1 // SPDX-License-Identifier: GPL-2.0
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
12 #include "journal_reclaim.h"
15 #include <linux/sched/mm.h>
17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
19 return id == BTREE_ID_subvolumes;
22 static struct kmem_cache *bch2_key_cache;
24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
27 const struct bkey_cached *ck = obj;
28 const struct bkey_cached_key *key = arg->key;
30 return ck->key.btree_id != key->btree_id ||
31 !bpos_eq(ck->key.pos, key->pos);
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 .head_offset = offsetof(struct bkey_cached, hash),
36 .key_offset = offsetof(struct bkey_cached, key),
37 .key_len = sizeof(struct bkey_cached_key),
38 .obj_cmpfn = bch2_btree_key_cache_cmp_fn,
42 inline struct bkey_cached *
43 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
45 struct bkey_cached_key key = {
50 return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
51 bch2_btree_key_cache_params);
54 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
56 if (!six_trylock_intent(&ck->c.lock))
59 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
60 six_unlock_intent(&ck->c.lock);
64 if (!six_trylock_write(&ck->c.lock)) {
65 six_unlock_intent(&ck->c.lock);
72 static void bkey_cached_evict(struct btree_key_cache *c,
73 struct bkey_cached *ck)
75 BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash,
76 bch2_btree_key_cache_params));
77 memset(&ck->key, ~0, sizeof(ck->key));
79 atomic_long_dec(&c->nr_keys);
82 static void bkey_cached_free(struct btree_key_cache *bc,
83 struct bkey_cached *ck)
85 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
87 BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
89 ck->btree_trans_barrier_seq =
90 start_poll_synchronize_srcu(&c->btree_trans_barrier);
92 if (ck->c.lock.readers) {
93 list_move_tail(&ck->list, &bc->freed_pcpu);
96 list_move_tail(&ck->list, &bc->freed_nonpcpu);
97 bc->nr_freed_nonpcpu++;
99 atomic_long_inc(&bc->nr_freed);
105 six_unlock_write(&ck->c.lock);
106 six_unlock_intent(&ck->c.lock);
110 static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc,
111 struct bkey_cached *ck)
113 struct bkey_cached *pos;
115 bc->nr_freed_nonpcpu++;
117 list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) {
118 if (ULONG_CMP_GE(ck->btree_trans_barrier_seq,
119 pos->btree_trans_barrier_seq)) {
120 list_move(&ck->list, &pos->list);
125 list_move(&ck->list, &bc->freed_nonpcpu);
129 static void bkey_cached_move_to_freelist(struct btree_key_cache *bc,
130 struct bkey_cached *ck)
132 BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags));
134 if (!ck->c.lock.readers) {
136 struct btree_key_cache_freelist *f;
140 f = this_cpu_ptr(bc->pcpu_freed);
142 if (f->nr < ARRAY_SIZE(f->objs)) {
143 f->objs[f->nr++] = ck;
149 mutex_lock(&bc->lock);
151 f = this_cpu_ptr(bc->pcpu_freed);
153 while (f->nr > ARRAY_SIZE(f->objs) / 2) {
154 struct bkey_cached *ck2 = f->objs[--f->nr];
156 __bkey_cached_move_to_freelist_ordered(bc, ck2);
160 __bkey_cached_move_to_freelist_ordered(bc, ck);
161 mutex_unlock(&bc->lock);
164 mutex_lock(&bc->lock);
165 list_move_tail(&ck->list, &bc->freed_nonpcpu);
166 bc->nr_freed_nonpcpu++;
167 mutex_unlock(&bc->lock);
170 mutex_lock(&bc->lock);
171 list_move_tail(&ck->list, &bc->freed_pcpu);
173 mutex_unlock(&bc->lock);
177 static void bkey_cached_free_fast(struct btree_key_cache *bc,
178 struct bkey_cached *ck)
180 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
182 ck->btree_trans_barrier_seq =
183 start_poll_synchronize_srcu(&c->btree_trans_barrier);
185 list_del_init(&ck->list);
186 atomic_long_inc(&bc->nr_freed);
192 bkey_cached_move_to_freelist(bc, ck);
194 six_unlock_write(&ck->c.lock);
195 six_unlock_intent(&ck->c.lock);
198 static struct bkey_cached *
199 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path,
202 struct bch_fs *c = trans->c;
203 struct btree_key_cache *bc = &c->btree_key_cache;
204 struct bkey_cached *ck = NULL;
205 bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
210 struct btree_key_cache_freelist *f;
213 f = this_cpu_ptr(bc->pcpu_freed);
