]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_hvs.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_vblank.h>
30
31 #include <soc/bcm2835/raspberrypi-firmware.h>
32
33 #include "vc4_drv.h"
34 #include "vc4_regs.h"
35
36 static const struct debugfs_reg32 hvs_regs[] = {
37         VC4_REG32(SCALER_DISPCTRL),
38         VC4_REG32(SCALER_DISPSTAT),
39         VC4_REG32(SCALER_DISPID),
40         VC4_REG32(SCALER_DISPECTRL),
41         VC4_REG32(SCALER_DISPPROF),
42         VC4_REG32(SCALER_DISPDITHER),
43         VC4_REG32(SCALER_DISPEOLN),
44         VC4_REG32(SCALER_DISPLIST0),
45         VC4_REG32(SCALER_DISPLIST1),
46         VC4_REG32(SCALER_DISPLIST2),
47         VC4_REG32(SCALER_DISPLSTAT),
48         VC4_REG32(SCALER_DISPLACT0),
49         VC4_REG32(SCALER_DISPLACT1),
50         VC4_REG32(SCALER_DISPLACT2),
51         VC4_REG32(SCALER_DISPCTRL0),
52         VC4_REG32(SCALER_DISPBKGND0),
53         VC4_REG32(SCALER_DISPSTAT0),
54         VC4_REG32(SCALER_DISPBASE0),
55         VC4_REG32(SCALER_DISPCTRL1),
56         VC4_REG32(SCALER_DISPBKGND1),
57         VC4_REG32(SCALER_DISPSTAT1),
58         VC4_REG32(SCALER_DISPBASE1),
59         VC4_REG32(SCALER_DISPCTRL2),
60         VC4_REG32(SCALER_DISPBKGND2),
61         VC4_REG32(SCALER_DISPSTAT2),
62         VC4_REG32(SCALER_DISPBASE2),
63         VC4_REG32(SCALER_DISPALPHA2),
64         VC4_REG32(SCALER_OLEDOFFS),
65         VC4_REG32(SCALER_OLEDCOEF0),
66         VC4_REG32(SCALER_OLEDCOEF1),
67         VC4_REG32(SCALER_OLEDCOEF2),
68 };
69
70 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
71 {
72         struct drm_device *drm = &hvs->vc4->base;
73         struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
74         int idx, i;
75
76         if (!drm_dev_enter(drm, &idx))
77                 return;
78
79         drm_print_regset32(&p, &hvs->regset);
80
81         DRM_INFO("HVS ctx:\n");
82         for (i = 0; i < 64; i += 4) {
83                 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
84                          i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
85                          readl((u32 __iomem *)hvs->dlist + i + 0),
86                          readl((u32 __iomem *)hvs->dlist + i + 1),
87                          readl((u32 __iomem *)hvs->dlist + i + 2),
88                          readl((u32 __iomem *)hvs->dlist + i + 3));
89         }
90
91         drm_dev_exit(idx);
92 }
93
94 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
95 {
96         struct drm_debugfs_entry *entry = m->private;
97         struct drm_device *dev = entry->dev;
98         struct vc4_dev *vc4 = to_vc4_dev(dev);
99         struct drm_printer p = drm_seq_file_printer(m);
100
101         drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
102
103         return 0;
104 }
105
106 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
107 {
108         struct drm_debugfs_entry *entry = m->private;
109         struct drm_device *dev = entry->dev;
110         struct vc4_dev *vc4 = to_vc4_dev(dev);
111         struct vc4_hvs *hvs = vc4->hvs;
112         struct drm_printer p = drm_seq_file_printer(m);
113         unsigned int next_entry_start = 0;
114         unsigned int i, j;
115         u32 dlist_word, dispstat;
116
117         for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
118                 dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
119                                          SCALER_DISPSTATX_MODE);
120                 if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
121                     dispstat == SCALER_DISPSTATX_MODE_EOF) {
122                         drm_printf(&p, "HVS chan %u disabled\n", i);
123                         continue;
124                 }
125
126                 drm_printf(&p, "HVS chan %u:\n", i);
127
128                 for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
129                         dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
130                         drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
131                                    dlist_word);
132                         if (!next_entry_start ||
133                             next_entry_start == j) {
134                                 if (dlist_word & SCALER_CTL0_END)
135                                         break;
136                                 next_entry_start = j +
137                                         VC4_GET_FIELD(dlist_word,
138                                                       SCALER_CTL0_SIZE);
139                         }
140                 }
141         }
142
143         return 0;
144 }
145
146 /* The filter kernel is composed of dwords each containing 3 9-bit
147  * signed integers packed next to each other.
