]> Git Repo - linux.git/blob - drivers/scsi/scsi_lib.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / scsi / scsi_lib.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale ([email protected]).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63         int ret = 0;
64
65         mutex_lock(&scsi_sense_cache_mutex);
66         if (!scsi_sense_cache) {
67                 scsi_sense_cache =
68                         kmem_cache_create_usercopy("scsi_sense_cache",
69                                 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70                                 0, SCSI_SENSE_BUFFERSIZE, NULL);
71                 if (!scsi_sense_cache)
72                         ret = -ENOMEM;
73         }
74         mutex_unlock(&scsi_sense_cache_mutex);
75         return ret;
76 }
77
78 static void
79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81         struct Scsi_Host *host = cmd->device->host;
82         struct scsi_device *device = cmd->device;
83         struct scsi_target *starget = scsi_target(device);
84
85         /*
86          * Set the appropriate busy bit for the device/host.
87          *
88          * If the host/device isn't busy, assume that something actually
89          * completed, and that we should be able to queue a command now.
90          *
91          * Note that the prior mid-layer assumption that any host could
92          * always queue at least one command is now broken.  The mid-layer
93          * will implement a user specifiable stall (see
94          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95          * if a command is requeued with no other commands outstanding
96          * either for the device or for the host.
97          */
98         switch (reason) {
99         case SCSI_MLQUEUE_HOST_BUSY:
100                 atomic_set(&host->host_blocked, host->max_host_blocked);
101                 break;
102         case SCSI_MLQUEUE_DEVICE_BUSY:
103         case SCSI_MLQUEUE_EH_RETRY:
104                 atomic_set(&device->device_blocked,
105                            device->max_device_blocked);
106                 break;
107         case SCSI_MLQUEUE_TARGET_BUSY:
108                 atomic_set(&starget->target_blocked,
109                            starget->max_target_blocked);
110                 break;
111         }
112 }
113
114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116         struct request *rq = scsi_cmd_to_rq(cmd);
117
118         if (rq->rq_flags & RQF_DONTPREP) {
119                 rq->rq_flags &= ~RQF_DONTPREP;
120                 scsi_mq_uninit_cmd(cmd);
121         } else {
122                 WARN_ON_ONCE(true);
123         }
124
125         blk_mq_requeue_request(rq, false);
126         if (!scsi_host_in_recovery(cmd->device->host))
127                 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144         struct scsi_device *device = cmd->device;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device, cmd);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_mq_destroy_queue() finishes.
163          */
164         cmd->result = 0;
165
166         blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167                                !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171  * scsi_queue_insert - Reinsert a command in the queue.
172  * @cmd:    command that we are adding to queue.
173  * @reason: why we are inserting command to queue.
174  *
175  * We do this for one of two cases. Either the host is busy and it cannot accept
176  * any more commands for the time being, or the device returned QUEUE_FULL and
177  * can accept no more commands.
178  *
179  * Context: This could be called either from an interrupt context or a normal
180  * process context.
181  */
182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184         __scsi_queue_insert(cmd, reason, true);
185 }
186
187 void scsi_failures_reset_retries(struct scsi_failures *failures)
188 {
189         struct scsi_failure *failure;
190
191         failures->total_retries = 0;
192
193         for (failure = failures->failure_definitions; failure->result;
194              failure++)
195                 failure->retries = 0;
196 }
197 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
198
199 /**
200  * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
201  * @scmd: scsi_cmnd to check.
202  * @failures: scsi_failures struct that lists failures to check for.
203  *
204  * Returns -EAGAIN if the caller should retry else 0.
205  */
206 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
207                                   struct scsi_failures *failures)
208 {
209         struct scsi_failure *failure;
210         struct scsi_sense_hdr sshdr;
211         enum sam_status status;
212
213         if (!failures)
214                 return 0;
215
216         for (failure = failures->failure_definitions; failure->result;
217              failure++) {
218                 if (failure->result == SCMD_FAILURE_RESULT_ANY)
219                         goto maybe_retry;
220
221                 if (host_byte(scmd->result) &&
222                     host_byte(scmd->result) == host_byte(failure->result))
223                         goto maybe_retry;
224
225                 status = status_byte(scmd->result);
226                 if (!status)
227                         continue;
228
229                 if (failure->result == SCMD_FAILURE_STAT_ANY &&
230                     !scsi_status_is_good(scmd->result))
231                         goto maybe_retry;
232
233                 if (status != status_byte(failure->result))
234                         continue;
235
236                 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
237                     failure->sense == SCMD_FAILURE_SENSE_ANY)
238                         goto maybe_retry;
239
240                 if (!scsi_command_normalize_sense(scmd, &sshdr))
241                         return 0;
242
243                 if (failure->sense != sshdr.sense_key)
244                         continue;
245
246                 if (failure->asc == SCMD_FAILURE_ASC_ANY)
247                         goto maybe_retry;
248
249                 if (failure->asc != sshdr.asc)
250                         continue;
251
252                 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
253                     failure->ascq == sshdr.ascq)
254                         goto maybe_retry;
255         }
256
257         return 0;
258
259 maybe_retry:
260         if (failure->allowed) {
261                 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
262                     ++failure->retries <= failure->allowed)
263                         return -EAGAIN;
264         } else {
265                 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
266                     ++failures->total_retries <= failures->total_allowed)
267                         return -EAGAIN;
268         }
269
270         return 0;
271 }
272
273 /**
274  * scsi_execute_cmd - insert request and wait for the result
275  * @sdev:       scsi_device
276  * @cmd:        scsi command
277  * @opf:        block layer request cmd_flags
278  * @buffer:     data buffer
279  * @bufflen:    len of buffer
280  * @timeout:    request timeout in HZ
281  * @ml_retries: number of times SCSI midlayer will retry request
282  * @args:       Optional args. See struct definition for field descriptions
283  *
284  * Returns the scsi_cmnd result field if a command was executed, or a negative
285  * Linux error code if we didn't get that far.
286  */
287 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
288                      blk_opf_t opf, void *buffer, unsigned int bufflen,
289                      int timeout, int ml_retries,
290                      const struct scsi_exec_args *args)
291 {
292         static const struct scsi_exec_args default_args;
293         struct request *req;
294         struct scsi_cmnd *scmd;
295         int ret;
296
297         if (!args)
298                 args = &default_args;
299         else if (WARN_ON_ONCE(args->sense &&
300                               args->sense_len != SCSI_SENSE_BUFFERSIZE))
301                 return -EINVAL;
302
303 retry:
304         req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
305         if (IS_ERR(req))
306                 return PTR_ERR(req);
307
308         if (bufflen) {
309                 ret = blk_rq_map_kern(sdev->request_queue, req,
310                                       buffer, bufflen, GFP_NOIO);
311                 if (ret)
312                         goto out;
313         }
314         scmd = blk_mq_rq_to_pdu(req);
315         scmd->cmd_len = COMMAND_SIZE(cmd[0]);
316         memcpy(scmd->cmnd, cmd, scmd->cmd_len);
317         scmd->allowed = ml_retries;
318         scmd->flags |= args->scmd_flags;
319         req->timeout = timeout;
320         req->rq_flags |= RQF_QUIET;
321
322         /*
323          * head injection *required* here otherwise quiesce won't work
324          */
325         blk_execute_rq(req, true);
326
327         if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
328                 blk_mq_free_request(req);
329                 goto retry;
330         }
331
332         /*
333          * Some devices (USB mass-storage in particular) may transfer
334          * garbage data together with a residue indicating that the data
335          * is invalid.  Prevent the garbage from being misinterpreted
336          * and prevent security leaks by zeroing out the excess data.
337          */
338         if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
339                 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
340
341         if (args->resid)
342                 *args->resid = scmd->resid_len;
343         if (args->sense)
344                 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
345         if (args->sshdr)
346                 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
347                                      args->sshdr);
348
349         ret = scmd->result;
350  out:
351         blk_mq_free_request(req);
352
353         return ret;
354 }
355 EXPORT_SYMBOL(scsi_execute_cmd);
356
357 /*
358  * Wake up the error handler if necessary. Avoid as follows that the error
359  * handler is not woken up if host in-flight requests number ==
360  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
361  * with an RCU read lock in this function to ensure that this function in
362  * its entirety either finishes before scsi_eh_scmd_add() increases the
363  * host_failed counter or that it notices the shost state change made by
364  * scsi_eh_scmd_add().
365  */
366 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
367 {
368         unsigned long flags;
369
370         rcu_read_lock();
371         __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
372         if (unlikely(scsi_host_in_recovery(shost))) {
373                 unsigned int busy = scsi_host_busy(shost);
374
375                 spin_lock_irqsave(shost->host_lock, flags);
376                 if (shost->host_failed || shost->host_eh_scheduled)
377                         scsi_eh_wakeup(shost, busy);
378                 spin_unlock_irqrestore(shost->host_lock, flags);
379         }
380         rcu_read_unlock();
381 }
382
383 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
384 {
385         struct Scsi_Host *shost = sdev->host;
386         struct scsi_target *starget = scsi_target(sdev);
387
388         scsi_dec_host_busy(shost, cmd);
389
390         if (starget->can_queue > 0)
391                 atomic_dec(&starget->target_busy);
392
393         sbitmap_put(&sdev->budget_map, cmd->budget_token);
394         cmd->budget_token = -1;
395 }
396
397 /*
398  * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
399  * interrupts disabled.
400  */
401 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
402 {
403         struct scsi_device *current_sdev = data;
404
405         if (sdev != current_sdev)
406                 blk_mq_run_hw_queues(sdev->request_queue, true);
407 }
408
409 /*
410  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
411  * and call blk_run_queue for all the scsi_devices on the target -
412  * including current_sdev first.
413  *
414  * Called with *no* scsi locks held.
415  */
416 static void scsi_single_lun_run(struct scsi_device *current_sdev)
417 {
418         struct Scsi_Host *shost = current_sdev->host;
419         struct scsi_target *starget = scsi_target(current_sdev);
420         unsigned long flags;
421
422         spin_lock_irqsave(shost->host_lock, flags);
423         starget->starget_sdev_user = NULL;
424         spin_unlock_irqrestore(shost->host_lock, flags);
425
426         /*
427          * Call blk_run_queue for all LUNs on the target, starting with
428          * current_sdev. We race with others (to set starget_sdev_user),
429          * but in most cases, we will be first. Ideally, each LU on the
430          * target would get some limited time or requests on the target.
431          */
432         blk_mq_run_hw_queues(current_sdev->request_queue,
433                              shost->queuecommand_may_block);
434
435         spin_lock_irqsave(shost->host_lock, flags);
436         if (!starget->starget_sdev_user)
437                 __starget_for_each_device(starget, current_sdev,
438                                           scsi_kick_sdev_queue);
439         spin_unlock_irqrestore(shost->host_lock, flags);
440 }
441
442 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
443 {
444         if (scsi_device_busy(sdev) >= sdev->queue_depth)
445                 return true;
446         if (atomic_read(&sdev->device_blocked) > 0)
447                 return true;
448         return false;
449 }
450
451 static inline bool scsi_target_is_busy(struct scsi_target *starget)
452 {
453         if (starget->can_queue > 0) {
454                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
455                         return true;
456                 if (atomic_read(&starget->target_blocked) > 0)
457                         return true;
458         }
459         return false;
460 }
461
462 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
463 {
464         if (atomic_read(&shost->host_blocked) > 0)
465                 return true;
466         if (shost->host_self_blocked)
467                 return true;
468         return false;
469 }
470
471 static void scsi_starved_list_run(struct Scsi_Host *shost)
472 {
473         LIST_HEAD(starved_list);
474         struct scsi_device *sdev;
475         unsigned long flags;
476
477         spin_lock_irqsave(shost->host_lock, flags);
478         list_splice_init(&shost->starved_list, &starved_list);
479
480         while (!list_empty(&starved_list)) {
481                 struct request_queue *slq;
482
483                 /*
484                  * As long as shost is accepting commands and we have
485                  * starved queues, call blk_run_queue. scsi_request_fn
486                  * drops the queue_lock and can add us back to the
487                  * starved_list.
488                  *
489                  * host_lock protects the starved_list and starved_entry.
490                  * scsi_request_fn must get the host_lock before checking
491                  * or modifying starved_list or starved_entry.
492                  */
493                 if (scsi_host_is_busy(shost))
494                         break;
495
496                 sdev = list_entry(starved_list.next,
497                                   struct scsi_device, starved_entry);
498                 list_del_init(&sdev->starved_entry);
499                 if (scsi_target_is_busy(scsi_target(sdev))) {
500                         list_move_tail(&sdev->starved_entry,
501                                        &shost->starved_list);
502                         continue;
503                 }
504
505                 /*
506                  * Once we drop the host lock, a racing scsi_remove_device()
507                  * call may remove the sdev from the starved list and destroy
508                  * it and the queue.  Mitigate by taking a reference to the
509                  * queue and never touching the sdev again after we drop the
510                  * host lock.  Note: if __scsi_remove_device() invokes
511                  * blk_mq_destroy_queue() before the queue is run from this
512                  * function then blk_run_queue() will return immediately since
513                  * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
514                  */
515                 slq = sdev->request_queue;
516                 if (!blk_get_queue(slq))
517                         continue;
518                 spin_unlock_irqrestore(shost->host_lock, flags);
519
520                 blk_mq_run_hw_queues(slq, false);
521                 blk_put_queue(slq);
522
523                 spin_lock_irqsave(shost->host_lock, flags);
524         }
525         /* put any unprocessed entries back */
526         list_splice(&starved_list, &shost->starved_list);
527         spin_unlock_irqrestore(shost->host_lock, flags);
528 }
529
530 /**
531  * scsi_run_queue - Select a proper request queue to serve next.
