1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
8 * This file is released under the GPL.
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
44 #include <linux/device-mapper.h>
48 #define DM_MSG_PREFIX "crypt"
50 static DEFINE_IDA(workqueue_ida);
53 * context holding the current state of a multi-part conversion
55 struct convert_context {
56 struct completion restart;
58 struct bvec_iter iter_in;
60 struct bvec_iter iter_out;
64 struct skcipher_request *req;
65 struct aead_request *req_aead;
73 * per bio private data
76 struct crypt_config *cc;
78 u8 *integrity_metadata;
79 bool integrity_metadata_from_pool:1;
81 struct work_struct work;
83 struct convert_context ctx;
89 struct bvec_iter saved_bi_iter;
91 struct rb_node rb_node;
92 } CRYPTO_MINALIGN_ATTR;
94 struct dm_crypt_request {
95 struct convert_context *ctx;
96 struct scatterlist sg_in[4];
97 struct scatterlist sg_out[4];
103 struct crypt_iv_operations {
104 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
106 void (*dtr)(struct crypt_config *cc);
107 int (*init)(struct crypt_config *cc);
108 int (*wipe)(struct crypt_config *cc);
109 int (*generator)(struct crypt_config *cc, u8 *iv,
110 struct dm_crypt_request *dmreq);
111 int (*post)(struct crypt_config *cc, u8 *iv,
112 struct dm_crypt_request *dmreq);
115 struct iv_benbi_private {
119 #define LMK_SEED_SIZE 64 /* hash + 0 */
120 struct iv_lmk_private {
121 struct crypto_shash *hash_tfm;
125 #define TCW_WHITENING_SIZE 16
126 struct iv_tcw_private {
127 struct crypto_shash *crc32_tfm;
132 #define ELEPHANT_MAX_KEY_SIZE 32
133 struct iv_elephant_private {
134 struct crypto_skcipher *tfm;
138 * Crypt: maps a linear range of a block device
139 * and encrypts / decrypts at the same time.
141 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
142 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
143 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
144 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
147 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
148 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
149 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
153 * The fields in here must be read only after initialization.
155 struct crypt_config {
159 struct percpu_counter n_allocated_pages;
161 struct workqueue_struct *io_queue;
162 struct workqueue_struct *crypt_queue;
164 spinlock_t write_thread_lock;
165 struct task_struct *write_thread;
166 struct rb_root write_tree;
172 const struct crypt_iv_operations *iv_gen_ops;
174 struct iv_benbi_private benbi;
175 struct iv_lmk_private lmk;
176 struct iv_tcw_private tcw;
177 struct iv_elephant_private elephant;
180 unsigned int iv_size;
181 unsigned short sector_size;
182 unsigned char sector_shift;
185 struct crypto_skcipher **tfms;
186 struct crypto_aead **tfms_aead;
188 unsigned int tfms_count;
190 unsigned long cipher_flags;
193 * Layout of each crypto request:
195 * struct skcipher_request
198 * struct dm_crypt_request
202 * The padding is added so that dm_crypt_request and the IV are
205 unsigned int dmreq_start;
207 unsigned int per_bio_data_size;
210 unsigned int key_size;
211 unsigned int key_parts; /* independent parts in key buffer */
212 unsigned int key_extra_size; /* additional keys length */
213 unsigned int key_mac_size; /* MAC key size for authenc(...) */
215 unsigned int integrity_tag_size;
216 unsigned int integrity_iv_size;
217 unsigned int on_disk_tag_size;
220 * pool for per bio private data, crypto requests,
221 * encryption requeusts/buffer pages and integrity tags
223 unsigned int tag_pool_max_sectors;
229 struct mutex bio_alloc_lock;
231 u8 *authenc_key; /* space for keys in authenc() format (if used) */
232 u8 key[] __counted_by(key_size);
236 #define MAX_TAG_SIZE 480
237 #define POOL_ENTRY_SIZE 512
239 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
240 static unsigned int dm_crypt_clients_n;
241 static volatile unsigned long dm_crypt_pages_per_client;
242 #define DM_CRYPT_MEMORY_PERCENT 2
243 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
245 static void crypt_endio(struct bio *clone);
246 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
247 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
248 struct scatterlist *sg);
250 static bool crypt_integrity_aead(struct crypt_config *cc);
253 * Use this to access cipher attributes that are independent of the key.
255 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
257 return cc->cipher_tfm.tfms[0];
260 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
262 return cc->cipher_tfm.tfms_aead[0];
266 * Different IV generation algorithms:
268 * plain: the initial vector is the 32-bit little-endian version of the sector
269 * number, padded with zeros if necessary.
271 * plain64: the initial vector is the 64-bit little-endian version of the sector
272 * number, padded with zeros if necessary.
274 * plain64be: the initial vector is the 64-bit big-endian version of the sector
275 * number, padded with zeros if necessary.
277 * essiv: "encrypted sector|salt initial vector", the sector number is
278 * encrypted with the bulk cipher using a salt as key. The salt
279 * should be derived from the bulk cipher's key via hashing.
281 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
282 * (needed for LRW-32-AES and possible other narrow block modes)
284 * null: the initial vector is always zero. Provides compatibility with
285 * obsolete loop_fish2 devices. Do not use for new devices.
287 * lmk: Compatible implementation of the block chaining mode used
288 * by the Loop-AES block device encryption system
289 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
290 * It operates on full 512 byte sectors and uses CBC
291 * with an IV derived from the sector number, the data and
292 * optionally extra IV seed.
293 * This means that after decryption the first block
294 * of sector must be tweaked according to decrypted data.
295 * Loop-AES can use three encryption schemes:
296 * version 1: is plain aes-cbc mode
297 * version 2: uses 64 multikey scheme with lmk IV generator
298 * version 3: the same as version 2 with additional IV seed
299 * (it uses 65 keys, last key is used as IV seed)
301 * tcw: Compatible implementation of the block chaining mode used
302 * by the TrueCrypt device encryption system (prior to version 4.1).
303 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
304 * It operates on full 512 byte sectors and uses CBC
305 * with an IV derived from initial key and the sector number.
306 * In addition, whitening value is applied on every sector, whitening
307 * is calculated from initial key, sector number and mixed using CRC32.
308 * Note that this encryption scheme is vulnerable to watermarking attacks
309 * and should be used for old compatible containers access only.
311 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
312 * The IV is encrypted little-endian byte-offset (with the same key
313 * and cipher as the volume).
315 * elephant: The extended version of eboiv with additional Elephant diffuser
316 * used with Bitlocker CBC mode.
317 * This mode was used in older Windows systems
318 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
321 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
322 struct dm_crypt_request *dmreq)
324 memset(iv, 0, cc->iv_size);
325 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
330 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
331 struct dm_crypt_request *dmreq)
333 memset(iv, 0, cc->iv_size);
334 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
339 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
340 struct dm_crypt_request *dmreq)
342 memset(iv, 0, cc->iv_size);
343 /* iv_size is at least of size u64; usually it is 16 bytes */
344 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
349 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
350 struct dm_crypt_request *dmreq)
353 * ESSIV encryption of the IV is now handled by the crypto API,
354 * so just pass the plain sector number here.
356 memset(iv, 0, cc->iv_size);
357 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
362 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
368 if (crypt_integrity_aead(cc))
369 bs = crypto_aead_blocksize(any_tfm_aead(cc));
371 bs = crypto_skcipher_blocksize(any_tfm(cc));
375 * We need to calculate how far we must shift the sector count
376 * to get the cipher block count, we use this shift in _gen.
