]> Git Repo - linux.git/blob - drivers/spi/spi-dw-core.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / spi / spi-dw-core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Designware SPI core controller driver (refer pxa2xx_spi.c)
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7
8 #include <linux/bitfield.h>
9 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/preempt.h>
14 #include <linux/highmem.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #include <linux/string.h>
20 #include <linux/of.h>
21
22 #include "spi-dw.h"
23
24 #ifdef CONFIG_DEBUG_FS
25 #include <linux/debugfs.h>
26 #endif
27
28 /* Slave spi_device related */
29 struct dw_spi_chip_data {
30         u32 cr0;
31         u32 rx_sample_dly;      /* RX sample delay */
32 };
33
34 #ifdef CONFIG_DEBUG_FS
35
36 #define DW_SPI_DBGFS_REG(_name, _off)   \
37 {                                       \
38         .name = _name,                  \
39         .offset = _off,                 \
40 }
41
42 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
43         DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
44         DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
45         DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
46         DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
47         DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
48         DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
49         DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
50         DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
51         DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
52         DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
53         DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
54         DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
55         DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
56         DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
57         DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
58         DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
59 };
60
61 static void dw_spi_debugfs_init(struct dw_spi *dws)
62 {
63         char name[32];
64
65         snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
66         dws->debugfs = debugfs_create_dir(name, NULL);
67
68         dws->regset.regs = dw_spi_dbgfs_regs;
69         dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
70         dws->regset.base = dws->regs;
71         debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
72 }
73
74 static void dw_spi_debugfs_remove(struct dw_spi *dws)
75 {
76         debugfs_remove_recursive(dws->debugfs);
77 }
78
79 #else
80 static inline void dw_spi_debugfs_init(struct dw_spi *dws)
81 {
82 }
83
84 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
85 {
86 }
87 #endif /* CONFIG_DEBUG_FS */
88
89 void dw_spi_set_cs(struct spi_device *spi, bool enable)
90 {
91         struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
92         bool cs_high = !!(spi->mode & SPI_CS_HIGH);
93
94         /*
95          * DW SPI controller demands any native CS being set in order to
96          * proceed with data transfer. So in order to activate the SPI
97          * communications we must set a corresponding bit in the Slave
98          * Enable register no matter whether the SPI core is configured to
99          * support active-high or active-low CS level.
100          */
101         if (cs_high == enable)
102                 dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
103         else
104                 dw_writel(dws, DW_SPI_SER, 0);
105 }
106 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
107
108 /* Return the max entries we can fill into tx fifo */
109 static inline u32 dw_spi_tx_max(struct dw_spi *dws)
110 {
111         u32 tx_room, rxtx_gap;
112
113         tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
114
115         /*
116          * Another concern is about the tx/rx mismatch, we
117          * though to use (dws->fifo_len - rxflr - txflr) as
118          * one maximum value for tx, but it doesn't cover the
119          * data which is out of tx/rx fifo and inside the
120          * shift registers. So a control from sw point of
121          * view is taken.
