]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_migrate.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / gpu / drm / i915 / gt / intel_migrate.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include "i915_drv.h"
7 #include "intel_context.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_gtt.h"
11 #include "intel_migrate.h"
12 #include "intel_ring.h"
13 #include "gem/i915_gem_lmem.h"
14
15 struct insert_pte_data {
16         u64 offset;
17 };
18
19 #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
20
21 #define GET_CCS_BYTES(i915, size)       (HAS_FLAT_CCS(i915) ? \
22                                          DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
23 static bool engine_supports_migration(struct intel_engine_cs *engine)
24 {
25         if (!engine)
26                 return false;
27
28         /*
29          * We need the ability to prevent aribtration (MI_ARB_ON_OFF),
30          * the ability to write PTE using inline data (MI_STORE_DATA)
31          * and of course the ability to do the block transfer (blits).
32          */
33         GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
34
35         return true;
36 }
37
38 static void xehp_toggle_pdes(struct i915_address_space *vm,
39                              struct i915_page_table *pt,
40                              void *data)
41 {
42         struct insert_pte_data *d = data;
43
44         /*
45          * Insert a dummy PTE into every PT that will map to LMEM to ensure
46          * we have a correctly setup PDE structure for later use.
47          */
48         vm->insert_page(vm, 0, d->offset,
49                         i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
50                         PTE_LM);
51         GEM_BUG_ON(!pt->is_compact);
52         d->offset += SZ_2M;
53 }
54
55 static void xehp_insert_pte(struct i915_address_space *vm,
56                             struct i915_page_table *pt,
57                             void *data)
58 {
59         struct insert_pte_data *d = data;
60
61         /*
62          * We are playing tricks here, since the actual pt, from the hw
63          * pov, is only 256bytes with 32 entries, or 4096bytes with 512
64          * entries, but we are still guaranteed that the physical
65          * alignment is 64K underneath for the pt, and we are careful
66          * not to access the space in the void.
67          */
68         vm->insert_page(vm, px_dma(pt), d->offset,
69                         i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
70                         PTE_LM);
71         d->offset += SZ_64K;
72 }
73
74 static void insert_pte(struct i915_address_space *vm,
75                        struct i915_page_table *pt,
76                        void *data)
77 {
78         struct insert_pte_data *d = data;
79
80         vm->insert_page(vm, px_dma(pt), d->offset,
81                         i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
82                         i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
83         d->offset += PAGE_SIZE;
84 }
85
86 static struct i915_address_space *migrate_vm(struct intel_gt *gt)
87 {
88         struct i915_vm_pt_stash stash = {};
89         struct i915_ppgtt *vm;
90         int err;
91         int i;
92
93         /*
94          * We construct a very special VM for use by all migration contexts,
95          * it is kept pinned so that it can be used at any time. As we need
96          * to pre-allocate the page directories for the migration VM, this
97          * limits us to only using a small number of prepared vma.
98          *
99          * To be able to pipeline and reschedule migration operations while
100          * avoiding unnecessary contention on the vm itself, the PTE updates
101          * are inline with the blits. All the blits use the same fixed
102          * addresses, with the backing store redirection being updated on the
103          * fly. Only 2 implicit vma are used for all migration operations.
104          *
105          * We lay the ppGTT out as:
106          *
107          *      [0, CHUNK_SZ) -> first object
108          *      [CHUNK_SZ, 2 * CHUNK_SZ) -> second object
109          *      [2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
110          *
111          * By exposing the dma addresses of the page directories themselves
112          * within the ppGTT, we are then able to rewrite the PTE prior to use.
113          * But the PTE update and subsequent migration operation must be atomic,
114          * i.e. within the same non-preemptible window so that we do not switch
115          * to another migration context that overwrites the PTE.
