the head to reflect this new operation,
774 * only need the lock for this case cause we could be processing it
775 * currently, for refs we just added we know we're a-ok.
777 old_ref_mod = existing->total_ref_mod;
778 existing->ref_mod += update->ref_mod;
779 existing->total_ref_mod += update->ref_mod;
782 * If we are going to from a positive ref mod to a negative or vice
783 * versa we need to make sure to adjust pending_csums accordingly.
784 * We reserve bytes for csum deletion when adding or updating a ref head
785 * see add_delayed_ref_head() for more details.
787 if (existing->is_data) {
789 btrfs_csum_bytes_to_leaves(fs_info,
790 existing->num_bytes);
792 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
793 delayed_refs->pending_csums -= existing->num_bytes;
794 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
796 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
797 delayed_refs->pending_csums += existing->num_bytes;
798 trans->delayed_ref_csum_deletions += csum_leaves;
802 spin_unlock(&existing->lock);
805 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
806 struct btrfs_ref *generic_ref,
807 struct btrfs_qgroup_extent_record *qrecord,
811 bool must_insert_reserved = false;
813 /* If reserved is provided, it must be a data extent. */
814 BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
816 switch (generic_ref->action) {
817 case BTRFS_ADD_DELAYED_REF:
818 /* count_mod is already set to 1. */
820 case BTRFS_UPDATE_DELAYED_HEAD:
823 case BTRFS_DROP_DELAYED_REF:
825 * The head node stores the sum of all the mods, so dropping a ref
826 * should drop the sum in the head node by one.
830 case BTRFS_ADD_DELAYED_EXTENT:
832 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
833 * reserved accounting when the extent is finally added, or if a
834 * later modification deletes the delayed ref without ever
835 * inserting the extent into the extent allocation tree.
836 * ref->must_insert_reserved is the flag used to record that
837 * accounting mods are required.
839 * Once we record must_insert_reserved, switch the action to
840 * BTRFS_ADD_DELAYED_REF because other special casing is not
843 must_insert_reserved = true;
847 refcount_set(&head_ref->refs, 1);
848 head_ref->bytenr = generic_ref->bytenr;
849 head_ref->num_bytes = generic_ref->num_bytes;
850 head_ref->ref_mod = count_mod;
851 head_ref->reserved_bytes = reserved;
852 head_ref->must_insert_reserved = must_insert_reserved;
853 head_ref->owning_root = generic_ref->owning_root;
854 head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
855 head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
856 head_ref->ref_tree = RB_ROOT_CACHED;
857 INIT_LIST_HEAD(&head_ref->ref_add_list);
858 RB_CLEAR_NODE(&head_ref->href_node);
859 head_ref->processing = false;
860 head_ref->total_ref_mod = count_mod;
861 spin_lock_init(&head_ref->lock);
862 mutex_init(&head_ref->mutex);
865 if (generic_ref->ref_root && reserved) {
866 qrecord->data_rsv = reserved;
867 qrecord->data_rsv_refroot = generic_ref->ref_root;
869 qrecord->bytenr = generic_ref->bytenr;
870 qrecord->num_bytes = generic_ref->num_bytes;
871 qrecord->old_roots = NULL;
876 * helper function to actually insert a head node into the rbtree.
877 * this does all the dirty work in terms of maintaining the correct
878 * overall modification count.
880 static noinline struct btrfs_delayed_ref_head *
881 add_delayed_ref_head(struct btrfs_trans_handle *trans,
882 struct btrfs_delayed_ref_head *head_ref,
883 struct btrfs_qgroup_extent_record *qrecord,
884 int action, bool *qrecord_inserted_ret)
886 struct btrfs_delayed_ref_head *existing;
887 struct btrfs_delayed_ref_root *delayed_refs;
888 bool qrecord_inserted = false;
890 delayed_refs = &trans->transaction->delayed_refs;
892 /* Record qgroup extent info if provided */
894 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
895 delayed_refs, qrecord))
898 qrecord_inserted = true;
901 trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
903 existing = htree_insert(&delayed_refs->href_root,
904 &head_ref->href_node);
906 update_existing_head_ref(trans, existing, head_ref);
908 * we've updated the existing ref, free the newly
911 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
915 * We reserve the amount of bytes needed to delete csums when
916 * adding the ref head and not when adding individual drop refs
917 * since the csum items are deleted only after running the last
918 * delayed drop ref (the data extent's ref count drops to 0).