122          */
123         rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
124
125         return min3((u32)dws->tx_len, tx_room, rxtx_gap);
126 }
127
128 /* Return the max entries we should read out of rx fifo */
129 static inline u32 dw_spi_rx_max(struct dw_spi *dws)
130 {
131         return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
132 }
133
134 static void dw_writer(struct dw_spi *dws)
135 {
136         u32 max = dw_spi_tx_max(dws);
137         u32 txw = 0;
138
139         while (max--) {
140                 if (dws->tx) {
141                         if (dws->n_bytes == 1)
142                                 txw = *(u8 *)(dws->tx);
143                         else if (dws->n_bytes == 2)
144                                 txw = *(u16 *)(dws->tx);
145                         else
146                                 txw = *(u32 *)(dws->tx);
147
148                         dws->tx += dws->n_bytes;
149                 }
150                 dw_write_io_reg(dws, DW_SPI_DR, txw);
151                 --dws->tx_len;
152         }
153 }
154
155 static void dw_reader(struct dw_spi *dws)
156 {
157         u32 max = dw_spi_rx_max(dws);
158         u32 rxw;
159
160         while (max--) {
161                 rxw = dw_read_io_reg(dws, DW_SPI_DR);
162                 if (dws->rx) {
163                         if (dws->n_bytes == 1)
164                                 *(u8 *)(dws->rx) = rxw;
165                         else if (dws->n_bytes == 2)
166                                 *(u16 *)(dws->rx) = rxw;
167                         else
168                                 *(u32 *)(dws->rx) = rxw;
169
170                         dws->rx += dws->n_bytes;
171                 }
172                 --dws->rx_len;
173         }
174 }
175
176 int dw_spi_check_status(struct dw_spi *dws, bool raw)
177 {
178         u32 irq_status;
179         int ret = 0;
180
181         if (raw)
182                 irq_status = dw_readl(dws, DW_SPI_RISR);
183         else
184                 irq_status = dw_readl(dws, DW_SPI_ISR);
185
186         if (irq_status & DW_SPI_INT_RXOI) {
187                 dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
188                 ret = -EIO;
189         }
190
191         if (irq_status & DW_SPI_INT_RXUI) {
192                 dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
193                 ret = -EIO;
194         }
195
196         if (irq_status & DW_SPI_INT_TXOI) {
197                 dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
198                 ret = -EIO;
199         }
200
201         /* Generically handle the erroneous situation */
202         if (ret) {
203                 dw_spi_reset_chip(dws);
204                 if (dws->host->cur_msg)
205                         dws->host->cur_msg->status = ret;
206         }
207
208         return ret;
209 }
210 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
211
212 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
213 {
214         u16 irq_status = dw_readl(dws, DW_SPI_ISR);
215
216         if (dw_spi_check_status(dws, false)) {
217                 spi_finalize_current_transfer(dws->host);
218                 return IRQ_HANDLED;
219         }
220
221         /*
222          * Read data from the Rx FIFO every time we've got a chance executing
223          * this method. If there is nothing left to receive, terminate the
224          * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
225          * final stage of the transfer. By doing so we'll get the next IRQ
226          * right when the leftover incoming data is received.
227          */
228         dw_reader(dws);
229         if (!dws->rx_len) {
230                 dw_spi_mask_intr(dws, 0xff);
231                 spi_finalize_current_transfer(dws->host);
232         } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
233                 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
234         }
235
236         /*
237          * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
238          * disabled after the data transmission is finished so not to
239          * have the TXE IRQ flood at the final stage of the transfer.
240          */
241         if (irq_status & DW_SPI_INT_TXEI) {
242                 dw_writer(dws);
243                 if (!dws->tx_len)
244                         dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
245         }
246
247         return IRQ_HANDLED;
248 }
249
250 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
251 {
252         struct spi_controller *host = dev_id;
253         struct dw_spi *dws = spi_controller_get_devdata(host);
254         u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
255
256         if (!irq_status)
257                 return IRQ_NONE;
258
259         if (!host->cur_msg) {
260                 dw_spi_mask_intr(dws, 0xff);