116          *
117          * This changes quite a bit on platforms with HAS_64K_PAGES support,
118          * where we instead have three windows, each CHUNK_SIZE in size. The
119          * first is reserved for mapping system-memory, and that just uses the
120          * 512 entry layout using 4K GTT pages. The other two windows just map
121          * lmem pages and must use the new compact 32 entry layout using 64K GTT
122          * pages, which ensures we can address any lmem object that the user
123          * throws at us. We then also use the xehp_toggle_pdes as a way of
124          * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
125          * compact layout for each of these page-tables, that fall within the
126          * [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
127          *
128          * We lay the ppGTT out as:
129          *
130          * [0, CHUNK_SZ) -> first window/object, maps smem
131          * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
132          * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
133          *
134          * For the PTE window it's also quite different, since each PTE must
135          * point to some 64K page, one for each PT(since it's in lmem), and yet
136          * each is only <= 4096bytes, but since the unused space within that PTE
137          * range is never touched, this should be fine.
138          *
139          * So basically each PT now needs 64K of virtual memory, instead of 4K,
140          * which looks like:
141          *
142          * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
143          */
144
145         vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
146         if (IS_ERR(vm))
147                 return ERR_CAST(vm);
148
149         if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
150                 err = -ENODEV;
151                 goto err_vm;
152         }
153
154         if (HAS_64K_PAGES(gt->i915))
155                 stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
156
157         /*
158          * Each engine instance is assigned its own chunk in the VM, so
159          * that we can run multiple instances concurrently
160          */
161         for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
162                 struct intel_engine_cs *engine;
163                 u64 base = (u64)i << 32;
164                 struct insert_pte_data d = {};
165                 struct i915_gem_ww_ctx ww;
166                 u64 sz;
167
168                 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
169                 if (!engine_supports_migration(engine))
170                         continue;
171
172                 /*
173                  * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
174                  * 4x2 page directories for source/destination.
175                  */
176                 if (HAS_64K_PAGES(gt->i915))
177                         sz = 3 * CHUNK_SZ;
178                 else
179                         sz = 2 * CHUNK_SZ;
180                 d.offset = base + sz;
181
182                 /*
183                  * We need another page directory setup so that we can write
184                  * the 8x512 PTE in each chunk.
185                  */
186                 if (HAS_64K_PAGES(gt->i915))
187                         sz += (sz / SZ_2M) * SZ_64K;
188                 else
189                         sz += (sz >> 12) * sizeof(u64);
190
191                 err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
192                 if (err)
193                         goto err_vm;
194
195                 for_i915_gem_ww(&ww, err, true) {
196                         err = i915_vm_lock_objects(&vm->vm, &ww);
197                         if (err)
198                                 continue;
199                         err = i915_vm_map_pt_stash(&vm->vm, &stash);
200                         if (err)
201                                 continue;
202
203                         vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
204                 }
205                 i915_vm_free_pt_stash(&vm->vm, &stash);
206                 if (err)
207                         goto err_vm;
208
209                 /* Now allow the GPU to rewrite the PTE via its own ppGTT */
210                 if (HAS_64K_PAGES(gt->i915)) {
211                         vm->vm.foreach(&vm->vm, base, d.offset - base,
212                                        xehp_insert_pte, &d);
213                         d.offset = base + CHUNK_SZ;
214                         vm->vm.foreach(&vm->vm,
215                                        d.offset,
216                                        2 * CHUNK_SZ,
217                                        xehp_toggle_pdes, &d);
218                 } else {
219                         vm->vm.foreach(&vm->vm, base, d.offset - base,
220                                        insert_pte, &d);
221                 }
222         }
223
224         return &vm->vm;
225
226 err_vm:
227         i915_vm_put(&vm->vm);
228         return ERR_PTR(err);
229 }
230
231 static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
232 {