378 if (1 << log != bs) {
379 ti->error = "cypher blocksize is not a power of 2";
384 ti->error = "cypher blocksize is > 512";
388 cc->iv_gen_private.benbi.shift = 9 - log;
393 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
397 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
398 struct dm_crypt_request *dmreq)
402 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
404 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
405 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
410 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
411 struct dm_crypt_request *dmreq)
413 memset(iv, 0, cc->iv_size);
418 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
420 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
422 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
423 crypto_free_shash(lmk->hash_tfm);
424 lmk->hash_tfm = NULL;
426 kfree_sensitive(lmk->seed);
430 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
433 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
435 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
436 ti->error = "Unsupported sector size for LMK";
440 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
441 CRYPTO_ALG_ALLOCATES_MEMORY);
442 if (IS_ERR(lmk->hash_tfm)) {
443 ti->error = "Error initializing LMK hash";
444 return PTR_ERR(lmk->hash_tfm);
447 /* No seed in LMK version 2 */
448 if (cc->key_parts == cc->tfms_count) {
453 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
455 crypt_iv_lmk_dtr(cc);
456 ti->error = "Error kmallocing seed storage in LMK";
463 static int crypt_iv_lmk_init(struct crypt_config *cc)
465 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
466 int subkey_size = cc->key_size / cc->key_parts;
468 /* LMK seed is on the position of LMK_KEYS + 1 key */
470 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
471 crypto_shash_digestsize(lmk->hash_tfm));
476 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
478 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
481 memset(lmk->seed, 0, LMK_SEED_SIZE);
486 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
487 struct dm_crypt_request *dmreq,
490 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
491 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
492 struct md5_state md5state;
496 desc->tfm = lmk->hash_tfm;
498 r = crypto_shash_init(desc);
503 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
508 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
509 r = crypto_shash_update(desc, data + 16, 16 * 31);
513 /* Sector is cropped to 56 bits here */
514 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
515 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
516 buf[2] = cpu_to_le32(4024);
518 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
522 /* No MD5 padding here */
523 r = crypto_shash_export(desc, &md5state);
527 for (i = 0; i < MD5_HASH_WORDS; i++)
528 __cpu_to_le32s(&md5state.hash[i]);
529 memcpy(iv, &md5state.hash, cc->iv_size);
534 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
535 struct dm_crypt_request *dmreq)
537 struct scatterlist *sg;
541 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
542 sg = crypt_get_sg_data(cc, dmreq->sg_in);
543 src = kmap_local_page(sg_page(sg));
544 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
547 memset(iv, 0, cc->iv_size);
552 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
553 struct dm_crypt_request *dmreq)
555 struct scatterlist *sg;
559 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
562 sg = crypt_get_sg_data(cc, dmreq->sg_out);
563 dst = kmap_local_page(sg_page(sg));
564 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
566 /* Tweak the first block of plaintext sector */
568 crypto_xor(dst + sg->offset, iv, cc->iv_size);
574 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
576 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
578 kfree_sensitive(tcw->iv_seed);
580 kfree_sensitive(tcw->whitening);
581 tcw->whitening = NULL;
583 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
584 crypto_free_shash(tcw->crc32_tfm);
585 tcw->crc32_tfm = NULL;
588 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
591 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
593 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
594 ti->error = "Unsupported sector size for TCW";
598 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
599 ti->error = "Wrong key size for TCW";
603 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
604 CRYPTO_ALG_ALLOCATES_MEMORY);
605 if (IS_ERR(tcw->crc32_tfm)) {
606 ti->error = "Error initializing CRC32 in TCW";
607 return PTR_ERR(tcw->crc32_tfm);
610 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
611 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
612 if (!tcw->iv_seed || !tcw->whitening) {
613 crypt_iv_tcw_dtr(cc);
614 ti->error = "Error allocating seed storage in TCW";
621 static int crypt_iv_tcw_init(struct crypt_config *cc)
623 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
624 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
626 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
627 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
633 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
635 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
637 memset(tcw->iv_seed, 0, cc->iv_size);
638 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
643 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
644 struct dm_crypt_request *dmreq,
647 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
648 __le64 sector = cpu_to_le64(dmreq->iv_sector);
649 u8 buf[TCW_WHITENING_SIZE];
650 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
653 /* xor whitening with sector number */
654 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
655 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
657 /* calculate crc32 for every 32bit part and xor it */
658 desc->tfm = tcw->crc32_tfm;
659 for (i = 0; i < 4; i++) {
660 r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
664 crypto_xor(&buf[0], &buf[12], 4);
665 crypto_xor(&buf[4], &buf[8], 4);
667 /* apply whitening (8 bytes) to whole sector */
668 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
669 crypto_xor(data + i * 8, buf, 8);
671 memzero_explicit(buf, sizeof(buf));
675 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
676 struct dm_crypt_request *dmreq)
678 struct scatterlist *sg;
679 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
680 __le64 sector = cpu_to_le64(dmreq->iv_sector);
684 /* Remove whitening from ciphertext */
685 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
686 sg = crypt_get_sg_data(cc, dmreq->sg_in);
687 src = kmap_local_page(sg_page(sg));
688 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
693 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
695 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
701 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
702 struct dm_crypt_request *dmreq)
704 struct scatterlist *sg;
708 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
711 /* Apply whitening on ciphertext */
712 sg = crypt_get_sg_data(cc, dmreq->sg_out);
713 dst = kmap_local_page(sg_page(sg));
714 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
720 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
721 struct dm_crypt_request *dmreq)
723 /* Used only for writes, there must be an additional space to store IV */
724 get_random_bytes(iv, cc->iv_size);
728 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
731 if (crypt_integrity_aead(cc)) {
732 ti->error = "AEAD transforms not supported for EBOIV";
736 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
737 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
744 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
745 struct dm_crypt_request *dmreq)
747 struct crypto_skcipher *tfm = any_tfm(cc);
748 struct skcipher_request *req;
749 struct scatterlist src, dst;
750 DECLARE_CRYPTO_WAIT(wait);
751 unsigned int reqsize;
755 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
756 reqsize = ALIGN(reqsize, __alignof__(__le64));
758 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
762 skcipher_request_set_tfm(req, tfm);
764 buf = (u8 *)req + reqsize;
765 memset(buf, 0, cc->iv_size);
766 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
768 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
769 sg_init_one(&dst, iv, cc->iv_size);
770 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
771 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
772 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
773 kfree_sensitive(req);
778 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
780 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
782 crypto_free_skcipher(elephant->tfm);
783 elephant->tfm = NULL;
786 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
789 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
792 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
793 CRYPTO_ALG_ALLOCATES_MEMORY);
794 if (IS_ERR(elephant->tfm)) {
795 r = PTR_ERR(elephant->tfm);
796 elephant->tfm = NULL;
800 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
802 crypt_iv_elephant_dtr(cc);
806 static void diffuser_disk_to_cpu(u32 *d, size_t n)
808 #ifndef __LITTLE_ENDIAN
811 for (i = 0; i < n; i++)
812 d[i] = le32_to_cpu((__le32)d[i]);
816 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
818 #ifndef __LITTLE_ENDIAN
821 for (i = 0; i < n; i++)
822 d[i] = cpu_to_le32((u32)d[i]);
826 static void diffuser_a_decrypt(u32 *d, size_t n)
830 for (i = 0; i < 5; i++) {
835 while (i1 < (n - 1)) {
836 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
842 d[i1] += d[i2] ^ d[i3];
848 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
851 d[i1] += d[i2] ^ d[i3];
857 static void diffuser_a_encrypt(u32 *d, size_t n)
861 for (i = 0; i < 5; i++) {
867 d[i1] -= d[i2] ^ d[i3];
870 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
876 d[i1] -= d[i2] ^ d[i3];
882 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
888 static void diffuser_b_decrypt(u32 *d, size_t n)
892 for (i = 0; i < 3; i++) {
897 while (i1 < (n - 1)) {
898 d[i1] += d[i2] ^ d[i3];
901 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
907 d[i1] += d[i2] ^ d[i3];
913 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
919 static void diffuser_b_encrypt(u32 *d, size_t n)
923 for (i = 0; i < 3; i++) {
929 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
935 d[i1] -= d[i2] ^ d[i3];
941 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
944 d[i1] -= d[i2] ^ d[i3];
950 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
952 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
953 u8 *es, *ks, *data, *data2, *data_offset;
954 struct skcipher_request *req;
955 struct scatterlist *sg, *sg2, src, dst;
956 DECLARE_CRYPTO_WAIT(wait);
959 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
960 es = kzalloc(16, GFP_NOIO); /* Key for AES */
961 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
963 if (!req || !es || !ks) {
968 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
971 sg_init_one(&src, es, 16);
972 sg_init_one(&dst, ks, 16);
973 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
974 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
975 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
981 sg_init_one(&dst, &ks[16], 16);
982 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
986 sg = crypt_get_sg_data(cc, dmreq->sg_out);
987 data = kmap_local_page(sg_page(sg));
988 data_offset = data + sg->offset;
990 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
991 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
992 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
993 data2 = kmap_local_page(sg_page(sg2));
994 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
998 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
999 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1000 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1001 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1002 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1005 for (i = 0; i < (cc->sector_size / 32); i++)
1006 crypto_xor(data_offset + i * 32, ks, 32);
1008 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1009 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1010 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1011 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1012 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1017 kfree_sensitive(ks);
1018 kfree_sensitive(es);
1019 skcipher_request_free(req);
1023 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1024 struct dm_crypt_request *dmreq)
1028 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1029 r = crypt_iv_elephant(cc, dmreq);
1034 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1037 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1038 struct dm_crypt_request *dmreq)