261                 return IRQ_HANDLED;
262         }
263
264         return dws->transfer_handler(dws);
265 }
266
267 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
268 {
269         u32 cr0 = 0;
270
271         if (dw_spi_ip_is(dws, PSSI)) {
272                 /* CTRLR0[ 5: 4] Frame Format */
273                 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
274
275                 /*
276                  * SPI mode (SCPOL|SCPH)
277                  * CTRLR0[ 6] Serial Clock Phase
278                  * CTRLR0[ 7] Serial Clock Polarity
279                  */
280                 if (spi->mode & SPI_CPOL)
281                         cr0 |= DW_PSSI_CTRLR0_SCPOL;
282                 if (spi->mode & SPI_CPHA)
283                         cr0 |= DW_PSSI_CTRLR0_SCPHA;
284
285                 /* CTRLR0[11] Shift Register Loop */
286                 if (spi->mode & SPI_LOOP)
287                         cr0 |= DW_PSSI_CTRLR0_SRL;
288         } else {
289                 /* CTRLR0[ 7: 6] Frame Format */
290                 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
291
292                 /*
293                  * SPI mode (SCPOL|SCPH)
294                  * CTRLR0[ 8] Serial Clock Phase
295                  * CTRLR0[ 9] Serial Clock Polarity
296                  */
297                 if (spi->mode & SPI_CPOL)
298                         cr0 |= DW_HSSI_CTRLR0_SCPOL;
299                 if (spi->mode & SPI_CPHA)
300                         cr0 |= DW_HSSI_CTRLR0_SCPHA;
301
302                 /* CTRLR0[13] Shift Register Loop */
303                 if (spi->mode & SPI_LOOP)
304                         cr0 |= DW_HSSI_CTRLR0_SRL;
305
306                 /* CTRLR0[31] MST */
307                 if (dw_spi_ver_is_ge(dws, HSSI, 102A))
308                         cr0 |= DW_HSSI_CTRLR0_MST;
309         }
310
311         return cr0;
312 }
313
314 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
315                           struct dw_spi_cfg *cfg)
316 {
317         struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
318         u32 cr0 = chip->cr0;
319         u32 speed_hz;
320         u16 clk_div;
321
322         /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
323         cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
324
325         if (dw_spi_ip_is(dws, PSSI))
326                 /* CTRLR0[ 9:8] Transfer Mode */
327                 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
328         else
329                 /* CTRLR0[11:10] Transfer Mode */
330                 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
331
332         dw_writel(dws, DW_SPI_CTRLR0, cr0);
333
334         if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
335             cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
336                 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
337
338         /* Note DW APB SSI clock divider doesn't support odd numbers */
339         clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
340         speed_hz = dws->max_freq / clk_div;
341
342         if (dws->current_freq != speed_hz) {
343                 dw_spi_set_clk(dws, clk_div);
344                 dws->current_freq = speed_hz;
345         }
346
347         /* Update RX sample delay if required */
348         if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
349                 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
350                 dws->cur_rx_sample_dly = chip->rx_sample_dly;
351         }
352 }
353 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
354
355 static void dw_spi_irq_setup(struct dw_spi *dws)
356 {
357         u16 level;
358         u8 imask;
359
360         /*
361          * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
362          * will be adjusted at the final stage of the IRQ-based SPI transfer
363          * execution so not to lose the leftover of the incoming data.
364          */
365         level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
366         dw_writel(dws, DW_SPI_TXFTLR, level);
367         dw_writel(dws, DW_SPI_RXFTLR, level - 1);
368
369         dws->transfer_handler = dw_spi_transfer_handler;
370
371         imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
372                 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
373         dw_spi_umask_intr(dws, imask);
374 }
375
376 /*
377  * The iterative procedure of the poll-based transfer is simple: write as much
378  * as possible to the Tx FIFO, wait until the pending to receive data is ready
379  * to be read, read it from the Rx FIFO and check whether the performed
380  * procedure has been successful.
381  *
382  * Note this method the same way as the IRQ-based transfer won't work well for
383  * the SPI devices connected to the controller with native CS due to the
384  * automatic CS assertion/de-assertion.