148  */
149 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
150 #define VC4_PPF_FILTER_WORD(c0, c1, c2)                         \
151         ((((c0) & 0x1ff) << 0) |                                \
152          (((c1) & 0x1ff) << 9) |                                \
153          (((c2) & 0x1ff) << 18))
154
155 /* The whole filter kernel is arranged as the coefficients 0-16 going
156  * up, then a pad, then 17-31 going down and reversed within the
157  * dwords.  This means that a linear phase kernel (where it's
158  * symmetrical at the boundary between 15 and 16) has the last 5
159  * dwords matching the first 5, but reversed.
160  */
161 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,     \
162                                 c9, c10, c11, c12, c13, c14, c15)       \
163         {VC4_PPF_FILTER_WORD(c0, c1, c2),                               \
164          VC4_PPF_FILTER_WORD(c3, c4, c5),                               \
165          VC4_PPF_FILTER_WORD(c6, c7, c8),                               \
166          VC4_PPF_FILTER_WORD(c9, c10, c11),                             \
167          VC4_PPF_FILTER_WORD(c12, c13, c14),                            \
168          VC4_PPF_FILTER_WORD(c15, c15, 0)}
169
170 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
171 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
172
173 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
174  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
175  */
176 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
177         VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
178                                 50, 82, 119, 155, 187, 213, 227);
179
180 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
181                                         struct drm_mm_node *space,
182                                         const u32 *kernel)
183 {
184         int ret, i;
185         u32 __iomem *dst_kernel;
186
187         /*
188          * NOTE: We don't need a call to drm_dev_enter()/drm_dev_exit()
189          * here since that function is only called from vc4_hvs_bind().
190          */
191
192         ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
193         if (ret) {
194                 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
195                           ret);
196                 return ret;
197         }
198
199         dst_kernel = hvs->dlist + space->start;
200
201         for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
202                 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
203                         writel(kernel[i], &dst_kernel[i]);
204                 else {
205                         writel(kernel[VC4_KERNEL_DWORDS - i - 1],
206                                &dst_kernel[i]);
207                 }
208         }
209
210         return 0;
211 }
212
213 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
214                              struct vc4_crtc *vc4_crtc)
215 {
216         struct drm_device *drm = &hvs->vc4->base;
217         struct drm_crtc *crtc = &vc4_crtc->base;
218         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
219         int idx;
220         u32 i;
221
222         if (!drm_dev_enter(drm, &idx))
223                 return;
224
225         /* The LUT memory is laid out with each HVS channel in order,
226          * each of which takes 256 writes for R, 256 for G, then 256
227          * for B.
228          */
229         HVS_WRITE(SCALER_GAMADDR,
230                   SCALER_GAMADDR_AUTOINC |
231                   (vc4_state->assigned_channel * 3 * crtc->gamma_size));
232
233         for (i = 0; i < crtc->gamma_size; i++)
234                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
235         for (i = 0; i < crtc->gamma_size; i++)
236                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
237         for (i = 0; i < crtc->gamma_size; i++)
238                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
239
240         drm_dev_exit(idx);
241 }
242
243 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
244                                      struct vc4_crtc *vc4_crtc)
245 {
246         struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
247         struct drm_color_lut *lut = crtc_state->gamma_lut->data;
248         u32 length = drm_color_lut_size(crtc_state->gamma_lut);
249         u32 i;
250
251         for (i = 0; i < length; i++) {
252                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
253                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
254                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
255         }
256
257         vc4_hvs_lut_load(hvs, vc4_crtc);
258 }
259
260 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
261 {
262         struct drm_device *drm = &hvs->vc4->base;
263         u8 field = 0;
264         int idx;
265
266         if (!drm_dev_enter(drm, &idx))
267                 return 0;
268
269         switch (fifo) {
270         case 0:
271                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
272                                       SCALER_DISPSTAT1_FRCNT0);
273                 break;
274         case 1:
275                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
276                                       SCALER_DISPSTAT1_FRCNT1);
277                 break;
278         case 2:
279                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
280                                       SCALER_DISPSTAT2_FRCNT2);
281                 break;
282         }
283
284         drm_dev_exit(idx);
285         return field;
286 }
287
288 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
289 {
290         struct vc4_dev *vc4 = hvs->vc4;
291         u32 reg;
292         int ret;
293
294         if (!vc4->is_vc5)
295                 return output;
296
297         /*
298          * NOTE: We should probably use drm_dev_enter()/drm_dev_exit()
299          * here, but this function is only used during the DRM device
300          * initialization, so we should be fine.
