]> Git Repo - linux.git/blob - drivers/gpu/drm/nouveau/nouveau_svm.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / gpu / drm / nouveau / nouveau_svm.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_svm.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dmem.h"
26
27 #include <nvif/event.h>
28 #include <nvif/object.h>
29 #include <nvif/vmm.h>
30
31 #include <nvif/class.h>
32 #include <nvif/clb069.h>
33 #include <nvif/ifc00d.h>
34
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/hmm.h>
38 #include <linux/memremap.h>
39 #include <linux/rmap.h>
40
41 struct nouveau_svm {
42         struct nouveau_drm *drm;
43         struct mutex mutex;
44         struct list_head inst;
45
46         struct nouveau_svm_fault_buffer {
47                 int id;
48                 struct nvif_object object;
49                 u32 entries;
50                 u32 getaddr;
51                 u32 putaddr;
52                 u32 get;
53                 u32 put;
54                 struct nvif_event notify;
55                 struct work_struct work;
56
57                 struct nouveau_svm_fault {
58                         u64 inst;
59                         u64 addr;
60                         u64 time;
61                         u32 engine;
62                         u8  gpc;
63                         u8  hub;
64                         u8  access;
65                         u8  client;
66                         u8  fault;
67                         struct nouveau_svmm *svmm;
68                 } **fault;
69                 int fault_nr;
70         } buffer[];
71 };
72
73 #define FAULT_ACCESS_READ 0
74 #define FAULT_ACCESS_WRITE 1
75 #define FAULT_ACCESS_ATOMIC 2
76 #define FAULT_ACCESS_PREFETCH 3
77
78 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
79 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
80
81 struct nouveau_pfnmap_args {
82         struct nvif_ioctl_v0 i;
83         struct nvif_ioctl_mthd_v0 m;
84         struct nvif_vmm_pfnmap_v0 p;
85 };
86
87 struct nouveau_ivmm {
88         struct nouveau_svmm *svmm;
89         u64 inst;
90         struct list_head head;
91 };
92
93 static struct nouveau_ivmm *
94 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
95 {
96         struct nouveau_ivmm *ivmm;
97         list_for_each_entry(ivmm, &svm->inst, head) {
98                 if (ivmm->inst == inst)
99                         return ivmm;
100         }
101         return NULL;
102 }
103
104 #define SVMM_DBG(s,f,a...)                                                     \
105         NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
106 #define SVMM_ERR(s,f,a...)                                                     \
107         NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
108
109 int
110 nouveau_svmm_bind(struct drm_device *dev, void *data,
111                   struct drm_file *file_priv)
112 {
113         struct nouveau_cli *cli = nouveau_cli(file_priv);
114         struct drm_nouveau_svm_bind *args = data;
115         unsigned target, cmd;
116         unsigned long addr, end;
117         struct mm_struct *mm;
118
119         args->va_start &= PAGE_MASK;
120         args->va_end = ALIGN(args->va_end, PAGE_SIZE);
121
122         /* Sanity check arguments */
123         if (args->reserved0 || args->reserved1)
124                 return -EINVAL;
125         if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
126                 return -EINVAL;
127         if (args->va_start >= args->va_end)
128                 return -EINVAL;
129
130         cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
131         cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
132         switch (cmd) {
133         case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
134                 break;
135         default:
136                 return -EINVAL;
137         }
138
139         /* FIXME support CPU target ie all target value < GPU_VRAM */
140         target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
141         target &= NOUVEAU_SVM_BIND_TARGET_MASK;
142         switch (target) {
143         case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
144                 break;
145         default:
146                 return -EINVAL;
147         }
148
149         /*
150          * FIXME: For now refuse non 0 stride, we need to change the migrate
151          * kernel function to handle stride to avoid to create a mess within
152          * each device driver.
153          */
154         if (args->stride)
155                 return -EINVAL;
156
157         /*
158          * Ok we are ask to do something sane, for now we only support migrate
159          * commands but we will add things like memory policy (what to do on
160          * page fault) and maybe some other commands.