233         struct intel_engine_cs *engine;
234         int i;
235
236         for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
237                 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
238                 if (engine_supports_migration(engine))
239                         return engine;
240         }
241
242         return NULL;
243 }
244
245 static struct intel_context *pinned_context(struct intel_gt *gt)
246 {
247         static struct lock_class_key key;
248         struct intel_engine_cs *engine;
249         struct i915_address_space *vm;
250         struct intel_context *ce;
251
252         engine = first_copy_engine(gt);
253         if (!engine)
254                 return ERR_PTR(-ENODEV);
255
256         vm = migrate_vm(gt);
257         if (IS_ERR(vm))
258                 return ERR_CAST(vm);
259
260         ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
261                                                 I915_GEM_HWS_MIGRATE,
262                                                 &key, "migrate");
263         i915_vm_put(vm);
264         return ce;
265 }
266
267 int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
268 {
269         struct intel_context *ce;
270
271         memset(m, 0, sizeof(*m));
272
273         ce = pinned_context(gt);
274         if (IS_ERR(ce))
275                 return PTR_ERR(ce);
276
277         m->context = ce;
278         return 0;
279 }
280
281 static int random_index(unsigned int max)
282 {
283         return upper_32_bits(mul_u32_u32(get_random_u32(), max));
284 }
285
286 static struct intel_context *__migrate_engines(struct intel_gt *gt)
287 {
288         struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
289         struct intel_engine_cs *engine;
290         unsigned int count, i;
291
292         count = 0;
293         for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
294                 engine = gt->engine_class[COPY_ENGINE_CLASS][i];
295                 if (engine_supports_migration(engine))
296                         engines[count++] = engine;
297         }
298
299         return intel_context_create(engines[random_index(count)]);
300 }
301
302 struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
303 {
304         struct intel_context *ce;
305
306         /*
307          * We randomly distribute contexts across the engines upon constrction,
308          * as they all share the same pinned vm, and so in order to allow
309          * multiple blits to run in parallel, we must construct each blit
310          * to use a different range of the vm for its GTT. This has to be
311          * known at construction, so we can not use the late greedy load
312          * balancing of the virtual-engine.
313          */
314         ce = __migrate_engines(m->context->engine->gt);
315         if (IS_ERR(ce))
316                 return ce;
317
318         ce->ring = NULL;
319         ce->ring_size = SZ_256K;
320
321         i915_vm_put(ce->vm);
322         ce->vm = i915_vm_get(m->context->vm);
323
324         return ce;
325 }
326
327 static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
328 {
329         dma_addr_t addr = sg_dma_address(sg);
330
331         return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
332 }
333
334 static int emit_no_arbitration(struct i915_request *rq)
335 {
336         u32 *cs;
337
338         cs = intel_ring_begin(rq, 2);
339         if (IS_ERR(cs))
340                 return PTR_ERR(cs);
341
342         /* Explicitly disable preemption for this request. */
343         *cs++ = MI_ARB_ON_OFF;
344         *cs++ = MI_NOOP;
345         intel_ring_advance(rq, cs);
346
347         return 0;
348 }
349
350 static int max_pte_pkt_size(struct i915_request *rq, int pkt)
351 {
352         struct intel_ring *ring = rq->ring;
353
354         pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5);
355         pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
356
357         return pkt;
358 }
359
360 #define I915_EMIT_PTE_NUM_DWORDS 6
361
362 static int emit_pte(struct i915_request *rq,
363                     struct sgt_dma *it,
364                     unsigned int pat_index,
365                     bool is_lmem,
366                     u64 offset,
367                     int length)
368 {
369         bool has_64K_pages = HAS_64K_PAGES(rq->i915);
370         const u64 encode = rq->context->vm->pte_encode(0, pat_index,
371                                                        is_lmem ? PTE_LM : 0);
372         struct intel_ring *ring = rq->ring;
373         int pkt, dword_length;
374         u32 total = 0;
375         u32 page_size;
376         u32 *hdr, *cs;
377
378         GEM_BUG_ON(GRAPHICS_VER(rq->i915) < 8);
379
380         page_size = I915_GTT_PAGE_SIZE;
381         dword_length = 0x400;
382
383         /* Compute the page directory offset for the target address range */
384         if (has_64K_pages) {
385                 GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
386
387                 offset /= SZ_2M;
388                 offset *= SZ_64K;
389                 offset += 3 * CHUNK_SZ;
390
391                 if (is_lmem) {
392                         page_size = I915_GTT_PAGE_SIZE_64K;