301          */
302
303         switch (output) {
304         case 0:
305                 return 0;
306
307         case 1:
308                 return 1;
309
310         case 2:
311                 reg = HVS_READ(SCALER_DISPECTRL);
312                 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
313                 if (ret == 0)
314                         return 2;
315
316                 return 0;
317
318         case 3:
319                 reg = HVS_READ(SCALER_DISPCTRL);
320                 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
321                 if (ret == 3)
322                         return -EPIPE;
323
324                 return ret;
325
326         case 4:
327                 reg = HVS_READ(SCALER_DISPEOLN);
328                 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
329                 if (ret == 3)
330                         return -EPIPE;
331
332                 return ret;
333
334         case 5:
335                 reg = HVS_READ(SCALER_DISPDITHER);
336                 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
337                 if (ret == 3)
338                         return -EPIPE;
339
340                 return ret;
341
342         default:
343                 return -EPIPE;
344         }
345 }
346
347 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
348                                 struct drm_display_mode *mode, bool oneshot)
349 {
350         struct vc4_dev *vc4 = hvs->vc4;
351         struct drm_device *drm = &vc4->base;
352         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
353         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
354         unsigned int chan = vc4_crtc_state->assigned_channel;
355         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
356         u32 dispbkgndx;
357         u32 dispctrl;
358         int idx;
359
360         if (!drm_dev_enter(drm, &idx))
361                 return -ENODEV;
362
363         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
364         HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
365         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
366
367         /* Turn on the scaler, which will wait for vstart to start
368          * compositing.
369          * When feeding the transposer, we should operate in oneshot
370          * mode.
371          */
372         dispctrl = SCALER_DISPCTRLX_ENABLE;
373         dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
374
375         if (!vc4->is_vc5) {
376                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
377                                           SCALER_DISPCTRLX_WIDTH) |
378                             VC4_SET_FIELD(mode->vdisplay,
379                                           SCALER_DISPCTRLX_HEIGHT) |
380                             (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
381                 dispbkgndx |= SCALER_DISPBKGND_AUTOHS;
382         } else {
383                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
384                                           SCALER5_DISPCTRLX_WIDTH) |
385                             VC4_SET_FIELD(mode->vdisplay,
386                                           SCALER5_DISPCTRLX_HEIGHT) |
387                             (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
388                 dispbkgndx &= ~SCALER5_DISPBKGND_BCK2BCK;
389         }
390
391         HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
392
393         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
394         dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
395
396         HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
397                   ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
398                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
399
400         /* Reload the LUT, since the SRAMs would have been disabled if
401          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
402          */
403         vc4_hvs_lut_load(hvs, vc4_crtc);
404
405         drm_dev_exit(idx);
406
407         return 0;
408 }
409
410 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
411 {
412         struct drm_device *drm = &hvs->vc4->base;
413         int idx;
414
415         if (!drm_dev_enter(drm, &idx))
416                 return;
417
418         if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
419                 goto out;
420
421         HVS_WRITE(SCALER_DISPCTRLX(chan),
422                   HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
423         HVS_WRITE(SCALER_DISPCTRLX(chan),
424                   HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
425
426         /* Once we leave, the scaler should be disabled and its fifo empty. */
427         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
428
429         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
430                                    SCALER_DISPSTATX_MODE) !=
431                      SCALER_DISPSTATX_MODE_DISABLED);
432
433         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
434                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
435                      SCALER_DISPSTATX_EMPTY);
436
437 out:
438         drm_dev_exit(idx);
439 }
440
441 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
442 {
443         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
444         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
445         struct drm_device *dev = crtc->dev;
446         struct vc4_dev *vc4 = to_vc4_dev(dev);
447         struct drm_plane *plane;
448         unsigned long flags;
449         const struct drm_plane_state *plane_state;
450         u32 dlist_count = 0;
451         int ret;
452
453         /* The pixelvalve can only feed one encoder (and encoders are
454          * 1:1 with connectors.)