161          */
162
163         mm = get_task_mm(current);
164         if (!mm) {
165                 return -EINVAL;
166         }
167         mmap_read_lock(mm);
168
169         if (!cli->svm.svmm) {
170                 mmap_read_unlock(mm);
171                 mmput(mm);
172                 return -EINVAL;
173         }
174
175         for (addr = args->va_start, end = args->va_end; addr < end;) {
176                 struct vm_area_struct *vma;
177                 unsigned long next;
178
179                 vma = find_vma_intersection(mm, addr, end);
180                 if (!vma)
181                         break;
182
183                 addr = max(addr, vma->vm_start);
184                 next = min(vma->vm_end, end);
185                 /* This is a best effort so we ignore errors */
186                 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
187                                          next);
188                 addr = next;
189         }
190
191         /*
192          * FIXME Return the number of page we have migrated, again we need to
193          * update the migrate API to return that information so that we can
194          * report it to user space.
195          */
196         args->result = 0;
197
198         mmap_read_unlock(mm);
199         mmput(mm);
200
201         return 0;
202 }
203
204 /* Unlink channel instance from SVMM. */
205 void
206 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
207 {
208         struct nouveau_ivmm *ivmm;
209         if (svmm) {
210                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
211                 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
212                 if (ivmm) {
213                         list_del(&ivmm->head);
214                         kfree(ivmm);
215                 }
216                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
217         }
218 }
219
220 /* Link channel instance to SVMM. */
221 int
222 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
223 {
224         struct nouveau_ivmm *ivmm;
225         if (svmm) {
226                 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
227                         return -ENOMEM;
228                 ivmm->svmm = svmm;
229                 ivmm->inst = inst;
230
231                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
232                 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
233                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
234         }
235         return 0;
236 }
237
238 /* Invalidate SVMM address-range on GPU. */
239 void
240 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
241 {
242         if (limit > start) {
243                 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
244                                  &(struct nvif_vmm_pfnclr_v0) {
245                                         .addr = start,
246                                         .size = limit - start,
247                                  }, sizeof(struct nvif_vmm_pfnclr_v0));
248         }
249 }
250
251 static int
252 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
253                                     const struct mmu_notifier_range *update)
254 {
255         struct nouveau_svmm *svmm =
256                 container_of(mn, struct nouveau_svmm, notifier);
257         unsigned long start = update->start;
258         unsigned long limit = update->end;
259
260         if (!mmu_notifier_range_blockable(update))
261                 return -EAGAIN;
262
263         SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
264
265         mutex_lock(&svmm->mutex);
266         if (unlikely(!svmm->vmm))
267                 goto out;
268
269         /*
270          * Ignore invalidation callbacks for device private pages since
271          * the invalidation is handled as part of the migration process.
272          */
273         if (update->event == MMU_NOTIFY_MIGRATE &&
274             update->owner == svmm->vmm->cli->drm->dev)
275                 goto out;
276
277         if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
278                 if (start < svmm->unmanaged.start) {
279                         nouveau_svmm_invalidate(svmm, start,
280                                                 svmm->unmanaged.limit);
281                 }
282                 start = svmm->unmanaged.limit;
283         }
284
285         nouveau_svmm_invalidate(svmm, start, limit);
286
287 out:
288         mutex_unlock(&svmm->mutex);
289         return 0;
290 }
291
292 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
293 {
294         kfree(container_of(mn, struct nouveau_svmm, notifier));
295 }
296
297 static const struct mmu_notifier_ops nouveau_mn_ops = {
298         .invalidate_range_start = nouveau_svmm_invalidate_range_start,
299         .free_notifier = nouveau_svmm_free_notifier,
300 };
301
302 void
303 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
304 {
305         struct nouveau_svmm *svmm = *psvmm;
306         if (svmm) {
307                 mutex_lock(&svmm->mutex);
308                 svmm->vmm = NULL;
309                 mutex_unlock(&svmm->mutex);
310                 mmu_notifier_put(&svmm->notifier);
311                 *psvmm = NULL;
312         }
313 }
314
315 int
316 nouveau_svmm_init(struct drm_device *dev, void *data,
317                   struct drm_file *file_priv)
318 {
319         struct nouveau_cli *cli = nouveau_cli(file_priv);
320         struct nouveau_svmm *svmm;
321         struct drm_nouveau_svm_init *args = data;
322         int ret;
323
324         /* We need to fail if svm is disabled */
325         if (!cli->drm->svm)
326                 return -ENOSYS;
327
328         /* Allocate tracking for SVM-enabled VMM. */
329         if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
330                 return -ENOMEM;
331         svmm->vmm = &cli->svm;
332         svmm->unmanaged.start = args->unmanaged_addr;
333         svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
334         mutex_init(&svmm->mutex);
335
336         /* Check that SVM isn't already enabled for the client. */
337         mutex_lock(&cli->mutex);
338         if (cli->svm.cli) {
339                 ret = -EBUSY;
340                 goto out_free;
341         }
342
343         /* Allocate a new GPU VMM that can support SVM (managed by the
344          * client, with replayable faults enabled).