1040 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1041 return crypt_iv_elephant(cc, dmreq);
1046 static int crypt_iv_elephant_init(struct crypt_config *cc)
1048 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1049 int key_offset = cc->key_size - cc->key_extra_size;
1051 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1054 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1056 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1057 u8 key[ELEPHANT_MAX_KEY_SIZE];
1059 memset(key, 0, cc->key_extra_size);
1060 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1063 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1064 .generator = crypt_iv_plain_gen
1067 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1068 .generator = crypt_iv_plain64_gen
1071 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1072 .generator = crypt_iv_plain64be_gen
1075 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1076 .generator = crypt_iv_essiv_gen
1079 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1080 .ctr = crypt_iv_benbi_ctr,
1081 .dtr = crypt_iv_benbi_dtr,
1082 .generator = crypt_iv_benbi_gen
1085 static const struct crypt_iv_operations crypt_iv_null_ops = {
1086 .generator = crypt_iv_null_gen
1089 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1090 .ctr = crypt_iv_lmk_ctr,
1091 .dtr = crypt_iv_lmk_dtr,
1092 .init = crypt_iv_lmk_init,
1093 .wipe = crypt_iv_lmk_wipe,
1094 .generator = crypt_iv_lmk_gen,
1095 .post = crypt_iv_lmk_post
1098 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1099 .ctr = crypt_iv_tcw_ctr,
1100 .dtr = crypt_iv_tcw_dtr,
1101 .init = crypt_iv_tcw_init,
1102 .wipe = crypt_iv_tcw_wipe,
1103 .generator = crypt_iv_tcw_gen,
1104 .post = crypt_iv_tcw_post
1107 static const struct crypt_iv_operations crypt_iv_random_ops = {
1108 .generator = crypt_iv_random_gen
1111 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1112 .ctr = crypt_iv_eboiv_ctr,
1113 .generator = crypt_iv_eboiv_gen
1116 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1117 .ctr = crypt_iv_elephant_ctr,
1118 .dtr = crypt_iv_elephant_dtr,
1119 .init = crypt_iv_elephant_init,
1120 .wipe = crypt_iv_elephant_wipe,
1121 .generator = crypt_iv_elephant_gen,
1122 .post = crypt_iv_elephant_post
1126 * Integrity extensions
1128 static bool crypt_integrity_aead(struct crypt_config *cc)
1130 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1133 static bool crypt_integrity_hmac(struct crypt_config *cc)
1135 return crypt_integrity_aead(cc) && cc->key_mac_size;
1138 /* Get sg containing data */
1139 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1140 struct scatterlist *sg)
1142 if (unlikely(crypt_integrity_aead(cc)))
1148 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1150 struct bio_integrity_payload *bip;
1151 unsigned int tag_len;
1154 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1157 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1159 return PTR_ERR(bip);
1161 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1163 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1165 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1166 tag_len, offset_in_page(io->integrity_metadata));
1167 if (unlikely(ret != tag_len))
1173 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1175 #ifdef CONFIG_BLK_DEV_INTEGRITY
1176 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1177 struct mapped_device *md = dm_table_get_md(ti->table);
1179 /* From now we require underlying device with our integrity profile */
1180 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1181 ti->error = "Integrity profile not supported.";
1185 if (bi->tag_size != cc->on_disk_tag_size ||
1186 bi->tuple_size != cc->on_disk_tag_size) {
1187 ti->error = "Integrity profile tag size mismatch.";
1190 if (1 << bi->interval_exp != cc->sector_size) {
1191 ti->error = "Integrity profile sector size mismatch.";
1195 if (crypt_integrity_aead(cc)) {
1196 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1197 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1198 cc->integrity_tag_size, cc->integrity_iv_size);
1200 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1201 ti->error = "Integrity AEAD auth tag size is not supported.";
1204 } else if (cc->integrity_iv_size)
1205 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1206 cc->integrity_iv_size);
1208 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1209 ti->error = "Not enough space for integrity tag in the profile.";
1215 ti->error = "Integrity profile not supported.";
1220 static void crypt_convert_init(struct crypt_config *cc,
1221 struct convert_context *ctx,
1222 struct bio *bio_out, struct bio *bio_in,
1225 ctx->bio_in = bio_in;
1226 ctx->bio_out = bio_out;
1228 ctx->iter_in = bio_in->bi_iter;
1230 ctx->iter_out = bio_out->bi_iter;
1231 ctx->cc_sector = sector + cc->iv_offset;
1232 init_completion(&ctx->restart);
1235 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1238 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1241 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1243 return (void *)((char *)dmreq - cc->dmreq_start);
1246 static u8 *iv_of_dmreq(struct crypt_config *cc,
1247 struct dm_crypt_request *dmreq)
1249 if (crypt_integrity_aead(cc))
1250 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1253 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1254 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1257 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1258 struct dm_crypt_request *dmreq)
1260 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1263 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1264 struct dm_crypt_request *dmreq)
1266 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1268 return (__le64 *) ptr;
1271 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1272 struct dm_crypt_request *dmreq)
1274 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1275 cc->iv_size + sizeof(uint64_t);
1277 return (unsigned int *)ptr;
1280 static void *tag_from_dmreq(struct crypt_config *cc,
1281 struct dm_crypt_request *dmreq)
1283 struct convert_context *ctx = dmreq->ctx;
1284 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1286 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1287 cc->on_disk_tag_size];
1290 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1291 struct dm_crypt_request *dmreq)
1293 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1296 static int crypt_convert_block_aead(struct crypt_config *cc,
1297 struct convert_context *ctx,
1298 struct aead_request *req,
1299 unsigned int tag_offset)
1301 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1302 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1303 struct dm_crypt_request *dmreq;
1304 u8 *iv, *org_iv, *tag_iv, *tag;
1308 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1310 /* Reject unexpected unaligned bio. */
1311 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1314 dmreq = dmreq_of_req(cc, req);
1315 dmreq->iv_sector = ctx->cc_sector;
1316 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1317 dmreq->iv_sector >>= cc->sector_shift;
1320 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1322 sector = org_sector_of_dmreq(cc, dmreq);
1323 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1325 iv = iv_of_dmreq(cc, dmreq);
1326 org_iv = org_iv_of_dmreq(cc, dmreq);
1327 tag = tag_from_dmreq(cc, dmreq);
1328 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1331 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1332 * | (authenticated) | (auth+encryption) | |
1333 * | sector_LE | IV | sector in/out | tag in/out |
1335 sg_init_table(dmreq->sg_in, 4);
1336 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1337 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1338 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1339 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1341 sg_init_table(dmreq->sg_out, 4);
1342 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1343 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1344 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1345 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1347 if (cc->iv_gen_ops) {
1348 /* For READs use IV stored in integrity metadata */
1349 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1350 memcpy(org_iv, tag_iv, cc->iv_size);
1352 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1355 /* Store generated IV in integrity metadata */
1356 if (cc->integrity_iv_size)
1357 memcpy(tag_iv, org_iv, cc->iv_size);
1359 /* Working copy of IV, to be modified in crypto API */
1360 memcpy(iv, org_iv, cc->iv_size);
1363 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1364 if (bio_data_dir(ctx->bio_in) == WRITE) {
1365 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1366 cc->sector_size, iv);
1367 r = crypto_aead_encrypt(req);
1368 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1369 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1370 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1372 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1373 cc->sector_size + cc->integrity_tag_size, iv);
1374 r = crypto_aead_decrypt(req);
1377 if (r == -EBADMSG) {
1378 sector_t s = le64_to_cpu(*sector);
1380 ctx->aead_failed = true;
1381 if (ctx->aead_recheck) {
1382 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1383 ctx->bio_in->bi_bdev, s);
1384 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1389 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1390 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1392 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1393 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1398 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1399 struct convert_context *ctx,
1400 struct skcipher_request *req,
1401 unsigned int tag_offset)
1403 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1404 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1405 struct scatterlist *sg_in, *sg_out;
1406 struct dm_crypt_request *dmreq;
1407 u8 *iv, *org_iv, *tag_iv;
1411 /* Reject unexpected unaligned bio. */
1412 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1415 dmreq = dmreq_of_req(cc, req);
1416 dmreq->iv_sector = ctx->cc_sector;
1417 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1418 dmreq->iv_sector >>= cc->sector_shift;
1421 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1423 iv = iv_of_dmreq(cc, dmreq);
1424 org_iv = org_iv_of_dmreq(cc, dmreq);
1425 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1427 sector = org_sector_of_dmreq(cc, dmreq);
1428 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1430 /* For skcipher we use only the first sg item */
1431 sg_in = &dmreq->sg_in[0];
1432 sg_out = &dmreq->sg_out[0];
1434 sg_init_table(sg_in, 1);
1435 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1437 sg_init_table(sg_out, 1);
1438 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1440 if (cc->iv_gen_ops) {
1441 /* For READs use IV stored in integrity metadata */
1442 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1443 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1445 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1448 /* Data can be already preprocessed in generator */
1449 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1451 /* Store generated IV in integrity metadata */
1452 if (cc->integrity_iv_size)
1453 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1455 /* Working copy of IV, to be modified in crypto API */
1456 memcpy(iv, org_iv, cc->iv_size);
1459 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1461 if (bio_data_dir(ctx->bio_in) == WRITE)
1462 r = crypto_skcipher_encrypt(req);
1464 r = crypto_skcipher_decrypt(req);
1466 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1467 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1469 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1470 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1475 static void kcryptd_async_done(void *async_req, int error);
1477 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1478 struct convert_context *ctx)
1480 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1483 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1488 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1491 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1492 * requests if driver request queue is full.
1494 skcipher_request_set_callback(ctx->r.req,
1495 CRYPTO_TFM_REQ_MAY_BACKLOG,
1496 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1501 static int crypt_alloc_req_aead(struct crypt_config *cc,
1502 struct convert_context *ctx)
1504 if (!ctx->r.req_aead) {
1505 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1506 if (!ctx->r.req_aead)
1510 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1513 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1514 * requests if driver request queue is full.