532  * @q:  last request's queue
533  *
534  * The previous command was completely finished, start a new one if possible.
535  */
536 static void scsi_run_queue(struct request_queue *q)
537 {
538         struct scsi_device *sdev = q->queuedata;
539
540         if (scsi_target(sdev)->single_lun)
541                 scsi_single_lun_run(sdev);
542         if (!list_empty(&sdev->host->starved_list))
543                 scsi_starved_list_run(sdev->host);
544
545         /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
546         blk_mq_kick_requeue_list(q);
547 }
548
549 void scsi_requeue_run_queue(struct work_struct *work)
550 {
551         struct scsi_device *sdev;
552         struct request_queue *q;
553
554         sdev = container_of(work, struct scsi_device, requeue_work);
555         q = sdev->request_queue;
556         scsi_run_queue(q);
557 }
558
559 void scsi_run_host_queues(struct Scsi_Host *shost)
560 {
561         struct scsi_device *sdev;
562
563         shost_for_each_device(sdev, shost)
564                 scsi_run_queue(sdev->request_queue);
565 }
566
567 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
568 {
569         if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
570                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
571
572                 if (drv->uninit_command)
573                         drv->uninit_command(cmd);
574         }
575 }
576
577 void scsi_free_sgtables(struct scsi_cmnd *cmd)
578 {
579         if (cmd->sdb.table.nents)
580                 sg_free_table_chained(&cmd->sdb.table,
581                                 SCSI_INLINE_SG_CNT);
582         if (scsi_prot_sg_count(cmd))
583                 sg_free_table_chained(&cmd->prot_sdb->table,
584                                 SCSI_INLINE_PROT_SG_CNT);
585 }
586 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
587
588 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
589 {
590         scsi_free_sgtables(cmd);
591         scsi_uninit_cmd(cmd);
592 }
593
594 static void scsi_run_queue_async(struct scsi_device *sdev)
595 {
596         if (scsi_host_in_recovery(sdev->host))
597                 return;
598
599         if (scsi_target(sdev)->single_lun ||
600             !list_empty(&sdev->host->starved_list)) {
601                 kblockd_schedule_work(&sdev->requeue_work);
602         } else {
603                 /*
604                  * smp_mb() present in sbitmap_queue_clear() or implied in
605                  * .end_io is for ordering writing .device_busy in
606                  * scsi_device_unbusy() and reading sdev->restarts.
607                  */
608                 int old = atomic_read(&sdev->restarts);
609
610                 /*
611                  * ->restarts has to be kept as non-zero if new budget
612                  *  contention occurs.
613                  *
614                  *  No need to run queue when either another re-run
615                  *  queue wins in updating ->restarts or a new budget
616                  *  contention occurs.
617                  */
618                 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
619                         blk_mq_run_hw_queues(sdev->request_queue, true);
620         }
621 }
622
623 /* Returns false when no more bytes to process, true if there are more */
624 static bool scsi_end_request(struct request *req, blk_status_t error,
625                 unsigned int bytes)
626 {
627         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
628         struct scsi_device *sdev = cmd->device;
629         struct request_queue *q = sdev->request_queue;
630
631         if (blk_update_request(req, error, bytes))
632                 return true;
633
634         // XXX:
635         if (blk_queue_add_random(q))
636                 add_disk_randomness(req->q->disk);
637
638         WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
639                      !(cmd->flags & SCMD_INITIALIZED));
640         cmd->flags = 0;
641
642         /*
643          * Calling rcu_barrier() is not necessary here because the
644          * SCSI error handler guarantees that the function called by
645          * call_rcu() has been called before scsi_end_request() is
646          * called.
647          */
648         destroy_rcu_head(&cmd->rcu);
649
650         /*
651          * In the MQ case the command gets freed by __blk_mq_end_request,
652          * so we have to do all cleanup that depends on it earlier.
653          *
654          * We also can't kick the queues from irq context, so we
655          * will have to defer it to a workqueue.
656          */
657         scsi_mq_uninit_cmd(cmd);
658
659         /*
660          * queue is still alive, so grab the ref for preventing it
661          * from being cleaned up during running queue.
662          */
663         percpu_ref_get(&q->q_usage_counter);
664
665         __blk_mq_end_request(req, error);
666
667         scsi_run_queue_async(sdev);
668
669         percpu_ref_put(&q->q_usage_counter);
670         return false;
671 }
672
673 /**
674  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
675  * @result:     scsi error code
676  *
677  * Translate a SCSI result code into a blk_status_t value.
678  */
679 static blk_status_t scsi_result_to_blk_status(int result)
680 {
681         /*
682          * Check the scsi-ml byte first in case we converted a host or status
683          * byte.
684          */
685         switch (scsi_ml_byte(result)) {
686         case SCSIML_STAT_OK:
687                 break;
688         case SCSIML_STAT_RESV_CONFLICT:
689                 return BLK_STS_RESV_CONFLICT;
690         case SCSIML_STAT_NOSPC:
691                 return BLK_STS_NOSPC;
692         case SCSIML_STAT_MED_ERROR:
693                 return BLK_STS_MEDIUM;
694         case SCSIML_STAT_TGT_FAILURE:
695                 return BLK_STS_TARGET;
696         case SCSIML_STAT_DL_TIMEOUT:
697                 return BLK_STS_DURATION_LIMIT;
698         }
699
700         switch (host_byte(result)) {
701         case DID_OK:
702                 if (scsi_status_is_good(result))
703                         return BLK_STS_OK;
704                 return BLK_STS_IOERR;
705         case DID_TRANSPORT_FAILFAST:
706         case DID_TRANSPORT_MARGINAL:
707                 return BLK_STS_TRANSPORT;
708         default:
709                 return BLK_STS_IOERR;
710         }
711 }
712
713 /**
714  * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
715  * @rq: request to examine
716  *
717  * Description:
718  *     A request could be merge of IOs which require different failure
719  *     handling.  This function determines the number of bytes which
720  *     can be failed from the beginning of the request without
721  *     crossing into area which need to be retried further.
722  *
723  * Return:
724  *     The number of bytes to fail.
725  */
726 static unsigned int scsi_rq_err_bytes(const struct request *rq)
727 {
728         blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
729         unsigned int bytes = 0;
730         struct bio *bio;
731
732         if (!(rq->rq_flags & RQF_MIXED_MERGE))
733                 return blk_rq_bytes(rq);
734
735         /*
736          * Currently the only 'mixing' which can happen is between
737          * different fastfail types.  We can safely fail portions
738          * which have all the failfast bits that the first one has -
739          * the ones which are at least as eager to fail as the first
740          * one.
741          */
742         for (bio = rq->bio; bio; bio = bio->bi_next) {
743                 if ((bio->bi_opf & ff) != ff)
744                         break;
745                 bytes += bio->bi_iter.bi_size;
746         }
747
748         /* this could lead to infinite loop */
749         BUG_ON(blk_rq_bytes(rq) && !bytes);
750         return bytes;
751 }
752
753 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
754 {
755         struct request *req = scsi_cmd_to_rq(cmd);
756         unsigned long wait_for;
757
758         if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
759                 return false;
760
761         wait_for = (cmd->allowed + 1) * req->timeout;
762         if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
763                 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
764                             wait_for/HZ);
765                 return true;
766         }
767         return false;
768 }
769
770 /*
771  * When ALUA transition state is returned, reprep the cmd to
772  * use the ALUA handler's transition timeout. Delay the reprep
773  * 1 sec to avoid aggressive retries of the target in that
774  * state.
775  */
776 #define ALUA_TRANSITION_REPREP_DELAY    1000
777
778 /* Helper for scsi_io_completion() when special action required. */
779 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
780 {
781         struct request *req = scsi_cmd_to_rq(cmd);
782         int level = 0;
783         enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
784               ACTION_RETRY, ACTION_DELAYED_RETRY} action;
785         struct scsi_sense_hdr sshdr;
786         bool sense_valid;
787         bool sense_current = true;      /* false implies "deferred sense" */
788         blk_status_t blk_stat;
789
790         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
791         if (sense_valid)
792                 sense_current = !scsi_sense_is_deferred(&sshdr);
793
794         blk_stat = scsi_result_to_blk_status(result);
795
796         if (host_byte(result) == DID_RESET) {
797                 /* Third party bus reset or reset for error recovery
798                  * reasons.  Just retry the command and see what
799                  * happens.
800                  */
801                 action = ACTION_RETRY;
802         } else if (sense_valid && sense_current) {
803                 switch (sshdr.sense_key) {
804                 case UNIT_ATTENTION:
805                         if (cmd->device->removable) {
806                                 /* Detected disc change.  Set a bit
807                                  * and quietly refuse further access.
808                                  */
809                                 cmd->device->changed = 1;
810                                 action = ACTION_FAIL;
811                         } else {
812                                 /* Must have been a power glitch, or a
813                                  * bus reset.  Could not have been a
814                                  * media change, so we just retry the
815                                  * command and see what happens.
816                                  */
817                                 action = ACTION_RETRY;
818                         }
819                         break;
820                 case ILLEGAL_REQUEST:
821                         /* If we had an ILLEGAL REQUEST returned, then
822                          * we may have performed an unsupported
823                          * command.  The only thing this should be
824                          * would be a ten byte read where only a six
825                          * byte read was supported.  Also, on a system
826                          * where READ CAPACITY failed, we may have
827                          * read past the end of the disk.
828                          */
829                         if ((cmd->device->use_10_for_rw &&
830                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
831                             (cmd->cmnd[0] == READ_10 ||
832                              cmd->cmnd[0] == WRITE_10)) {
833                                 /* This will issue a new 6-byte command. */
834                                 cmd->device->use_10_for_rw = 0;
835                                 action = ACTION_REPREP;
836                         } else if (sshdr.asc == 0x10) /* DIX */ {
837                                 action = ACTION_FAIL;
838                                 blk_stat = BLK_STS_PROTECTION;
839                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
840                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
841                                 action = ACTION_FAIL;
842                                 blk_stat = BLK_STS_TARGET;
843                         } else
844                                 action = ACTION_FAIL;
845                         break;
846                 case ABORTED_COMMAND:
847                         action = ACTION_FAIL;
848                         if (sshdr.asc == 0x10) /* DIF */
849                                 blk_stat = BLK_STS_PROTECTION;
850                         break;
851                 case NOT_READY:
852                         /* If the device is in the process of becoming
853                          * ready, or has a temporary blockage, retry.
854                          */
855                         if (sshdr.asc == 0x04) {
856                                 switch (sshdr.ascq) {
857                                 case 0x01: /* becoming ready */
858                                 case 0x04: /* format in progress */
859                                 case 0x05: /* rebuild in progress */
860                                 case 0x06: /* recalculation in progress */
861                                 case 0x07: /* operation in progress */
862                                 case 0x08: /* Long write in progress */
863                                 case 0x09: /* self test in progress */
864                                 case 0x11: /* notify (enable spinup) required */
865                                 case 0x14: /* space allocation in progress */
866                                 case 0x1a: /* start stop unit in progress */
867                                 case 0x1b: /* sanitize in progress */
868                                 case 0x1d: /* configuration in progress */
869                                 case 0x24: /* depopulation in progress */
870                                 case 0x25: /* depopulation restore in progress */
871                                         action = ACTION_DELAYED_RETRY;
872                                         break;
873                                 case 0x0a: /* ALUA state transition */
874                                         action = ACTION_DELAYED_REPREP;
875                                         break;
876                                 default:
877                                         action = ACTION_FAIL;
878                                         break;
879                                 }
880                         } else
881                                 action = ACTION_FAIL;
882                         break;
883                 case VOLUME_OVERFLOW:
884                         /* See SSC3rXX or current. */
885                         action = ACTION_FAIL;
886                         break;
887                 case DATA_PROTECT:
888                         action = ACTION_FAIL;
889                         if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
890                             (sshdr.asc == 0x55 &&
891                              (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
892                                 /* Insufficient zone resources */
893                                 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
894                         }
895                         break;
896                 case COMPLETED:
897                         fallthrough;
898                 default:
899                         action = ACTION_FAIL;
900                         break;
901                 }
902         } else
903                 action = ACTION_FAIL;
904
905         if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
906                 action = ACTION_FAIL;
907
908         switch (action) {
909         case ACTION_FAIL:
910                 /* Give up and fail the remainder of the request */
911                 if (!(req->rq_flags & RQF_QUIET)) {
912                         static DEFINE_RATELIMIT_STATE(_rs,
913                                         DEFAULT_RATELIMIT_INTERVAL,
914                                         DEFAULT_RATELIMIT_BURST);
915
916                         if (unlikely(scsi_logging_level))
917                                 level =
918                                      SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
919                                                     SCSI_LOG_MLCOMPLETE_BITS);
920
921                         /*
922                          * if logging is enabled the failure will be printed
923                          * in scsi_log_completion(), so avoid duplicate messages
924                          */
925                         if (!level && __ratelimit(&_rs)) {
926                                 scsi_print_result(cmd, NULL, FAILED);
927                                 if (sense_valid)
928                                         scsi_print_sense(cmd);
929                                 scsi_print_command(cmd);
930                         }
931                 }
932                 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
933                         return;
934                 fallthrough;
935         case ACTION_REPREP:
936                 scsi_mq_requeue_cmd(cmd, 0);
937                 break;
938         case ACTION_DELAYED_REPREP:
939                 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
940                 break;
941         case ACTION_RETRY:
942                 /* Retry the same command immediately */
943                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
944                 break;
945         case ACTION_DELAYED_RETRY:
946                 /* Retry the same command after a delay */
947                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
948                 break;
949         }
950 }
951
952 /*
953  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
954  * new result that may suppress further error checking. Also modifies
955  * *blk_statp in some cases.