345          *
346          * All future channel/memory allocations will make use of this
347          * VMM instead of the standard one.
348          */
349         ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
350                             cli->vmm.vmm.object.oclass, MANAGED,
351                             args->unmanaged_addr, args->unmanaged_size,
352                             &(struct gp100_vmm_v0) {
353                                 .fault_replay = true,
354                             }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
355         if (ret)
356                 goto out_free;
357
358         mmap_write_lock(current->mm);
359         svmm->notifier.ops = &nouveau_mn_ops;
360         ret = __mmu_notifier_register(&svmm->notifier, current->mm);
361         if (ret)
362                 goto out_mm_unlock;
363         /* Note, ownership of svmm transfers to mmu_notifier */
364
365         cli->svm.svmm = svmm;
366         cli->svm.cli = cli;
367         mmap_write_unlock(current->mm);
368         mutex_unlock(&cli->mutex);
369         return 0;
370
371 out_mm_unlock:
372         mmap_write_unlock(current->mm);
373 out_free:
374         mutex_unlock(&cli->mutex);
375         kfree(svmm);
376         return ret;
377 }
378
379 /* Issue fault replay for GPU to retry accesses that faulted previously. */
380 static void
381 nouveau_svm_fault_replay(struct nouveau_svm *svm)
382 {
383         SVM_DBG(svm, "replay");
384         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
385                                  GP100_VMM_VN_FAULT_REPLAY,
386                                  &(struct gp100_vmm_fault_replay_vn) {},
387                                  sizeof(struct gp100_vmm_fault_replay_vn)));
388 }
389
390 /* Cancel a replayable fault that could not be handled.
391  *
392  * Cancelling the fault will trigger recovery to reset the engine
393  * and kill the offending channel (ie. GPU SIGSEGV).
394  */
395 static void
396 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
397                          u64 inst, u8 hub, u8 gpc, u8 client)
398 {
399         SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
400         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
401                                  GP100_VMM_VN_FAULT_CANCEL,
402                                  &(struct gp100_vmm_fault_cancel_v0) {
403                                         .hub = hub,
404                                         .gpc = gpc,
405                                         .client = client,
406                                         .inst = inst,
407                                  }, sizeof(struct gp100_vmm_fault_cancel_v0)));
408 }
409
410 static void
411 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
412                                struct nouveau_svm_fault *fault)
413 {
414         nouveau_svm_fault_cancel(svm, fault->inst,
415                                       fault->hub,
416                                       fault->gpc,
417                                       fault->client);
418 }
419
420 static int
421 nouveau_svm_fault_priority(u8 fault)
422 {
423         switch (fault) {
424         case FAULT_ACCESS_PREFETCH:
425                 return 0;
426         case FAULT_ACCESS_READ:
427                 return 1;
428         case FAULT_ACCESS_WRITE:
429                 return 2;
430         case FAULT_ACCESS_ATOMIC:
431                 return 3;
432         default:
433                 WARN_ON_ONCE(1);
434                 return -1;
435         }
436 }
437
438 static int
439 nouveau_svm_fault_cmp(const void *a, const void *b)
440 {
441         const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
442         const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
443         int ret;
444         if ((ret = (s64)fa->inst - fb->inst))
445                 return ret;
446         if ((ret = (s64)fa->addr - fb->addr))
447                 return ret;
448         return nouveau_svm_fault_priority(fa->access) -
449                 nouveau_svm_fault_priority(fb->access);
450 }
451
452 static void
453 nouveau_svm_fault_cache(struct nouveau_svm *svm,
454                         struct nouveau_svm_fault_buffer *buffer, u32 offset)
455 {
456         struct nvif_object *memory = &buffer->object;
457         const u32 instlo = nvif_rd32(memory, offset + 0x00);
458         const u32 insthi = nvif_rd32(memory, offset + 0x04);
459         const u32 addrlo = nvif_rd32(memory, offset + 0x08);