215 ck = f->objs[--f->nr];
219 mutex_lock(&bc->lock);
221 f = this_cpu_ptr(bc->pcpu_freed);
223 while (!list_empty(&bc->freed_nonpcpu) &&
224 f->nr < ARRAY_SIZE(f->objs) / 2) {
225 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
226 list_del_init(&ck->list);
227 bc->nr_freed_nonpcpu--;
228 f->objs[f->nr++] = ck;
231 ck = f->nr ? f->objs[--f->nr] : NULL;
233 mutex_unlock(&bc->lock);
236 mutex_lock(&bc->lock);
237 if (!list_empty(&bc->freed_nonpcpu)) {
238 ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list);
239 list_del_init(&ck->list);
240 bc->nr_freed_nonpcpu--;
242 mutex_unlock(&bc->lock);
245 mutex_lock(&bc->lock);
246 if (!list_empty(&bc->freed_pcpu)) {
247 ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list);
248 list_del_init(&ck->list);
251 mutex_unlock(&bc->lock);
255 ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_);
257 bkey_cached_move_to_freelist(bc, ck);
261 path->l[0].b = (void *) ck;
262 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
263 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
265 ret = bch2_btree_node_lock_write(trans, path, &ck->c);
267 btree_node_unlock(trans, path, 0);
268 bkey_cached_move_to_freelist(bc, ck);
275 ck = allocate_dropping_locks(trans, ret,
276 kmem_cache_zalloc(bch2_key_cache, _gfp));
278 kmem_cache_free(bch2_key_cache, ck);
285 INIT_LIST_HEAD(&ck->list);
286 bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
289 BUG_ON(!six_trylock_intent(&ck->c.lock));
290 BUG_ON(!six_trylock_write(&ck->c.lock));
295 static struct bkey_cached *
296 bkey_cached_reuse(struct btree_key_cache *c)
298 struct bucket_table *tbl;
299 struct rhash_head *pos;
300 struct bkey_cached *ck;
303 mutex_lock(&c->lock);
305 tbl = rht_dereference_rcu(c->table.tbl, &c->table);
306 for (i = 0; i < tbl->size; i++)
307 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
308 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
309 bkey_cached_lock_for_evict(ck)) {
310 bkey_cached_evict(c, ck);
317 mutex_unlock(&c->lock);
321 static struct bkey_cached *
322 btree_key_cache_create(struct btree_trans *trans, struct btree_path *path)
324 struct bch_fs *c = trans->c;
325 struct btree_key_cache *bc = &c->btree_key_cache;
326 struct bkey_cached *ck;
327 bool was_new = false;
329 ck = bkey_cached_alloc(trans, path, &was_new);
334 ck = bkey_cached_reuse(bc);
336 bch_err(c, "error allocating memory for key cache item, btree %s",
337 bch2_btree_id_str(path->btree_id));
338 return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create);
341 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
345 ck->c.btree_id = path->btree_id;
346 ck->key.btree_id = path->btree_id;
347 ck->key.pos = path->pos;
349 ck->flags = 1U << BKEY_CACHED_ACCESSED;
351 if (unlikely(rhashtable_lookup_insert_fast(&bc->table,
353 bch2_btree_key_cache_params))) {
354 /* We raced with another fill: */
356 if (likely(was_new)) {
357 six_unlock_write(&ck->c.lock);
358 six_unlock_intent(&ck->c.lock);
361 bkey_cached_free_fast(bc, ck);
364 mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
368 atomic_long_inc(&bc->nr_keys);
370 six_unlock_write(&ck->c.lock);
375 static int btree_key_cache_fill(struct btree_trans *trans,
376 struct btree_path *ck_path,
377 struct bkey_cached *ck)
379 struct btree_iter iter;
381 unsigned new_u64s = 0;
382 struct bkey_i *new_k = NULL;
385 bch2_trans_iter_init(trans, &iter, ck->key.btree_id, ck->key.pos,
386 BTREE_ITER_key_cache_fill|
387 BTREE_ITER_cached_nofill);
388 iter.flags &= ~BTREE_ITER_with_journal;
389 k = bch2_btree_iter_peek_slot(&iter);
394 if (!bch2_btree_node_relock(trans, ck_path, 0)) {
395 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
396 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
401 * bch2_varint_decode can read past the end of the buffer by at
402 * most 7 bytes (it won't be used):
404 new_u64s = k.k->u64s + 1;
407 * Allocate some extra space so that the transaction commit path is less
408 * likely to have to reallocate, since that requires a transaction
411 new_u64s = min(256U, (new_u64s * 3) / 2);
413 if (new_u64s > ck->u64s) {
414 new_u64s = roundup_pow_of_two(new_u64s);
