]> Git Repo - linux.git/blob - drivers/powercap/dtpm_cpu.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / powercap / dtpm_cpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Linaro Limited
4  *
5  * Author: Daniel Lezcano <[email protected]>
6  *
7  * The DTPM CPU is based on the energy model. It hooks the CPU in the
8  * DTPM tree which in turns update the power number by propagating the
9  * power number from the CPU energy model information to the parents.
10  *
11  * The association between the power and the performance state, allows
12  * to set the power of the CPU at the OPP granularity.
13  *
14  * The CPU hotplug is supported and the power numbers will be updated
15  * if a CPU is hot plugged / unplugged.
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/cpumask.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/dtpm.h>
23 #include <linux/energy_model.h>
24 #include <linux/of.h>
25 #include <linux/pm_qos.h>
26 #include <linux/slab.h>
27
28 struct dtpm_cpu {
29         struct dtpm dtpm;
30         struct freq_qos_request qos_req;
31         int cpu;
32 };
33
34 static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
35
36 static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
37 {
38         return container_of(dtpm, struct dtpm_cpu, dtpm);
39 }
40
41 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
42 {
43         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
44         struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
45         struct em_perf_state *table;
46         unsigned long freq;
47         u64 power;
48         int i, nr_cpus;
49
50         nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(pd->cpus));
51
52         rcu_read_lock();
53         table = em_perf_state_from_pd(pd);
54         for (i = 0; i < pd->nr_perf_states; i++) {
55
56                 power = table[i].power * nr_cpus;
57
58                 if (power > power_limit)
59                         break;
60         }
61
62         freq = table[i - 1].frequency;
63         power_limit = table[i - 1].power * nr_cpus;
64         rcu_read_unlock();
65
66         freq_qos_update_request(&dtpm_cpu->qos_req, freq);
67
68         return power_limit;
69 }
70
71 static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
72 {
73         unsigned long max, sum_util = 0;
74         int cpu;
75
76         /*
77          * The capacity is the same for all CPUs belonging to
78          * the same perf domain.
79          */
80         max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
81
82         for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
83                 sum_util += sched_cpu_util(cpu);
84
85         return (power * ((sum_util << 10) / max)) >> 10;
86 }
87
88 static u64 get_pd_power_uw(struct dtpm *dtpm)
89 {
90         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
91         struct em_perf_state *table;
92         struct em_perf_domain *pd;
93         struct cpumask *pd_mask;
94         unsigned long freq;
95         u64 power = 0;
96         int i;
97
98         pd = em_cpu_get(dtpm_cpu->cpu);
99
100         pd_mask = em_span_cpus(pd);
101
102         freq = cpufreq_quick_get(dtpm_cpu->cpu);
103
104         rcu_read_lock();
105         table = em_perf_state_from_pd(pd);
106         for (i = 0; i < pd->nr_perf_states; i++) {
107
108                 if (table[i].frequency < freq)
109                         continue;
110
111                 power = scale_pd_power_uw(pd_mask, table[i].power);
112                 break;
113         }
114         rcu_read_unlock();
115
116         return power;
117 }
118
119 static int update_pd_power_uw(struct dtpm *dtpm)
120 {
121         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
122         struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
123         struct em_perf_state *table;
124         int nr_cpus;
125
126         nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(em->cpus));
127
128         rcu_read_lock();
129         table = em_perf_state_from_pd(em);
130
131         dtpm->power_min = table[0].power;
132         dtpm->power_min *= nr_cpus;
133
134         dtpm->power_max = table[em->nr_perf_states - 1].power;
135         dtpm->power_max *= nr_cpus;
136
137         rcu_read_unlock();
138
139         return 0;
140 }
141
142 static void pd_release(struct dtpm *dtpm)
143 {
144         struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
145         struct cpufreq_policy *policy;
146
147         if (freq_qos_request_active(&dtpm_cpu->qos_req))
148                 freq_qos_remove_request(&dtpm_cpu->qos_req);
149
150         policy = cpufreq_cpu_get(dtpm_cpu->cpu);
151         if (policy) {
152                 for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
153                         per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
154
155                 cpufreq_cpu_put(policy);
156         }
157
158         kfree(dtpm_cpu);
159 }
160
161 static struct dtpm_ops dtpm_ops = {
162         .set_power_uw    = set_pd_power_limit,
163         .get_power_uw    = get_pd_power_uw,