460         const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
461         const u32 timelo = nvif_rd32(memory, offset + 0x10);
462         const u32 timehi = nvif_rd32(memory, offset + 0x14);
463         const u32 engine = nvif_rd32(memory, offset + 0x18);
464         const u32   info = nvif_rd32(memory, offset + 0x1c);
465         const u64   inst = (u64)insthi << 32 | instlo;
466         const u8     gpc = (info & 0x1f000000) >> 24;
467         const u8     hub = (info & 0x00100000) >> 20;
468         const u8  client = (info & 0x00007f00) >> 8;
469         struct nouveau_svm_fault *fault;
470
471         //XXX: i think we're supposed to spin waiting */
472         if (WARN_ON(!(info & 0x80000000)))
473                 return;
474
475         nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
476
477         if (!buffer->fault[buffer->fault_nr]) {
478                 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
479                 if (WARN_ON(!fault)) {
480                         nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
481                         return;
482                 }
483                 buffer->fault[buffer->fault_nr] = fault;
484         }
485
486         fault = buffer->fault[buffer->fault_nr++];
487         fault->inst   = inst;
488         fault->addr   = (u64)addrhi << 32 | addrlo;
489         fault->time   = (u64)timehi << 32 | timelo;
490         fault->engine = engine;
491         fault->gpc    = gpc;
492         fault->hub    = hub;
493         fault->access = (info & 0x000f0000) >> 16;
494         fault->client = client;
495         fault->fault  = (info & 0x0000001f);
496
497         SVM_DBG(svm, "fault %016llx %016llx %02x",
498                 fault->inst, fault->addr, fault->access);
499 }
500
501 struct svm_notifier {
502         struct mmu_interval_notifier notifier;
503         struct nouveau_svmm *svmm;
504 };
505
506 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
507                                          const struct mmu_notifier_range *range,
508                                          unsigned long cur_seq)
509 {
510         struct svm_notifier *sn =
511                 container_of(mni, struct svm_notifier, notifier);
512
513         if (range->event == MMU_NOTIFY_EXCLUSIVE &&
514             range->owner == sn->svmm->vmm->cli->drm->dev)
515                 return true;
516
517         /*
518          * serializes the update to mni->invalidate_seq done by caller and
519          * prevents invalidation of the PTE from progressing while HW is being
520          * programmed. This is very hacky and only works because the normal
521          * notifier that does invalidation is always called after the range
522          * notifier.
523          */
524         if (mmu_notifier_range_blockable(range))
525                 mutex_lock(&sn->svmm->mutex);
526         else if (!mutex_trylock(&sn->svmm->mutex))
527                 return false;
528         mmu_interval_set_seq(mni, cur_seq);
529         mutex_unlock(&sn->svmm->mutex);
530         return true;
531 }
532
533 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
534         .invalidate = nouveau_svm_range_invalidate,
535 };
536
537 static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
538                                     struct hmm_range *range,
539                                     struct nouveau_pfnmap_args *args)
540 {
541         struct page *page;
542
543         /*
544          * The address prepared here is passed through nvif_object_ioctl()
545          * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
546          *
547          * This is all just encoding the internal hmm representation into a
548          * different nouveau internal representation.
549          */
550         if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
551                 args->p.phys[0] = 0;
552                 return;
553         }
554
555         page = hmm_pfn_to_page(range->hmm_pfns[0]);
556         /*
557          * Only map compound pages to the GPU if the CPU is also mapping the
558          * page as a compound page. Otherwise, the PTE protections might not be
559          * consistent (e.g., CPU only maps part of a compound page).
560          * Note that the underlying page might still be larger than the
561          * CPU mapping (e.g., a PUD sized compound page partially mapped with
562          * a PMD sized page table entry).