956  */
957 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
958                                         blk_status_t *blk_statp)
959 {
960         bool sense_valid;
961         bool sense_current = true;      /* false implies "deferred sense" */
962         struct request *req = scsi_cmd_to_rq(cmd);
963         struct scsi_sense_hdr sshdr;
964
965         sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
966         if (sense_valid)
967                 sense_current = !scsi_sense_is_deferred(&sshdr);
968
969         if (blk_rq_is_passthrough(req)) {
970                 if (sense_valid) {
971                         /*
972                          * SG_IO wants current and deferred errors
973                          */
974                         cmd->sense_len = min(8 + cmd->sense_buffer[7],
975                                              SCSI_SENSE_BUFFERSIZE);
976                 }
977                 if (sense_current)
978                         *blk_statp = scsi_result_to_blk_status(result);
979         } else if (blk_rq_bytes(req) == 0 && sense_current) {
980                 /*
981                  * Flush commands do not transfers any data, and thus cannot use
982                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
983                  * This sets *blk_statp explicitly for the problem case.
984                  */
985                 *blk_statp = scsi_result_to_blk_status(result);
986         }
987         /*
988          * Recovered errors need reporting, but they're always treated as
989          * success, so fiddle the result code here.  For passthrough requests
990          * we already took a copy of the original into sreq->result which
991          * is what gets returned to the user
992          */
993         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
994                 bool do_print = true;
995                 /*
996                  * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
997                  * skip print since caller wants ATA registers. Only occurs
998                  * on SCSI ATA PASS_THROUGH commands when CK_COND=1
999                  */
1000                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1001                         do_print = false;
1002                 else if (req->rq_flags & RQF_QUIET)
1003                         do_print = false;
1004                 if (do_print)
1005                         scsi_print_sense(cmd);
1006                 result = 0;
1007                 /* for passthrough, *blk_statp may be set */
1008                 *blk_statp = BLK_STS_OK;
1009         }
1010         /*
1011          * Another corner case: the SCSI status byte is non-zero but 'good'.
1012          * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1013          * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1014          * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1015          * intermediate statuses (both obsolete in SAM-4) as good.
1016          */
1017         if ((result & 0xff) && scsi_status_is_good(result)) {
1018                 result = 0;
1019                 *blk_statp = BLK_STS_OK;
1020         }
1021         return result;
1022 }
1023
1024 /**
1025  * scsi_io_completion - Completion processing for SCSI commands.
1026  * @cmd:        command that is finished.
1027  * @good_bytes: number of processed bytes.
1028  *
1029  * We will finish off the specified number of sectors. If we are done, the
1030  * command block will be released and the queue function will be goosed. If we
1031  * are not done then we have to figure out what to do next:
1032  *
1033  *   a) We can call scsi_mq_requeue_cmd().  The request will be
1034  *      unprepared and put back on the queue.  Then a new command will
1035  *      be created for it.  This should be used if we made forward
1036  *      progress, or if we want to switch from READ(10) to READ(6) for
1037  *      example.
1038  *
1039  *   b) We can call scsi_io_completion_action().  The request will be
1040  *      put back on the queue and retried using the same command as
1041  *      before, possibly after a delay.
1042  *
1043  *   c) We can call scsi_end_request() with blk_stat other than
1044  *      BLK_STS_OK, to fail the remainder of the request.
1045  */
1046 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047 {
1048         int result = cmd->result;
1049         struct request *req = scsi_cmd_to_rq(cmd);
1050         blk_status_t blk_stat = BLK_STS_OK;
1051
1052         if (unlikely(result))   /* a nz result may or may not be an error */
1053                 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1054
1055         /*
1056          * Next deal with any sectors which we were able to correctly
1057          * handle.
1058          */
1059         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1060                 "%u sectors total, %d bytes done.\n",
1061                 blk_rq_sectors(req), good_bytes));
1062
1063         /*
1064          * Failed, zero length commands always need to drop down
1065          * to retry code. Fast path should return in this block.
1066          */
1067         if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1068                 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1069                         return; /* no bytes remaining */
1070         }
1071
1072         /* Kill remainder if no retries. */
1073         if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1074                 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1075                         WARN_ONCE(true,
1076                             "Bytes remaining after failed, no-retry command");
1077                 return;
1078         }
1079
1080         /*
1081          * If there had been no error, but we have leftover bytes in the
1082          * request just queue the command up again.
1083          */
1084         if (likely(result == 0))
1085                 scsi_mq_requeue_cmd(cmd, 0);
1086         else
1087                 scsi_io_completion_action(cmd, result);
1088 }
1089
1090 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1091                 struct request *rq)
1092 {
1093         return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1094                !op_is_write(req_op(rq)) &&
1095                sdev->host->hostt->dma_need_drain(rq);
1096 }
1097
1098 /**
1099  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1100  * @cmd: SCSI command data structure to initialize.
1101  *
1102  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1103  * for @cmd.
1104  *
1105  * Returns:
1106  * * BLK_STS_OK       - on success
1107  * * BLK_STS_RESOURCE - if the failure is retryable
1108  * * BLK_STS_IOERR    - if the failure is fatal
1109  */
1110 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1111 {
1112         struct scsi_device *sdev = cmd->device;
1113         struct request *rq = scsi_cmd_to_rq(cmd);
1114         unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1115         struct scatterlist *last_sg = NULL;
1116         blk_status_t ret;
1117         bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1118         int count;
1119
1120         if (WARN_ON_ONCE(!nr_segs))
1121                 return BLK_STS_IOERR;
1122
1123         /*
1124          * Make sure there is space for the drain.  The driver must adjust
1125          * max_hw_segments to be prepared for this.
1126          */
1127         if (need_drain)
1128                 nr_segs++;
1129
1130         /*
1131          * If sg table allocation fails, requeue request later.
1132          */
1133         if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1134                         cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1135                 return BLK_STS_RESOURCE;
1136
1137         /*
1138          * Next, walk the list, and fill in the addresses and sizes of
1139          * each segment.
1140          */
1141         count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1142
1143         if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1144                 unsigned int pad_len =
1145                         (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1146
1147                 last_sg->length += pad_len;
1148                 cmd->extra_len += pad_len;
1149         }
1150
1151         if (need_drain) {
1152                 sg_unmark_end(last_sg);
1153                 last_sg = sg_next(last_sg);
1154                 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1155                 sg_mark_end(last_sg);
1156
1157                 cmd->extra_len += sdev->dma_drain_len;
1158                 count++;
1159         }
1160
1161         BUG_ON(count > cmd->sdb.table.nents);
1162         cmd->sdb.table.nents = count;
1163         cmd->sdb.length = blk_rq_payload_bytes(rq);
1164
1165         if (blk_integrity_rq(rq)) {
1166                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1167                 int ivecs;
1168
1169                 if (WARN_ON_ONCE(!prot_sdb)) {
1170                         /*
1171                          * This can happen if someone (e.g. multipath)
1172                          * queues a command to a device on an adapter
1173                          * that does not support DIX.
1174                          */
1175                         ret = BLK_STS_IOERR;
1176                         goto out_free_sgtables;
1177                 }
1178
1179                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1180
1181                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1182                                 prot_sdb->table.sgl,
1183                                 SCSI_INLINE_PROT_SG_CNT)) {
1184                         ret = BLK_STS_RESOURCE;
1185                         goto out_free_sgtables;
1186                 }
1187
1188                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1189                                                 prot_sdb->table.sgl);
1190                 BUG_ON(count > ivecs);
1191                 BUG_ON(count > queue_max_integrity_segments(rq->q));
1192
1193                 cmd->prot_sdb = prot_sdb;
1194                 cmd->prot_sdb->table.nents = count;
1195         }
1196
1197         return BLK_STS_OK;
1198 out_free_sgtables:
1199         scsi_free_sgtables(cmd);
1200         return ret;
1201 }
1202 EXPORT_SYMBOL(scsi_alloc_sgtables);
1203
1204 /**
1205  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1206  * @rq: Request associated with the SCSI command to be initialized.
1207  *
1208  * This function initializes the members of struct scsi_cmnd that must be
1209  * initialized before request processing starts and that won't be
1210  * reinitialized if a SCSI command is requeued.
1211  */
1212 static void scsi_initialize_rq(struct request *rq)
1213 {
1214         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1215
1216         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1217         cmd->cmd_len = MAX_COMMAND_SIZE;
1218         cmd->sense_len = 0;
1219         init_rcu_head(&cmd->rcu);
1220         cmd->jiffies_at_alloc = jiffies;
1221         cmd->retries = 0;
1222 }
1223
1224 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1225                                    blk_mq_req_flags_t flags)
1226 {
1227         struct request *rq;
1228
1229         rq = blk_mq_alloc_request(q, opf, flags);
1230         if (!IS_ERR(rq))
1231                 scsi_initialize_rq(rq);
1232         return rq;
1233 }
1234 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1235
1236 /*
1237  * Only called when the request isn't completed by SCSI, and not freed by
1238  * SCSI
1239  */
1240 static void scsi_cleanup_rq(struct request *rq)
1241 {
1242         if (rq->rq_flags & RQF_DONTPREP) {
1243                 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1244                 rq->rq_flags &= ~RQF_DONTPREP;
1245         }
1246 }
1247
1248 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1249 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1250 {
1251         struct request *rq = scsi_cmd_to_rq(cmd);
1252
1253         if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1254                 cmd->flags |= SCMD_INITIALIZED;
1255                 scsi_initialize_rq(rq);
1256         }
1257
1258         cmd->device = dev;
1259         INIT_LIST_HEAD(&cmd->eh_entry);
1260         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1261 }
1262
1263 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1264                 struct request *req)
1265 {
1266         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1267
1268         /*
1269          * Passthrough requests may transfer data, in which case they must
1270          * a bio attached to them.  Or they might contain a SCSI command
1271          * that does not transfer data, in which case they may optionally
1272          * submit a request without an attached bio.
1273          */
1274         if (req->bio) {
1275                 blk_status_t ret = scsi_alloc_sgtables(cmd);
1276                 if (unlikely(ret != BLK_STS_OK))
1277                         return ret;
1278         } else {
1279                 BUG_ON(blk_rq_bytes(req));
1280
1281                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1282         }
1283
1284         cmd->transfersize = blk_rq_bytes(req);
1285         return BLK_STS_OK;
1286 }
1287
1288 static blk_status_t
1289 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1290 {
1291         switch (sdev->sdev_state) {
1292         case SDEV_CREATED:
1293                 return BLK_STS_OK;
1294         case SDEV_OFFLINE:
1295         case SDEV_TRANSPORT_OFFLINE:
1296                 /*
1297                  * If the device is offline we refuse to process any
1298                  * commands.  The device must be brought online
1299                  * before trying any recovery commands.
1300                  */
1301                 if (!sdev->offline_already) {
1302                         sdev->offline_already = true;
1303                         sdev_printk(KERN_ERR, sdev,
1304                                     "rejecting I/O to offline device\n");
1305                 }
1306                 return BLK_STS_IOERR;
1307         case SDEV_DEL:
1308                 /*
1309                  * If the device is fully deleted, we refuse to
1310                  * process any commands as well.
1311                  */
1312                 sdev_printk(KERN_ERR, sdev,
1313                             "rejecting I/O to dead device\n");
1314                 return BLK_STS_IOERR;
1315         case SDEV_BLOCK:
1316         case SDEV_CREATED_BLOCK:
1317                 return BLK_STS_RESOURCE;
1318         case SDEV_QUIESCE:
1319                 /*
1320                  * If the device is blocked we only accept power management
1321                  * commands.
1322                  */
1323                 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1324                         return BLK_STS_RESOURCE;
1325                 return BLK_STS_OK;
1326         default:
1327                 /*
1328                  * For any other not fully online state we only allow
1329                  * power management commands.
1330                  */
1331                 if (req && !(req->rq_flags & RQF_PM))
1332                         return BLK_STS_OFFLINE;
1333                 return BLK_STS_OK;
1334         }
1335 }
1336
1337 /*
1338  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1339  * and return the token else return -1.
