1 // SPDX-License-Identifier: MIT
3 * Copyright © 2021 Intel Corporation
8 #include <linux/sched/clock.h>
10 #include <drm/drm_managed.h>
12 #include "display/xe_display.h"
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_regs.h"
15 #include "xe_device.h"
17 #include "xe_gsc_proxy.h"
20 #include "xe_hw_engine.h"
21 #include "xe_memirq.h"
26 * Interrupt registers for a unit are always consecutive and ordered
29 #define IMR(offset) XE_REG(offset + 0x4)
30 #define IIR(offset) XE_REG(offset + 0x8)
31 #define IER(offset) XE_REG(offset + 0xc)
33 static void assert_iir_is_zero(struct xe_gt *mmio, struct xe_reg reg)
35 u32 val = xe_mmio_read32(mmio, reg);
40 drm_WARN(>_to_xe(mmio)->drm, 1,
41 "Interrupt register 0x%x is not zero: 0x%08x\n",
43 xe_mmio_write32(mmio, reg, 0xffffffff);
44 xe_mmio_read32(mmio, reg);
45 xe_mmio_write32(mmio, reg, 0xffffffff);
46 xe_mmio_read32(mmio, reg);
50 * Unmask and enable the specified interrupts. Does not check current state,
51 * so any bits not specified here will become masked and disabled.
53 static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits)
55 struct xe_gt *mmio = tile->primary_gt;
58 * If we're just enabling an interrupt now, it shouldn't already
59 * be raised in the IIR.
61 assert_iir_is_zero(mmio, IIR(irqregs));
63 xe_mmio_write32(mmio, IER(irqregs), bits);
64 xe_mmio_write32(mmio, IMR(irqregs), ~bits);
67 xe_mmio_read32(mmio, IMR(irqregs));
70 /* Mask and disable all interrupts. */
71 static void mask_and_disable(struct xe_tile *tile, u32 irqregs)
73 struct xe_gt *mmio = tile->primary_gt;
75 xe_mmio_write32(mmio, IMR(irqregs), ~0);
77 xe_mmio_read32(mmio, IMR(irqregs));
79 xe_mmio_write32(mmio, IER(irqregs), 0);
81 /* IIR can theoretically queue up two events. Be paranoid. */
82 xe_mmio_write32(mmio, IIR(irqregs), ~0);
83 xe_mmio_read32(mmio, IIR(irqregs));
84 xe_mmio_write32(mmio, IIR(irqregs), ~0);
85 xe_mmio_read32(mmio, IIR(irqregs));
88 static u32 xelp_intr_disable(struct xe_device *xe)
90 struct xe_gt *mmio = xe_root_mmio_gt(xe);
92 xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0);
95 * Now with master disabled, get a sample of level indications
96 * for this interrupt. Indications will be cleared on related acks.
97 * New indications can and will light up during processing,
98 * and will generate new interrupt after enabling master.