1516 aead_request_set_callback(ctx->r.req_aead,
1517 CRYPTO_TFM_REQ_MAY_BACKLOG,
1518 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1523 static int crypt_alloc_req(struct crypt_config *cc,
1524 struct convert_context *ctx)
1526 if (crypt_integrity_aead(cc))
1527 return crypt_alloc_req_aead(cc, ctx);
1529 return crypt_alloc_req_skcipher(cc, ctx);
1532 static void crypt_free_req_skcipher(struct crypt_config *cc,
1533 struct skcipher_request *req, struct bio *base_bio)
1535 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1537 if ((struct skcipher_request *)(io + 1) != req)
1538 mempool_free(req, &cc->req_pool);
1541 static void crypt_free_req_aead(struct crypt_config *cc,
1542 struct aead_request *req, struct bio *base_bio)
1544 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1546 if ((struct aead_request *)(io + 1) != req)
1547 mempool_free(req, &cc->req_pool);
1550 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1552 if (crypt_integrity_aead(cc))
1553 crypt_free_req_aead(cc, req, base_bio);
1555 crypt_free_req_skcipher(cc, req, base_bio);
1559 * Encrypt / decrypt data from one bio to another one (can be the same one)
1561 static blk_status_t crypt_convert(struct crypt_config *cc,
1562 struct convert_context *ctx, bool atomic, bool reset_pending)
1564 unsigned int tag_offset = 0;
1565 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1569 * if reset_pending is set we are dealing with the bio for the first time,
1570 * else we're continuing to work on the previous bio, so don't mess with
1571 * the cc_pending counter
1574 atomic_set(&ctx->cc_pending, 1);
1576 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1578 r = crypt_alloc_req(cc, ctx);
1580 complete(&ctx->restart);
1581 return BLK_STS_DEV_RESOURCE;
1584 atomic_inc(&ctx->cc_pending);
1586 if (crypt_integrity_aead(cc))
1587 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1589 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1593 * The request was queued by a crypto driver
1594 * but the driver request queue is full, let's wait.
1597 if (in_interrupt()) {
1598 if (try_wait_for_completion(&ctx->restart)) {
1600 * we don't have to block to wait for completion,
1605 * we can't wait for completion without blocking
1606 * exit and continue processing in a workqueue
1609 ctx->cc_sector += sector_step;
1611 return BLK_STS_DEV_RESOURCE;
1614 wait_for_completion(&ctx->restart);
1616 reinit_completion(&ctx->restart);
1619 * The request is queued and processed asynchronously,
1620 * completion function kcryptd_async_done() will be called.
1624 ctx->cc_sector += sector_step;
1628 * The request was already processed (synchronously).
1631 atomic_dec(&ctx->cc_pending);
1632 ctx->cc_sector += sector_step;
1638 * There was a data integrity error.
1641 atomic_dec(&ctx->cc_pending);
1642 return BLK_STS_PROTECTION;
1644 * There was an error while processing the request.
1647 atomic_dec(&ctx->cc_pending);
1648 return BLK_STS_IOERR;
1655 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1658 * Generate a new unfragmented bio with the given size
1659 * This should never violate the device limitations (but if it did then block
1660 * core should split the bio as needed).
1662 * This function may be called concurrently. If we allocate from the mempool
1663 * concurrently, there is a possibility of deadlock. For example, if we have
1664 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1665 * the mempool concurrently, it may deadlock in a situation where both processes
1666 * have allocated 128 pages and the mempool is exhausted.
1668 * In order to avoid this scenario we allocate the pages under a mutex.
1670 * In order to not degrade performance with excessive locking, we try
1671 * non-blocking allocations without a mutex first but on failure we fallback
1672 * to blocking allocations with a mutex.
1674 * In order to reduce allocation overhead, we try to allocate compound pages in
1675 * the first pass. If they are not available, we fall back to the mempool.
1677 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1679 struct crypt_config *cc = io->cc;
1681 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1682 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1683 unsigned int remaining_size;
1684 unsigned int order = MAX_PAGE_ORDER;
1687 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1688 mutex_lock(&cc->bio_alloc_lock);
1690 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1692 clone->bi_private = io;
1693 clone->bi_end_io = crypt_endio;
1694 clone->bi_ioprio = io->base_bio->bi_ioprio;
1696 remaining_size = size;
1698 while (remaining_size) {
1700 unsigned size_to_add;
1701 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1702 order = min(order, remaining_order);
1705 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1706 (1 << order) > dm_crypt_pages_per_client))
1707 goto decrease_order;
1708 pages = alloc_pages(gfp_mask
1709 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1711 if (likely(pages != NULL)) {
1712 percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1719 pages = mempool_alloc(&cc->page_pool, gfp_mask);
1721 crypt_free_buffer_pages(cc, clone);
1723 gfp_mask |= __GFP_DIRECT_RECLAIM;
1729 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1730 __bio_add_page(clone, pages, size_to_add, 0);
1731 remaining_size -= size_to_add;
1734 /* Allocate space for integrity tags */
1735 if (dm_crypt_integrity_io_alloc(io, clone)) {
1736 crypt_free_buffer_pages(cc, clone);
1741 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1742 mutex_unlock(&cc->bio_alloc_lock);
1747 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1749 struct folio_iter fi;
1751 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1752 bio_for_each_folio_all(fi, clone) {
1753 if (folio_test_large(fi.folio)) {
1754 percpu_counter_sub(&cc->n_allocated_pages,
1755 1 << folio_order(fi.folio));
1756 folio_put(fi.folio);
1758 mempool_free(&fi.folio->page, &cc->page_pool);
1764 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1765 struct bio *bio, sector_t sector)
1769 io->sector = sector;
1771 io->ctx.aead_recheck = false;
1772 io->ctx.aead_failed = false;
1773 io->ctx.r.req = NULL;
1774 io->integrity_metadata = NULL;
1775 io->integrity_metadata_from_pool = false;
1776 atomic_set(&io->io_pending, 0);
1779 static void crypt_inc_pending(struct dm_crypt_io *io)
1781 atomic_inc(&io->io_pending);
1784 static void kcryptd_queue_read(struct dm_crypt_io *io);
1787 * One of the bios was finished. Check for completion of
1788 * the whole request and correctly clean up the buffer.
1790 static void crypt_dec_pending(struct dm_crypt_io *io)
1792 struct crypt_config *cc = io->cc;
1793 struct bio *base_bio = io->base_bio;
1794 blk_status_t error = io->error;
1796 if (!atomic_dec_and_test(&io->io_pending))
1799 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1800 cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1801 io->ctx.aead_recheck = true;
1802 io->ctx.aead_failed = false;
1804 kcryptd_queue_read(io);
1809 crypt_free_req(cc, io->ctx.r.req, base_bio);
1811 if (unlikely(io->integrity_metadata_from_pool))
1812 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1814 kfree(io->integrity_metadata);
1816 base_bio->bi_status = error;
1818 bio_endio(base_bio);
1822 * kcryptd/kcryptd_io:
1824 * Needed because it would be very unwise to do decryption in an
1825 * interrupt context.
1827 * kcryptd performs the actual encryption or decryption.
1829 * kcryptd_io performs the IO submission.
1831 * They must be separated as otherwise the final stages could be
1832 * starved by new requests which can block in the first stages due
1833 * to memory allocation.
1835 * The work is done per CPU global for all dm-crypt instances.
1836 * They should not depend on each other and do not block.
1838 static void crypt_endio(struct bio *clone)
1840 struct dm_crypt_io *io = clone->bi_private;
1841 struct crypt_config *cc = io->cc;
1842 unsigned int rw = bio_data_dir(clone);
1843 blk_status_t error = clone->bi_status;
1845 if (io->ctx.aead_recheck && !error) {
1846 kcryptd_queue_crypt(io);
1851 * free the processed pages
1853 if (rw == WRITE || io->ctx.aead_recheck)
1854 crypt_free_buffer_pages(cc, clone);
1858 if (rw == READ && !error) {
1859 kcryptd_queue_crypt(io);
1863 if (unlikely(error))
1866 crypt_dec_pending(io);
1869 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1871 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1873 struct crypt_config *cc = io->cc;
1876 if (io->ctx.aead_recheck) {
1877 if (!(gfp & __GFP_DIRECT_RECLAIM))
1879 crypt_inc_pending(io);
1880 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1881 if (unlikely(!clone)) {
1882 crypt_dec_pending(io);
1885 clone->bi_iter.bi_sector = cc->start + io->sector;
1886 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1887 io->saved_bi_iter = clone->bi_iter;
1888 dm_submit_bio_remap(io->base_bio, clone);
1893 * We need the original biovec array in order to decrypt the whole bio
1894 * data *afterwards* -- thanks to immutable biovecs we don't need to
1895 * worry about the block layer modifying the biovec array; so leverage
1896 * bio_alloc_clone().
1898 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1901 clone->bi_private = io;
1902 clone->bi_end_io = crypt_endio;
1904 crypt_inc_pending(io);
1906 clone->bi_iter.bi_sector = cc->start + io->sector;
1908 if (dm_crypt_integrity_io_alloc(io, clone)) {
1909 crypt_dec_pending(io);
1914 dm_submit_bio_remap(io->base_bio, clone);
1918 static void kcryptd_io_read_work(struct work_struct *work)
1920 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1922 crypt_inc_pending(io);
1923 if (kcryptd_io_read(io, GFP_NOIO))
1924 io->error = BLK_STS_RESOURCE;
1925 crypt_dec_pending(io);
1928 static void kcryptd_queue_read(struct dm_crypt_io *io)
1930 struct crypt_config *cc = io->cc;
1932 INIT_WORK(&io->work, kcryptd_io_read_work);
1933 queue_work(cc->io_queue, &io->work);
1936 static void kcryptd_io_write(struct dm_crypt_io *io)
1938 struct bio *clone = io->ctx.bio_out;
1940 dm_submit_bio_remap(io->base_bio, clone);
1943 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1945 static int dmcrypt_write(void *data)
1947 struct crypt_config *cc = data;
1948 struct dm_crypt_io *io;
1951 struct rb_root write_tree;
1952 struct blk_plug plug;
1954 spin_lock_irq(&cc->write_thread_lock);
1957 if (!RB_EMPTY_ROOT(&cc->write_tree))
1960 set_current_state(TASK_INTERRUPTIBLE);
1962 spin_unlock_irq(&cc->write_thread_lock);
1964 if (unlikely(kthread_should_stop())) {
1965 set_current_state(TASK_RUNNING);
1971 spin_lock_irq(&cc->write_thread_lock);
1972 goto continue_locked;
1975 write_tree = cc->write_tree;
1976 cc->write_tree = RB_ROOT;
1977 spin_unlock_irq(&cc->write_thread_lock);
1979 BUG_ON(rb_parent(write_tree.rb_node));
1982 * Note: we cannot walk the tree here with rb_next because
1983 * the structures may be freed when kcryptd_io_write is called.