455          */
456         if (hweight32(crtc_state->connector_mask) > 1)
457                 return -EINVAL;
458
459         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
460                 dlist_count += vc4_plane_dlist_size(plane_state);
461
462         dlist_count++; /* Account for SCALER_CTL0_END. */
463
464         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
465         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
466                                  dlist_count);
467         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
468         if (ret)
469                 return ret;
470
471         return 0;
472 }
473
474 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
475 {
476         struct drm_device *dev = crtc->dev;
477         struct vc4_dev *vc4 = to_vc4_dev(dev);
478         struct vc4_hvs *hvs = vc4->hvs;
479         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
480         int idx;
481
482         if (!drm_dev_enter(dev, &idx))
483                 return;
484
485         HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
486                   vc4_state->mm.start);
487
488         drm_dev_exit(idx);
489 }
490
491 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
492 {
493         struct drm_device *dev = crtc->dev;
494         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
496         unsigned long flags;
497
498         if (crtc->state->event) {
499                 crtc->state->event->pipe = drm_crtc_index(crtc);
500
501                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
502
503                 spin_lock_irqsave(&dev->event_lock, flags);
504
505                 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
506                         vc4_crtc->event = crtc->state->event;
507                         crtc->state->event = NULL;
508                 }
509
510                 spin_unlock_irqrestore(&dev->event_lock, flags);
511         }
512
513         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
514         vc4_crtc->current_dlist = vc4_state->mm.start;
515         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
516 }
517
518 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
519                           struct drm_atomic_state *state)
520 {
521         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
522         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
523         unsigned long flags;
524
525         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
526         vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
527         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
528 }
529
530 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
531                            struct drm_atomic_state *state)
532 {
533         struct drm_device *dev = crtc->dev;
534         struct vc4_dev *vc4 = to_vc4_dev(dev);
535         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
536         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
537         bool oneshot = vc4_crtc->feeds_txp;
538
539         vc4_hvs_install_dlist(crtc);
540         vc4_hvs_update_dlist(crtc);
541         vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
542 }
543
544 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
545                             struct drm_atomic_state *state)
546 {
547         struct drm_device *dev = crtc->dev;
548         struct vc4_dev *vc4 = to_vc4_dev(dev);
549         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
550         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
551         unsigned int chan = vc4_state->assigned_channel;
552
553         vc4_hvs_stop_channel(vc4->hvs, chan);
554 }
555
556 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
557                           struct drm_atomic_state *state)
558 {
559         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
560                                                                          crtc);
561         struct drm_device *dev = crtc->dev;
562         struct vc4_dev *vc4 = to_vc4_dev(dev);
563         struct vc4_hvs *hvs = vc4->hvs;
564         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
565         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
566         unsigned int channel = vc4_state->assigned_channel;
567         struct drm_plane *plane;
568         struct vc4_plane_state *vc4_plane_state;
569         bool debug_dump_regs = false;
570         bool enable_bg_fill = false;
571         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
572         u32 __iomem *dlist_next = dlist_start;
573         unsigned int zpos = 0;
574         bool found = false;
575         int idx;
576
577         if (!drm_dev_enter(dev, &idx)) {
578                 vc4_crtc_send_vblank(crtc);
579                 return;
580         }
581
582         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
583                 return;
584
585         if (debug_dump_regs) {
586                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
587                 vc4_hvs_dump_state(hvs);
588         }
589
590         /* Copy all the active planes' dlist contents to the hardware dlist. */
591         do {
592                 found = false;
593
594                 drm_atomic_crtc_for_each_plane(plane, crtc) {
595                         if (plane->state->normalized_zpos != zpos)
596                                 continue;
597
598                         /* Is this the first active plane? */
599                         if (dlist_next == dlist_start) {
600                                 /* We need to enable background fill when a plane
601                                  * could be alpha blending from the background, i.e.
602                                  * where no other plane is underneath. It suffices to
603                                  * consider the first active plane here since we set
604                                  * needs_bg_fill such that either the first plane
605                                  * already needs it or all planes on top blend from
606                                  * the first or a lower plane.