1340  */
1341 static inline int scsi_dev_queue_ready(struct request_queue *q,
1342                                   struct scsi_device *sdev)
1343 {
1344         int token;
1345
1346         token = sbitmap_get(&sdev->budget_map);
1347         if (token < 0)
1348                 return -1;
1349
1350         if (!atomic_read(&sdev->device_blocked))
1351                 return token;
1352
1353         /*
1354          * Only unblock if no other commands are pending and
1355          * if device_blocked has decreased to zero
1356          */
1357         if (scsi_device_busy(sdev) > 1 ||
1358             atomic_dec_return(&sdev->device_blocked) > 0) {
1359                 sbitmap_put(&sdev->budget_map, token);
1360                 return -1;
1361         }
1362
1363         SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1364                          "unblocking device at zero depth\n"));
1365
1366         return token;
1367 }
1368
1369 /*
1370  * scsi_target_queue_ready: checks if there we can send commands to target
1371  * @sdev: scsi device on starget to check.
1372  */
1373 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1374                                            struct scsi_device *sdev)
1375 {
1376         struct scsi_target *starget = scsi_target(sdev);
1377         unsigned int busy;
1378
1379         if (starget->single_lun) {
1380                 spin_lock_irq(shost->host_lock);
1381                 if (starget->starget_sdev_user &&
1382                     starget->starget_sdev_user != sdev) {
1383                         spin_unlock_irq(shost->host_lock);
1384                         return 0;
1385                 }
1386                 starget->starget_sdev_user = sdev;
1387                 spin_unlock_irq(shost->host_lock);
1388         }
1389
1390         if (starget->can_queue <= 0)
1391                 return 1;
1392
1393         busy = atomic_inc_return(&starget->target_busy) - 1;
1394         if (atomic_read(&starget->target_blocked) > 0) {
1395                 if (busy)
1396                         goto starved;
1397
1398                 /*
1399                  * unblock after target_blocked iterates to zero
1400                  */
1401                 if (atomic_dec_return(&starget->target_blocked) > 0)
1402                         goto out_dec;
1403
1404                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1405                                  "unblocking target at zero depth\n"));
1406         }
1407
1408         if (busy >= starget->can_queue)
1409                 goto starved;
1410
1411         return 1;
1412
1413 starved:
1414         spin_lock_irq(shost->host_lock);
1415         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1416         spin_unlock_irq(shost->host_lock);
1417 out_dec:
1418         if (starget->can_queue > 0)
1419                 atomic_dec(&starget->target_busy);
1420         return 0;
1421 }
1422
1423 /*
1424  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1425  * return 0. We must end up running the queue again whenever 0 is
1426  * returned, else IO can hang.
1427  */
1428 static inline int scsi_host_queue_ready(struct request_queue *q,
1429                                    struct Scsi_Host *shost,
1430                                    struct scsi_device *sdev,
1431                                    struct scsi_cmnd *cmd)
1432 {
1433         if (atomic_read(&shost->host_blocked) > 0) {
1434                 if (scsi_host_busy(shost) > 0)
1435                         goto starved;
1436
1437                 /*
1438                  * unblock after host_blocked iterates to zero
1439                  */
1440                 if (atomic_dec_return(&shost->host_blocked) > 0)
1441                         goto out_dec;
1442
1443                 SCSI_LOG_MLQUEUE(3,
1444                         shost_printk(KERN_INFO, shost,
1445                                      "unblocking host at zero depth\n"));
1446         }
1447
1448         if (shost->host_self_blocked)
1449                 goto starved;
1450
1451         /* We're OK to process the command, so we can't be starved */
1452         if (!list_empty(&sdev->starved_entry)) {
1453                 spin_lock_irq(shost->host_lock);
1454                 if (!list_empty(&sdev->starved_entry))
1455                         list_del_init(&sdev->starved_entry);
1456                 spin_unlock_irq(shost->host_lock);
1457         }
1458
1459         __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1460
1461         return 1;
1462
1463 starved:
1464         spin_lock_irq(shost->host_lock);
1465         if (list_empty(&sdev->starved_entry))
1466                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467         spin_unlock_irq(shost->host_lock);
1468 out_dec:
1469         scsi_dec_host_busy(shost, cmd);
1470         return 0;
1471 }
1472
1473 /*
1474  * Busy state exporting function for request stacking drivers.
1475  *
1476  * For efficiency, no lock is taken to check the busy state of
1477  * shost/starget/sdev, since the returned value is not guaranteed and
1478  * may be changed after request stacking drivers call the function,
1479  * regardless of taking lock or not.
1480  *
1481  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482  * needs to return 'not busy'. Otherwise, request stacking drivers
1483  * may hold requests forever.
1484  */
1485 static bool scsi_mq_lld_busy(struct request_queue *q)
1486 {
1487         struct scsi_device *sdev = q->queuedata;
1488         struct Scsi_Host *shost;
1489
1490         if (blk_queue_dying(q))
1491                 return false;
1492
1493         shost = sdev->host;
1494
1495         /*
1496          * Ignore host/starget busy state.
1497          * Since block layer does not have a concept of fairness across
1498          * multiple queues, congestion of host/starget needs to be handled
1499          * in SCSI layer.
1500          */
1501         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502                 return true;
1503
1504         return false;
1505 }
1506
1507 /*
1508  * Block layer request completion callback. May be called from interrupt
1509  * context.
1510  */
1511 static void scsi_complete(struct request *rq)
1512 {
1513         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1514         enum scsi_disposition disposition;
1515
1516         INIT_LIST_HEAD(&cmd->eh_entry);
1517
1518         atomic_inc(&cmd->device->iodone_cnt);
1519         if (cmd->result)
1520                 atomic_inc(&cmd->device->ioerr_cnt);
1521
1522         disposition = scsi_decide_disposition(cmd);
1523         if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1524                 disposition = SUCCESS;
1525
1526         scsi_log_completion(cmd, disposition);
1527
1528         switch (disposition) {
1529         case SUCCESS:
1530                 scsi_finish_command(cmd);
1531                 break;
1532         case NEEDS_RETRY:
1533                 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1534                 break;
1535         case ADD_TO_MLQUEUE:
1536                 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1537                 break;
1538         default:
1539                 scsi_eh_scmd_add(cmd);
1540                 break;
1541         }
1542 }
1543
1544 /**
1545  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1546  * @cmd: command block we are dispatching.
1547  *
1548  * Return: nonzero return request was rejected and device's queue needs to be
1549  * plugged.
1550  */
1551 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1552 {
1553         struct Scsi_Host *host = cmd->device->host;
1554         int rtn = 0;
1555
1556         atomic_inc(&cmd->device->iorequest_cnt);
1557
1558         /* check if the device is still usable */
1559         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1560                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1561                  * returns an immediate error upwards, and signals
1562                  * that the device is no longer present */
1563                 cmd->result = DID_NO_CONNECT << 16;
1564                 goto done;
1565         }
1566
1567         /* Check to see if the scsi lld made this device blocked. */
1568         if (unlikely(scsi_device_blocked(cmd->device))) {
1569                 /*
1570                  * in blocked state, the command is just put back on
1571                  * the device queue.  The suspend state has already
1572                  * blocked the queue so future requests should not
1573                  * occur until the device transitions out of the
1574                  * suspend state.
1575                  */
1576                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1577                         "queuecommand : device blocked\n"));
1578                 atomic_dec(&cmd->device->iorequest_cnt);
1579                 return SCSI_MLQUEUE_DEVICE_BUSY;
1580         }
1581
1582         /* Store the LUN value in cmnd, if needed. */
1583         if (cmd->device->lun_in_cdb)
1584                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1585                                (cmd->device->lun << 5 & 0xe0);
1586
1587         scsi_log_send(cmd);
1588
1589         /*
1590          * Before we queue this command, check if the command
1591          * length exceeds what the host adapter can handle.
1592          */
1593         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1594                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1595                                "queuecommand : command too long. "
1596                                "cdb_size=%d host->max_cmd_len=%d\n",
1597                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1598                 cmd->result = (DID_ABORT << 16);
1599                 goto done;
1600         }
1601
1602         if (unlikely(host->shost_state == SHOST_DEL)) {
1603                 cmd->result = (DID_NO_CONNECT << 16);
1604                 goto done;
1605
1606         }
1607
1608         trace_scsi_dispatch_cmd_start(cmd);
1609         rtn = host->hostt->queuecommand(host, cmd);
1610         if (rtn) {
1611                 atomic_dec(&cmd->device->iorequest_cnt);
1612                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1613                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1614                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1615                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1616
1617                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1618                         "queuecommand : request rejected\n"));
1619         }
1620
1621         return rtn;
1622  done:
1623         scsi_done(cmd);
1624         return 0;
1625 }
1626
1627 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1628 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1629 {
1630         return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1631                 sizeof(struct scatterlist);
1632 }
1633
1634 static blk_status_t scsi_prepare_cmd(struct request *req)
1635 {
1636         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637         struct scsi_device *sdev = req->q->queuedata;
1638         struct Scsi_Host *shost = sdev->host;
1639         bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1640         struct scatterlist *sg;
1641
1642         scsi_init_command(sdev, cmd);
1643
1644         cmd->eh_eflags = 0;
1645         cmd->prot_type = 0;
1646         cmd->prot_flags = 0;
1647         cmd->submitter = 0;
1648         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1649         cmd->underflow = 0;
1650         cmd->transfersize = 0;
1651         cmd->host_scribble = NULL;
1652         cmd->result = 0;
1653         cmd->extra_len = 0;
1654         cmd->state = 0;
1655         if (in_flight)
1656                 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1657
1658         /*
1659          * Only clear the driver-private command data if the LLD does not supply
1660          * a function to initialize that data.
1661          */
1662         if (!shost->hostt->init_cmd_priv)
1663                 memset(cmd + 1, 0, shost->hostt->cmd_size);
1664
1665         cmd->prot_op = SCSI_PROT_NORMAL;
1666         if (blk_rq_bytes(req))
1667                 cmd->sc_data_direction = rq_dma_dir(req);
1668         else
1669                 cmd->sc_data_direction = DMA_NONE;
1670
1671         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1672         cmd->sdb.table.sgl = sg;
1673
1674         if (scsi_host_get_prot(shost)) {
1675                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1676
1677                 cmd->prot_sdb->table.sgl =
1678                         (struct scatterlist *)(cmd->prot_sdb + 1);
1679         }
1680
1681         /*
1682          * Special handling for passthrough commands, which don't go to the ULP
1683          * at all:
1684          */
1685         if (blk_rq_is_passthrough(req))
1686                 return scsi_setup_scsi_cmnd(sdev, req);
1687
1688         if (sdev->handler && sdev->handler->prep_fn) {
1689                 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1690
1691                 if (ret != BLK_STS_OK)
1692                         return ret;
1693         }
1694
1695         /* Usually overridden by the ULP */
1696         cmd->allowed = 0;
1697         memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1698         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1699 }
1700
1701 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1702 {
1703         struct request *req = scsi_cmd_to_rq(cmd);
1704
1705         switch (cmd->submitter) {
1706         case SUBMITTED_BY_BLOCK_LAYER:
1707                 break;
1708         case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1709                 return scsi_eh_done(cmd);
1710         case SUBMITTED_BY_SCSI_RESET_IOCTL:
1711                 return;
1712         }
1713
1714         if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1715                 return;
1716         if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1717                 return;
1718         trace_scsi_dispatch_cmd_done(cmd);
1719
1720         if (complete_directly)
1721                 blk_mq_complete_request_direct(req, scsi_complete);
1722         else
1723                 blk_mq_complete_request(req);
1724 }
1725
1726 void scsi_done(struct scsi_cmnd *cmd)
1727 {
1728         scsi_done_internal(cmd, false);
1729 }
1730 EXPORT_SYMBOL(scsi_done);
1731
1732 void scsi_done_direct(struct scsi_cmnd *cmd)
1733 {
1734         scsi_done_internal(cmd, true);
1735 }
1736 EXPORT_SYMBOL(scsi_done_direct);
1737
1738 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1739 {
1740         struct scsi_device *sdev = q->queuedata;
1741
1742         sbitmap_put(&sdev->budget_map, budget_token);
1743 }
1744
1745 /*
1746  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1747  * not change behaviour from the previous unplug mechanism, experimentation
1748  * may prove this needs changing.
1749  */
1750 #define SCSI_QUEUE_DELAY 3
1751
1752 static int scsi_mq_get_budget(struct request_queue *q)
1753 {
1754         struct scsi_device *sdev = q->queuedata;
1755         int token = scsi_dev_queue_ready(q, sdev);
1756
1757         if (token >= 0)
1758                 return token;
1759
1760         atomic_inc(&sdev->restarts);
1761
1762         /*
1763          * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1764          * .restarts must be incremented before .device_busy is read because the
1765          * code in scsi_run_queue_async() depends on the order of these operations.
1766          */
1767         smp_mb__after_atomic();
1768
1769         /*
1770          * If all in-flight requests originated from this LUN are completed
1771          * before reading .device_busy, sdev->device_busy will be observed as
1772          * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1773          * soon. Otherwise, completion of one of these requests will observe
1774          * the .restarts flag, and the request queue will be run for handling
1775          * this request, see scsi_end_request().