563          */
564         if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
565                 unsigned long addr = args->p.addr;
566
567                 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
568                                 PAGE_SHIFT;
569                 args->p.size = 1UL << args->p.page;
570                 args->p.addr &= ~(args->p.size - 1);
571                 page -= (addr - args->p.addr) >> PAGE_SHIFT;
572         }
573         if (is_device_private_page(page))
574                 args->p.phys[0] = nouveau_dmem_page_addr(page) |
575                                 NVIF_VMM_PFNMAP_V0_V |
576                                 NVIF_VMM_PFNMAP_V0_VRAM;
577         else
578                 args->p.phys[0] = page_to_phys(page) |
579                                 NVIF_VMM_PFNMAP_V0_V |
580                                 NVIF_VMM_PFNMAP_V0_HOST;
581         if (range->hmm_pfns[0] & HMM_PFN_WRITE)
582                 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
583 }
584
585 static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
586                                struct nouveau_drm *drm,
587                                struct nouveau_pfnmap_args *args, u32 size,
588                                struct svm_notifier *notifier)
589 {
590         unsigned long timeout =
591                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
592         struct mm_struct *mm = svmm->notifier.mm;
593         struct page *page;
594         unsigned long start = args->p.addr;
595         unsigned long notifier_seq;
596         int ret = 0;
597
598         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
599                                         args->p.addr, args->p.size,
600                                         &nouveau_svm_mni_ops);
601         if (ret)
602                 return ret;
603
604         while (true) {
605                 if (time_after(jiffies, timeout)) {
606                         ret = -EBUSY;
607                         goto out;
608                 }
609
610                 notifier_seq = mmu_interval_read_begin(&notifier->notifier);
611                 mmap_read_lock(mm);
612                 ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
613                                             &page, drm->dev);
614                 mmap_read_unlock(mm);
615                 if (ret <= 0 || !page) {
616                         ret = -EINVAL;
617                         goto out;
618                 }
619
620                 mutex_lock(&svmm->mutex);
621                 if (!mmu_interval_read_retry(&notifier->notifier,
622                                              notifier_seq))
623                         break;
624                 mutex_unlock(&svmm->mutex);
625         }
626
627         /* Map the page on the GPU. */
628         args->p.page = 12;
629         args->p.size = PAGE_SIZE;
630         args->p.addr = start;
631         args->p.phys[0] = page_to_phys(page) |
632                 NVIF_VMM_PFNMAP_V0_V |
633                 NVIF_VMM_PFNMAP_V0_W |
634                 NVIF_VMM_PFNMAP_V0_A |
635                 NVIF_VMM_PFNMAP_V0_HOST;
636
637         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
638         mutex_unlock(&svmm->mutex);
639
640         unlock_page(page);
641         put_page(page);
642
643 out:
644         mmu_interval_notifier_remove(&notifier->notifier);
645         return ret;
646 }
647
648 static int nouveau_range_fault(struct nouveau_svmm *svmm,
649                                struct nouveau_drm *drm,
650                                struct nouveau_pfnmap_args *args, u32 size,
651                                unsigned long hmm_flags,
652                                struct svm_notifier *notifier)
653 {
654         unsigned long timeout =
655                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
656         /* Have HMM fault pages within the fault window to the GPU. */
657         unsigned long hmm_pfns[1];
658         struct hmm_range range = {
659                 .notifier = &notifier->notifier,
660                 .default_flags = hmm_flags,
661                 .hmm_pfns = hmm_pfns,
662                 .dev_private_owner = drm->dev,
663         };
664         struct mm_struct *mm = svmm->notifier.mm;
665         int ret;
666
667         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
668                                         args->p.addr, args->p.size,
669                                         &nouveau_svm_mni_ops);
670         if (ret)
671                 return ret;
672
673         range.start = notifier->notifier.interval_tree.start;
674         range.end = notifier->notifier.interval_tree.last + 1;
675
676         while (true) {
677                 if (time_after(jiffies, timeout)) {
678                         ret = -EBUSY;
679                         goto out;
680                 }
681
682                 range.notifier_seq = mmu_interval_read_begin(range.notifier);
683                 mmap_read_lock(mm);
684                 ret = hmm_range_fault(&range);
685                 mmap_read_unlock(mm);
686                 if (ret) {
