]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/selftest_engine_pm.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / gpu / drm / i915 / gt / selftest_engine_pm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright © 2018 Intel Corporation
4  */
5
6 #include <linux/sort.h>
7
8 #include "gt/intel_gt_print.h"
9 #include "i915_selftest.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt_clock_utils.h"
13 #include "selftest_engine.h"
14 #include "selftest_engine_heartbeat.h"
15 #include "selftests/igt_atomic.h"
16 #include "selftests/igt_flush_test.h"
17 #include "selftests/igt_spinner.h"
18
19 #define COUNT 5
20
21 static int cmp_u64(const void *A, const void *B)
22 {
23         const u64 *a = A, *b = B;
24
25         return *a - *b;
26 }
27
28 static u64 trifilter(u64 *a)
29 {
30         sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
31         return (a[1] + 2 * a[2] + a[3]) >> 2;
32 }
33
34 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
35 {
36         *cs++ = MI_SEMAPHORE_WAIT |
37                 MI_SEMAPHORE_GLOBAL_GTT |
38                 MI_SEMAPHORE_POLL |
39                 op;
40         *cs++ = value;
41         *cs++ = offset;
42         *cs++ = 0;
43
44         return cs;
45 }
46
47 static u32 *emit_store(u32 *cs, u32 offset, u32 value)
48 {
49         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
50         *cs++ = offset;
51         *cs++ = 0;
52         *cs++ = value;
53
54         return cs;
55 }
56
57 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
58 {
59         *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
60         *cs++ = i915_mmio_reg_offset(reg);
61         *cs++ = offset;
62         *cs++ = 0;
63
64         return cs;
65 }
66
67 static void write_semaphore(u32 *x, u32 value)
68 {
69         WRITE_ONCE(*x, value);
70         wmb();
71 }
72
73 static int __measure_timestamps(struct intel_context *ce,
74                                 u64 *dt, u64 *d_ring, u64 *d_ctx)
75 {
76         struct intel_engine_cs *engine = ce->engine;
77         u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
78         u32 offset = i915_ggtt_offset(engine->status_page.vma);
79         struct i915_request *rq;
80         u32 *cs;
81
82         rq = intel_context_create_request(ce);
83         if (IS_ERR(rq))
84                 return PTR_ERR(rq);
85
86         cs = intel_ring_begin(rq, 28);
87         if (IS_ERR(cs)) {
88                 i915_request_add(rq);
89                 return PTR_ERR(cs);
90         }
91
92         /* Signal & wait for start */
93         cs = emit_store(cs, offset + 4008, 1);
94         cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
95
96         cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
97         cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
98
99         /* Busy wait */
100         cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
101
102         cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
103         cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
104
105         intel_ring_advance(rq, cs);
106         i915_request_get(rq);
107         i915_request_add(rq);
108         intel_engine_flush_submission(engine);
109
110         /* Wait for the request to start executing, that then waits for us */
111         while (READ_ONCE(sema[2]) == 0)
112                 cpu_relax();
113
114         /* Run the request for a 100us, sampling timestamps before/after */
115         local_irq_disable();
116         write_semaphore(&sema[2], 0);
117         while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
118                 cpu_relax();
119         *dt = local_clock();
120         udelay(100);
121         *dt = local_clock() - *dt;
122         write_semaphore(&sema[2], 1);
123         local_irq_enable();
124
125         if (i915_request_wait(rq, 0, HZ / 2) < 0) {
126                 i915_request_put(rq);
127                 return -ETIME;
128         }
129         i915_request_put(rq);
130
131         pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
132                  engine->name, sema[1], sema[3], sema[0], sema[4]);
133
134         *d_ctx = sema[3] - sema[1];
135         *d_ring = sema[4] - sema[0];
136         return 0;
137 }
138
139 static int __live_engine_timestamps(struct intel_engine_cs *engine)
140 {
141         u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
142         struct intel_context *ce;
143         int i, err = 0;
144
145         ce = intel_context_create(engine);
146         if (IS_ERR(ce))
147                 return PTR_ERR(ce);
148
149         for (i = 0; i < COUNT; i++) {
150                 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
151                 if (err)
152                         break;
153         }
154         intel_context_put(ce);
155         if (err)
156                 return err;
157
158         dt = trifilter(st);
159         d_ring = trifilter(s_ring);
160         d_ctx = trifilter(s_ctx);
161
162         pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
163                 engine->name, dt,