1985 blk_start_plug(&plug);
1987 io = crypt_io_from_node(rb_first(&write_tree));
1988 rb_erase(&io->rb_node, &write_tree);
1989 kcryptd_io_write(io);
1991 } while (!RB_EMPTY_ROOT(&write_tree));
1992 blk_finish_plug(&plug);
1997 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1999 struct bio *clone = io->ctx.bio_out;
2000 struct crypt_config *cc = io->cc;
2001 unsigned long flags;
2003 struct rb_node **rbp, *parent;
2005 if (unlikely(io->error)) {
2006 crypt_free_buffer_pages(cc, clone);
2008 crypt_dec_pending(io);
2012 /* crypt_convert should have filled the clone bio */
2013 BUG_ON(io->ctx.iter_out.bi_size);
2015 clone->bi_iter.bi_sector = cc->start + io->sector;
2017 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2018 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2019 dm_submit_bio_remap(io->base_bio, clone);
2023 spin_lock_irqsave(&cc->write_thread_lock, flags);
2024 if (RB_EMPTY_ROOT(&cc->write_tree))
2025 wake_up_process(cc->write_thread);
2026 rbp = &cc->write_tree.rb_node;
2028 sector = io->sector;
2031 if (sector < crypt_io_from_node(parent)->sector)
2032 rbp = &(*rbp)->rb_left;
2034 rbp = &(*rbp)->rb_right;
2036 rb_link_node(&io->rb_node, parent, rbp);
2037 rb_insert_color(&io->rb_node, &cc->write_tree);
2038 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2041 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2042 struct convert_context *ctx)
2045 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2049 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2050 * constraints so they do not need to be issued inline by
2051 * kcryptd_crypt_write_convert().
2053 switch (bio_op(ctx->bio_in)) {
2055 case REQ_OP_WRITE_ZEROES:
2062 static void kcryptd_crypt_write_continue(struct work_struct *work)
2064 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2065 struct crypt_config *cc = io->cc;
2066 struct convert_context *ctx = &io->ctx;
2068 sector_t sector = io->sector;
2071 wait_for_completion(&ctx->restart);
2072 reinit_completion(&ctx->restart);
2074 r = crypt_convert(cc, &io->ctx, true, false);
2077 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2078 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2079 /* Wait for completion signaled by kcryptd_async_done() */
2080 wait_for_completion(&ctx->restart);
2084 /* Encryption was already finished, submit io now */
2085 if (crypt_finished) {
2086 kcryptd_crypt_write_io_submit(io, 0);
2087 io->sector = sector;
2090 crypt_dec_pending(io);
2093 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2095 struct crypt_config *cc = io->cc;
2096 struct convert_context *ctx = &io->ctx;
2099 sector_t sector = io->sector;
2103 * Prevent io from disappearing until this function completes.
2105 crypt_inc_pending(io);
2106 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2108 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2109 if (unlikely(!clone)) {
2110 io->error = BLK_STS_IOERR;
2114 io->ctx.bio_out = clone;
2115 io->ctx.iter_out = clone->bi_iter;
2117 if (crypt_integrity_aead(cc)) {
2118 bio_copy_data(clone, io->base_bio);
2119 io->ctx.bio_in = clone;
2120 io->ctx.iter_in = clone->bi_iter;
2123 sector += bio_sectors(clone);
2125 crypt_inc_pending(io);
2126 r = crypt_convert(cc, ctx,
2127 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2129 * Crypto API backlogged the request, because its queue was full
2130 * and we're in softirq context, so continue from a workqueue
2131 * (TODO: is it actually possible to be in softirq in the write path?)
2133 if (r == BLK_STS_DEV_RESOURCE) {
2134 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2135 queue_work(cc->crypt_queue, &io->work);
2140 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2141 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2142 /* Wait for completion signaled by kcryptd_async_done() */
2143 wait_for_completion(&ctx->restart);
2147 /* Encryption was already finished, submit io now */
2148 if (crypt_finished) {
2149 kcryptd_crypt_write_io_submit(io, 0);
2150 io->sector = sector;
2154 crypt_dec_pending(io);
2157 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2159 if (io->ctx.aead_recheck) {
2161 io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2162 bio_copy_data(io->base_bio, io->ctx.bio_in);
2164 crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2165 bio_put(io->ctx.bio_in);
2167 crypt_dec_pending(io);
2170 static void kcryptd_crypt_read_continue(struct work_struct *work)
2172 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2173 struct crypt_config *cc = io->cc;
2176 wait_for_completion(&io->ctx.restart);
2177 reinit_completion(&io->ctx.restart);
2179 r = crypt_convert(cc, &io->ctx, true, false);
2183 if (atomic_dec_and_test(&io->ctx.cc_pending))
2184 kcryptd_crypt_read_done(io);
2186 crypt_dec_pending(io);
2189 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2191 struct crypt_config *cc = io->cc;
2194 crypt_inc_pending(io);
2196 if (io->ctx.aead_recheck) {
2197 io->ctx.cc_sector = io->sector + cc->iv_offset;
2198 r = crypt_convert(cc, &io->ctx,
2199 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2201 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2204 r = crypt_convert(cc, &io->ctx,
2205 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2208 * Crypto API backlogged the request, because its queue was full
2209 * and we're in softirq context, so continue from a workqueue
2211 if (r == BLK_STS_DEV_RESOURCE) {
2212 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2213 queue_work(cc->crypt_queue, &io->work);
2219 if (atomic_dec_and_test(&io->ctx.cc_pending))
2220 kcryptd_crypt_read_done(io);
2222 crypt_dec_pending(io);
2225 static void kcryptd_async_done(void *data, int error)
2227 struct dm_crypt_request *dmreq = data;
2228 struct convert_context *ctx = dmreq->ctx;
2229 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2230 struct crypt_config *cc = io->cc;
2233 * A request from crypto driver backlog is going to be processed now,
2234 * finish the completion and continue in crypt_convert().
2235 * (Callback will be called for the second time for this request.)
2237 if (error == -EINPROGRESS) {
2238 complete(&ctx->restart);
2242 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2243 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2245 if (error == -EBADMSG) {
2246 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2248 ctx->aead_failed = true;
2249 if (ctx->aead_recheck) {
2250 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2251 ctx->bio_in->bi_bdev, s);
2252 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2255 io->error = BLK_STS_PROTECTION;
2256 } else if (error < 0)
2257 io->error = BLK_STS_IOERR;
2259 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2261 if (!atomic_dec_and_test(&ctx->cc_pending))
2265 * The request is fully completed: for inline writes, let
2266 * kcryptd_crypt_write_convert() do the IO submission.
2268 if (bio_data_dir(io->base_bio) == READ) {
2269 kcryptd_crypt_read_done(io);
2273 if (kcryptd_crypt_write_inline(cc, ctx)) {
2274 complete(&ctx->restart);
2278 kcryptd_crypt_write_io_submit(io, 1);
2281 static void kcryptd_crypt(struct work_struct *work)
2283 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2285 if (bio_data_dir(io->base_bio) == READ)
2286 kcryptd_crypt_read_convert(io);
2288 kcryptd_crypt_write_convert(io);
2291 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2293 struct crypt_config *cc = io->cc;
2295 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2296 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2298 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2299 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2300 * it is being executed with irqs disabled.
2302 if (in_hardirq() || irqs_disabled()) {
2303 INIT_WORK(&io->work, kcryptd_crypt);
2304 queue_work(system_bh_wq, &io->work);
2307 kcryptd_crypt(&io->work);
2312 INIT_WORK(&io->work, kcryptd_crypt);
2313 queue_work(cc->crypt_queue, &io->work);
2316 static void crypt_free_tfms_aead(struct crypt_config *cc)
2318 if (!cc->cipher_tfm.tfms_aead)
2321 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2322 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2323 cc->cipher_tfm.tfms_aead[0] = NULL;
2326 kfree(cc->cipher_tfm.tfms_aead);
2327 cc->cipher_tfm.tfms_aead = NULL;
2330 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2334 if (!cc->cipher_tfm.tfms)
2337 for (i = 0; i < cc->tfms_count; i++)
2338 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2339 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2340 cc->cipher_tfm.tfms[i] = NULL;
2343 kfree(cc->cipher_tfm.tfms);
2344 cc->cipher_tfm.tfms = NULL;
2347 static void crypt_free_tfms(struct crypt_config *cc)
2349 if (crypt_integrity_aead(cc))
2350 crypt_free_tfms_aead(cc);
2352 crypt_free_tfms_skcipher(cc);
2355 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2360 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2361 sizeof(struct crypto_skcipher *),
2363 if (!cc->cipher_tfm.tfms)
2366 for (i = 0; i < cc->tfms_count; i++) {
2367 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2368 CRYPTO_ALG_ALLOCATES_MEMORY);
2369 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2370 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2371 crypt_free_tfms(cc);
2377 * dm-crypt performance can vary greatly depending on which crypto
2378 * algorithm implementation is used. Help people debug performance
2379 * problems by logging the ->cra_driver_name.