687                         if (ret == -EBUSY)
688                                 continue;
689                         goto out;
690                 }
691
692                 mutex_lock(&svmm->mutex);
693                 if (mmu_interval_read_retry(range.notifier,
694                                             range.notifier_seq)) {
695                         mutex_unlock(&svmm->mutex);
696                         continue;
697                 }
698                 break;
699         }
700
701         nouveau_hmm_convert_pfn(drm, &range, args);
702
703         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
704         mutex_unlock(&svmm->mutex);
705
706 out:
707         mmu_interval_notifier_remove(&notifier->notifier);
708
709         return ret;
710 }
711
712 static void
713 nouveau_svm_fault(struct work_struct *work)
714 {
715         struct nouveau_svm_fault_buffer *buffer = container_of(work, typeof(*buffer), work);
716         struct nouveau_svm *svm = container_of(buffer, typeof(*svm), buffer[buffer->id]);
717         struct nvif_object *device = &svm->drm->client.device.object;
718         struct nouveau_svmm *svmm;
719         struct {
720                 struct nouveau_pfnmap_args i;
721                 u64 phys[1];
722         } args;
723         unsigned long hmm_flags;
724         u64 inst, start, limit;
725         int fi, fn;
726         int replay = 0, atomic = 0, ret;
727
728         /* Parse available fault buffer entries into a cache, and update
729          * the GET pointer so HW can reuse the entries.
730          */
731         SVM_DBG(svm, "fault handler");
732         if (buffer->get == buffer->put) {
733                 buffer->put = nvif_rd32(device, buffer->putaddr);
734                 buffer->get = nvif_rd32(device, buffer->getaddr);
735                 if (buffer->get == buffer->put)
736                         return;
737         }
738         buffer->fault_nr = 0;
739
740         SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
741         while (buffer->get != buffer->put) {
742                 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
743                 if (++buffer->get == buffer->entries)
744                         buffer->get = 0;
745         }
746         nvif_wr32(device, buffer->getaddr, buffer->get);
747         SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
748
749         /* Sort parsed faults by instance pointer to prevent unnecessary
750          * instance to SVMM translations, followed by address and access
751          * type to reduce the amount of work when handling the faults.
752          */
753         sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
754              nouveau_svm_fault_cmp, NULL);
755
756         /* Lookup SVMM structure for each unique instance pointer. */
757         mutex_lock(&svm->mutex);
758         for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
759                 if (!svmm || buffer->fault[fi]->inst != inst) {
760                         struct nouveau_ivmm *ivmm =
761                                 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
762                         svmm = ivmm ? ivmm->svmm : NULL;
763                         inst = buffer->fault[fi]->inst;
764                         SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
765                 }
766                 buffer->fault[fi]->svmm = svmm;
767         }
768         mutex_unlock(&svm->mutex);
769
770         /* Process list of faults. */
771         args.i.i.version = 0;
772         args.i.i.type = NVIF_IOCTL_V0_MTHD;
773         args.i.m.version = 0;
774         args.i.m.method = NVIF_VMM_V0_PFNMAP;
775         args.i.p.version = 0;
776
777         for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
778                 struct svm_notifier notifier;
779                 struct mm_struct *mm;
780
781                 /* Cancel any faults from non-SVM channels. */
782                 if (!(svmm = buffer->fault[fi]->svmm)) {
783                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
784                         continue;
785                 }
786                 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
787
788                 /* We try and group handling of faults within a small
789                  * window into a single update.
790                  */
791                 start = buffer->fault[fi]->addr;
792                 limit = start + PAGE_SIZE;
793                 if (start < svmm->unmanaged.limit)
794                         limit = min_t(u64, limit, svmm->unmanaged.start);
795
796                 /*
797                  * Prepare the GPU-side update of all pages within the
798                  * fault window, determining required pages and access
799                  * permissions based on pending faults.
800                  */
801                 args.i.p.addr = start;
802                 args.i.p.page = PAGE_SHIFT;
803                 args.i.p.size = PAGE_SIZE;
804                 /*
805                  * Determine required permissions based on GPU fault
806                  * access flags.