164                 intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
165                 intel_gt_clock_interval_to_ns(engine->gt, d_ring));
166
167         d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
168         if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
169                 pr_err("%s Mismatch between ring timestamp and walltime!\n",
170                        engine->name);
171                 return -EINVAL;
172         }
173
174         d_ring = trifilter(s_ring);
175         d_ctx = trifilter(s_ctx);
176
177         d_ctx *= engine->gt->clock_frequency;
178         if (GRAPHICS_VER(engine->i915) == 11)
179                 d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
180         else
181                 d_ring *= engine->gt->clock_frequency;
182
183         if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
184                 pr_err("%s Mismatch between ring and context timestamps!\n",
185                        engine->name);
186                 return -EINVAL;
187         }
188
189         return 0;
190 }
191
192 static int live_engine_timestamps(void *arg)
193 {
194         struct intel_gt *gt = arg;
195         struct intel_engine_cs *engine;
196         enum intel_engine_id id;
197
198         /*
199          * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
200          * the same CS clock.
201          */
202
203         if (GRAPHICS_VER(gt->i915) < 8)
204                 return 0;
205
206         for_each_engine(engine, gt, id) {
207                 int err;
208
209                 st_engine_heartbeat_disable(engine);
210                 err = __live_engine_timestamps(engine);
211                 st_engine_heartbeat_enable(engine);
212                 if (err)
213                         return err;
214         }
215
216         return 0;
217 }
218
219 static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness)
220 {
221         ktime_t start, unused, dt;
222
223         if (!intel_engine_uses_guc(engine))
224                 return 0;
225
226         /*
227          * In GuC mode of submission, the busyness stats may get updated after
228          * the batch starts running. Poll for a change in busyness and timeout
229          * after 500 us.
230          */
231         start = ktime_get();
232         while (intel_engine_get_busy_time(engine, &unused) == busyness) {
233                 dt = ktime_get() - start;
234                 if (dt > 10000000) {
235                         pr_err("active wait timed out %lld\n", dt);
236                         ENGINE_TRACE(engine, "active wait time out %lld\n", dt);
237                         return -ETIME;
238                 }
239         }
240
241         return 0;
242 }
243
244 static int live_engine_busy_stats(void *arg)
245 {
246         struct intel_gt *gt = arg;
247         struct intel_engine_cs *engine;
248         enum intel_engine_id id;
249         struct igt_spinner spin;
250         int err = 0;
251
252         /*
253          * Check that if an engine supports busy-stats, they tell the truth.
254          */
255
256         if (igt_spinner_init(&spin, gt))
257                 return -ENOMEM;
258
259         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
260         for_each_engine(engine, gt, id) {
261                 struct i915_request *rq;
262                 ktime_t busyness, dummy;
263                 ktime_t de, dt;
264                 ktime_t t[2];
265
266                 if (!intel_engine_supports_stats(engine))
267                         continue;
268
269                 if (!intel_engine_can_store_dword(engine))
270                         continue;
271
272                 if (intel_gt_pm_wait_for_idle(gt)) {
273                         err = -EBUSY;
274                         break;
275                 }
276
277                 st_engine_heartbeat_disable(engine);
278
279                 ENGINE_TRACE(engine, "measuring idle time\n");
280                 preempt_disable();
281                 de = intel_engine_get_busy_time(engine, &t[0]);
282                 udelay(100);
283                 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
284                 preempt_enable();
285                 dt = ktime_sub(t[1], t[0]);
286                 if (de < 0 || de > 10) {
287                         pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
288                                engine->name,
289                                de, (int)div64_u64(100 * de, dt), dt);
290                         GEM_TRACE_DUMP();
291                         err = -EINVAL;
292                         goto end;
293                 }
294
295                 /* 100% busy */
296                 rq = igt_spinner_create_request(&spin,
297                                                 engine->kernel_context,
298                                                 MI_NOOP);
299                 if (IS_ERR(rq)) {
300                         err = PTR_ERR(rq);
301                         goto end;
302                 }
303                 i915_request_add(rq);
304