100 return xe_mmio_read32(mmio, GFX_MSTR_IRQ);
104 gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl)
106 struct xe_gt *mmio = xe_root_mmio_gt(xe);
109 if (!(master_ctl & GU_MISC_IRQ))
112 iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET));
114 xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir);
119 static inline void xelp_intr_enable(struct xe_device *xe, bool stall)
121 struct xe_gt *mmio = xe_root_mmio_gt(xe);
123 xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ);
125 xe_mmio_read32(mmio, GFX_MSTR_IRQ);
128 /* Enable/unmask the HWE interrupts for a specific GT's engines. */
129 void xe_irq_enable_hwe(struct xe_gt *gt)
131 struct xe_device *xe = gt_to_xe(gt);
132 u32 ccs_mask, bcs_mask;
133 u32 irqs, dmask, smask;
137 if (xe_device_uc_enabled(xe)) {
138 irqs = GT_RENDER_USER_INTERRUPT |
139 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
141 irqs = GT_RENDER_USER_INTERRUPT |
142 GT_CS_MASTER_ERROR_INTERRUPT |
143 GT_CONTEXT_SWITCH_INTERRUPT |
144 GT_WAIT_SEMAPHORE_INTERRUPT;
147 ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE);
148 bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY);
150 dmask = irqs << 16 | irqs;
153 if (!xe_gt_is_media_type(gt)) {
154 /* Enable interrupts for each engine class */
155 xe_mmio_write32(gt, RENDER_COPY_INTR_ENABLE, dmask);
157 xe_mmio_write32(gt, CCS_RSVD_INTR_ENABLE, smask);
159 /* Unmask interrupts for each engine instance */
160 xe_mmio_write32(gt, RCS0_RSVD_INTR_MASK, ~smask);
161 xe_mmio_write32(gt, BCS_RSVD_INTR_MASK, ~smask);
162 if (bcs_mask & (BIT(1)|BIT(2)))
163 xe_mmio_write32(gt, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask);
164 if (bcs_mask & (BIT(3)|BIT(4)))
165 xe_mmio_write32(gt, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask);
166 if (bcs_mask & (BIT(5)|BIT(6)))
167 xe_mmio_write32(gt, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask);
168 if (bcs_mask & (BIT(7)|BIT(8)))
169 xe_mmio_write32(gt, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask);
170 if (ccs_mask & (BIT(0)|BIT(1)))
171 xe_mmio_write32(gt, CCS0_CCS1_INTR_MASK, ~dmask);
172 if (ccs_mask & (BIT(2)|BIT(3)))
173 xe_mmio_write32(gt, CCS2_CCS3_INTR_MASK, ~dmask);
176 if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) {
177 /* Enable interrupts for each engine class */
178 xe_mmio_write32(gt, VCS_VECS_INTR_ENABLE, dmask);
180 /* Unmask interrupts for each engine instance */
181 xe_mmio_write32(gt, VCS0_VCS1_INTR_MASK, ~dmask);
182 xe_mmio_write32(gt, VCS2_VCS3_INTR_MASK, ~dmask);
183 xe_mmio_write32(gt, VECS0_VECS1_INTR_MASK, ~dmask);
186 * the heci2 interrupt is enabled via the same register as the
187 * GSCCS interrupts, but it has its own mask register.
189 if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) {
190 gsc_mask = irqs | GSC_ER_COMPLETE;
191 heci_mask = GSC_IRQ_INTF(1);
192 } else if (HAS_HECI_GSCFI(xe)) {
193 gsc_mask = GSC_IRQ_INTF(1);
197 xe_mmio_write32(gt, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask);
198 xe_mmio_write32(gt, GUNIT_GSC_INTR_MASK, ~gsc_mask);
201 xe_mmio_write32(gt, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16));
206 gt_engine_identity(struct xe_device *xe,
208 const unsigned int bank,
209 const unsigned int bit)
214 lockdep_assert_held(&xe->irq.lock);
216 xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit));
219 * NB: Specs do not specify how long to spin wait,
220 * so we do ~100us as an educated guess.