1776          */
1777         if (unlikely(scsi_device_busy(sdev) == 0 &&
1778                                 !scsi_device_blocked(sdev)))
1779                 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1780         return -1;
1781 }
1782
1783 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1784 {
1785         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1786
1787         cmd->budget_token = token;
1788 }
1789
1790 static int scsi_mq_get_rq_budget_token(struct request *req)
1791 {
1792         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1793
1794         return cmd->budget_token;
1795 }
1796
1797 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1798                          const struct blk_mq_queue_data *bd)
1799 {
1800         struct request *req = bd->rq;
1801         struct request_queue *q = req->q;
1802         struct scsi_device *sdev = q->queuedata;
1803         struct Scsi_Host *shost = sdev->host;
1804         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1805         blk_status_t ret;
1806         int reason;
1807
1808         WARN_ON_ONCE(cmd->budget_token < 0);
1809
1810         /*
1811          * If the device is not in running state we will reject some or all
1812          * commands.
1813          */
1814         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1815                 ret = scsi_device_state_check(sdev, req);
1816                 if (ret != BLK_STS_OK)
1817                         goto out_put_budget;
1818         }
1819
1820         ret = BLK_STS_RESOURCE;
1821         if (!scsi_target_queue_ready(shost, sdev))
1822                 goto out_put_budget;
1823         if (unlikely(scsi_host_in_recovery(shost))) {
1824                 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1825                         ret = BLK_STS_OFFLINE;
1826                 goto out_dec_target_busy;
1827         }
1828         if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1829                 goto out_dec_target_busy;
1830
1831         if (!(req->rq_flags & RQF_DONTPREP)) {
1832                 ret = scsi_prepare_cmd(req);
1833                 if (ret != BLK_STS_OK)
1834                         goto out_dec_host_busy;
1835                 req->rq_flags |= RQF_DONTPREP;
1836         } else {
1837                 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1838         }
1839
1840         cmd->flags &= SCMD_PRESERVED_FLAGS;
1841         if (sdev->simple_tags)
1842                 cmd->flags |= SCMD_TAGGED;
1843         if (bd->last)
1844                 cmd->flags |= SCMD_LAST;
1845
1846         scsi_set_resid(cmd, 0);
1847         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1848         cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1849
1850         blk_mq_start_request(req);
1851         reason = scsi_dispatch_cmd(cmd);
1852         if (reason) {
1853                 scsi_set_blocked(cmd, reason);
1854                 ret = BLK_STS_RESOURCE;
1855                 goto out_dec_host_busy;
1856         }
1857
1858         return BLK_STS_OK;
1859
1860 out_dec_host_busy:
1861         scsi_dec_host_busy(shost, cmd);
1862 out_dec_target_busy:
1863         if (scsi_target(sdev)->can_queue > 0)
1864                 atomic_dec(&scsi_target(sdev)->target_busy);
1865 out_put_budget:
1866         scsi_mq_put_budget(q, cmd->budget_token);
1867         cmd->budget_token = -1;
1868         switch (ret) {
1869         case BLK_STS_OK:
1870                 break;
1871         case BLK_STS_RESOURCE:
1872                 if (scsi_device_blocked(sdev))
1873                         ret = BLK_STS_DEV_RESOURCE;
1874                 break;
1875         case BLK_STS_AGAIN:
1876                 cmd->result = DID_BUS_BUSY << 16;
1877                 if (req->rq_flags & RQF_DONTPREP)
1878                         scsi_mq_uninit_cmd(cmd);
1879                 break;
1880         default:
1881                 if (unlikely(!scsi_device_online(sdev)))
1882                         cmd->result = DID_NO_CONNECT << 16;
1883                 else
1884                         cmd->result = DID_ERROR << 16;
1885                 /*
1886                  * Make sure to release all allocated resources when
1887                  * we hit an error, as we will never see this command
1888                  * again.
1889                  */
1890                 if (req->rq_flags & RQF_DONTPREP)
1891                         scsi_mq_uninit_cmd(cmd);
1892                 scsi_run_queue_async(sdev);
1893                 break;
1894         }
1895         return ret;
1896 }
1897
1898 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1899                                 unsigned int hctx_idx, unsigned int numa_node)
1900 {
1901         struct Scsi_Host *shost = set->driver_data;
1902         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1903         struct scatterlist *sg;
1904         int ret = 0;
1905
1906         cmd->sense_buffer =
1907                 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1908         if (!cmd->sense_buffer)
1909                 return -ENOMEM;
1910
1911         if (scsi_host_get_prot(shost)) {
1912                 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1913                         shost->hostt->cmd_size;
1914                 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1915         }
1916
1917         if (shost->hostt->init_cmd_priv) {
1918                 ret = shost->hostt->init_cmd_priv(shost, cmd);
1919                 if (ret < 0)
1920                         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1921         }
1922
1923         return ret;
1924 }
1925
1926 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1927                                  unsigned int hctx_idx)
1928 {
1929         struct Scsi_Host *shost = set->driver_data;
1930         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1931
1932         if (shost->hostt->exit_cmd_priv)
1933                 shost->hostt->exit_cmd_priv(shost, cmd);
1934         kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1935 }
1936
1937
1938 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1939 {
1940         struct Scsi_Host *shost = hctx->driver_data;
1941
1942         if (shost->hostt->mq_poll)
1943                 return shost->hostt->mq_poll(shost, hctx->queue_num);
1944
1945         return 0;
1946 }
1947
1948 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1949                           unsigned int hctx_idx)
1950 {
1951         struct Scsi_Host *shost = data;
1952
1953         hctx->driver_data = shost;
1954         return 0;
1955 }
1956
1957 static void scsi_map_queues(struct blk_mq_tag_set *set)
1958 {
1959         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1960
1961         if (shost->hostt->map_queues)
1962                 return shost->hostt->map_queues(shost);
1963         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1964 }
1965
1966 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1967 {
1968         struct device *dev = shost->dma_dev;
1969
1970         memset(lim, 0, sizeof(*lim));
1971         lim->max_segments =
1972                 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
1973
1974         if (scsi_host_prot_dma(shost)) {
1975                 shost->sg_prot_tablesize =
1976                         min_not_zero(shost->sg_prot_tablesize,
1977                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1978                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1979                 lim->max_integrity_segments = shost->sg_prot_tablesize;
1980         }
1981
1982         lim->max_hw_sectors = shost->max_sectors;
1983         lim->seg_boundary_mask = shost->dma_boundary;
1984         lim->max_segment_size = shost->max_segment_size;
1985         lim->virt_boundary_mask = shost->virt_boundary_mask;
1986         lim->dma_alignment = max_t(unsigned int,
1987                 shost->dma_alignment, dma_get_cache_alignment() - 1);
1988
1989         if (shost->no_highmem)
1990                 lim->bounce = BLK_BOUNCE_HIGH;
1991
1992         dma_set_seg_boundary(dev, shost->dma_boundary);
1993         dma_set_max_seg_size(dev, shost->max_segment_size);
1994 }
1995 EXPORT_SYMBOL_GPL(scsi_init_limits);
1996
1997 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1998         .get_budget     = scsi_mq_get_budget,
1999         .put_budget     = scsi_mq_put_budget,
2000         .queue_rq       = scsi_queue_rq,
2001         .complete       = scsi_complete,
2002         .timeout        = scsi_timeout,
2003 #ifdef CONFIG_BLK_DEBUG_FS
2004         .show_rq        = scsi_show_rq,
2005 #endif
2006         .init_request   = scsi_mq_init_request,
2007         .exit_request   = scsi_mq_exit_request,
2008         .cleanup_rq     = scsi_cleanup_rq,
2009         .busy           = scsi_mq_lld_busy,
2010         .map_queues     = scsi_map_queues,
2011         .init_hctx      = scsi_init_hctx,
2012         .poll           = scsi_mq_poll,
2013         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2014         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2015 };
2016
2017
2018 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2019 {
2020         struct Scsi_Host *shost = hctx->driver_data;
2021
2022         shost->hostt->commit_rqs(shost, hctx->queue_num);
2023 }
2024
2025 static const struct blk_mq_ops scsi_mq_ops = {
2026         .get_budget     = scsi_mq_get_budget,
2027         .put_budget     = scsi_mq_put_budget,
2028         .queue_rq       = scsi_queue_rq,
2029         .commit_rqs     = scsi_commit_rqs,
2030         .complete       = scsi_complete,
2031         .timeout        = scsi_timeout,
2032 #ifdef CONFIG_BLK_DEBUG_FS
2033         .show_rq        = scsi_show_rq,
2034 #endif
2035         .init_request   = scsi_mq_init_request,
2036         .exit_request   = scsi_mq_exit_request,
2037         .cleanup_rq     = scsi_cleanup_rq,
2038         .busy           = scsi_mq_lld_busy,
2039         .map_queues     = scsi_map_queues,
2040         .init_hctx      = scsi_init_hctx,
2041         .poll           = scsi_mq_poll,
2042         .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2043         .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2044 };
2045
2046 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2047 {
2048         unsigned int cmd_size, sgl_size;
2049         struct blk_mq_tag_set *tag_set = &shost->tag_set;
2050
2051         sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2052                                 scsi_mq_inline_sgl_size(shost));
2053         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2054         if (scsi_host_get_prot(shost))
2055                 cmd_size += sizeof(struct scsi_data_buffer) +
2056                         sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2057
2058         memset(tag_set, 0, sizeof(*tag_set));
2059         if (shost->hostt->commit_rqs)
2060                 tag_set->ops = &scsi_mq_ops;
2061         else
2062                 tag_set->ops = &scsi_mq_ops_no_commit;
2063         tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2064         tag_set->nr_maps = shost->nr_maps ? : 1;
2065         tag_set->queue_depth = shost->can_queue;
2066         tag_set->cmd_size = cmd_size;
2067         tag_set->numa_node = dev_to_node(shost->dma_dev);
2068         tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2069         tag_set->flags |=
2070                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2071         if (shost->queuecommand_may_block)
2072                 tag_set->flags |= BLK_MQ_F_BLOCKING;
2073         tag_set->driver_data = shost;
2074         if (shost->host_tagset)
2075                 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2076
2077         return blk_mq_alloc_tag_set(tag_set);
2078 }
2079
2080 void scsi_mq_free_tags(struct kref *kref)
2081 {
2082         struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2083                                                tagset_refcnt);
2084
2085         blk_mq_free_tag_set(&shost->tag_set);
2086         complete(&shost->tagset_freed);
2087 }
2088
2089 /**
2090  * scsi_device_from_queue - return sdev associated with a request_queue
2091  * @q: The request queue to return the sdev from
2092  *
2093  * Return the sdev associated with a request queue or NULL if the
2094  * request_queue does not reference a SCSI device.
2095  */
2096 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2097 {
2098         struct scsi_device *sdev = NULL;
2099
2100         if (q->mq_ops == &scsi_mq_ops_no_commit ||
2101             q->mq_ops == &scsi_mq_ops)
2102                 sdev = q->queuedata;
2103         if (!sdev || !get_device(&sdev->sdev_gendev))
2104                 sdev = NULL;
2105
2106         return sdev;
2107 }
2108 /*
2109  * pktcdvd should have been integrated into the SCSI layers, but for historical
2110  * reasons like the old IDE driver it isn't.  This export allows it to safely
2111  * probe if a given device is a SCSI one and only attach to that.
2112  */
2113 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2114 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2115 #endif
2116
2117 /**
2118  * scsi_block_requests - Utility function used by low-level drivers to prevent
2119  * further commands from being queued to the device.
2120  * @shost:  host in question
2121  *
2122  * There is no timer nor any other means by which the requests get unblocked
2123  * other than the low-level driver calling scsi_unblock_requests().
2124  */
2125 void scsi_block_requests(struct Scsi_Host *shost)
2126 {
2127         shost->host_self_blocked = 1;
2128 }
2129 EXPORT_SYMBOL(scsi_block_requests);
2130
2131 /**
2132  * scsi_unblock_requests - Utility function used by low-level drivers to allow
2133  * further commands to be queued to the device.
2134  * @shost:  host in question
2135  *
2136  * There is no timer nor any other means by which the requests get unblocked
2137  * other than the low-level driver calling scsi_unblock_requests(). This is done
2138  * as an API function so that changes to the internals of the scsi mid-layer
2139  * won't require wholesale changes to drivers that use this feature.
2140  */
2141 void scsi_unblock_requests(struct Scsi_Host *shost)
2142 {
2143         shost->host_self_blocked = 0;
2144         scsi_run_host_queues(shost);
2145 }
2146 EXPORT_SYMBOL(scsi_unblock_requests);
2147
2148 void scsi_exit_queue(void)
2149 {
2150         kmem_cache_destroy(scsi_sense_cache);
2151 }
2152
2153 /**
2154  *      scsi_mode_select - issue a mode select
2155  *      @sdev:  SCSI device to be queried
2156  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2157  *      @sp:    Save page bit (0 == don't save, 1 == save)
2158  *      @buffer: request buffer (may not be smaller than eight bytes)
2159  *      @len:   length of request buffer.
2160  *      @timeout: command timeout
2161  *      @retries: number of retries before failing
2162  *      @data: returns a structure abstracting the mode header data
2163  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2164  *              must be SCSI_SENSE_BUFFERSIZE big.