305                 busyness = intel_engine_get_busy_time(engine, &dummy);
306                 if (!igt_wait_for_spinner(&spin, rq)) {
307                         intel_gt_set_wedged(engine->gt);
308                         err = -ETIME;
309                         goto end;
310                 }
311
312                 err = __spin_until_busier(engine, busyness);
313                 if (err) {
314                         GEM_TRACE_DUMP();
315                         goto end;
316                 }
317
318                 ENGINE_TRACE(engine, "measuring busy time\n");
319                 preempt_disable();
320                 de = intel_engine_get_busy_time(engine, &t[0]);
321                 mdelay(100);
322                 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
323                 preempt_enable();
324                 dt = ktime_sub(t[1], t[0]);
325                 if (100 * de < 95 * dt || 95 * de > 100 * dt) {
326                         pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
327                                engine->name,
328                                de, (int)div64_u64(100 * de, dt), dt);
329                         GEM_TRACE_DUMP();
330                         err = -EINVAL;
331                         goto end;
332                 }
333
334 end:
335                 st_engine_heartbeat_enable(engine);
336                 igt_spinner_end(&spin);
337                 if (igt_flush_test(gt->i915))
338                         err = -EIO;
339                 if (err)
340                         break;
341         }
342
343         igt_spinner_fini(&spin);
344         if (igt_flush_test(gt->i915))
345                 err = -EIO;
346         return err;
347 }
348
349 static int live_engine_pm(void *arg)
350 {
351         struct intel_gt *gt = arg;
352         struct intel_engine_cs *engine;
353         enum intel_engine_id id;
354
355         /*
356          * Check we can call intel_engine_pm_put from any context. No
357          * failures are reported directly, but if we mess up lockdep should
358          * tell us.
359          */
360         if (intel_gt_pm_wait_for_idle(gt)) {
361                 pr_err("Unable to flush GT pm before test\n");
362                 return -EBUSY;
363         }
364
365         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
366         for_each_engine(engine, gt, id) {
367                 const typeof(*igt_atomic_phases) *p;
368
369                 for (p = igt_atomic_phases; p->name; p++) {
370                         /*
371                          * Acquisition is always synchronous, except if we
372                          * know that the engine is already awake, in which
373                          * case we should use intel_engine_pm_get_if_awake()
374                          * to atomically grab the wakeref.
375                          *
376                          * In practice,
377                          *    intel_engine_pm_get();
378                          *    intel_engine_pm_put();
379                          * occurs in one thread, while simultaneously
380                          *    intel_engine_pm_get_if_awake();
381                          *    intel_engine_pm_put();
382                          * occurs from atomic context in another.
383                          */
384                         GEM_BUG_ON(intel_engine_pm_is_awake(engine));
385                         intel_engine_pm_get(engine);
386
387                         p->critical_section_begin();
388                         if (!intel_engine_pm_get_if_awake(engine))
389                                 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
390                                        engine->name, p->name);
391                         else
392                                 intel_engine_pm_put_async(engine);
393                         intel_engine_pm_put_async(engine);
394                         p->critical_section_end();
395
396                         intel_engine_pm_flush(engine);
397
398                         if (intel_engine_pm_is_awake(engine)) {
399                                 pr_err("%s is still awake after flushing pm\n",
400                                        engine->name);
401                                 return -EINVAL;
402                         }
403
404                         /* gt wakeref is async (deferred to workqueue) */
405                         if (intel_gt_pm_wait_for_idle(gt)) {
406                                 gt_err(gt, "GT failed to idle\n");
407                                 return -EINVAL;
408                         }
409                 }
410         }
411
412         return 0;
413 }
414
415 int live_engine_pm_selftests(struct intel_gt *gt)
416 {
417         static const struct i915_subtest tests[] = {
418                 SUBTEST(live_engine_timestamps),
419                 SUBTEST(live_engine_busy_stats),
420                 SUBTEST(live_engine_pm),
421         };
422
423         return intel_gt_live_subtests(tests, gt);
424 }
This page took 0.064989 seconds and 4 git commands to generate.