920 if (head_ref->is_data && head_ref->ref_mod < 0) {
921 delayed_refs->pending_csums += head_ref->num_bytes;
922 trans->delayed_ref_csum_deletions +=
923 btrfs_csum_bytes_to_leaves(trans->fs_info,
924 head_ref->num_bytes);
926 delayed_refs->num_heads++;
927 delayed_refs->num_heads_ready++;
928 atomic_inc(&delayed_refs->num_entries);
930 if (qrecord_inserted_ret)
931 *qrecord_inserted_ret = qrecord_inserted;
937 * Initialize the structure which represents a modification to a an extent.
939 * @fs_info: Internal to the mounted filesystem mount structure.
941 * @ref: The structure which is going to be initialized.
943 * @bytenr: The logical address of the extent for which a modification is
944 * going to be recorded.
946 * @num_bytes: Size of the extent whose modification is being recorded.
948 * @ref_root: The id of the root where this modification has originated, this
949 * can be either one of the well-known metadata trees or the
950 * subvolume id which references this extent.
952 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
953 * BTRFS_ADD_DELAYED_EXTENT
955 * @ref_type: Holds the type of the extent which is being recorded, can be
956 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
957 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
958 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
960 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
961 struct btrfs_delayed_ref_node *ref,
962 struct btrfs_ref *generic_ref)
964 int action = generic_ref->action;
967 if (action == BTRFS_ADD_DELAYED_EXTENT)
968 action = BTRFS_ADD_DELAYED_REF;
970 if (is_fstree(generic_ref->ref_root))
971 seq = atomic64_read(&fs_info->tree_mod_seq);
973 refcount_set(&ref->refs, 1);
974 ref->bytenr = generic_ref->bytenr;
975 ref->num_bytes = generic_ref->num_bytes;
977 ref->action = action;
979 ref->type = btrfs_ref_type(generic_ref);
980 ref->ref_root = generic_ref->ref_root;
981 ref->parent = generic_ref->parent;
982 RB_CLEAR_NODE(&ref->ref_node);
983 INIT_LIST_HEAD(&ref->add_list);
985 if (generic_ref->type == BTRFS_REF_DATA)
986 ref->data_ref = generic_ref->data_ref;
988 ref->tree_ref = generic_ref->tree_ref;
991 void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
994 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
995 /* If @real_root not set, use @root as fallback */
996 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
998 generic_ref->tree_ref.level = level;
999 generic_ref->type = BTRFS_REF_METADATA;
1000 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
1001 (!mod_root || is_fstree(mod_root))))
1002 generic_ref->skip_qgroup = true;
1004 generic_ref->skip_qgroup = false;
1008 void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
1009 u64 mod_root, bool skip_qgroup)
1011 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1012 /* If @real_root not set, use @root as fallback */
1013 generic_ref->real_root = mod_root ?: generic_ref->ref_root;
1015 generic_ref->data_ref.objectid = ino;
1016 generic_ref->data_ref.offset = offset;
1017 generic_ref->type = BTRFS_REF_DATA;
1018 if (skip_qgroup || !(is_fstree(generic_ref->ref_root) &&
1019 (!mod_root || is_fstree(mod_root))))
1020 generic_ref->skip_qgroup = true;
1022 generic_ref->skip_qgroup = false;
1025 static int add_delayed_ref(struct btrfs_trans_handle *trans,
1026 struct btrfs_ref *generic_ref,
1027 struct btrfs_delayed_extent_op *extent_op,
1030 struct btrfs_fs_info *fs_info = trans->fs_info;
1031 struct btrfs_delayed_ref_node *node;
1032 struct btrfs_delayed_ref_head *head_ref;
1033 struct btrfs_delayed_ref_root *delayed_refs;
1034 struct btrfs_qgroup_extent_record *record = NULL;
1035 bool qrecord_inserted;
1036 int action = generic_ref->action;
1039 node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