393                         dword_length = 0x40;
394                 }
395         } else {
396                 offset >>= 12;
397                 offset *= sizeof(u64);
398                 offset += 2 * CHUNK_SZ;
399         }
400
401         offset += (u64)rq->engine->instance << 32;
402
403         cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
404         if (IS_ERR(cs))
405                 return PTR_ERR(cs);
406
407         /* Pack as many PTE updates as possible into a single MI command */
408         pkt = max_pte_pkt_size(rq, dword_length);
409
410         hdr = cs;
411         *cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
412         *cs++ = lower_32_bits(offset);
413         *cs++ = upper_32_bits(offset);
414
415         do {
416                 if (cs - hdr >= pkt) {
417                         int dword_rem;
418
419                         *hdr += cs - hdr - 2;
420                         *cs++ = MI_NOOP;
421
422                         ring->emit = (void *)cs - ring->vaddr;
423                         intel_ring_advance(rq, cs);
424                         intel_ring_update_space(ring);
425
426                         cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
427                         if (IS_ERR(cs))
428                                 return PTR_ERR(cs);
429
430                         dword_rem = dword_length;
431                         if (has_64K_pages) {
432                                 if (IS_ALIGNED(total, SZ_2M)) {
433                                         offset = round_up(offset, SZ_64K);
434                                 } else {
435                                         dword_rem = SZ_2M - (total & (SZ_2M - 1));
436                                         dword_rem /= page_size;
437                                         dword_rem *= 2;
438                                 }
439                         }
440
441                         pkt = max_pte_pkt_size(rq, dword_rem);
442
443                         hdr = cs;
444                         *cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
445                         *cs++ = lower_32_bits(offset);
446                         *cs++ = upper_32_bits(offset);
447                 }
448
449                 GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
450
451                 *cs++ = lower_32_bits(encode | it->dma);
452                 *cs++ = upper_32_bits(encode | it->dma);
453
454                 offset += 8;
455                 total += page_size;
456
457                 it->dma += page_size;
458                 if (it->dma >= it->max) {
459                         it->sg = __sg_next(it->sg);
460                         if (!it->sg || sg_dma_len(it->sg) == 0)
461                                 break;
462
463                         it->dma = sg_dma_address(it->sg);
464                         it->max = it->dma + sg_dma_len(it->sg);
465                 }
466         } while (total < length);
467
468         *hdr += cs - hdr - 2;
469         *cs++ = MI_NOOP;
470
471         ring->emit = (void *)cs - ring->vaddr;
472         intel_ring_advance(rq, cs);
473         intel_ring_update_space(ring);
474
475         return total;
476 }
477
478 static bool wa_1209644611_applies(int ver, u32 size)
479 {
480         u32 height = size >> PAGE_SHIFT;
481
482         if (ver != 11)
483                 return false;
484
485         return height % 4 == 3 && height <= 8;
486 }
487
488 /**
489  * DOC: Flat-CCS - Memory compression for Local memory
490  *
491  * On Xe-HP and later devices, we use dedicated compression control state (CCS)
492  * stored in local memory for each surface, to support the 3D and media
493  * compression formats.
494  *
495  * The memory required for the CCS of the entire local memory is 1/256 of the
496  * local memory size. So before the kernel boot, the required memory is reserved
497  * for the CCS data and a secure register will be programmed with the CCS base
498  * address.
499  *
500  * Flat CCS data needs to be cleared when a lmem object is allocated.
501  * And CCS data can be copied in and out of CCS region through
502  * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
503  *
504  * I915 supports Flat-CCS on lmem only objects. When an objects has smem in
505  * its preference list, on memory pressure, i915 needs to migrate the lmem
506  * content into smem. If the lmem object is Flat-CCS compressed by userspace,
507  * then i915 needs to decompress it. But I915 lack the required information
508  * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
509  *
510  * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
511  * be temporarily evicted to smem, along with the auxiliary CCS state, where
512  * it can be potentially swapped-out at a later point, if required.
513  * If userspace later touches the evicted pages, then we always move
514  * the backing memory back to lmem, which includes restoring the saved CCS state,
515  * and potentially performing any required swap-in.
516  *
517  * For the migration of the lmem objects with smem in placement list, such as
518  * {lmem, smem}, objects are treated as non Flat-CCS capable objects.