2381 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2382 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2386 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2390 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2391 if (!cc->cipher_tfm.tfms)
2394 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2395 CRYPTO_ALG_ALLOCATES_MEMORY);
2396 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2397 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2398 crypt_free_tfms(cc);
2402 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2403 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2407 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2409 if (crypt_integrity_aead(cc))
2410 return crypt_alloc_tfms_aead(cc, ciphermode);
2412 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2415 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2417 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2420 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2422 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2426 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2427 * the key must be for some reason in special format.
2428 * This funcion converts cc->key to this special format.
2430 static void crypt_copy_authenckey(char *p, const void *key,
2431 unsigned int enckeylen, unsigned int authkeylen)
2433 struct crypto_authenc_key_param *param;
2436 rta = (struct rtattr *)p;
2437 param = RTA_DATA(rta);
2438 param->enckeylen = cpu_to_be32(enckeylen);
2439 rta->rta_len = RTA_LENGTH(sizeof(*param));
2440 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2441 p += RTA_SPACE(sizeof(*param));
2442 memcpy(p, key + enckeylen, authkeylen);
2444 memcpy(p, key, enckeylen);
2447 static int crypt_setkey(struct crypt_config *cc)
2449 unsigned int subkey_size;
2452 /* Ignore extra keys (which are used for IV etc) */
2453 subkey_size = crypt_subkey_size(cc);
2455 if (crypt_integrity_hmac(cc)) {
2456 if (subkey_size < cc->key_mac_size)
2459 crypt_copy_authenckey(cc->authenc_key, cc->key,
2460 subkey_size - cc->key_mac_size,
2464 for (i = 0; i < cc->tfms_count; i++) {
2465 if (crypt_integrity_hmac(cc))
2466 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2467 cc->authenc_key, crypt_authenckey_size(cc));
2468 else if (crypt_integrity_aead(cc))
2469 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2470 cc->key + (i * subkey_size),
2473 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2474 cc->key + (i * subkey_size),
2480 if (crypt_integrity_hmac(cc))
2481 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2488 static bool contains_whitespace(const char *str)
2491 if (isspace(*str++))
2496 static int set_key_user(struct crypt_config *cc, struct key *key)
2498 const struct user_key_payload *ukp;
2500 ukp = user_key_payload_locked(key);
2502 return -EKEYREVOKED;
2504 if (cc->key_size != ukp->datalen)
2507 memcpy(cc->key, ukp->data, cc->key_size);
2512 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2514 const struct encrypted_key_payload *ekp;
2516 ekp = key->payload.data[0];
2518 return -EKEYREVOKED;
2520 if (cc->key_size != ekp->decrypted_datalen)
2523 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2528 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2530 const struct trusted_key_payload *tkp;
2532 tkp = key->payload.data[0];
2534 return -EKEYREVOKED;
2536 if (cc->key_size != tkp->key_len)
2539 memcpy(cc->key, tkp->key, cc->key_size);
2544 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2546 char *new_key_string, *key_desc;
2548 struct key_type *type;
2550 int (*set_key)(struct crypt_config *cc, struct key *key);
2553 * Reject key_string with whitespace. dm core currently lacks code for
2554 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2556 if (contains_whitespace(key_string)) {
2557 DMERR("whitespace chars not allowed in key string");
2561 /* look for next ':' separating key_type from key_description */
2562 key_desc = strchr(key_string, ':');
2563 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2566 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2567 type = &key_type_logon;
2568 set_key = set_key_user;
2569 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2570 type = &key_type_user;
2571 set_key = set_key_user;
2572 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2573 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2574 type = &key_type_encrypted;
2575 set_key = set_key_encrypted;
2576 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2577 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2578 type = &key_type_trusted;
2579 set_key = set_key_trusted;
2584 new_key_string = kstrdup(key_string, GFP_KERNEL);
2585 if (!new_key_string)
2588 key = request_key(type, key_desc + 1, NULL);
2590 kfree_sensitive(new_key_string);
2591 return PTR_ERR(key);
2594 down_read(&key->sem);
2596 ret = set_key(cc, key);
2600 kfree_sensitive(new_key_string);
2607 /* clear the flag since following operations may invalidate previously valid key */
2608 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2610 ret = crypt_setkey(cc);
2613 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2614 kfree_sensitive(cc->key_string);
2615 cc->key_string = new_key_string;
2617 kfree_sensitive(new_key_string);
2622 static int get_key_size(char **key_string)
2627 if (*key_string[0] != ':')
2628 return strlen(*key_string) >> 1;
2630 /* look for next ':' in key string */
2631 colon = strpbrk(*key_string + 1, ":");
2635 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2638 *key_string = colon;
2640 /* remaining key string should be :<logon|user>:<key_desc> */
2647 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2652 static int get_key_size(char **key_string)
2654 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2657 #endif /* CONFIG_KEYS */
2659 static int crypt_set_key(struct crypt_config *cc, char *key)
2662 int key_string_len = strlen(key);
2664 /* Hyphen (which gives a key_size of zero) means there is no key. */
2665 if (!cc->key_size && strcmp(key, "-"))
2668 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2669 if (key[0] == ':') {
2670 r = crypt_set_keyring_key(cc, key + 1);
2674 /* clear the flag since following operations may invalidate previously valid key */
2675 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2677 /* wipe references to any kernel keyring key */
2678 kfree_sensitive(cc->key_string);
2679 cc->key_string = NULL;
2681 /* Decode key from its hex representation. */
2682 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2685 r = crypt_setkey(cc);
2687 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2690 /* Hex key string not needed after here, so wipe it. */
2691 memset(key, '0', key_string_len);
2696 static int crypt_wipe_key(struct crypt_config *cc)
2700 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2701 get_random_bytes(&cc->key, cc->key_size);
2703 /* Wipe IV private keys */
2704 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2705 r = cc->iv_gen_ops->wipe(cc);
2710 kfree_sensitive(cc->key_string);
2711 cc->key_string = NULL;
2712 r = crypt_setkey(cc);
2713 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2718 static void crypt_calculate_pages_per_client(void)
2720 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2722 if (!dm_crypt_clients_n)
2725 pages /= dm_crypt_clients_n;
2726 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2727 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2728 dm_crypt_pages_per_client = pages;
2731 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2733 struct crypt_config *cc = pool_data;
2737 * Note, percpu_counter_read_positive() may over (and under) estimate
2738 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2739 * but avoids potential spinlock contention of an exact result.
2741 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2742 likely(gfp_mask & __GFP_NORETRY))
2745 page = alloc_page(gfp_mask);
2746 if (likely(page != NULL))
2747 percpu_counter_add(&cc->n_allocated_pages, 1);
2752 static void crypt_page_free(void *page, void *pool_data)
2754 struct crypt_config *cc = pool_data;
2757 percpu_counter_sub(&cc->n_allocated_pages, 1);
2760 static void crypt_dtr(struct dm_target *ti)
2762 struct crypt_config *cc = ti->private;
2769 if (cc->write_thread)
2770 kthread_stop(cc->write_thread);
2773 destroy_workqueue(cc->io_queue);
2774 if (cc->crypt_queue)
2775 destroy_workqueue(cc->crypt_queue);
2777 if (cc->workqueue_id)
2778 ida_free(&workqueue_ida, cc->workqueue_id);
2780 crypt_free_tfms(cc);
2782 bioset_exit(&cc->bs);
2784 mempool_exit(&cc->page_pool);
2785 mempool_exit(&cc->req_pool);
2786 mempool_exit(&cc->tag_pool);
2788 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2789 percpu_counter_destroy(&cc->n_allocated_pages);
2791 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2792 cc->iv_gen_ops->dtr(cc);
2795 dm_put_device(ti, cc->dev);
2797 kfree_sensitive(cc->cipher_string);
2798 kfree_sensitive(cc->key_string);
2799 kfree_sensitive(cc->cipher_auth);
2800 kfree_sensitive(cc->authenc_key);
2802 mutex_destroy(&cc->bio_alloc_lock);
2804 /* Must zero key material before freeing */
2805 kfree_sensitive(cc);
2807 spin_lock(&dm_crypt_clients_lock);
2808 WARN_ON(!dm_crypt_clients_n);
2809 dm_crypt_clients_n--;
2810 crypt_calculate_pages_per_client();
2811 spin_unlock(&dm_crypt_clients_lock);
2813 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2816 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2818 struct crypt_config *cc = ti->private;
2820 if (crypt_integrity_aead(cc))
2821 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2823 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2826 /* at least a 64 bit sector number should fit in our buffer */
2827 cc->iv_size = max(cc->iv_size,
2828 (unsigned int)(sizeof(u64) / sizeof(u8)));
2830 DMWARN("Selected cipher does not support IVs");
2834 /* Choose ivmode, see comments at iv code. */
2836 cc->iv_gen_ops = NULL;
2837 else if (strcmp(ivmode, "plain") == 0)
2838 cc->iv_gen_ops = &crypt_iv_plain_ops;
2839 else if (strcmp(ivmode, "plain64") == 0)
2840 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2841 else if (strcmp(ivmode, "plain64be") == 0)
2842 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2843 else if (strcmp(ivmode, "essiv") == 0)
2844 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2845 else if (strcmp(ivmode, "benbi") == 0)
2846 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2847 else if (strcmp(ivmode, "null") == 0)
2848 cc->iv_gen_ops = &crypt_iv_null_ops;
2849 else if (strcmp(ivmode, "eboiv") == 0)
2850 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2851 else if (strcmp(ivmode, "elephant") == 0) {
2852 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2854 cc->key_extra_size = cc->key_size / 2;
2855 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2857 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2858 } else if (strcmp(ivmode, "lmk") == 0) {
2859 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2861 * Version 2 and 3 is recognised according
2862 * to length of provided multi-key string.