385  */
386 static int dw_spi_poll_transfer(struct dw_spi *dws,
387                                 struct spi_transfer *transfer)
388 {
389         struct spi_delay delay;
390         u16 nbits;
391         int ret;
392
393         delay.unit = SPI_DELAY_UNIT_SCK;
394         nbits = dws->n_bytes * BITS_PER_BYTE;
395
396         do {
397                 dw_writer(dws);
398
399                 delay.value = nbits * (dws->rx_len - dws->tx_len);
400                 spi_delay_exec(&delay, transfer);
401
402                 dw_reader(dws);
403
404                 ret = dw_spi_check_status(dws, true);
405                 if (ret)
406                         return ret;
407         } while (dws->rx_len);
408
409         return 0;
410 }
411
412 static int dw_spi_transfer_one(struct spi_controller *host,
413                                struct spi_device *spi,
414                                struct spi_transfer *transfer)
415 {
416         struct dw_spi *dws = spi_controller_get_devdata(host);
417         struct dw_spi_cfg cfg = {
418                 .tmode = DW_SPI_CTRLR0_TMOD_TR,
419                 .dfs = transfer->bits_per_word,
420                 .freq = transfer->speed_hz,
421         };
422         int ret;
423
424         dws->dma_mapped = 0;
425         dws->n_bytes = roundup_pow_of_two(BITS_TO_BYTES(transfer->bits_per_word));
426         dws->tx = (void *)transfer->tx_buf;
427         dws->tx_len = transfer->len / dws->n_bytes;
428         dws->rx = transfer->rx_buf;
429         dws->rx_len = dws->tx_len;
430
431         /* Ensure the data above is visible for all CPUs */
432         smp_mb();
433
434         dw_spi_enable_chip(dws, 0);
435
436         dw_spi_update_config(dws, spi, &cfg);
437
438         transfer->effective_speed_hz = dws->current_freq;
439
440         /* Check if current transfer is a DMA transaction */
441         if (host->can_dma && host->can_dma(host, spi, transfer))
442                 dws->dma_mapped = host->cur_msg_mapped;
443
444         /* For poll mode just disable all interrupts */
445         dw_spi_mask_intr(dws, 0xff);
446
447         if (dws->dma_mapped) {
448                 ret = dws->dma_ops->dma_setup(dws, transfer);
449                 if (ret)
450                         return ret;
451         }
452
453         dw_spi_enable_chip(dws, 1);
454
455         if (dws->dma_mapped)
456                 return dws->dma_ops->dma_transfer(dws, transfer);
457         else if (dws->irq == IRQ_NOTCONNECTED)
458                 return dw_spi_poll_transfer(dws, transfer);
459
460         dw_spi_irq_setup(dws);
461
462         return 1;
463 }
464
465 static void dw_spi_handle_err(struct spi_controller *host,
466                               struct spi_message *msg)
467 {
468         struct dw_spi *dws = spi_controller_get_devdata(host);
469
470         if (dws->dma_mapped)
471                 dws->dma_ops->dma_stop(dws);
472
473         dw_spi_reset_chip(dws);
474 }
475
476 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
477 {
478         if (op->data.dir == SPI_MEM_DATA_IN)
479                 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
480
481         return 0;
482 }
483
484 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
485                                    const struct spi_mem_op *op)
486 {
487         if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
488             op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
489                 return false;
490
491         return spi_mem_default_supports_op(mem, op);
492 }
493
494 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
495 {
496         unsigned int i, j, len;
497         u8 *out;
498
499         /*
500          * Calculate the total length of the EEPROM command transfer and
501          * either use the pre-allocated buffer or create a temporary one.
502          */
503         len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
504         if (op->data.dir == SPI_MEM_DATA_OUT)
505                 len += op->data.nbytes;
506
507         if (len <= DW_SPI_BUF_SIZE) {
508                 out = dws->buf;
509         } else {
510                 out = kzalloc(len, GFP_KERNEL);
511                 if (!out)
512                         return -ENOMEM;
513         }
514
515         /*
516          * Collect the operation code, address and dummy bytes into the single
517          * buffer. If it's a transfer with data to be sent, also copy it into the
518          * single buffer in order to speed the data transmission up.