607                                  */
608                                 vc4_plane_state = to_vc4_plane_state(plane->state);
609                                 enable_bg_fill = vc4_plane_state->needs_bg_fill;
610                         }
611
612                         dlist_next += vc4_plane_write_dlist(plane, dlist_next);
613
614                         found = true;
615                 }
616
617                 zpos++;
618         } while (found);
619
620         writel(SCALER_CTL0_END, dlist_next);
621         dlist_next++;
622
623         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
624
625         if (enable_bg_fill)
626                 /* This sets a black background color fill, as is the case
627                  * with other DRM drivers.
628                  */
629                 HVS_WRITE(SCALER_DISPBKGNDX(channel),
630                           HVS_READ(SCALER_DISPBKGNDX(channel)) |
631                           SCALER_DISPBKGND_FILL);
632
633         /* Only update DISPLIST if the CRTC was already running and is not
634          * being disabled.
635          * vc4_crtc_enable() takes care of updating the dlist just after
636          * re-enabling VBLANK interrupts and before enabling the engine.
637          * If the CRTC is being disabled, there's no point in updating this
638          * information.
639          */
640         if (crtc->state->active && old_state->active) {
641                 vc4_hvs_install_dlist(crtc);
642                 vc4_hvs_update_dlist(crtc);
643         }
644
645         if (crtc->state->color_mgmt_changed) {
646                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
647
648                 if (crtc->state->gamma_lut) {
649                         vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
650                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
651                 } else {
652                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
653                          * in hardware, which is the same as a linear lut that
654                          * DRM expects us to use in absence of a user lut.
655                          */
656                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
657                 }
658                 HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
659         }
660
661         if (debug_dump_regs) {
662                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
663                 vc4_hvs_dump_state(hvs);
664         }
665
666         drm_dev_exit(idx);
667 }
668
669 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
670 {
671         struct drm_device *drm = &hvs->vc4->base;
672         u32 dispctrl;
673         int idx;
674
675         if (!drm_dev_enter(drm, &idx))
676                 return;
677
678         dispctrl = HVS_READ(SCALER_DISPCTRL);
679         dispctrl &= ~(hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
680                                          SCALER_DISPCTRL_DSPEISLUR(channel));
681
682         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
683
684         drm_dev_exit(idx);
685 }
686
687 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
688 {
689         struct drm_device *drm = &hvs->vc4->base;
690         u32 dispctrl;
691         int idx;
692
693         if (!drm_dev_enter(drm, &idx))
694                 return;
695
696         dispctrl = HVS_READ(SCALER_DISPCTRL);
697         dispctrl |= (hvs->vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
698                                         SCALER_DISPCTRL_DSPEISLUR(channel));
699
700         HVS_WRITE(SCALER_DISPSTAT,
701                   SCALER_DISPSTAT_EUFLOW(channel));
702         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
703
704         drm_dev_exit(idx);
705 }
706
707 static void vc4_hvs_report_underrun(struct drm_device *dev)
708 {
709         struct vc4_dev *vc4 = to_vc4_dev(dev);
710
711         atomic_inc(&vc4->underrun);
712         DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
713 }
714
715 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
716 {
717         struct drm_device *dev = data;
718         struct vc4_dev *vc4 = to_vc4_dev(dev);
719         struct vc4_hvs *hvs = vc4->hvs;
720         irqreturn_t irqret = IRQ_NONE;
721         int channel;
722         u32 control;
723         u32 status;
724         u32 dspeislur;
725
726         /*
727          * NOTE: We don't need to protect the register access using
728          * drm_dev_enter() there because the interrupt handler lifetime
729          * is tied to the device itself, and not to the DRM device.
730          *
731          * So when the device will be gone, one of the first thing we
732          * will be doing will be to unregister the interrupt handler,
733          * and then unregister the DRM device. drm_dev_enter() would
734          * thus always succeed if we are here.