415 new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN);
417 bch2_trans_unlock(trans);
419 new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL);
421 bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
422 bch2_btree_id_str(ck->key.btree_id), new_u64s);
423 ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
427 if (!bch2_btree_node_relock(trans, ck_path, 0)) {
429 trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path);
430 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill);
434 ret = bch2_trans_relock(trans);
442 ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c);
454 bkey_reassemble(ck->k, k);
456 bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b);
458 /* We're not likely to need this iterator again: */
459 bch2_set_btree_iter_dontneed(&iter);
461 bch2_trans_iter_exit(trans, &iter);
466 bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path,
469 struct bch_fs *c = trans->c;
470 struct bkey_cached *ck;
477 if (bch2_btree_node_relock_notrace(trans, path, 0)) {
478 ck = (void *) path->l[0].b;
482 ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
484 ck = btree_key_cache_create(trans, path);
485 ret = PTR_ERR_OR_ZERO(ck);
491 mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED);
492 path->locks_want = 1;
494 enum six_lock_type lock_want = __btree_lock_want(path, 0);
496 ret = btree_node_lock(trans, path, (void *) ck, 0,
497 lock_want, _THIS_IP_);
498 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
503 if (ck->key.btree_id != path->btree_id ||
504 !bpos_eq(ck->key.pos, path->pos)) {
505 six_unlock_type(&ck->c.lock, lock_want);
509 mark_btree_node_locked(trans, path, 0,
510 (enum btree_node_locked_type) lock_want);
513 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
514 path->l[0].b = (void *) ck;
516 path->uptodate = BTREE_ITER_UPTODATE;
518 if (!ck->valid && !(flags & BTREE_ITER_cached_nofill)) {
519 ret = bch2_btree_path_upgrade(trans, path, 1) ?:
520 btree_key_cache_fill(trans, path, ck) ?:
521 bch2_btree_path_relock(trans, path, _THIS_IP_);
525 path->uptodate = BTREE_ITER_UPTODATE;
528 if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
529 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
531 BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
532 BUG_ON(path->uptodate);
536 path->uptodate = BTREE_ITER_NEED_TRAVERSE;
537 if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
538 btree_node_unlock(trans, path, 0);
539 path->l[0].b = ERR_PTR(ret);
544 int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
547 struct bch_fs *c = trans->c;
548 struct bkey_cached *ck;
551 EBUG_ON(path->level);
555 if (bch2_btree_node_relock_notrace(trans, path, 0)) {
556 ck = (void *) path->l[0].b;
560 ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
562 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
564 enum six_lock_type lock_want = __btree_lock_want(path, 0);
566 ret = btree_node_lock(trans, path, (void *) ck, 0,
567 lock_want, _THIS_IP_);
568 EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart));
573 if (ck->key.btree_id != path->btree_id ||
574 !bpos_eq(ck->key.pos, path->pos)) {
575 six_unlock_type(&ck->c.lock, lock_want);
579 mark_btree_node_locked(trans, path, 0,
580 (enum btree_node_locked_type) lock_want);
583 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
584 path->l[0].b = (void *) ck;
587 return bch2_btree_path_traverse_cached_slowpath(trans, path, flags);
589 if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
590 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
592 path->uptodate = BTREE_ITER_UPTODATE;
594 EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0));
599 static int btree_key_cache_flush_pos(struct btree_trans *trans,
600 struct bkey_cached_key key,
602 unsigned commit_flags,
605 struct bch_fs *c = trans->c;
606 struct journal *j = &c->journal;
607 struct btree_iter c_iter, b_iter;
608 struct bkey_cached *ck = NULL;
611 bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
614 BTREE_ITER_all_snapshots);
615 bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
618 b_iter.flags &= ~BTREE_ITER_with_key_cache;