2863 * If present (version 3), last key is used as IV seed.
2864 * All keys (including IV seed) are always the same size.
2866 if (cc->key_size % cc->key_parts) {
2868 cc->key_extra_size = cc->key_size / cc->key_parts;
2870 } else if (strcmp(ivmode, "tcw") == 0) {
2871 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2872 cc->key_parts += 2; /* IV + whitening */
2873 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2874 } else if (strcmp(ivmode, "random") == 0) {
2875 cc->iv_gen_ops = &crypt_iv_random_ops;
2876 /* Need storage space in integrity fields. */
2877 cc->integrity_iv_size = cc->iv_size;
2879 ti->error = "Invalid IV mode";
2887 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2888 * The HMAC is needed to calculate tag size (HMAC digest size).
2889 * This should be probably done by crypto-api calls (once available...)
2891 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2893 char *start, *end, *mac_alg = NULL;
2894 struct crypto_ahash *mac;
2896 if (!strstarts(cipher_api, "authenc("))
2899 start = strchr(cipher_api, '(');
2900 end = strchr(cipher_api, ',');
2901 if (!start || !end || ++start > end)
2904 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2908 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2912 return PTR_ERR(mac);
2914 cc->key_mac_size = crypto_ahash_digestsize(mac);
2915 crypto_free_ahash(mac);
2917 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2918 if (!cc->authenc_key)
2924 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2925 char **ivmode, char **ivopts)
2927 struct crypt_config *cc = ti->private;
2928 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2934 * New format (capi: prefix)
2935 * capi:cipher_api_spec-iv:ivopts
2937 tmp = &cipher_in[strlen("capi:")];
2939 /* Separate IV options if present, it can contain another '-' in hash name */
2940 *ivopts = strrchr(tmp, ':');
2946 *ivmode = strrchr(tmp, '-');
2951 /* The rest is crypto API spec */
2954 /* Alloc AEAD, can be used only in new format. */
2955 if (crypt_integrity_aead(cc)) {
2956 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2958 ti->error = "Invalid AEAD cipher spec";
2963 if (*ivmode && !strcmp(*ivmode, "lmk"))
2964 cc->tfms_count = 64;
2966 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2968 ti->error = "Digest algorithm missing for ESSIV mode";
2971 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2972 cipher_api, *ivopts);
2973 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2974 ti->error = "Cannot allocate cipher string";
2980 cc->key_parts = cc->tfms_count;
2982 /* Allocate cipher */
2983 ret = crypt_alloc_tfms(cc, cipher_api);
2985 ti->error = "Error allocating crypto tfm";
2989 if (crypt_integrity_aead(cc))
2990 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2992 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2997 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2998 char **ivmode, char **ivopts)
3000 struct crypt_config *cc = ti->private;
3001 char *tmp, *cipher, *chainmode, *keycount;
3002 char *cipher_api = NULL;
3006 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3007 ti->error = "Bad cipher specification";
3012 * Legacy dm-crypt cipher specification
3013 * cipher[:keycount]-mode-iv:ivopts
3016 keycount = strsep(&tmp, "-");
3017 cipher = strsep(&keycount, ":");
3021 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3022 !is_power_of_2(cc->tfms_count)) {
3023 ti->error = "Bad cipher key count specification";
3026 cc->key_parts = cc->tfms_count;
3028 chainmode = strsep(&tmp, "-");
3029 *ivmode = strsep(&tmp, ":");
3033 * For compatibility with the original dm-crypt mapping format, if
3034 * only the cipher name is supplied, use cbc-plain.
3036 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3041 if (strcmp(chainmode, "ecb") && !*ivmode) {
3042 ti->error = "IV mechanism required";
3046 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3050 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3052 ti->error = "Digest algorithm missing for ESSIV mode";
3056 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3057 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3059 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3060 "%s(%s)", chainmode, cipher);
3062 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3067 /* Allocate cipher */
3068 ret = crypt_alloc_tfms(cc, cipher_api);
3070 ti->error = "Error allocating crypto tfm";
3078 ti->error = "Cannot allocate cipher strings";
3082 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3084 struct crypt_config *cc = ti->private;
3085 char *ivmode = NULL, *ivopts = NULL;
3088 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3089 if (!cc->cipher_string) {
3090 ti->error = "Cannot allocate cipher strings";
3094 if (strstarts(cipher_in, "capi:"))
3095 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3097 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3102 ret = crypt_ctr_ivmode(ti, ivmode);
3106 /* Initialize and set key */
3107 ret = crypt_set_key(cc, key);
3109 ti->error = "Error decoding and setting key";
3114 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3115 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3117 ti->error = "Error creating IV";
3122 /* Initialize IV (set keys for ESSIV etc) */
3123 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3124 ret = cc->iv_gen_ops->init(cc);
3126 ti->error = "Error initialising IV";
3131 /* wipe the kernel key payload copy */
3133 memset(cc->key, 0, cc->key_size * sizeof(u8));
3138 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3140 struct crypt_config *cc = ti->private;
3141 struct dm_arg_set as;
3142 static const struct dm_arg _args[] = {
3143 {0, 9, "Invalid number of feature args"},
3145 unsigned int opt_params, val;
3146 const char *opt_string, *sval;
3150 /* Optional parameters */
3154 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3158 while (opt_params--) {
3159 opt_string = dm_shift_arg(&as);
3161 ti->error = "Not enough feature arguments";
3165 if (!strcasecmp(opt_string, "allow_discards"))
3166 ti->num_discard_bios = 1;
3168 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3169 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3170 else if (!strcasecmp(opt_string, "high_priority"))
3171 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3173 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3174 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3175 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3176 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3177 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3178 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3179 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3180 if (val == 0 || val > MAX_TAG_SIZE) {
3181 ti->error = "Invalid integrity arguments";
3184 cc->on_disk_tag_size = val;
3185 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3186 if (!strcasecmp(sval, "aead")) {
3187 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3188 } else if (strcasecmp(sval, "none")) {
3189 ti->error = "Unknown integrity profile";
3193 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3194 if (!cc->cipher_auth)
3196 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3197 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3198 cc->sector_size > 4096 ||
3199 (cc->sector_size & (cc->sector_size - 1))) {
3200 ti->error = "Invalid feature value for sector_size";
3203 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3204 ti->error = "Device size is not multiple of sector_size feature";
3207 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3208 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3209 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3211 ti->error = "Invalid feature arguments";
3219 #ifdef CONFIG_BLK_DEV_ZONED
3220 static int crypt_report_zones(struct dm_target *ti,
3221 struct dm_report_zones_args *args, unsigned int nr_zones)
3223 struct crypt_config *cc = ti->private;
3225 return dm_report_zones(cc->dev->bdev, cc->start,
3226 cc->start + dm_target_offset(ti, args->next_sector),
3230 #define crypt_report_zones NULL
3234 * Construct an encryption mapping:
3235 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3237 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3239 struct crypt_config *cc;
3240 const char *devname = dm_table_device_name(ti->table);
3241 int key_size, wq_id;
3242 unsigned int align_mask;
3243 unsigned int common_wq_flags;
3244 unsigned long long tmpll;
3246 size_t iv_size_padding, additional_req_size;
3250 ti->error = "Not enough arguments";
3254 key_size = get_key_size(&argv[1]);
3256 ti->error = "Cannot parse key size";
3260 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3262 ti->error = "Cannot allocate encryption context";
3265 cc->key_size = key_size;
3266 cc->sector_size = (1 << SECTOR_SHIFT);
3267 cc->sector_shift = 0;
3271 spin_lock(&dm_crypt_clients_lock);
3272 dm_crypt_clients_n++;
3273 crypt_calculate_pages_per_client();
3274 spin_unlock(&dm_crypt_clients_lock);
3276 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3280 /* Optional parameters need to be read before cipher constructor */
3282 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3287 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3291 if (crypt_integrity_aead(cc)) {
3292 cc->dmreq_start = sizeof(struct aead_request);
3293 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3294 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3296 cc->dmreq_start = sizeof(struct skcipher_request);
3297 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3298 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3300 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3302 if (align_mask < CRYPTO_MINALIGN) {
3303 /* Allocate the padding exactly */
3304 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3308 * If the cipher requires greater alignment than kmalloc
3309 * alignment, we don't know the exact position of the
3310 * initialization vector. We must assume worst case.