2165  *
2166  *      Returns zero if successful; negative error number or scsi
2167  *      status on error
2168  *
2169  */
2170 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2171                      unsigned char *buffer, int len, int timeout, int retries,
2172                      struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2173 {
2174         unsigned char cmd[10];
2175         unsigned char *real_buffer;
2176         const struct scsi_exec_args exec_args = {
2177                 .sshdr = sshdr,
2178         };
2179         int ret;
2180
2181         memset(cmd, 0, sizeof(cmd));
2182         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2183
2184         /*
2185          * Use MODE SELECT(10) if the device asked for it or if the mode page
2186          * and the mode select header cannot fit within the maximumm 255 bytes
2187          * of the MODE SELECT(6) command.
2188          */
2189         if (sdev->use_10_for_ms ||
2190             len + 4 > 255 ||
2191             data->block_descriptor_length > 255) {
2192                 if (len > 65535 - 8)
2193                         return -EINVAL;
2194                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2195                 if (!real_buffer)
2196                         return -ENOMEM;
2197                 memcpy(real_buffer + 8, buffer, len);
2198                 len += 8;
2199                 real_buffer[0] = 0;
2200                 real_buffer[1] = 0;
2201                 real_buffer[2] = data->medium_type;
2202                 real_buffer[3] = data->device_specific;
2203                 real_buffer[4] = data->longlba ? 0x01 : 0;
2204                 real_buffer[5] = 0;
2205                 put_unaligned_be16(data->block_descriptor_length,
2206                                    &real_buffer[6]);
2207
2208                 cmd[0] = MODE_SELECT_10;
2209                 put_unaligned_be16(len, &cmd[7]);
2210         } else {
2211                 if (data->longlba)
2212                         return -EINVAL;
2213
2214                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2215                 if (!real_buffer)
2216                         return -ENOMEM;
2217                 memcpy(real_buffer + 4, buffer, len);
2218                 len += 4;
2219                 real_buffer[0] = 0;
2220                 real_buffer[1] = data->medium_type;
2221                 real_buffer[2] = data->device_specific;
2222                 real_buffer[3] = data->block_descriptor_length;
2223
2224                 cmd[0] = MODE_SELECT;
2225                 cmd[4] = len;
2226         }
2227
2228         ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2229                                timeout, retries, &exec_args);
2230         kfree(real_buffer);
2231         return ret;
2232 }
2233 EXPORT_SYMBOL_GPL(scsi_mode_select);
2234
2235 /**
2236  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2237  *      @sdev:  SCSI device to be queried
2238  *      @dbd:   set to prevent mode sense from returning block descriptors
2239  *      @modepage: mode page being requested
2240  *      @subpage: sub-page of the mode page being requested
2241  *      @buffer: request buffer (may not be smaller than eight bytes)
2242  *      @len:   length of request buffer.
2243  *      @timeout: command timeout
2244  *      @retries: number of retries before failing
2245  *      @data: returns a structure abstracting the mode header data
2246  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2247  *              must be SCSI_SENSE_BUFFERSIZE big.
2248  *
2249  *      Returns zero if successful, or a negative error number on failure
2250  */
2251 int
2252 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2253                   unsigned char *buffer, int len, int timeout, int retries,
2254                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2255 {
2256         unsigned char cmd[12];
2257         int use_10_for_ms;
2258         int header_length;
2259         int result;
2260         struct scsi_sense_hdr my_sshdr;
2261         struct scsi_failure failure_defs[] = {
2262                 {
2263                         .sense = UNIT_ATTENTION,
2264                         .asc = SCMD_FAILURE_ASC_ANY,
2265                         .ascq = SCMD_FAILURE_ASCQ_ANY,
2266                         .allowed = retries,
2267                         .result = SAM_STAT_CHECK_CONDITION,
2268                 },
2269                 {}
2270         };
2271         struct scsi_failures failures = {
2272                 .failure_definitions = failure_defs,
2273         };
2274         const struct scsi_exec_args exec_args = {
2275                 /* caller might not be interested in sense, but we need it */
2276                 .sshdr = sshdr ? : &my_sshdr,
2277                 .failures = &failures,
2278         };
2279
2280         memset(data, 0, sizeof(*data));
2281         memset(&cmd[0], 0, 12);
2282
2283         dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2284         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2285         cmd[2] = modepage;
2286         cmd[3] = subpage;
2287
2288         sshdr = exec_args.sshdr;
2289
2290  retry:
2291         use_10_for_ms = sdev->use_10_for_ms || len > 255;
2292
2293         if (use_10_for_ms) {
2294                 if (len < 8 || len > 65535)
2295                         return -EINVAL;
2296
2297                 cmd[0] = MODE_SENSE_10;
2298                 put_unaligned_be16(len, &cmd[7]);
2299                 header_length = 8;
2300         } else {
2301                 if (len < 4)
2302                         return -EINVAL;
2303
2304                 cmd[0] = MODE_SENSE;
2305                 cmd[4] = len;
2306                 header_length = 4;
2307         }
2308
2309         memset(buffer, 0, len);
2310
2311         result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2312                                   timeout, retries, &exec_args);
2313         if (result < 0)
2314                 return result;
2315
2316         /* This code looks awful: what it's doing is making sure an
2317          * ILLEGAL REQUEST sense return identifies the actual command
2318          * byte as the problem.  MODE_SENSE commands can return
2319          * ILLEGAL REQUEST if the code page isn't supported */
2320
2321         if (!scsi_status_is_good(result)) {
2322                 if (scsi_sense_valid(sshdr)) {
2323                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2324                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2325                                 /*
2326                                  * Invalid command operation code: retry using
2327                                  * MODE SENSE(6) if this was a MODE SENSE(10)
2328                                  * request, except if the request mode page is
2329                                  * too large for MODE SENSE single byte
2330                                  * allocation length field.
2331                                  */
2332                                 if (use_10_for_ms) {
2333                                         if (len > 255)
2334                                                 return -EIO;
2335                                         sdev->use_10_for_ms = 0;
2336                                         goto retry;
2337                                 }
2338                         }
2339                 }
2340                 return -EIO;
2341         }
2342         if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2343                      (modepage == 6 || modepage == 8))) {
2344                 /* Initio breakage? */
2345                 header_length = 0;
2346                 data->length = 13;
2347                 data->medium_type = 0;
2348                 data->device_specific = 0;
2349                 data->longlba = 0;
2350                 data->block_descriptor_length = 0;
2351         } else if (use_10_for_ms) {
2352                 data->length = get_unaligned_be16(&buffer[0]) + 2;
2353                 data->medium_type = buffer[2];
2354                 data->device_specific = buffer[3];
2355                 data->longlba = buffer[4] & 0x01;
2356                 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2357         } else {
2358                 data->length = buffer[0] + 1;
2359                 data->medium_type = buffer[1];
2360                 data->device_specific = buffer[2];
2361                 data->block_descriptor_length = buffer[3];
2362         }
2363         data->header_length = header_length;
2364
2365         return 0;
2366 }
2367 EXPORT_SYMBOL(scsi_mode_sense);
2368
2369 /**
2370  *      scsi_test_unit_ready - test if unit is ready
2371  *      @sdev:  scsi device to change the state of.
2372  *      @timeout: command timeout
2373  *      @retries: number of retries before failing
2374  *      @sshdr: outpout pointer for decoded sense information.
2375  *
2376  *      Returns zero if unsuccessful or an error if TUR failed.  For
2377  *      removable media, UNIT_ATTENTION sets ->changed flag.
2378  **/
2379 int
2380 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2381                      struct scsi_sense_hdr *sshdr)
2382 {
2383         char cmd[] = {
2384                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2385         };
2386         const struct scsi_exec_args exec_args = {
2387                 .sshdr = sshdr,
2388         };
2389         int result;
2390
2391         /* try to eat the UNIT_ATTENTION if there are enough retries */
2392         do {
2393                 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2394                                           timeout, 1, &exec_args);
2395                 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2396                     sshdr->sense_key == UNIT_ATTENTION)
2397                         sdev->changed = 1;
2398         } while (result > 0 && scsi_sense_valid(sshdr) &&
2399                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2400
2401         return result;
2402 }
2403 EXPORT_SYMBOL(scsi_test_unit_ready);
2404
2405 /**
2406  *      scsi_device_set_state - Take the given device through the device state model.
2407  *      @sdev:  scsi device to change the state of.
2408  *      @state: state to change to.
2409  *
2410  *      Returns zero if successful or an error if the requested
2411  *      transition is illegal.
2412  */
2413 int
2414 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2415 {
2416         enum scsi_device_state oldstate = sdev->sdev_state;
2417
2418         if (state == oldstate)
2419                 return 0;
2420
2421         switch (state) {
2422         case SDEV_CREATED:
2423                 switch (oldstate) {
2424                 case SDEV_CREATED_BLOCK:
2425                         break;
2426                 default:
2427                         goto illegal;
2428                 }
2429                 break;
2430
2431         case SDEV_RUNNING:
2432                 switch (oldstate) {
2433                 case SDEV_CREATED:
2434                 case SDEV_OFFLINE:
2435                 case SDEV_TRANSPORT_OFFLINE:
2436                 case SDEV_QUIESCE:
2437                 case SDEV_BLOCK:
2438                         break;
2439                 default:
2440                         goto illegal;
2441                 }
2442                 break;
2443
2444         case SDEV_QUIESCE:
2445                 switch (oldstate) {
2446                 case SDEV_RUNNING:
2447                 case SDEV_OFFLINE:
2448                 case SDEV_TRANSPORT_OFFLINE:
2449                         break;
2450                 default:
2451                         goto illegal;
2452                 }
2453                 break;
2454
2455         case SDEV_OFFLINE:
2456         case SDEV_TRANSPORT_OFFLINE:
2457                 switch (oldstate) {
2458                 case SDEV_CREATED:
2459                 case SDEV_RUNNING:
2460                 case SDEV_QUIESCE:
2461                 case SDEV_BLOCK:
2462                         break;
2463                 default:
2464                         goto illegal;
2465                 }
2466                 break;
2467
2468         case SDEV_BLOCK:
2469                 switch (oldstate) {
2470                 case SDEV_RUNNING:
2471                 case SDEV_CREATED_BLOCK:
2472                 case SDEV_QUIESCE:
2473                 case SDEV_OFFLINE:
2474                         break;
2475                 default:
2476                         goto illegal;
2477                 }
2478                 break;
2479
2480         case SDEV_CREATED_BLOCK:
2481                 switch (oldstate) {
2482                 case SDEV_CREATED:
2483                         break;
2484                 default:
2485                         goto illegal;
2486                 }
2487                 break;
2488
2489         case SDEV_CANCEL:
2490                 switch (oldstate) {
2491                 case SDEV_CREATED:
2492                 case SDEV_RUNNING:
2493                 case SDEV_QUIESCE:
2494                 case SDEV_OFFLINE:
2495                 case SDEV_TRANSPORT_OFFLINE:
2496                         break;
2497                 default:
2498                         goto illegal;
2499                 }
2500                 break;
2501
2502         case SDEV_DEL:
2503                 switch (oldstate) {
2504                 case SDEV_CREATED:
2505                 case SDEV_RUNNING:
2506                 case SDEV_OFFLINE:
2507                 case SDEV_TRANSPORT_OFFLINE:
2508                 case SDEV_CANCEL:
2509                 case SDEV_BLOCK:
2510                 case SDEV_CREATED_BLOCK:
2511                         break;
2512                 default:
2513                         goto illegal;
2514                 }
2515                 break;
2516
2517         }
2518         sdev->offline_already = false;
2519         sdev->sdev_state = state;
2520         return 0;
2521
2522  illegal:
2523         SCSI_LOG_ERROR_RECOVERY(1,
2524                                 sdev_printk(KERN_ERR, sdev,
2525                                             "Illegal state transition %s->%s",
2526                                             scsi_device_state_name(oldstate),
2527                                             scsi_device_state_name(state))
2528                                 );
2529         return -EINVAL;
2530 }
2531 EXPORT_SYMBOL(scsi_device_set_state);
2532
2533 /**
2534  *      scsi_evt_emit - emit a single SCSI device uevent
2535  *      @sdev: associated SCSI device
2536  *      @evt: event to emit
2537  *
2538  *      Send a single uevent (scsi_event) to the associated scsi_device.
2539  */
2540 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2541 {
2542         int idx = 0;
2543         char *envp[3];
2544
2545         switch (evt->evt_type) {
2546         case SDEV_EVT_MEDIA_CHANGE:
2547                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2548                 break;
2549         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2550                 scsi_rescan_device(sdev);
2551                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2552                 break;
2553         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2554                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2555                 break;
2556         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2557                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2558                 break;
2559         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2560                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2561                 break;
2562         case SDEV_EVT_LUN_CHANGE_REPORTED:
2563                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2564                 break;
2565         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2566                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2567                 break;
2568         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2569                 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2570                 break;
2571         default:
2572                 /* do nothing */
2573                 break;
2574         }
2575
2576         envp[idx++] = NULL;
2577
2578         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2579 }
2580
2581 /**
2582  *      scsi_evt_thread - send a uevent for each scsi event
2583  *      @work: work struct for scsi_device
2584  *
2585  *      Dispatch queued events to their associated scsi_device kobjects
2586  *      as uevents.