222 timeout_ts = (local_clock() >> 10) + 100;
224 ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank));
225 } while (!(ident & INTR_DATA_VALID) &&
226 !time_after32(local_clock() >> 10, timeout_ts));
228 if (unlikely(!(ident & INTR_DATA_VALID))) {
229 drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
234 xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident);
239 #define OTHER_MEDIA_GUC_INSTANCE 16
242 gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir)
244 if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt))
245 return xe_guc_irq_handler(>->uc.guc, iir);
246 if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt))
247 return xe_guc_irq_handler(>->uc.guc, iir);
248 if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt))
249 return xe_gsc_proxy_irq_handler(>->uc.gsc, iir);
251 if (instance != OTHER_GUC_INSTANCE &&
252 instance != OTHER_MEDIA_GUC_INSTANCE) {
253 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
258 static struct xe_gt *pick_engine_gt(struct xe_tile *tile,
259 enum xe_engine_class class,
260 unsigned int instance)
262 struct xe_device *xe = tile_to_xe(tile);
264 if (MEDIA_VER(xe) < 13)
265 return tile->primary_gt;
268 case XE_ENGINE_CLASS_VIDEO_DECODE:
269 case XE_ENGINE_CLASS_VIDEO_ENHANCE:
270 return tile->media_gt;
271 case XE_ENGINE_CLASS_OTHER:
273 case OTHER_MEDIA_GUC_INSTANCE:
274 case OTHER_GSC_INSTANCE:
275 case OTHER_GSC_HECI2_INSTANCE:
276 return tile->media_gt;
282 return tile->primary_gt;
286 static void gt_irq_handler(struct xe_tile *tile,
287 u32 master_ctl, unsigned long *intr_dw,
290 struct xe_device *xe = tile_to_xe(tile);
291 struct xe_gt *mmio = tile->primary_gt;
292 unsigned int bank, bit;
293 u16 instance, intr_vec;
294 enum xe_engine_class class;
295 struct xe_hw_engine *hwe;
297 spin_lock(&xe->irq.lock);
299 for (bank = 0; bank < 2; bank++) {
300 if (!(master_ctl & GT_DW_IRQ(bank)))
303 intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank));
304 for_each_set_bit(bit, intr_dw + bank, 32)
305 identity[bit] = gt_engine_identity(xe, mmio, bank, bit);
306 xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]);
308 for_each_set_bit(bit, intr_dw + bank, 32) {
309 struct xe_gt *engine_gt;
311 class = INTR_ENGINE_CLASS(identity[bit]);
312 instance = INTR_ENGINE_INSTANCE(identity[bit]);
313 intr_vec = INTR_ENGINE_INTR(identity[bit]);
315 engine_gt = pick_engine_gt(tile, class, instance);
317 hwe = xe_gt_hw_engine(engine_gt, class, instance, false);
319 xe_hw_engine_handle_irq(hwe, intr_vec);
323 if (class == XE_ENGINE_CLASS_OTHER) {
324 /* HECI GSCFI interrupts come from outside of GT */
325 if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE)
326 xe_heci_gsc_irq_handler(xe, intr_vec);
328 gt_other_irq_handler(engine_gt, instance, intr_vec);
333 spin_unlock(&xe->irq.lock);
337 * Top-level interrupt handler for Xe_LP platforms (which did not have
338 * a "master tile" interrupt register.
340 static irqreturn_t xelp_irq_handler(int irq, void *arg)
342 struct xe_device *xe = arg;
343 struct xe_tile *tile = xe_device_get_root_tile(xe);
344 u32 master_ctl, gu_misc_iir;
345 unsigned long intr_dw[2];
348 spin_lock(&xe->irq.lock);
349 if (!xe->irq.enabled) {
350 spin_unlock(&xe->irq.lock);
353 spin_unlock(&xe->irq.lock);
355 master_ctl = xelp_intr_disable(xe);
357 xelp_intr_enable(xe, false);
361 gt_irq_handler(tile, master_ctl, intr_dw, identity);
363 xe_display_irq_handler(xe, master_ctl);
365 gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
367 xelp_intr_enable(xe, false);
369 xe_display_irq_enable(xe, gu_misc_iir);
374 static u32 dg1_intr_disable(struct xe_device *xe)
376 struct xe_gt *mmio = xe_root_mmio_gt(xe);
379 /* First disable interrupts */
380 xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0);
382 /* Get the indication levels and ack the master unit */
383 val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
387 xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val);
392 static void dg1_intr_enable(struct xe_device *xe, bool stall)
394 struct xe_gt *mmio = xe_root_mmio_gt(xe);
396 xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
398 xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
402 * Top-level interrupt handler for Xe_LP+ and beyond. These platforms have
403 * a "master tile" interrupt register which must be consulted before the
404 * "graphics master" interrupt register.