620 ret = bch2_btree_iter_traverse(&c_iter);
624 ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
628 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
636 if (journal_seq && ck->journal.seq != journal_seq)
639 trans->journal_res.seq = ck->journal.seq;
642 * If we're at the end of the journal, we really want to free up space
643 * in the journal right away - we don't want to pin that old journal
644 * sequence number with a new btree node write, we want to re-journal
647 if (ck->journal.seq == journal_last_seq(j))
648 commit_flags |= BCH_WATERMARK_reclaim;
650 if (ck->journal.seq != journal_last_seq(j) ||
651 !test_bit(JOURNAL_space_low, &c->journal.flags))
652 commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
654 ret = bch2_btree_iter_traverse(&b_iter) ?:
655 bch2_trans_update(trans, &b_iter, ck->k,
656 BTREE_UPDATE_key_cache_reclaim|
657 BTREE_UPDATE_internal_snapshot_node|
658 BTREE_TRIGGER_norun) ?:
659 bch2_trans_commit(trans, NULL, NULL,
660 BCH_TRANS_COMMIT_no_check_rw|
661 BCH_TRANS_COMMIT_no_enospc|
664 bch2_fs_fatal_err_on(ret &&
665 !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
666 !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
667 !bch2_journal_error(j), c,
668 "flushing key cache: %s", bch2_err_str(ret));
672 bch2_journal_pin_drop(j, &ck->journal);
674 struct btree_path *path = btree_iter_path(trans, &c_iter);
675 BUG_ON(!btree_node_locked(path, 0));
678 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
679 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
680 atomic_long_dec(&c->btree_key_cache.nr_dirty);
683 struct btree_path *path2;
686 trans_for_each_path(trans, path2, i)
688 __bch2_btree_path_unlock(trans, path2);
690 bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
692 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
693 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
694 atomic_long_dec(&c->btree_key_cache.nr_dirty);
697 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
698 bkey_cached_evict(&c->btree_key_cache, ck);
699 bkey_cached_free_fast(&c->btree_key_cache, ck);
702 bch2_trans_iter_exit(trans, &b_iter);
703 bch2_trans_iter_exit(trans, &c_iter);
707 int bch2_btree_key_cache_journal_flush(struct journal *j,
708 struct journal_entry_pin *pin, u64 seq)
710 struct bch_fs *c = container_of(j, struct bch_fs, journal);
711 struct bkey_cached *ck =
712 container_of(pin, struct bkey_cached, journal);
713 struct bkey_cached_key key;
714 struct btree_trans *trans = bch2_trans_get(c);
715 int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
718 btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
721 if (ck->journal.seq != seq ||
722 !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
723 six_unlock_read(&ck->c.lock);
727 if (ck->seq != seq) {
728 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
729 bch2_btree_key_cache_journal_flush);
730 six_unlock_read(&ck->c.lock);
733 six_unlock_read(&ck->c.lock);
735 ret = lockrestart_do(trans,
736 btree_key_cache_flush_pos(trans, key, seq,
737 BCH_TRANS_COMMIT_journal_reclaim, false));
739 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
741 bch2_trans_put(trans);
745 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
747 struct btree_insert_entry *insert_entry)
749 struct bch_fs *c = trans->c;
750 struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
751 struct bkey_i *insert = insert_entry->k;
752 bool kick_reclaim = false;
754 BUG_ON(insert->k.u64s > ck->u64s);
756 bkey_copy(ck->k, insert);
759 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
760 EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
761 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
762 atomic_long_inc(&c->btree_key_cache.nr_dirty);
764 if (bch2_nr_btree_keys_need_flush(c))
769 * To minimize lock contention, we only add the journal pin here and
770 * defer pin updates to the flush callback via ->seq. Be careful not to
771 * update ->seq on nojournal commits because we don't want to update the
772 * pin to a seq that doesn't include journal updates on disk. Otherwise
773 * we risk losing the update after a crash.