164         .update_power_uw = update_pd_power_uw,
165         .release         = pd_release,
166 };
167
168 static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
169 {
170         struct dtpm_cpu *dtpm_cpu;
171
172         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
173         if (dtpm_cpu)
174                 dtpm_update_power(&dtpm_cpu->dtpm);
175
176         return 0;
177 }
178
179 static int cpuhp_dtpm_cpu_online(unsigned int cpu)
180 {
181         struct dtpm_cpu *dtpm_cpu;
182
183         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
184         if (dtpm_cpu)
185                 return dtpm_update_power(&dtpm_cpu->dtpm);
186
187         return 0;
188 }
189
190 static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
191 {
192         struct dtpm_cpu *dtpm_cpu;
193         struct cpufreq_policy *policy;
194         struct em_perf_state *table;
195         struct em_perf_domain *pd;
196         char name[CPUFREQ_NAME_LEN];
197         int ret = -ENOMEM;
198
199         dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
200         if (dtpm_cpu)
201                 return 0;
202
203         policy = cpufreq_cpu_get(cpu);
204         if (!policy)
205                 return 0;
206
207         pd = em_cpu_get(cpu);
208         if (!pd || em_is_artificial(pd)) {
209                 ret = -EINVAL;
210                 goto release_policy;
211         }
212
213         dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
214         if (!dtpm_cpu) {
215                 ret = -ENOMEM;
216                 goto release_policy;
217         }
218
219         dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
220         dtpm_cpu->cpu = cpu;
221
222         for_each_cpu(cpu, policy->related_cpus)
223                 per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
224
225         snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
226
227         ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
228         if (ret)
229                 goto out_kfree_dtpm_cpu;
230
231         rcu_read_lock();
232         table = em_perf_state_from_pd(pd);
233         ret = freq_qos_add_request(&policy->constraints,
234                                    &dtpm_cpu->qos_req, FREQ_QOS_MAX,
235                                    table[pd->nr_perf_states - 1].frequency);
236         rcu_read_unlock();
237         if (ret < 0)
238                 goto out_dtpm_unregister;
239
240         cpufreq_cpu_put(policy);
241         return 0;
242
243 out_dtpm_unregister:
244         dtpm_unregister(&dtpm_cpu->dtpm);
245         dtpm_cpu = NULL;
246
247 out_kfree_dtpm_cpu:
248         for_each_cpu(cpu, policy->related_cpus)
249                 per_cpu(dtpm_per_cpu, cpu) = NULL;
250         kfree(dtpm_cpu);
251
252 release_policy:
253         cpufreq_cpu_put(policy);
254         return ret;
255 }
256
257 static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
258 {
259         int cpu;
260
261         cpu = of_cpu_node_to_id(np);
262         if (cpu < 0)
263                 return 0;
264
265         return __dtpm_cpu_setup(cpu, dtpm);
266 }
267
268 static int dtpm_cpu_init(void)
269 {
270         int ret;
271
272         /*
273          * The callbacks at CPU hotplug time are calling
274          * dtpm_update_power() which in turns calls update_pd_power().
275          *
276          * The function update_pd_power() uses the online mask to
277          * figure out the power consumption limits.
278          *
279          * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
280          * online mask when the cpuhp_dtpm_cpu_online function is
281          * called, but the CPU is still in the online mask for the
282          * tear down callback. So the power can not be updated when
283          * the CPU is unplugged.
284          *
285          * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
286          * above. The CPU online mask is not up to date when the CPU
287          * is plugged in.
288          *
289          * For this reason, we need to call the online and offline
290          * callbacks at different moments when the CPU online mask is
291          * consistent with the power numbers we want to update.
292          */
293         ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
294                                 NULL, cpuhp_dtpm_cpu_offline);
295         if (ret < 0)
296                 return ret;
297
298         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
299                                 cpuhp_dtpm_cpu_online, NULL);
300         if (ret < 0)
301                 return ret;
302
303         return 0;
304 }
305
306 static void dtpm_cpu_exit(void)
307 {
308         cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
309         cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
310 }
311
312 struct dtpm_subsys_ops dtpm_cpu_ops = {
313         .name = KBUILD_MODNAME,
314         .init = dtpm_cpu_init,
315         .exit = dtpm_cpu_exit,
316         .setup = dtpm_cpu_setup,
317 };
This page took 0.049806 seconds and 4 git commands to generate.