1043 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1045 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1049 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1050 record = kzalloc(sizeof(*record), GFP_NOFS);
1052 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1053 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1058 init_delayed_ref_common(fs_info, node, generic_ref);
1059 init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1060 head_ref->extent_op = extent_op;
1062 delayed_refs = &trans->transaction->delayed_refs;
1063 spin_lock(&delayed_refs->lock);
1066 * insert both the head node and the new ref without dropping
1069 head_ref = add_delayed_ref_head(trans, head_ref, record,
1070 action, &qrecord_inserted);
1072 merged = insert_delayed_ref(trans, head_ref, node);
1073 spin_unlock(&delayed_refs->lock);
1076 * Need to update the delayed_refs_rsv with any changes we may have
1079 btrfs_update_delayed_refs_rsv(trans);
1081 if (generic_ref->type == BTRFS_REF_DATA)
1082 trace_add_delayed_data_ref(trans->fs_info, node);
1084 trace_add_delayed_tree_ref(trans->fs_info, node);
1086 kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1088 if (qrecord_inserted)
1089 return btrfs_qgroup_trace_extent_post(trans, record);
1094 * Add a delayed tree ref. This does all of the accounting required to make sure
1095 * the delayed ref is eventually processed before this transaction commits.
1097 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1098 struct btrfs_ref *generic_ref,
1099 struct btrfs_delayed_extent_op *extent_op)
1101 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1102 return add_delayed_ref(trans, generic_ref, extent_op, 0);
1106 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1108 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1109 struct btrfs_ref *generic_ref,
1112 ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1113 return add_delayed_ref(trans, generic_ref, NULL, reserved);
1116 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1117 u64 bytenr, u64 num_bytes,
1118 struct btrfs_delayed_extent_op *extent_op)
1120 struct btrfs_delayed_ref_head *head_ref;
1121 struct btrfs_delayed_ref_root *delayed_refs;
1122 struct btrfs_ref generic_ref = {
1123 .type = BTRFS_REF_METADATA,
1124 .action = BTRFS_UPDATE_DELAYED_HEAD,
1126 .num_bytes = num_bytes,
1129 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1133 init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1134 head_ref->extent_op = extent_op;
1136 delayed_refs = &trans->transaction->delayed_refs;
1137 spin_lock(&delayed_refs->lock);
1139 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1142 spin_unlock(&delayed_refs->lock);
1145 * Need to update the delayed_refs_rsv with any changes we may have
1148 btrfs_update_delayed_refs_rsv(trans);
1152 void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1154 if (refcount_dec_and_test(&ref->refs)) {
1155 WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1156 kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1161 * This does a simple search for the head node for a given extent. Returns the
1162 * head node if found, or NULL if not.
1164 struct btrfs_delayed_ref_head *
1165 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1167 lockdep_assert_held(&delayed_refs->lock);
1169 return find_ref_head(delayed_refs, bytenr, false);
1172 void __cold btrfs_delayed_ref_exit(void)
1174 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1175 kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1176 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1179 int __init btrfs_delayed_ref_init(void)
1181 btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1182 if (!btrfs_delayed_ref_head_cachep)
1185 btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1186 if (!btrfs_delayed_ref_node_cachep)
1189 btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1190 if (!btrfs_delayed_extent_op_cachep)
1195 btrfs_delayed_ref_exit();