519          */
520         for (i = 0; i < op->cmd.nbytes; ++i)
521                 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
522         for (j = 0; j < op->addr.nbytes; ++i, ++j)
523                 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
524         for (j = 0; j < op->dummy.nbytes; ++i, ++j)
525                 out[i] = 0x0;
526
527         if (op->data.dir == SPI_MEM_DATA_OUT)
528                 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
529
530         dws->n_bytes = 1;
531         dws->tx = out;
532         dws->tx_len = len;
533         if (op->data.dir == SPI_MEM_DATA_IN) {
534                 dws->rx = op->data.buf.in;
535                 dws->rx_len = op->data.nbytes;
536         } else {
537                 dws->rx = NULL;
538                 dws->rx_len = 0;
539         }
540
541         return 0;
542 }
543
544 static void dw_spi_free_mem_buf(struct dw_spi *dws)
545 {
546         if (dws->tx != dws->buf)
547                 kfree(dws->tx);
548 }
549
550 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
551 {
552         u32 room, entries, sts;
553         unsigned int len;
554         u8 *buf;
555
556         /*
557          * At initial stage we just pre-fill the Tx FIFO in with no rush,
558          * since native CS hasn't been enabled yet and the automatic data
559          * transmission won't start til we do that.
560          */
561         len = min(dws->fifo_len, dws->tx_len);
562         buf = dws->tx;
563         while (len--)
564                 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
565
566         /*
567          * After setting any bit in the SER register the transmission will
568          * start automatically. We have to keep up with that procedure
569          * otherwise the CS de-assertion will happen whereupon the memory
570          * operation will be pre-terminated.
571          */
572         len = dws->tx_len - ((void *)buf - dws->tx);
573         dw_spi_set_cs(spi, false);
574         while (len) {
575                 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
576                 if (!entries) {
577                         dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
578                         return -EIO;
579                 }
580                 room = min(dws->fifo_len - entries, len);
581                 for (; room; --room, --len)
582                         dw_write_io_reg(dws, DW_SPI_DR, *buf++);
583         }
584
585         /*
586          * Data fetching will start automatically if the EEPROM-read mode is
587          * activated. We have to keep up with the incoming data pace to
588          * prevent the Rx FIFO overflow causing the inbound data loss.
589          */
590         len = dws->rx_len;
591         buf = dws->rx;
592         while (len) {
593                 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
594                 if (!entries) {
595                         sts = readl_relaxed(dws->regs + DW_SPI_RISR);
596                         if (sts & DW_SPI_INT_RXOI) {
597                                 dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
598                                 return -EIO;
599                         }
600                         continue;
601                 }
602                 entries = min(entries, len);
603                 for (; entries; --entries, --len)
604                         *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
605         }
606
607         return 0;
608 }
609
610 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
611 {
612         return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
613 }
614
615 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
616 {
617         int retry = DW_SPI_WAIT_RETRIES;
618         struct spi_delay delay;
619         unsigned long ns, us;
620         u32 nents;
621
622         nents = dw_readl(dws, DW_SPI_TXFLR);
623         ns = NSEC_PER_SEC / dws->current_freq * nents;
624         ns *= dws->n_bytes * BITS_PER_BYTE;
625         if (ns <= NSEC_PER_USEC) {
626                 delay.unit = SPI_DELAY_UNIT_NSECS;
627                 delay.value = ns;
628         } else {
629                 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
630                 delay.unit = SPI_DELAY_UNIT_USECS;
631                 delay.value = clamp_val(us, 0, USHRT_MAX);
632         }
633
634         while (dw_spi_ctlr_busy(dws) && retry--)
635                 spi_delay_exec(&delay, NULL);
636
637         if (retry < 0) {
638                 dev_err(&dws->host->dev, "Mem op hanged up\n");
639                 return -EIO;
640         }
641
642         return 0;
643 }
644
645 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
646 {
647         dw_spi_enable_chip(dws, 0);
648         dw_spi_set_cs(spi, true);
649         dw_spi_enable_chip(dws, 1);
650 }
651
652 /*
653  * The SPI memory operation implementation below is the best choice for the
654  * devices, which are selected by the native chip-select lane. It's
655  * specifically developed to workaround the problem with automatic chip-select
656  * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
657  * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
658  * unavailable.
659  */
660 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
661 {
662         struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
663         struct dw_spi_cfg cfg;
664         unsigned long flags;
665         int ret;
666
667         /*
668          * Collect the outbound data into a single buffer to speed the
669          * transmission up at least on the initial stage.