735          */
736
737         status = HVS_READ(SCALER_DISPSTAT);
738         control = HVS_READ(SCALER_DISPCTRL);
739
740         for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
741                 dspeislur = vc4->is_vc5 ? SCALER5_DISPCTRL_DSPEISLUR(channel) :
742                                           SCALER_DISPCTRL_DSPEISLUR(channel);
743                 /* Interrupt masking is not always honored, so check it here. */
744                 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
745                     control & dspeislur) {
746                         vc4_hvs_mask_underrun(hvs, channel);
747                         vc4_hvs_report_underrun(dev);
748
749                         irqret = IRQ_HANDLED;
750                 }
751         }
752
753         /* Clear every per-channel interrupt flag. */
754         HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
755                                    SCALER_DISPSTAT_IRQMASK(1) |
756                                    SCALER_DISPSTAT_IRQMASK(2));
757
758         return irqret;
759 }
760
761 int vc4_hvs_debugfs_init(struct drm_minor *minor)
762 {
763         struct drm_device *drm = minor->dev;
764         struct vc4_dev *vc4 = to_vc4_dev(drm);
765         struct vc4_hvs *hvs = vc4->hvs;
766
767         if (!vc4->hvs)
768                 return -ENODEV;
769
770         if (!vc4->is_vc5)
771                 debugfs_create_bool("hvs_load_tracker", S_IRUGO | S_IWUSR,
772                                     minor->debugfs_root,
773                                     &vc4->load_tracker_enabled);
774
775         drm_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist, NULL);
776
777         drm_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL);
778
779         vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
780
781         return 0;
782 }
783
784 struct vc4_hvs *__vc4_hvs_alloc(struct vc4_dev *vc4, struct platform_device *pdev)
785 {
786         struct drm_device *drm = &vc4->base;
787         struct vc4_hvs *hvs;
788
789         hvs = drmm_kzalloc(drm, sizeof(*hvs), GFP_KERNEL);
790         if (!hvs)
791                 return ERR_PTR(-ENOMEM);
792
793         hvs->vc4 = vc4;
794         hvs->pdev = pdev;
795
796         spin_lock_init(&hvs->mm_lock);
797
798         /* Set up the HVS display list memory manager.  We never
799          * overwrite the setup from the bootloader (just 128b out of
800          * our 16K), since we don't want to scramble the screen when
801          * transitioning from the firmware's boot setup to runtime.
802          */
803         drm_mm_init(&hvs->dlist_mm,
804                     HVS_BOOTLOADER_DLIST_END,
805                     (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
806
807         /* Set up the HVS LBM memory manager.  We could have some more
808          * complicated data structure that allowed reuse of LBM areas
809          * between planes when they don't overlap on the screen, but
810          * for now we just allocate globally.
811          */
812         if (!vc4->is_vc5)
813                 /* 48k words of 2x12-bit pixels */
814                 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
815         else
816                 /* 60k words of 4x12-bit pixels */
817                 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
818
819         vc4->hvs = hvs;
820
821         return hvs;
822 }
823
824 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
825 {
826         struct platform_device *pdev = to_platform_device(dev);
827         struct drm_device *drm = dev_get_drvdata(master);
828         struct vc4_dev *vc4 = to_vc4_dev(drm);
829         struct vc4_hvs *hvs = NULL;
830         int ret;
831         u32 dispctrl;
832         u32 reg, top;
833
834         hvs = __vc4_hvs_alloc(vc4, NULL);
835         if (IS_ERR(hvs))
836                 return PTR_ERR(hvs);
837
838         hvs->regs = vc4_ioremap_regs(pdev, 0);
839         if (IS_ERR(hvs->regs))
840                 return PTR_ERR(hvs->regs);
841
842         hvs->regset.base = hvs->regs;
843         hvs->regset.regs = hvs_regs;
844         hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
845
846         if (vc4->is_vc5) {
847                 struct rpi_firmware *firmware;
848                 struct device_node *node;
849                 unsigned int max_rate;
850
851                 node = rpi_firmware_find_node();
852                 if (!node)
853                         return -EINVAL;
854
855                 firmware = rpi_firmware_get(node);
856                 of_node_put(node);
857                 if (!firmware)
858                         return -EPROBE_DEFER;
859
860                 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
861                 if (IS_ERR(hvs->core_clk)) {
862                         dev_err(&pdev->dev, "Couldn't get core clock\n");
863                         return PTR_ERR(hvs->core_clk);
864                 }
865
866                 max_rate = rpi_firmware_clk_get_max_rate(firmware,
867                                                          RPI_FIRMWARE_CORE_CLK_ID);
868                 rpi_firmware_put(firmware);
869                 if (max_rate >= 550000000)
870                         hvs->vc5_hdmi_enable_hdmi_20 = true;
871
872                 if (max_rate >= 600000000)
873                         hvs->vc5_hdmi_enable_4096by2160 = true;
874
875                 hvs->max_core_rate = max_rate;
876
877                 ret = clk_prepare_enable(hvs->core_clk);
878                 if (ret) {
879                         dev_err(&pdev->dev, "Couldn't enable the core clock\n");
880                         return ret;
881                 }
882         }
883
884         if (!vc4->is_vc5)
885                 hvs->dlist = hvs->regs + SCALER_DLIST_START;
886         else
887                 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
888
889         /* Upload filter kernels.  We only have the one for now, so we
890          * keep it around for the lifetime of the driver.