807                  */
808                 switch (buffer->fault[fi]->access) {
809                 case 0: /* READ. */
810                         hmm_flags = HMM_PFN_REQ_FAULT;
811                         break;
812                 case 2: /* ATOMIC. */
813                         atomic = true;
814                         break;
815                 case 3: /* PREFETCH. */
816                         hmm_flags = 0;
817                         break;
818                 default:
819                         hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
820                         break;
821                 }
822
823                 mm = svmm->notifier.mm;
824                 if (!mmget_not_zero(mm)) {
825                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
826                         continue;
827                 }
828
829                 notifier.svmm = svmm;
830                 if (atomic)
831                         ret = nouveau_atomic_range_fault(svmm, svm->drm,
832                                                          &args.i, sizeof(args),
833                                                          &notifier);
834                 else
835                         ret = nouveau_range_fault(svmm, svm->drm, &args.i,
836                                                   sizeof(args), hmm_flags,
837                                                   &notifier);
838                 mmput(mm);
839
840                 limit = args.i.p.addr + args.i.p.size;
841                 for (fn = fi; ++fn < buffer->fault_nr; ) {
842                         /* It's okay to skip over duplicate addresses from the
843                          * same SVMM as faults are ordered by access type such
844                          * that only the first one needs to be handled.
845                          *
846                          * ie. WRITE faults appear first, thus any handling of
847                          * pending READ faults will already be satisfied.
848                          * But if a large page is mapped, make sure subsequent
849                          * fault addresses have sufficient access permission.
850                          */
851                         if (buffer->fault[fn]->svmm != svmm ||
852                             buffer->fault[fn]->addr >= limit ||
853                             (buffer->fault[fi]->access == FAULT_ACCESS_READ &&
854                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
855                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
856                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
857                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
858                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
859                              buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
860                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
861                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
862                                 break;
863                 }
864
865                 /* If handling failed completely, cancel all faults. */
866                 if (ret) {
867                         while (fi < fn) {
868                                 struct nouveau_svm_fault *fault =
869                                         buffer->fault[fi++];
870
871                                 nouveau_svm_fault_cancel_fault(svm, fault);
872                         }
873                 } else
874                         replay++;
875         }
876
877         /* Issue fault replay to the GPU. */
878         if (replay)
879                 nouveau_svm_fault_replay(svm);
880 }
881
882 static int
883 nouveau_svm_event(struct nvif_event *event, void *argv, u32 argc)
884 {
885         struct nouveau_svm_fault_buffer *buffer = container_of(event, typeof(*buffer), notify);
886
887         schedule_work(&buffer->work);
888         return NVIF_EVENT_KEEP;
889 }
890
891 static struct nouveau_pfnmap_args *
892 nouveau_pfns_to_args(void *pfns)
893 {
894         return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
895 }
896
897 u64 *
898 nouveau_pfns_alloc(unsigned long npages)
899 {
900         struct nouveau_pfnmap_args *args;
901
902         args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
903         if (!args)
904                 return NULL;
905
906         args->i.type = NVIF_IOCTL_V0_MTHD;
907         args->m.method = NVIF_VMM_V0_PFNMAP;
908         args->p.page = PAGE_SHIFT;
909
910         return args->p.phys;
911 }
912
913 void
914 nouveau_pfns_free(u64 *pfns)
915 {
916         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
917
918         kfree(args);
919 }
920
921 void
922 nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
923                  unsigned long addr, u64 *pfns, unsigned long npages)
924 {
925         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
926
927         args->p.addr = addr;
928         args->p.size = npages << PAGE_SHIFT;
929
930         mutex_lock(&svmm->mutex);
931