775 * The only exception is if the pin is not active in the first place. We
776 * have to add the pin because journal reclaim drives key cache
777 * flushing. The flush callback will not proceed unless ->seq matches
778 * the latest pin, so make sure it starts with a consistent value.
780 if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
781 !journal_pin_active(&ck->journal)) {
782 ck->seq = trans->journal_res.seq;
784 bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
785 &ck->journal, bch2_btree_key_cache_journal_flush);
788 journal_reclaim_kick(&c->journal);
792 void bch2_btree_key_cache_drop(struct btree_trans *trans,
793 struct btree_path *path)
795 struct bch_fs *c = trans->c;
796 struct bkey_cached *ck = (void *) path->l[0].b;
801 * We just did an update to the btree, bypassing the key cache: the key
802 * cache key is now stale and must be dropped, even if dirty:
804 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
805 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
806 atomic_long_dec(&c->btree_key_cache.nr_dirty);
807 bch2_journal_pin_drop(&c->journal, &ck->journal);
813 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
814 struct shrink_control *sc)
816 struct bch_fs *c = shrink->private_data;
817 struct btree_key_cache *bc = &c->btree_key_cache;
818 struct bucket_table *tbl;
819 struct bkey_cached *ck, *t;
820 size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
821 unsigned start, flags;
824 mutex_lock(&bc->lock);
825 bc->requested_to_free += sc->nr_to_scan;
827 srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
828 flags = memalloc_nofs_save();
831 * Newest freed entries are at the end of the list - once we hit one
832 * that's too new to be freed, we can bail out:
834 list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) {
835 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
836 ck->btree_trans_barrier_seq))
840 six_lock_exit(&ck->c.lock);
841 kmem_cache_free(bch2_key_cache, ck);
842 atomic_long_dec(&bc->nr_freed);
844 bc->nr_freed_nonpcpu--;
848 list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) {
849 if (!poll_state_synchronize_srcu(&c->btree_trans_barrier,
850 ck->btree_trans_barrier_seq))
854 six_lock_exit(&ck->c.lock);
855 kmem_cache_free(bch2_key_cache, ck);
856 atomic_long_dec(&bc->nr_freed);
863 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
864 if (bc->shrink_iter >= tbl->size)
866 start = bc->shrink_iter;
869 struct rhash_head *pos, *next;
871 pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter));
873 while (!rht_is_a_nulls(pos)) {
874 next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter);
875 ck = container_of(pos, struct bkey_cached, hash);
877 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
880 } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
881 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
882 bc->skipped_accessed++;
884 } else if (bkey_cached_lock_for_evict(ck)) {
885 bkey_cached_evict(bc, ck);
886 bkey_cached_free(bc, ck);
887 bc->moved_to_freelist++;
889 bc->skipped_lock_fail++;
900 if (bc->shrink_iter >= tbl->size)
902 } while (scanned < nr && bc->shrink_iter != start);
905 memalloc_nofs_restore(flags);
906 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
907 mutex_unlock(&bc->lock);
912 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
913 struct shrink_control *sc)
915 struct bch_fs *c = shrink->private_data;
916 struct btree_key_cache *bc = &c->btree_key_cache;
917 long nr = atomic_long_read(&bc->nr_keys) -
918 atomic_long_read(&bc->nr_dirty);
923 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
925 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
926 struct bucket_table *tbl;
927 struct bkey_cached *ck, *n;
928 struct rhash_head *pos;
935 shrinker_free(bc->shrink);
937 mutex_lock(&bc->lock);
940 * The loop is needed to guard against racing with rehash:
942 while (atomic_long_read(&bc->nr_keys)) {