2587  */
2588 void scsi_evt_thread(struct work_struct *work)
2589 {
2590         struct scsi_device *sdev;
2591         enum scsi_device_event evt_type;
2592         LIST_HEAD(event_list);
2593
2594         sdev = container_of(work, struct scsi_device, event_work);
2595
2596         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2597                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2598                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2599
2600         while (1) {
2601                 struct scsi_event *evt;
2602                 struct list_head *this, *tmp;
2603                 unsigned long flags;
2604
2605                 spin_lock_irqsave(&sdev->list_lock, flags);
2606                 list_splice_init(&sdev->event_list, &event_list);
2607                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2608
2609                 if (list_empty(&event_list))
2610                         break;
2611
2612                 list_for_each_safe(this, tmp, &event_list) {
2613                         evt = list_entry(this, struct scsi_event, node);
2614                         list_del(&evt->node);
2615                         scsi_evt_emit(sdev, evt);
2616                         kfree(evt);
2617                 }
2618         }
2619 }
2620
2621 /**
2622  *      sdev_evt_send - send asserted event to uevent thread
2623  *      @sdev: scsi_device event occurred on
2624  *      @evt: event to send
2625  *
2626  *      Assert scsi device event asynchronously.
2627  */
2628 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2629 {
2630         unsigned long flags;
2631
2632 #if 0
2633         /* FIXME: currently this check eliminates all media change events
2634          * for polled devices.  Need to update to discriminate between AN
2635          * and polled events */
2636         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2637                 kfree(evt);
2638                 return;
2639         }
2640 #endif
2641
2642         spin_lock_irqsave(&sdev->list_lock, flags);
2643         list_add_tail(&evt->node, &sdev->event_list);
2644         schedule_work(&sdev->event_work);
2645         spin_unlock_irqrestore(&sdev->list_lock, flags);
2646 }
2647 EXPORT_SYMBOL_GPL(sdev_evt_send);
2648
2649 /**
2650  *      sdev_evt_alloc - allocate a new scsi event
2651  *      @evt_type: type of event to allocate
2652  *      @gfpflags: GFP flags for allocation
2653  *
2654  *      Allocates and returns a new scsi_event.
2655  */
2656 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2657                                   gfp_t gfpflags)
2658 {
2659         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2660         if (!evt)
2661                 return NULL;
2662
2663         evt->evt_type = evt_type;
2664         INIT_LIST_HEAD(&evt->node);
2665
2666         /* evt_type-specific initialization, if any */
2667         switch (evt_type) {
2668         case SDEV_EVT_MEDIA_CHANGE:
2669         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2670         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2671         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2672         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2673         case SDEV_EVT_LUN_CHANGE_REPORTED:
2674         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2675         case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2676         default:
2677                 /* do nothing */
2678                 break;
2679         }
2680
2681         return evt;
2682 }
2683 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2684
2685 /**
2686  *      sdev_evt_send_simple - send asserted event to uevent thread
2687  *      @sdev: scsi_device event occurred on
2688  *      @evt_type: type of event to send
2689  *      @gfpflags: GFP flags for allocation
2690  *
2691  *      Assert scsi device event asynchronously, given an event type.
2692  */
2693 void sdev_evt_send_simple(struct scsi_device *sdev,
2694                           enum scsi_device_event evt_type, gfp_t gfpflags)
2695 {
2696         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2697         if (!evt) {
2698                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2699                             evt_type);
2700                 return;
2701         }
2702
2703         sdev_evt_send(sdev, evt);
2704 }
2705 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2706
2707 /**
2708  *      scsi_device_quiesce - Block all commands except power management.
2709  *      @sdev:  scsi device to quiesce.
2710  *
2711  *      This works by trying to transition to the SDEV_QUIESCE state
2712  *      (which must be a legal transition).  When the device is in this
2713  *      state, only power management requests will be accepted, all others will
2714  *      be deferred.
2715  *
2716  *      Must be called with user context, may sleep.
2717  *
2718  *      Returns zero if unsuccessful or an error if not.
2719  */
2720 int
2721 scsi_device_quiesce(struct scsi_device *sdev)
2722 {
2723         struct request_queue *q = sdev->request_queue;
2724         int err;
2725
2726         /*
2727          * It is allowed to call scsi_device_quiesce() multiple times from
2728          * the same context but concurrent scsi_device_quiesce() calls are
2729          * not allowed.
2730          */
2731         WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2732
2733         if (sdev->quiesced_by == current)
2734                 return 0;
2735
2736         blk_set_pm_only(q);
2737
2738         blk_mq_freeze_queue(q);
2739         /*
2740          * Ensure that the effect of blk_set_pm_only() will be visible
2741          * for percpu_ref_tryget() callers that occur after the queue
2742          * unfreeze even if the queue was already frozen before this function
2743          * was called. See also https://lwn.net/Articles/573497/.
2744          */
2745         synchronize_rcu();
2746         blk_mq_unfreeze_queue(q);
2747
2748         mutex_lock(&sdev->state_mutex);
2749         err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2750         if (err == 0)
2751                 sdev->quiesced_by = current;
2752         else
2753                 blk_clear_pm_only(q);
2754         mutex_unlock(&sdev->state_mutex);
2755
2756         return err;
2757 }
2758 EXPORT_SYMBOL(scsi_device_quiesce);
2759
2760 /**
2761  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2762  *      @sdev:  scsi device to resume.
2763  *
2764  *      Moves the device from quiesced back to running and restarts the
2765  *      queues.
2766  *
2767  *      Must be called with user context, may sleep.
2768  */
2769 void scsi_device_resume(struct scsi_device *sdev)
2770 {
2771         /* check if the device state was mutated prior to resume, and if
2772          * so assume the state is being managed elsewhere (for example
2773          * device deleted during suspend)
2774          */
2775         mutex_lock(&sdev->state_mutex);
2776         if (sdev->sdev_state == SDEV_QUIESCE)
2777                 scsi_device_set_state(sdev, SDEV_RUNNING);
2778         if (sdev->quiesced_by) {
2779                 sdev->quiesced_by = NULL;
2780                 blk_clear_pm_only(sdev->request_queue);
2781         }
2782         mutex_unlock(&sdev->state_mutex);
2783 }
2784 EXPORT_SYMBOL(scsi_device_resume);
2785
2786 static void
2787 device_quiesce_fn(struct scsi_device *sdev, void *data)
2788 {
2789         scsi_device_quiesce(sdev);
2790 }
2791
2792 void
2793 scsi_target_quiesce(struct scsi_target *starget)
2794 {
2795         starget_for_each_device(starget, NULL, device_quiesce_fn);
2796 }
2797 EXPORT_SYMBOL(scsi_target_quiesce);
2798
2799 static void
2800 device_resume_fn(struct scsi_device *sdev, void *data)
2801 {
2802         scsi_device_resume(sdev);
2803 }
2804
2805 void
2806 scsi_target_resume(struct scsi_target *starget)
2807 {
2808         starget_for_each_device(starget, NULL, device_resume_fn);
2809 }
2810 EXPORT_SYMBOL(scsi_target_resume);
2811
2812 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2813 {
2814         if (scsi_device_set_state(sdev, SDEV_BLOCK))
2815                 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2816
2817         return 0;
2818 }
2819
2820 void scsi_start_queue(struct scsi_device *sdev)
2821 {
2822         if (cmpxchg(&sdev->queue_stopped, 1, 0))
2823                 blk_mq_unquiesce_queue(sdev->request_queue);
2824 }
2825
2826 static void scsi_stop_queue(struct scsi_device *sdev)
2827 {
2828         /*
2829          * The atomic variable of ->queue_stopped covers that
2830          * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2831          *
2832          * The caller needs to wait until quiesce is done.
2833          */
2834         if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2835                 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2836 }
2837
2838 /**
2839  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2840  * @sdev: device to block
2841  *
2842  * Pause SCSI command processing on the specified device. Does not sleep.
2843  *
2844  * Returns zero if successful or a negative error code upon failure.
2845  *
2846  * Notes:
2847  * This routine transitions the device to the SDEV_BLOCK state (which must be
2848  * a legal transition). When the device is in this state, command processing
2849  * is paused until the device leaves the SDEV_BLOCK state. See also
2850  * scsi_internal_device_unblock_nowait().
2851  */
2852 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2853 {
2854         int ret = __scsi_internal_device_block_nowait(sdev);
2855
2856         /*
2857          * The device has transitioned to SDEV_BLOCK.  Stop the
2858          * block layer from calling the midlayer with this device's
2859          * request queue.
2860          */
2861         if (!ret)
2862                 scsi_stop_queue(sdev);
2863         return ret;
2864 }
2865 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2866
2867 /**
2868  * scsi_device_block - try to transition to the SDEV_BLOCK state
2869  * @sdev: device to block
2870  * @data: dummy argument, ignored
2871  *
2872  * Pause SCSI command processing on the specified device. Callers must wait
2873  * until all ongoing scsi_queue_rq() calls have finished after this function
2874  * returns.
2875  *
2876  * Note:
2877  * This routine transitions the device to the SDEV_BLOCK state (which must be
2878  * a legal transition). When the device is in this state, command processing
2879  * is paused until the device leaves the SDEV_BLOCK state. See also
2880  * scsi_internal_device_unblock().
2881  */
2882 static void scsi_device_block(struct scsi_device *sdev, void *data)
2883 {
2884         int err;
2885         enum scsi_device_state state;
2886
2887         mutex_lock(&sdev->state_mutex);
2888         err = __scsi_internal_device_block_nowait(sdev);
2889         state = sdev->sdev_state;
2890         if (err == 0)
2891                 /*
2892                  * scsi_stop_queue() must be called with the state_mutex
2893                  * held. Otherwise a simultaneous scsi_start_queue() call
2894                  * might unquiesce the queue before we quiesce it.
2895                  */
2896                 scsi_stop_queue(sdev);
2897
2898         mutex_unlock(&sdev->state_mutex);
2899
2900         WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2901                   __func__, dev_name(&sdev->sdev_gendev), state);
2902 }
2903
2904 /**
2905  * scsi_internal_device_unblock_nowait - resume a device after a block request
2906  * @sdev:       device to resume
2907  * @new_state:  state to set the device to after unblocking
2908  *
2909  * Restart the device queue for a previously suspended SCSI device. Does not
2910  * sleep.
2911  *
2912  * Returns zero if successful or a negative error code upon failure.
2913  *
2914  * Notes:
2915  * This routine transitions the device to the SDEV_RUNNING state or to one of
2916  * the offline states (which must be a legal transition) allowing the midlayer
2917  * to goose the queue for this device.
2918  */
2919 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2920                                         enum scsi_device_state new_state)
2921 {
2922         switch (new_state) {
2923         case SDEV_RUNNING:
2924         case SDEV_TRANSPORT_OFFLINE:
2925                 break;
2926         default:
2927                 return -EINVAL;
2928         }
2929
2930         /*
2931          * Try to transition the scsi device to SDEV_RUNNING or one of the
2932          * offlined states and goose the device queue if successful.
2933          */
2934         switch (sdev->sdev_state) {
2935         case SDEV_BLOCK:
2936         case SDEV_TRANSPORT_OFFLINE:
2937                 sdev->sdev_state = new_state;
2938                 break;
2939         case SDEV_CREATED_BLOCK:
2940                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2941                     new_state == SDEV_OFFLINE)
2942                         sdev->sdev_state = new_state;
2943                 else
2944                         sdev->sdev_state = SDEV_CREATED;
2945                 break;
2946         case SDEV_CANCEL:
2947         case SDEV_OFFLINE:
2948                 break;
2949         default:
2950                 return -EINVAL;
2951         }
2952         scsi_start_queue(sdev);
2953
2954         return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2957
2958 /**
2959  * scsi_internal_device_unblock - resume a device after a block request
2960  * @sdev:       device to resume
2961  * @new_state:  state to set the device to after unblocking
2962  *
2963  * Restart the device queue for a previously suspended SCSI device. May sleep.
2964  *
2965  * Returns zero if successful or a negative error code upon failure.
2966  *
2967  * Notes:
2968  * This routine transitions the device to the SDEV_RUNNING state or to one of
2969  * the offline states (which must be a legal transition) allowing the midlayer
2970  * to goose the queue for this device.
2971  */
2972 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2973                                         enum scsi_device_state new_state)
2974 {
2975         int ret;
2976
2977         mutex_lock(&sdev->state_mutex);
2978         ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2979         mutex_unlock(&sdev->state_mutex);
2980
2981         return ret;
2982 }
2983
2984 static int
2985 target_block(struct device *dev, void *data)
2986 {
2987         if (scsi_is_target_device(dev))
2988                 starget_for_each_device(to_scsi_target(dev), NULL,
2989                                         scsi_device_block);
2990         return 0;
2991 }
2992
2993 /**
2994  * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2995  * @dev: a parent device of one or more scsi_target devices
2996  * @shost: the Scsi_Host to which this device belongs
2997  *
2998  * Iterate over all children of @dev, which should be scsi_target devices,
2999  * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3000  * ongoing scsi_queue_rq() calls to finish. May sleep.
3001  *
3002  * Note:
3003  * @dev must not itself be a scsi_target device.