891          */
892         ret = vc4_hvs_upload_linear_kernel(hvs,
893                                            &hvs->mitchell_netravali_filter,
894                                            mitchell_netravali_1_3_1_3_kernel);
895         if (ret)
896                 return ret;
897
898         reg = HVS_READ(SCALER_DISPECTRL);
899         reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
900         HVS_WRITE(SCALER_DISPECTRL,
901                   reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
902
903         reg = HVS_READ(SCALER_DISPCTRL);
904         reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
905         HVS_WRITE(SCALER_DISPCTRL,
906                   reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
907
908         reg = HVS_READ(SCALER_DISPEOLN);
909         reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
910         HVS_WRITE(SCALER_DISPEOLN,
911                   reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
912
913         reg = HVS_READ(SCALER_DISPDITHER);
914         reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
915         HVS_WRITE(SCALER_DISPDITHER,
916                   reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
917
918         dispctrl = HVS_READ(SCALER_DISPCTRL);
919
920         dispctrl |= SCALER_DISPCTRL_ENABLE;
921         dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
922                     SCALER_DISPCTRL_DISPEIRQ(1) |
923                     SCALER_DISPCTRL_DISPEIRQ(2);
924
925         if (!vc4->is_vc5)
926                 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
927                               SCALER_DISPCTRL_SLVWREIRQ |
928                               SCALER_DISPCTRL_SLVRDEIRQ |
929                               SCALER_DISPCTRL_DSPEIEOF(0) |
930                               SCALER_DISPCTRL_DSPEIEOF(1) |
931                               SCALER_DISPCTRL_DSPEIEOF(2) |
932                               SCALER_DISPCTRL_DSPEIEOLN(0) |
933                               SCALER_DISPCTRL_DSPEIEOLN(1) |
934                               SCALER_DISPCTRL_DSPEIEOLN(2) |
935                               SCALER_DISPCTRL_DSPEISLUR(0) |
936                               SCALER_DISPCTRL_DSPEISLUR(1) |
937                               SCALER_DISPCTRL_DSPEISLUR(2) |
938                               SCALER_DISPCTRL_SCLEIRQ);
939         else
940                 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
941                               SCALER5_DISPCTRL_SLVEIRQ |
942                               SCALER5_DISPCTRL_DSPEIEOF(0) |
943                               SCALER5_DISPCTRL_DSPEIEOF(1) |
944                               SCALER5_DISPCTRL_DSPEIEOF(2) |
945                               SCALER5_DISPCTRL_DSPEIEOLN(0) |
946                               SCALER5_DISPCTRL_DSPEIEOLN(1) |
947                               SCALER5_DISPCTRL_DSPEIEOLN(2) |
948                               SCALER5_DISPCTRL_DSPEISLUR(0) |
949                               SCALER5_DISPCTRL_DSPEISLUR(1) |
950                               SCALER5_DISPCTRL_DSPEISLUR(2) |
951                               SCALER_DISPCTRL_SCLEIRQ);
952
953
954         /* Set AXI panic mode.
955          * VC4 panics when < 2 lines in FIFO.
956          * VC5 panics when less than 1 line in the FIFO.
957          */
958         dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
959                       SCALER_DISPCTRL_PANIC1_MASK |
960                       SCALER_DISPCTRL_PANIC2_MASK);
961         dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
962         dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
963         dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
964
965         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
966
967         /* Recompute Composite Output Buffer (COB) allocations for the displays
968          */
969         if (!vc4->is_vc5) {
970                 /* The COB is 20736 pixels, or just over 10 lines at 2048 wide.
971                  * The bottom 2048 pixels are full 32bpp RGBA (intended for the
972                  * TXP composing RGBA to memory), whilst the remainder are only
973                  * 24bpp RGB.
974                  *
975                  * Assign 3 lines to channels 1 & 2, and just over 4 lines to
976                  * channel 0.