406 static irqreturn_t dg1_irq_handler(int irq, void *arg)
408 struct xe_device *xe = arg;
409 struct xe_tile *tile;
410 u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0;
411 unsigned long intr_dw[2];
415 /* TODO: This really shouldn't be copied+pasted */
417 spin_lock(&xe->irq.lock);
418 if (!xe->irq.enabled) {
419 spin_unlock(&xe->irq.lock);
422 spin_unlock(&xe->irq.lock);
424 master_tile_ctl = dg1_intr_disable(xe);
425 if (!master_tile_ctl) {
426 dg1_intr_enable(xe, false);
430 for_each_tile(tile, xe, id) {
431 struct xe_gt *mmio = tile->primary_gt;
433 if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0)
436 master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ);
439 * We might be in irq handler just when PCIe DPC is initiated
440 * and all MMIO reads will be returned with all 1's. Ignore this
441 * irq as device is inaccessible.
443 if (master_ctl == REG_GENMASK(31, 0)) {
444 drm_dbg(&tile_to_xe(tile)->drm,
445 "Ignore this IRQ as device might be in DPC containment.\n");
449 xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl);
451 gt_irq_handler(tile, master_ctl, intr_dw, identity);
454 * Display interrupts (including display backlight operations
455 * that get reported as Gunit GSE) would only be hooked up to
459 xe_display_irq_handler(xe, master_ctl);
460 gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
464 dg1_intr_enable(xe, false);
465 xe_display_irq_enable(xe, gu_misc_iir);
470 static void gt_irq_reset(struct xe_tile *tile)
472 struct xe_gt *mmio = tile->primary_gt;
474 u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
475 XE_ENGINE_CLASS_COMPUTE);
476 u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
477 XE_ENGINE_CLASS_COPY);
479 /* Disable RCS, BCS, VCS and VECS class engines. */
480 xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0);
481 xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0);
483 xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0);
485 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
486 xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~0);
487 xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~0);
488 if (bcs_mask & (BIT(1)|BIT(2)))
489 xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0);
490 if (bcs_mask & (BIT(3)|BIT(4)))
491 xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0);
492 if (bcs_mask & (BIT(5)|BIT(6)))
493 xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0);
494 if (bcs_mask & (BIT(7)|BIT(8)))
495 xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0);
496 xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~0);
497 xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~0);
498 xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~0);
499 if (ccs_mask & (BIT(0)|BIT(1)))
500 xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0);
501 if (ccs_mask & (BIT(2)|BIT(3)))
502 xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~0);
504 if ((tile->media_gt &&
505 xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) ||
506 HAS_HECI_GSCFI(tile_to_xe(tile))) {
507 xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0);
508 xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0);
509 xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0);
512 xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0);
513 xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK, ~0);
514 xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE, 0);
515 xe_mmio_write32(mmio, GUC_SG_INTR_MASK, ~0);
518 static void xelp_irq_reset(struct xe_tile *tile)
520 xelp_intr_disable(tile_to_xe(tile));
524 if (IS_SRIOV_VF(tile_to_xe(tile)))
527 mask_and_disable(tile, PCU_IRQ_OFFSET);
530 static void dg1_irq_reset(struct xe_tile *tile)
533 dg1_intr_disable(tile_to_xe(tile));
537 if (IS_SRIOV_VF(tile_to_xe(tile)))
540 mask_and_disable(tile, PCU_IRQ_OFFSET);
543 static void dg1_irq_reset_mstr(struct xe_tile *tile)
545 struct xe_gt *mmio = tile->primary_gt;
547 xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0);
550 static void vf_irq_reset(struct xe_device *xe)