3004  */
3005 void
3006 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3007 {
3008         WARN_ON_ONCE(scsi_is_target_device(dev));
3009         device_for_each_child(dev, NULL, target_block);
3010         blk_mq_wait_quiesce_done(&shost->tag_set);
3011 }
3012 EXPORT_SYMBOL_GPL(scsi_block_targets);
3013
3014 static void
3015 device_unblock(struct scsi_device *sdev, void *data)
3016 {
3017         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3018 }
3019
3020 static int
3021 target_unblock(struct device *dev, void *data)
3022 {
3023         if (scsi_is_target_device(dev))
3024                 starget_for_each_device(to_scsi_target(dev), data,
3025                                         device_unblock);
3026         return 0;
3027 }
3028
3029 void
3030 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3031 {
3032         if (scsi_is_target_device(dev))
3033                 starget_for_each_device(to_scsi_target(dev), &new_state,
3034                                         device_unblock);
3035         else
3036                 device_for_each_child(dev, &new_state, target_unblock);
3037 }
3038 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3039
3040 /**
3041  * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3042  * @shost: device to block
3043  *
3044  * Pause SCSI command processing for all logical units associated with the SCSI
3045  * host and wait until pending scsi_queue_rq() calls have finished.
3046  *
3047  * Returns zero if successful or a negative error code upon failure.
3048  */
3049 int
3050 scsi_host_block(struct Scsi_Host *shost)
3051 {
3052         struct scsi_device *sdev;
3053         int ret;
3054
3055         /*
3056          * Call scsi_internal_device_block_nowait so we can avoid
3057          * calling synchronize_rcu() for each LUN.
3058          */
3059         shost_for_each_device(sdev, shost) {
3060                 mutex_lock(&sdev->state_mutex);
3061                 ret = scsi_internal_device_block_nowait(sdev);
3062                 mutex_unlock(&sdev->state_mutex);
3063                 if (ret) {
3064                         scsi_device_put(sdev);
3065                         return ret;
3066                 }
3067         }
3068
3069         /* Wait for ongoing scsi_queue_rq() calls to finish. */
3070         blk_mq_wait_quiesce_done(&shost->tag_set);
3071
3072         return 0;
3073 }
3074 EXPORT_SYMBOL_GPL(scsi_host_block);
3075
3076 int
3077 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3078 {
3079         struct scsi_device *sdev;
3080         int ret = 0;
3081
3082         shost_for_each_device(sdev, shost) {
3083                 ret = scsi_internal_device_unblock(sdev, new_state);
3084                 if (ret) {
3085                         scsi_device_put(sdev);
3086                         break;
3087                 }
3088         }
3089         return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3092
3093 /**
3094  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3095  * @sgl:        scatter-gather list
3096  * @sg_count:   number of segments in sg
3097  * @offset:     offset in bytes into sg, on return offset into the mapped area
3098  * @len:        bytes to map, on return number of bytes mapped
3099  *
3100  * Returns virtual address of the start of the mapped page
3101  */
3102 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3103                           size_t *offset, size_t *len)
3104 {
3105         int i;
3106         size_t sg_len = 0, len_complete = 0;
3107         struct scatterlist *sg;
3108         struct page *page;
3109
3110         WARN_ON(!irqs_disabled());
3111
3112         for_each_sg(sgl, sg, sg_count, i) {
3113                 len_complete = sg_len; /* Complete sg-entries */
3114                 sg_len += sg->length;
3115                 if (sg_len > *offset)
3116                         break;
3117         }
3118
3119         if (unlikely(i == sg_count)) {
3120                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3121                         "elements %d\n",
3122                        __func__, sg_len, *offset, sg_count);
3123                 WARN_ON(1);
3124                 return NULL;
3125         }
3126
3127         /* Offset starting from the beginning of first page in this sg-entry */
3128         *offset = *offset - len_complete + sg->offset;
3129
3130         /* Assumption: contiguous pages can be accessed as "page + i" */
3131         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3132         *offset &= ~PAGE_MASK;
3133
3134         /* Bytes in this sg-entry from *offset to the end of the page */
3135         sg_len = PAGE_SIZE - *offset;
3136         if (*len > sg_len)
3137                 *len = sg_len;
3138
3139         return kmap_atomic(page);
3140 }
3141 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3142
3143 /**
3144  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3145  * @virt:       virtual address to be unmapped
3146  */
3147 void scsi_kunmap_atomic_sg(void *virt)
3148 {
3149         kunmap_atomic(virt);
3150 }
3151 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3152
3153 void sdev_disable_disk_events(struct scsi_device *sdev)
3154 {
3155         atomic_inc(&sdev->disk_events_disable_depth);
3156 }
3157 EXPORT_SYMBOL(sdev_disable_disk_events);
3158
3159 void sdev_enable_disk_events(struct scsi_device *sdev)
3160 {
3161         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3162                 return;
3163         atomic_dec(&sdev->disk_events_disable_depth);
3164 }
3165 EXPORT_SYMBOL(sdev_enable_disk_events);
3166
3167 static unsigned char designator_prio(const unsigned char *d)
3168 {
3169         if (d[1] & 0x30)
3170                 /* not associated with LUN */
3171                 return 0;
3172
3173         if (d[3] == 0)
3174                 /* invalid length */
3175                 return 0;
3176
3177         /*
3178          * Order of preference for lun descriptor:
3179          * - SCSI name string
3180          * - NAA IEEE Registered Extended
3181          * - EUI-64 based 16-byte
3182          * - EUI-64 based 12-byte
3183          * - NAA IEEE Registered
3184          * - NAA IEEE Extended
3185          * - EUI-64 based 8-byte
3186          * - SCSI name string (truncated)
3187          * - T10 Vendor ID
3188          * as longer descriptors reduce the likelyhood
3189          * of identification clashes.
3190          */
3191
3192         switch (d[1] & 0xf) {
3193         case 8:
3194                 /* SCSI name string, variable-length UTF-8 */
3195                 return 9;
3196         case 3:
3197                 switch (d[4] >> 4) {
3198                 case 6:
3199                         /* NAA registered extended */
3200                         return 8;
3201                 case 5:
3202                         /* NAA registered */
3203                         return 5;
3204                 case 4:
3205                         /* NAA extended */
3206                         return 4;
3207                 case 3:
3208                         /* NAA locally assigned */
3209                         return 1;
3210                 default:
3211                         break;
3212                 }
3213                 break;
3214         case 2:
3215                 switch (d[3]) {
3216                 case 16:
3217                         /* EUI64-based, 16 byte */
3218                         return 7;
3219                 case 12:
3220                         /* EUI64-based, 12 byte */
3221                         return 6;
3222                 case 8:
3223                         /* EUI64-based, 8 byte */
3224                         return 3;
3225                 default:
3226                         break;
3227                 }
3228                 break;
3229         case 1:
3230                 /* T10 vendor ID */
3231                 return 1;
3232         default:
3233                 break;
3234         }
3235
3236         return 0;
3237 }
3238
3239 /**
3240  * scsi_vpd_lun_id - return a unique device identification
3241  * @sdev: SCSI device
3242  * @id:   buffer for the identification
3243  * @id_len:  length of the buffer
3244  *
3245  * Copies a unique device identification into @id based
3246  * on the information in the VPD page 0x83 of the device.
3247  * The string will be formatted as a SCSI name string.
3248  *
3249  * Returns the length of the identification or error on failure.
3250  * If the identifier is longer than the supplied buffer the actual
3251  * identifier length is returned and the buffer is not zero-padded.
3252  */
3253 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3254 {
3255         u8 cur_id_prio = 0;
3256         u8 cur_id_size = 0;
3257         const unsigned char *d, *cur_id_str;
3258         const struct scsi_vpd *vpd_pg83;
3259         int id_size = -EINVAL;
3260
3261         rcu_read_lock();
3262         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3263         if (!vpd_pg83) {
3264                 rcu_read_unlock();
3265                 return -ENXIO;
3266         }
3267
3268         /* The id string must be at least 20 bytes + terminating NULL byte */
3269         if (id_len < 21) {
3270                 rcu_read_unlock();
3271                 return -EINVAL;
3272         }
3273
3274         memset(id, 0, id_len);
3275         for (d = vpd_pg83->data + 4;
3276              d < vpd_pg83->data + vpd_pg83->len;
3277              d += d[3] + 4) {
3278                 u8 prio = designator_prio(d);
3279
3280                 if (prio == 0 || cur_id_prio > prio)
3281                         continue;
3282
3283                 switch (d[1] & 0xf) {
3284                 case 0x1:
3285                         /* T10 Vendor ID */
3286                         if (cur_id_size > d[3])
3287                                 break;
3288                         cur_id_prio = prio;
3289                         cur_id_size = d[3];
3290                         if (cur_id_size + 4 > id_len)
3291                                 cur_id_size = id_len - 4;
3292                         cur_id_str = d + 4;
3293                         id_size = snprintf(id, id_len, "t10.%*pE",
3294                                            cur_id_size, cur_id_str);
3295                         break;
3296                 case 0x2:
3297                         /* EUI-64 */
3298                         cur_id_prio = prio;
3299                         cur_id_size = d[3];
3300                         cur_id_str = d + 4;
3301                         switch (cur_id_size) {
3302                         case 8:
3303                                 id_size = snprintf(id, id_len,
3304                                                    "eui.%8phN",
3305                                                    cur_id_str);
3306                                 break;
3307                         case 12:
3308                                 id_size = snprintf(id, id_len,
3309                                                    "eui.%12phN",
3310                                                    cur_id_str);
3311                                 break;
3312                         case 16:
3313                                 id_size = snprintf(id, id_len,
3314                                                    "eui.%16phN",
3315                                                    cur_id_str);
3316                                 break;
3317                         default:
3318                                 break;
3319                         }
3320                         break;
3321                 case 0x3:
3322                         /* NAA */
3323                         cur_id_prio = prio;
3324                         cur_id_size = d[3];
3325                         cur_id_str = d + 4;
3326                         switch (cur_id_size) {
3327                         case 8:
3328                                 id_size = snprintf(id, id_len,
3329                                                    "naa.%8phN",
3330                                                    cur_id_str);
3331                                 break;
3332                         case 16:
3333                                 id_size = snprintf(id, id_len,
3334                                                    "naa.%16phN",
3335                                                    cur_id_str);
3336                                 break;
3337                         default:
3338                                 break;
3339                         }
3340                         break;
3341                 case 0x8:
3342                         /* SCSI name string */
3343                         if (cur_id_size > d[3])
3344                                 break;
3345                         /* Prefer others for truncated descriptor */
3346                         if (d[3] > id_len) {
3347                                 prio = 2;
3348                                 if (cur_id_prio > prio)
3349                                         break;
3350                         }
3351                         cur_id_prio = prio;
3352                         cur_id_size = id_size = d[3];
3353                         cur_id_str = d + 4;
3354                         if (cur_id_size >= id_len)
3355                                 cur_id_size = id_len - 1;
3356                         memcpy(id, cur_id_str, cur_id_size);
3357                         break;
3358                 default:
3359                         break;
3360                 }
3361         }
3362         rcu_read_unlock();
3363
3364         return id_size;
3365 }
3366 EXPORT_SYMBOL(scsi_vpd_lun_id);
3367
3368 /*
3369  * scsi_vpd_tpg_id - return a target port group identifier
3370  * @sdev: SCSI device
3371  *
3372  * Returns the Target Port Group identifier from the information
3373  * froom VPD page 0x83 of the device.
3374  *
3375  * Returns the identifier or error on failure.
3376  */
3377 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3378 {
3379         const unsigned char *d;
3380         const struct scsi_vpd *vpd_pg83;
3381         int group_id = -EAGAIN, rel_port = -1;
3382
3383         rcu_read_lock();
3384         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3385         if (!vpd_pg83) {
3386                 rcu_read_unlock();
3387                 return -ENXIO;
3388         }
3389
3390         d = vpd_pg83->data + 4;
3391         while (d < vpd_pg83->data + vpd_pg83->len) {
3392                 switch (d[1] & 0xf) {
3393                 case 0x4:
3394                         /* Relative target port */
3395                         rel_port = get_unaligned_be16(&d[6]);
3396                         break;
3397                 case 0x5:
3398                         /* Target port group */
3399                         group_id = get_unaligned_be16(&d[6]);
3400                         break;
3401                 default:
3402                         break;
3403                 }
3404                 d += d[3] + 4;
3405         }
3406         rcu_read_unlock();
3407
3408         if (group_id >= 0 && rel_id && rel_port != -1)
3409                 *rel_id = rel_port;
3410
3411         return group_id;
3412 }
3413 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3414
3415 /**
3416  * scsi_build_sense - build sense data for a command
3417  * @scmd:       scsi command for which the sense should be formatted
3418  * @desc:       Sense format (non-zero == descriptor format,
3419  *              0 == fixed format)
3420  * @key:        Sense key
3421  * @asc:        Additional sense code
3422  * @ascq:       Additional sense code qualifier
3423  *
3424  **/
3425 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3426 {
3427         scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3428         scmd->result = SAM_STAT_CHECK_CONDITION;
3429 }
3430 EXPORT_SYMBOL_GPL(scsi_build_sense);
3431
3432 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3433 #include "scsi_lib_test.c"
3434 #endif
This page took 0.238912 seconds and 4 git commands to generate.