977                  */
978                 #define VC4_COB_SIZE            20736
979                 #define VC4_COB_LINE_WIDTH      2048
980                 #define VC4_COB_NUM_LINES       3
981                 reg = 0;
982                 top = VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
983                 reg |= (top - 1) << 16;
984                 HVS_WRITE(SCALER_DISPBASE2, reg);
985                 reg = top;
986                 top += VC4_COB_LINE_WIDTH * VC4_COB_NUM_LINES;
987                 reg |= (top - 1) << 16;
988                 HVS_WRITE(SCALER_DISPBASE1, reg);
989                 reg = top;
990                 top = VC4_COB_SIZE;
991                 reg |= (top - 1) << 16;
992                 HVS_WRITE(SCALER_DISPBASE0, reg);
993         } else {
994                 /* The COB is 44416 pixels, or 10.8 lines at 4096 wide.
995                  * The bottom 4096 pixels are full RGBA (intended for the TXP
996                  * composing RGBA to memory), whilst the remainder are only
997                  * RGB. Addressing is always pixel wide.
998                  *
999                  * Assign 3 lines of 4096 to channels 1 & 2, and just over 4
1000                  * lines. to channel 0.
1001                  */
1002                 #define VC5_COB_SIZE            44416
1003                 #define VC5_COB_LINE_WIDTH      4096
1004                 #define VC5_COB_NUM_LINES       3
1005                 reg = 0;
1006                 top = VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1007                 reg |= top << 16;
1008                 HVS_WRITE(SCALER_DISPBASE2, reg);
1009                 top += 16;
1010                 reg = top;
1011                 top += VC5_COB_LINE_WIDTH * VC5_COB_NUM_LINES;
1012                 reg |= top << 16;
1013                 HVS_WRITE(SCALER_DISPBASE1, reg);
1014                 top += 16;
1015                 reg = top;
1016                 top = VC5_COB_SIZE;
1017                 reg |= top << 16;
1018                 HVS_WRITE(SCALER_DISPBASE0, reg);
1019         }
1020
1021         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1022                                vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
1023         if (ret)
1024                 return ret;
1025
1026         return 0;
1027 }
1028
1029 static void vc4_hvs_unbind(struct device *dev, struct device *master,
1030                            void *data)
1031 {
1032         struct drm_device *drm = dev_get_drvdata(master);
1033         struct vc4_dev *vc4 = to_vc4_dev(drm);
1034         struct vc4_hvs *hvs = vc4->hvs;
1035         struct drm_mm_node *node, *next;
1036
1037         if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
1038                 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
1039
1040         drm_mm_for_each_node_safe(node, next, &vc4->hvs->dlist_mm)
1041                 drm_mm_remove_node(node);
1042
1043         drm_mm_takedown(&vc4->hvs->dlist_mm);
1044
1045         drm_mm_for_each_node_safe(node, next, &vc4->hvs->lbm_mm)
1046                 drm_mm_remove_node(node);
1047         drm_mm_takedown(&vc4->hvs->lbm_mm);
1048
1049         clk_disable_unprepare(hvs->core_clk);
1050
1051         vc4->hvs = NULL;
1052 }
1053
1054 static const struct component_ops vc4_hvs_ops = {
1055         .bind   = vc4_hvs_bind,
1056         .unbind = vc4_hvs_unbind,
1057 };
1058
1059 static int vc4_hvs_dev_probe(struct platform_device *pdev)
1060 {
1061         return component_add(&pdev->dev, &vc4_hvs_ops);
1062 }
1063
1064 static void vc4_hvs_dev_remove(struct platform_device *pdev)
1065 {
1066         component_del(&pdev->dev, &vc4_hvs_ops);
1067 }
1068
1069 static const struct of_device_id vc4_hvs_dt_match[] = {
1070         { .compatible = "brcm,bcm2711-hvs" },
1071         { .compatible = "brcm,bcm2835-hvs" },
1072         {}
1073 };
1074
1075 struct platform_driver vc4_hvs_driver = {
1076         .probe = vc4_hvs_dev_probe,
1077         .remove_new = vc4_hvs_dev_remove,
1078         .driver = {
1079                 .name = "vc4_hvs",
1080                 .of_match_table = vc4_hvs_dt_match,
1081         },
1082 };
This page took 0.097172 seconds and 4 git commands to generate.