552 struct xe_tile *tile;
555 xe_assert(xe, IS_SRIOV_VF(xe));
557 if (GRAPHICS_VERx100(xe) < 1210)
558 xelp_intr_disable(xe);
560 xe_assert(xe, xe_device_has_memirq(xe));
562 for_each_tile(tile, xe, id) {
563 if (xe_device_has_memirq(xe))
564 xe_memirq_reset(&tile->sriov.vf.memirq);
570 static void xe_irq_reset(struct xe_device *xe)
572 struct xe_tile *tile;
576 return vf_irq_reset(xe);
578 for_each_tile(tile, xe, id) {
579 if (GRAPHICS_VERx100(xe) >= 1210)
582 xelp_irq_reset(tile);
585 tile = xe_device_get_root_tile(xe);
586 mask_and_disable(tile, GU_MISC_IRQ_OFFSET);
587 xe_display_irq_reset(xe);
590 * The tile's top-level status register should be the last one
591 * to be reset to avoid possible bit re-latching from lower
594 if (GRAPHICS_VERx100(xe) >= 1210) {
595 for_each_tile(tile, xe, id)
596 dg1_irq_reset_mstr(tile);
600 static void vf_irq_postinstall(struct xe_device *xe)
602 struct xe_tile *tile;
605 for_each_tile(tile, xe, id)
606 if (xe_device_has_memirq(xe))
607 xe_memirq_postinstall(&tile->sriov.vf.memirq);
609 if (GRAPHICS_VERx100(xe) < 1210)
610 xelp_intr_enable(xe, true);
612 xe_assert(xe, xe_device_has_memirq(xe));
615 static void xe_irq_postinstall(struct xe_device *xe)
618 return vf_irq_postinstall(xe);
620 xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe));
623 * ASLE backlight operations are reported via GUnit GSE interrupts
626 unmask_and_enable(xe_device_get_root_tile(xe),
627 GU_MISC_IRQ_OFFSET, GU_MISC_GSE);
629 /* Enable top-level interrupts */
630 if (GRAPHICS_VERx100(xe) >= 1210)
631 dg1_intr_enable(xe, true);
633 xelp_intr_enable(xe, true);
636 static irqreturn_t vf_mem_irq_handler(int irq, void *arg)
638 struct xe_device *xe = arg;
639 struct xe_tile *tile;
642 spin_lock(&xe->irq.lock);
643 if (!xe->irq.enabled) {
644 spin_unlock(&xe->irq.lock);
647 spin_unlock(&xe->irq.lock);
649 for_each_tile(tile, xe, id)
650 xe_memirq_handler(&tile->sriov.vf.memirq);
655 static irq_handler_t xe_irq_handler(struct xe_device *xe)
657 if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
658 return vf_mem_irq_handler;
660 if (GRAPHICS_VERx100(xe) >= 1210)
661 return dg1_irq_handler;
663 return xelp_irq_handler;
666 static void irq_uninstall(struct drm_device *drm, void *arg)
668 struct xe_device *xe = arg;
669 struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
672 if (!xe->irq.enabled)
675 xe->irq.enabled = false;
678 irq = pci_irq_vector(pdev, 0);
682 int xe_irq_install(struct xe_device *xe)
684 struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
685 unsigned int irq_flags = PCI_IRQ_MSIX;
686 irq_handler_t irq_handler;
689 irq_handler = xe_irq_handler(xe);
691 drm_err(&xe->drm, "No supported interrupt handler");
697 nvec = pci_msix_vec_count(pdev);
699 if (nvec == -EINVAL) {
700 /* MSIX capability is not supported in the device, using MSI */
701 irq_flags = PCI_IRQ_MSI;
704 drm_err(&xe->drm, "MSIX: Failed getting count\n");
709 err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags);
711 drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err);
715 irq = pci_irq_vector(pdev, 0);
716 err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe);
718 drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err);
722 xe->irq.enabled = true;
724 xe_irq_postinstall(xe);
726 err = drmm_add_action_or_reset(&xe->drm, irq_uninstall, xe);
728 goto free_irq_handler;
738 void xe_irq_shutdown(struct xe_device *xe)
740 irq_uninstall(&xe->drm, xe);
743 void xe_irq_suspend(struct xe_device *xe)
745 int irq = to_pci_dev(xe->drm.dev)->irq;
747 spin_lock_irq(&xe->irq.lock);
748 xe->irq.enabled = false; /* no new irqs */
749 spin_unlock_irq(&xe->irq.lock);
751 synchronize_irq(irq); /* flush irqs */
752 xe_irq_reset(xe); /* turn irqs off */
755 void xe_irq_resume(struct xe_device *xe)
762 * 1. no irq will arrive before the postinstall
763 * 2. display is not yet resumed
765 xe->irq.enabled = true;
767 xe_irq_postinstall(xe); /* turn irqs on */
769 for_each_gt(gt, xe, id)
770 xe_irq_enable_hwe(gt);