932         nvif_object_ioctl(&svmm->vmm->vmm.object, args,
933                           struct_size(args, p.phys, npages), NULL);
934
935         mutex_unlock(&svmm->mutex);
936 }
937
938 static void
939 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
940 {
941         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
942
943         nvif_event_block(&buffer->notify);
944         flush_work(&buffer->work);
945 }
946
947 static int
948 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
949 {
950         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
951         struct nvif_object *device = &svm->drm->client.device.object;
952
953         buffer->get = nvif_rd32(device, buffer->getaddr);
954         buffer->put = nvif_rd32(device, buffer->putaddr);
955         SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
956
957         return nvif_event_allow(&buffer->notify);
958 }
959
960 static void
961 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
962 {
963         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
964         int i;
965
966         if (!nvif_object_constructed(&buffer->object))
967                 return;
968
969         nouveau_svm_fault_buffer_fini(svm, id);
970
971         if (buffer->fault) {
972                 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
973                         kfree(buffer->fault[i]);
974                 kvfree(buffer->fault);
975         }
976
977         nvif_event_dtor(&buffer->notify);
978         nvif_object_dtor(&buffer->object);
979 }
980
981 static int
982 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
983 {
984         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
985         struct nouveau_drm *drm = svm->drm;
986         struct nvif_object *device = &drm->client.device.object;
987         struct nvif_clb069_v0 args = {};
988         int ret;
989
990         buffer->id = id;
991
992         ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
993                                sizeof(args), &buffer->object);
994         if (ret < 0) {
995                 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
996                 return ret;
997         }
998
999         nvif_object_map(&buffer->object, NULL, 0);
1000         buffer->entries = args.entries;
1001         buffer->getaddr = args.get;
1002         buffer->putaddr = args.put;
1003         INIT_WORK(&buffer->work, nouveau_svm_fault);
1004
1005         ret = nvif_event_ctor(&buffer->object, "svmFault", id, nouveau_svm_event, true, NULL, 0,
1006                               &buffer->notify);
1007         if (ret)
1008                 return ret;
1009
1010         buffer->fault = kvcalloc(buffer->entries, sizeof(*buffer->fault), GFP_KERNEL);
1011         if (!buffer->fault)
1012                 return -ENOMEM;
1013
1014         return nouveau_svm_fault_buffer_init(svm, id);
1015 }
1016
1017 void
1018 nouveau_svm_resume(struct nouveau_drm *drm)
1019 {
1020         struct nouveau_svm *svm = drm->svm;
1021         if (svm)
1022                 nouveau_svm_fault_buffer_init(svm, 0);
1023 }
1024
1025 void
1026 nouveau_svm_suspend(struct nouveau_drm *drm)
1027 {
1028         struct nouveau_svm *svm = drm->svm;
1029         if (svm)
1030                 nouveau_svm_fault_buffer_fini(svm, 0);
1031 }
1032
1033 void
1034 nouveau_svm_fini(struct nouveau_drm *drm)
1035 {
1036         struct nouveau_svm *svm = drm->svm;
1037         if (svm) {
1038                 nouveau_svm_fault_buffer_dtor(svm, 0);
1039                 kfree(drm->svm);
1040                 drm->svm = NULL;
1041         }
1042 }
1043
1044 void
1045 nouveau_svm_init(struct nouveau_drm *drm)
1046 {
1047         static const struct nvif_mclass buffers[] = {
1048                 {   VOLTA_FAULT_BUFFER_A, 0 },
1049                 { MAXWELL_FAULT_BUFFER_A, 0 },
1050                 {}
1051         };
1052         struct nouveau_svm *svm;
1053         int ret;
1054
1055         /* Disable on Volta and newer until channel recovery is fixed,
1056          * otherwise clients will have a trivial way to trash the GPU
1057          * for everyone.
1058          */
1059         if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
1060                 return;
1061
1062         drm->svm = svm = kzalloc(struct_size(drm->svm, buffer, 1), GFP_KERNEL);
1063         if (!drm->svm)
1064                 return;
1065
1066         drm->svm->drm = drm;
1067         mutex_init(&drm->svm->mutex);
1068         INIT_LIST_HEAD(&drm->svm->inst);
1069
1070         ret = nvif_mclass(&drm->client.device.object, buffers);
1071         if (ret < 0) {
1072                 SVM_DBG(svm, "No supported fault buffer class");
1073                 nouveau_svm_fini(drm);
1074                 return;
1075         }
1076
1077         ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
1078         if (ret) {
1079                 nouveau_svm_fini(drm);
1080                 return;
1081         }
1082
1083         SVM_DBG(svm, "Initialised");
1084 }
This page took 0.103441 seconds and 4 git commands to generate.