670          */
671         ret = dw_spi_init_mem_buf(dws, op);
672         if (ret)
673                 return ret;
674
675         /*
676          * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
677          * operation. Transmit-only mode is suitable for the rest of them.
678          */
679         cfg.dfs = 8;
680         cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
681         if (op->data.dir == SPI_MEM_DATA_IN) {
682                 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
683                 cfg.ndf = op->data.nbytes;
684         } else {
685                 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
686         }
687
688         dw_spi_enable_chip(dws, 0);
689
690         dw_spi_update_config(dws, mem->spi, &cfg);
691
692         dw_spi_mask_intr(dws, 0xff);
693
694         dw_spi_enable_chip(dws, 1);
695
696         /*
697          * DW APB SSI controller has very nasty peculiarities. First originally
698          * (without any vendor-specific modifications) it doesn't provide a
699          * direct way to set and clear the native chip-select signal. Instead
700          * the controller asserts the CS lane if Tx FIFO isn't empty and a
701          * transmission is going on, and automatically de-asserts it back to
702          * the high level if the Tx FIFO doesn't have anything to be pushed
703          * out. Due to that a multi-tasking or heavy IRQs activity might be
704          * fatal, since the transfer procedure preemption may cause the Tx FIFO
705          * getting empty and sudden CS de-assertion, which in the middle of the
706          * transfer will most likely cause the data loss. Secondly the
707          * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
708          * data being automatically pulled in into the Rx FIFO. So if the
709          * driver software is late in fetching the data from the FIFO before
710          * it's overflown, new incoming data will be lost. In order to make
711          * sure the executed memory operations are CS-atomic and to prevent the
712          * Rx FIFO overflow we have to disable the local interrupts so to block
713          * any preemption during the subsequent IO operations.
714          *
715          * Note. At some circumstances disabling IRQs may not help to prevent
716          * the problems described above. The CS de-assertion and Rx FIFO
717          * overflow may still happen due to the relatively slow system bus or
718          * CPU not working fast enough, so the write-then-read algo implemented
719          * here just won't keep up with the SPI bus data transfer. Such
720          * situation is highly platform specific and is supposed to be fixed by
721          * manually restricting the SPI bus frequency using the
722          * dws->max_mem_freq parameter.
723          */
724         local_irq_save(flags);
725         preempt_disable();
726
727         ret = dw_spi_write_then_read(dws, mem->spi);
728
729         local_irq_restore(flags);
730         preempt_enable();
731
732         /*
733          * Wait for the operation being finished and check the controller
734          * status only if there hasn't been any run-time error detected. In the
735          * former case it's just pointless. In the later one to prevent an
736          * additional error message printing since any hw error flag being set
737          * would be due to an error detected on the data transfer.
738          */
739         if (!ret) {
740                 ret = dw_spi_wait_mem_op_done(dws);
741                 if (!ret)
742                         ret = dw_spi_check_status(dws, true);
743         }
744
745         dw_spi_stop_mem_op(dws, mem->spi);
746
747         dw_spi_free_mem_buf(dws);
748
749         return ret;
750 }
751
752 /*
753  * Initialize the default memory operations if a glue layer hasn't specified
754  * custom ones. Direct mapping operations will be preserved anyway since DW SPI
755  * controller doesn't have an embedded dirmap interface. Note the memory
756  * operations implemented in this driver is the best choice only for the DW APB
757  * SSI controller with standard native CS functionality. If a hardware vendor
758  * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
759  * be safer to use the normal SPI-messages-based transfers implementation.