3312 iv_size_padding = align_mask;
3315 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3316 additional_req_size = sizeof(struct dm_crypt_request) +
3317 iv_size_padding + cc->iv_size +
3320 sizeof(unsigned int);
3322 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3324 ti->error = "Cannot allocate crypt request mempool";
3328 cc->per_bio_data_size = ti->per_io_data_size =
3329 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3332 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3334 ti->error = "Cannot allocate page mempool";
3338 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3340 ti->error = "Cannot allocate crypt bioset";
3344 mutex_init(&cc->bio_alloc_lock);
3347 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3348 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3349 ti->error = "Invalid iv_offset sector";
3352 cc->iv_offset = tmpll;
3354 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3356 ti->error = "Device lookup failed";
3361 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3362 ti->error = "Invalid device sector";
3367 if (bdev_is_zoned(cc->dev->bdev)) {
3369 * For zoned block devices, we need to preserve the issuer write
3370 * ordering. To do so, disable write workqueues and force inline
3371 * encryption completion.
3373 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3374 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3377 * All zone append writes to a zone of a zoned block device will
3378 * have the same BIO sector, the start of the zone. When the
3379 * cypher IV mode uses sector values, all data targeting a
3380 * zone will be encrypted using the first sector numbers of the
3381 * zone. This will not result in write errors but will
3382 * cause most reads to fail as reads will use the sector values
3383 * for the actual data locations, resulting in IV mismatch.
3384 * To avoid this problem, ask DM core to emulate zone append
3385 * operations with regular writes.
3387 DMDEBUG("Zone append operations will be emulated");
3388 ti->emulate_zone_append = true;
3391 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3392 ret = crypt_integrity_ctr(cc, ti);
3396 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3397 if (!cc->tag_pool_max_sectors)
3398 cc->tag_pool_max_sectors = 1;
3400 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3401 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3403 ti->error = "Cannot allocate integrity tags mempool";
3407 cc->tag_pool_max_sectors <<= cc->sector_shift;
3410 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3412 ti->error = "Couldn't get workqueue id";
3416 cc->workqueue_id = wq_id;
3419 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3420 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3421 common_wq_flags |= WQ_HIGHPRI;
3423 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3424 if (!cc->io_queue) {
3425 ti->error = "Couldn't create kcryptd io queue";
3429 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3430 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3431 common_wq_flags | WQ_CPU_INTENSIVE,
3435 * While crypt_queue is certainly CPU intensive, the use of
3436 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3438 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3439 common_wq_flags | WQ_UNBOUND,
3440 num_online_cpus(), devname, wq_id);
3442 if (!cc->crypt_queue) {
3443 ti->error = "Couldn't create kcryptd queue";
3447 spin_lock_init(&cc->write_thread_lock);
3448 cc->write_tree = RB_ROOT;
3450 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3451 if (IS_ERR(cc->write_thread)) {
3452 ret = PTR_ERR(cc->write_thread);
3453 cc->write_thread = NULL;
3454 ti->error = "Couldn't spawn write thread";
3457 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3458 set_user_nice(cc->write_thread, MIN_NICE);
3460 ti->num_flush_bios = 1;
3461 ti->limit_swap_bios = true;
3462 ti->accounts_remapped_io = true;
3464 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3468 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3473 static int crypt_map(struct dm_target *ti, struct bio *bio)
3475 struct dm_crypt_io *io;
3476 struct crypt_config *cc = ti->private;
3479 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3480 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3481 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3483 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3484 bio_op(bio) == REQ_OP_DISCARD)) {
3485 bio_set_dev(bio, cc->dev->bdev);
3486 if (bio_sectors(bio))
3487 bio->bi_iter.bi_sector = cc->start +
3488 dm_target_offset(ti, bio->bi_iter.bi_sector);
3489 return DM_MAPIO_REMAPPED;
3493 * Check if bio is too large, split as needed.
3495 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3496 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3497 dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3500 * Ensure that bio is a multiple of internal sector encryption size
3501 * and is aligned to this size as defined in IO hints.
3503 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3504 return DM_MAPIO_KILL;
3506 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3507 return DM_MAPIO_KILL;
3509 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3510 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3512 if (cc->on_disk_tag_size) {
3513 unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3515 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3516 io->integrity_metadata = NULL;
3518 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3520 if (unlikely(!io->integrity_metadata)) {
3521 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3522 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3523 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3524 io->integrity_metadata_from_pool = true;
3528 if (crypt_integrity_aead(cc))
3529 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3531 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3533 if (bio_data_dir(io->base_bio) == READ) {
3534 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3535 kcryptd_queue_read(io);
3537 kcryptd_queue_crypt(io);
3539 return DM_MAPIO_SUBMITTED;
3542 static char hex2asc(unsigned char c)
3544 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3547 static void crypt_status(struct dm_target *ti, status_type_t type,
3548 unsigned int status_flags, char *result, unsigned int maxlen)
3550 struct crypt_config *cc = ti->private;
3551 unsigned int i, sz = 0;
3552 int num_feature_args = 0;
3555 case STATUSTYPE_INFO:
3559 case STATUSTYPE_TABLE:
3560 DMEMIT("%s ", cc->cipher_string);
3562 if (cc->key_size > 0) {
3564 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3566 for (i = 0; i < cc->key_size; i++) {
3567 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3568 hex2asc(cc->key[i] & 0xf));
3574 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3575 cc->dev->name, (unsigned long long)cc->start);
3577 num_feature_args += !!ti->num_discard_bios;
3578 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3579 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3580 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3581 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3582 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3583 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3584 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3585 if (cc->on_disk_tag_size)
3587 if (num_feature_args) {
3588 DMEMIT(" %d", num_feature_args);
3589 if (ti->num_discard_bios)
3590 DMEMIT(" allow_discards");
3591 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3592 DMEMIT(" same_cpu_crypt");
3593 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3594 DMEMIT(" high_priority");
3595 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3596 DMEMIT(" submit_from_crypt_cpus");
3597 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3598 DMEMIT(" no_read_workqueue");
3599 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3600 DMEMIT(" no_write_workqueue");
3601 if (cc->on_disk_tag_size)
3602 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3603 if (cc->sector_size != (1 << SECTOR_SHIFT))
3604 DMEMIT(" sector_size:%d", cc->sector_size);
3605 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3606 DMEMIT(" iv_large_sectors");
3610 case STATUSTYPE_IMA:
3611 DMEMIT_TARGET_NAME_VERSION(ti->type);
3612 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3613 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3614 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3615 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3617 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3619 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3621 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3624 if (cc->on_disk_tag_size)
3625 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3626 cc->on_disk_tag_size, cc->cipher_auth);
3627 if (cc->sector_size != (1 << SECTOR_SHIFT))
3628 DMEMIT(",sector_size=%d", cc->sector_size);
3629 if (cc->cipher_string)
3630 DMEMIT(",cipher_string=%s", cc->cipher_string);
3632 DMEMIT(",key_size=%u", cc->key_size);
3633 DMEMIT(",key_parts=%u", cc->key_parts);
3634 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3635 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3641 static void crypt_postsuspend(struct dm_target *ti)
3643 struct crypt_config *cc = ti->private;
3645 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3648 static int crypt_preresume(struct dm_target *ti)
3650 struct crypt_config *cc = ti->private;
3652 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3653 DMERR("aborting resume - crypt key is not set.");
3660 static void crypt_resume(struct dm_target *ti)
3662 struct crypt_config *cc = ti->private;
3664 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3667 /* Message interface
3671 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3672 char *result, unsigned int maxlen)
3674 struct crypt_config *cc = ti->private;
3675 int key_size, ret = -EINVAL;
3680 if (!strcasecmp(argv[0], "key")) {
3681 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3682 DMWARN("not suspended during key manipulation.");
3685 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3686 /* The key size may not be changed. */
3687 key_size = get_key_size(&argv[2]);
3688 if (key_size < 0 || cc->key_size != key_size) {
3689 memset(argv[2], '0', strlen(argv[2]));
3693 ret = crypt_set_key(cc, argv[2]);
3696 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3697 ret = cc->iv_gen_ops->init(cc);
3698 /* wipe the kernel key payload copy */
3700 memset(cc->key, 0, cc->key_size * sizeof(u8));
3703 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3704 return crypt_wipe_key(cc);
3708 DMWARN("unrecognised message received.");
3712 static int crypt_iterate_devices(struct dm_target *ti,
3713 iterate_devices_callout_fn fn, void *data)
3715 struct crypt_config *cc = ti->private;
3717 return fn(ti, cc->dev, cc->start, ti->len, data);
3720 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3722 struct crypt_config *cc = ti->private;
3724 limits->logical_block_size =
3725 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3726 limits->physical_block_size =
3727 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3728 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3729 limits->dma_alignment = limits->logical_block_size - 1;
3732 static struct target_type crypt_target = {
3734 .version = {1, 26, 0},
3735 .module = THIS_MODULE,
3738 .features = DM_TARGET_ZONED_HM,
3739 .report_zones = crypt_report_zones,
3741 .status = crypt_status,
3742 .postsuspend = crypt_postsuspend,
3743 .preresume = crypt_preresume,
3744 .resume = crypt_resume,
3745 .message = crypt_message,
3746 .iterate_devices = crypt_iterate_devices,
3747 .io_hints = crypt_io_hints,
3752 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3753 MODULE_LICENSE("GPL");