944 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
946 for (i = 0; i < tbl->size; i++)
947 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
948 bkey_cached_evict(bc, ck);
949 list_add(&ck->list, &items);
955 if (bc->pcpu_freed) {
956 for_each_possible_cpu(cpu) {
957 struct btree_key_cache_freelist *f =
958 per_cpu_ptr(bc->pcpu_freed, cpu);
960 for (i = 0; i < f->nr; i++) {
962 list_add(&ck->list, &items);
968 BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu);
969 BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu);
971 list_splice(&bc->freed_pcpu, &items);
972 list_splice(&bc->freed_nonpcpu, &items);
974 mutex_unlock(&bc->lock);
976 list_for_each_entry_safe(ck, n, &items, list) {
981 six_lock_exit(&ck->c.lock);
982 kmem_cache_free(bch2_key_cache, ck);
985 if (atomic_long_read(&bc->nr_dirty) &&
986 !bch2_journal_error(&c->journal) &&
987 test_bit(BCH_FS_was_rw, &c->flags))
988 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
989 atomic_long_read(&bc->nr_dirty));
991 if (atomic_long_read(&bc->nr_keys))
992 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
993 atomic_long_read(&bc->nr_keys));
995 if (bc->table_init_done)
996 rhashtable_destroy(&bc->table);
998 free_percpu(bc->pcpu_freed);
1001 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
1003 mutex_init(&c->lock);
1004 INIT_LIST_HEAD(&c->freed_pcpu);
1005 INIT_LIST_HEAD(&c->freed_nonpcpu);
1008 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
1010 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1011 struct shrinker *shrink;
1014 bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist);
1015 if (!bc->pcpu_freed)
1016 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1019 if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
1020 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1022 bc->table_init_done = true;
1024 shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
1026 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
1027 bc->shrink = shrink;
1029 shrink->count_objects = bch2_btree_key_cache_count;
1030 shrink->scan_objects = bch2_btree_key_cache_scan;
1031 shrink->private_data = c;
1032 shrinker_register(shrink);
1036 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
1038 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
1040 printbuf_tabstop_push(out, 24);
1041 printbuf_tabstop_push(out, 12);
1043 unsigned flags = memalloc_nofs_save();
1044 mutex_lock(&bc->lock);
1045 prt_printf(out, "keys:\t%lu\r\n", atomic_long_read(&bc->nr_keys));
1046 prt_printf(out, "dirty:\t%lu\r\n", atomic_long_read(&bc->nr_dirty));
1047 prt_printf(out, "freelist:\t%lu\r\n", atomic_long_read(&bc->nr_freed));
1048 prt_printf(out, "nonpcpu freelist:\t%zu\r\n", bc->nr_freed_nonpcpu);
1049 prt_printf(out, "pcpu freelist:\t%zu\r\n", bc->nr_freed_pcpu);
1051 prt_printf(out, "\nshrinker:\n");
1052 prt_printf(out, "requested_to_free:\t%lu\r\n", bc->requested_to_free);
1053 prt_printf(out, "freed:\t%lu\r\n", bc->freed);
1054 prt_printf(out, "moved_to_freelist:\t%lu\r\n", bc->moved_to_freelist);
1055 prt_printf(out, "skipped_dirty:\t%lu\r\n", bc->skipped_dirty);
1056 prt_printf(out, "skipped_accessed:\t%lu\r\n", bc->skipped_accessed);
1057 prt_printf(out, "skipped_lock_fail:\t%lu\r\n", bc->skipped_lock_fail);
1059 prt_printf(out, "srcu seq:\t%lu\r\n", get_state_synchronize_srcu(&c->btree_trans_barrier));
1061 struct bkey_cached *ck;
1063 list_for_each_entry(ck, &bc->freed_nonpcpu, list) {
1064 prt_printf(out, "freed_nonpcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
1070 list_for_each_entry(ck, &bc->freed_pcpu, list) {
1071 prt_printf(out, "freed_pcpu:\t%lu\r\n", ck->btree_trans_barrier_seq);
1075 mutex_unlock(&bc->lock);
1076 memalloc_flags_restore(flags);
1079 void bch2_btree_key_cache_exit(void)
1081 kmem_cache_destroy(bch2_key_cache);
1084 int __init bch2_btree_key_cache_init(void)
1086 bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
1087 if (!bch2_key_cache)