760  */
761 static void dw_spi_init_mem_ops(struct dw_spi *dws)
762 {
763         if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
764             !dws->set_cs) {
765                 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
766                 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
767                 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
768                 if (!dws->max_mem_freq)
769                         dws->max_mem_freq = dws->max_freq;
770         }
771 }
772
773 /* This may be called twice for each spi dev */
774 static int dw_spi_setup(struct spi_device *spi)
775 {
776         struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
777         struct dw_spi_chip_data *chip;
778
779         /* Only alloc on first setup */
780         chip = spi_get_ctldata(spi);
781         if (!chip) {
782                 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
783                 u32 rx_sample_dly_ns;
784
785                 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
786                 if (!chip)
787                         return -ENOMEM;
788                 spi_set_ctldata(spi, chip);
789                 /* Get specific / default rx-sample-delay */
790                 if (device_property_read_u32(&spi->dev,
791                                              "rx-sample-delay-ns",
792                                              &rx_sample_dly_ns) != 0)
793                         /* Use default controller value */
794                         rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
795                 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
796                                                         NSEC_PER_SEC /
797                                                         dws->max_freq);
798         }
799
800         /*
801          * Update CR0 data each time the setup callback is invoked since
802          * the device parameters could have been changed, for instance, by
803          * the MMC SPI driver or something else.
804          */
805         chip->cr0 = dw_spi_prepare_cr0(dws, spi);
806
807         return 0;
808 }
809
810 static void dw_spi_cleanup(struct spi_device *spi)
811 {
812         struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
813
814         kfree(chip);
815         spi_set_ctldata(spi, NULL);
816 }
817
818 /* Restart the controller, disable all interrupts, clean rx fifo */
819 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
820 {
821         dw_spi_reset_chip(dws);
822
823         /*
824          * Retrieve the Synopsys component version if it hasn't been specified
825          * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
826          * code enclosed with '*' (typical for the most of Synopsys IP-cores).
827          */
828         if (!dws->ver) {
829                 dws->ver = dw_readl(dws, DW_SPI_VERSION);
830
831                 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
832                         dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
833                         DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
834                         DW_SPI_GET_BYTE(dws->ver, 1));
835         }
836
837         /*
838          * Try to detect the number of native chip-selects if the platform
839          * driver didn't set it up. There can be up to 16 lines configured.
840          */
841         if (!dws->num_cs) {
842                 u32 ser;
843
844                 dw_writel(dws, DW_SPI_SER, 0xffff);
845                 ser = dw_readl(dws, DW_SPI_SER);
846                 dw_writel(dws, DW_SPI_SER, 0);
847
848                 dws->num_cs = hweight16(ser);
849         }
850
851         /*
852          * Try to detect the FIFO depth if not set by interface driver,
853          * the depth could be from 2 to 256 from HW spec
854          */
855         if (!dws->fifo_len) {
856                 u32 fifo;
857
858                 for (fifo = 1; fifo < 256; fifo++) {
859                         dw_writel(dws, DW_SPI_TXFTLR, fifo);
860                         if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
861                                 break;
862                 }
863                 dw_writel(dws, DW_SPI_TXFTLR, 0);
864
865                 dws->fifo_len = (fifo == 1) ? 0 : fifo;
866                 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
867         }
868
869         /*
870          * Detect CTRLR0.DFS field size and offset by testing the lowest bits
871          * writability. Note DWC SSI controller also has the extended DFS, but
872          * with zero offset.
873          */
874         if (dw_spi_ip_is(dws, PSSI)) {
875                 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
876
877                 dw_spi_enable_chip(dws, 0);
878                 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
879                 cr0 = dw_readl(dws, DW_SPI_CTRLR0);
880                 dw_writel(dws, DW_SPI_CTRLR0, tmp);
881                 dw_spi_enable_chip(dws, 1);
882
883                 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
884                         dws->caps |= DW_SPI_CAP_DFS32;
885                         dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
886                         dev_dbg(dev, "Detected 32-bits max data frame size\n");
887                 }
888         } else {
889                 dws->caps |= DW_SPI_CAP_DFS32;
890         }
891
892         /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
893         if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
894                 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
895 }
896
897 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
898 {
899         struct spi_controller *host;
900         int ret;
901
902         if (!dws)
903                 return -EINVAL;
904
905         host = spi_alloc_host(dev, 0);
906         if (!host)
907                 return -ENOMEM;
908
909         device_set_node(&host->dev, dev_fwnode(dev));
910
911         dws->host = host;
912         dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
913
914         spi_controller_set_devdata(host, dws);
915
916         /* Basic HW init */
917         dw_spi_hw_init(dev, dws);
918
919         ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
920                           host);
921         if (ret < 0 && ret != -ENOTCONN) {
922                 dev_err(dev, "can not get IRQ\n");
923                 goto err_free_host;
924         }
925
926         dw_spi_init_mem_ops(dws);
927
928         host->use_gpio_descriptors = true;
929         host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
930         if (dws->caps & DW_SPI_CAP_DFS32)
931                 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
932         else
933                 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
934         host->bus_num = dws->bus_num;
935         host->num_chipselect = dws->num_cs;
936         host->setup = dw_spi_setup;
937         host->cleanup = dw_spi_cleanup;
938         if (dws->set_cs)
939                 host->set_cs = dws->set_cs;
940         else
941                 host->set_cs = dw_spi_set_cs;
942         host->transfer_one = dw_spi_transfer_one;
943         host->handle_err = dw_spi_handle_err;
944         if (dws->mem_ops.exec_op)
945                 host->mem_ops = &dws->mem_ops;
946         host->max_speed_hz = dws->max_freq;
947         host->flags = SPI_CONTROLLER_GPIO_SS;
948         host->auto_runtime_pm = true;
949
950         /* Get default rx sample delay */
951         device_property_read_u32(dev, "rx-sample-delay-ns",
952                                  &dws->def_rx_sample_dly_ns);
953
954         if (dws->dma_ops && dws->dma_ops->dma_init) {
955                 ret = dws->dma_ops->dma_init(dev, dws);
956                 if (ret == -EPROBE_DEFER) {
957                         goto err_free_irq;
958                 } else if (ret) {
959                         dev_warn(dev, "DMA init failed\n");
960                 } else {
961                         host->can_dma = dws->dma_ops->can_dma;
962                         host->flags |= SPI_CONTROLLER_MUST_TX;
963                 }
964         }
965
966         ret = spi_register_controller(host);
967         if (ret) {
968                 dev_err_probe(dev, ret, "problem registering spi host\n");
969                 goto err_dma_exit;
970         }
971
972         dw_spi_debugfs_init(dws);
973         return 0;
974
975 err_dma_exit:
976         if (dws->dma_ops && dws->dma_ops->dma_exit)
977                 dws->dma_ops->dma_exit(dws);
978         dw_spi_enable_chip(dws, 0);
979 err_free_irq:
980         free_irq(dws->irq, host);
981 err_free_host:
982         spi_controller_put(host);
983         return ret;
984 }
985 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
986
987 void dw_spi_remove_host(struct dw_spi *dws)
988 {
989         dw_spi_debugfs_remove(dws);
990
991         spi_unregister_controller(dws->host);
992
993         if (dws->dma_ops && dws->dma_ops->dma_exit)
994                 dws->dma_ops->dma_exit(dws);
995
996         dw_spi_shutdown_chip(dws);
997
998         free_irq(dws->irq, dws->host);
999 }
1000 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
1001
1002 int dw_spi_suspend_host(struct dw_spi *dws)
1003 {
1004         int ret;
1005
1006         ret = spi_controller_suspend(dws->host);
1007         if (ret)
1008                 return ret;
1009
1010         dw_spi_shutdown_chip(dws);
1011         return 0;
1012 }
1013 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
1014
1015 int dw_spi_resume_host(struct dw_spi *dws)
1016 {
1017         dw_spi_hw_init(&dws->host->dev, dws);
1018         return spi_controller_resume(dws->host);
1019 }
1020 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
1021
1022 MODULE_AUTHOR("Feng Tang <[email protected]>");
1023 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1024 MODULE_LICENSE("GPL v2");
This page took 0.096647 seconds and 4 git commands to generate.