519  */
520
521 static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
522 {
523         *cmd++ = MI_FLUSH_DW | flags;
524         *cmd++ = 0;
525         *cmd++ = 0;
526
527         return cmd;
528 }
529
530 static int emit_copy_ccs(struct i915_request *rq,
531                          u32 dst_offset, u8 dst_access,
532                          u32 src_offset, u8 src_access, int size)
533 {
534         struct drm_i915_private *i915 = rq->i915;
535         int mocs = rq->engine->gt->mocs.uc_index << 1;
536         u32 num_ccs_blks;
537         u32 *cs;
538
539         cs = intel_ring_begin(rq, 12);
540         if (IS_ERR(cs))
541                 return PTR_ERR(cs);
542
543         num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
544                                     NUM_CCS_BYTES_PER_BLOCK);
545         GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
546         cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
547
548         /*
549          * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
550          * data in and out of the CCS region.
551          *
552          * We can copy at most 1024 blocks of 256 bytes using one
553          * XY_CTRL_SURF_COPY_BLT instruction.
554          *
555          * In case we need to copy more than 1024 blocks, we need to add
556          * another instruction to the same batch buffer.
557          *
558          * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
559          *
560          * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
561          */
562         *cs++ = XY_CTRL_SURF_COPY_BLT |
563                 src_access << SRC_ACCESS_TYPE_SHIFT |
564                 dst_access << DST_ACCESS_TYPE_SHIFT |
565                 ((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
566         *cs++ = src_offset;
567         *cs++ = rq->engine->instance |
568                 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
569         *cs++ = dst_offset;
570         *cs++ = rq->engine->instance |
571                 FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
572
573         cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
574         *cs++ = MI_NOOP;
575
576         intel_ring_advance(rq, cs);
577
578         return 0;
579 }
580
581 static int emit_copy(struct i915_request *rq,
582                      u32 dst_offset, u32 src_offset, int size)
583 {
584         const int ver = GRAPHICS_VER(rq->i915);
585         u32 instance = rq->engine->instance;
586         u32 *cs;
587
588         cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
589         if (IS_ERR(cs))
590                 return PTR_ERR(cs);
591
592         if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
593                 *cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
594                 *cs++ = BLT_DEPTH_32 | PAGE_SIZE;
595                 *cs++ = 0;
596                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
597                 *cs++ = dst_offset;
598                 *cs++ = instance;
599                 *cs++ = 0;
600                 *cs++ = PAGE_SIZE;
601                 *cs++ = src_offset;
602                 *cs++ = instance;
603         } else if (ver >= 8) {
604                 *cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
605                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
606                 *cs++ = 0;
607                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
608                 *cs++ = dst_offset;
609                 *cs++ = instance;
610                 *cs++ = 0;
611                 *cs++ = PAGE_SIZE;
612                 *cs++ = src_offset;
613                 *cs++ = instance;
614         } else {
615                 GEM_BUG_ON(instance);
616                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
617                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
618                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
619                 *cs++ = dst_offset;
620                 *cs++ = PAGE_SIZE;
621                 *cs++ = src_offset;
622         }
623
624         intel_ring_advance(rq, cs);
625         return 0;
626 }
627
628 static u64 scatter_list_length(struct scatterlist *sg)
629 {
630         u64 len = 0;
631
632         while (sg && sg_dma_len(sg)) {
633                 len += sg_dma_len(sg);
634                 sg = sg_next(sg);
635         }
636
637         return len;
638 }
639
640 static int
641 calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
642                    u64 bytes_to_cpy, u64 ccs_bytes_to_cpy)
643 {
644         if (ccs_bytes_to_cpy && !src_is_lmem)
645                 /*
646                  * When CHUNK_SZ is passed all the pages upto CHUNK_SZ
647                  * will be taken for the blt. in Flat-ccs supported
648                  * platform Smem obj will have more pages than required
649                  * for main meory hence limit it to the required size
650                  * for main memory
651                  */
652                 return min_t(u64, bytes_to_cpy, CHUNK_SZ);
653         else
654                 return CHUNK_SZ;
655 }
656
657 static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy)
658 {
659         u64 len;
660
661         do {
662                 GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
663                 len = it->max - it->dma;
664                 if (len > bytes_to_cpy) {
665                         it->dma += bytes_to_cpy;
666                         break;
667                 }
668
669                 bytes_to_cpy -= len;
670
671                 it->sg = __sg_next(it->sg);
672                 it->dma = sg_dma_address(it->sg);
673                 it->max = it->dma + sg_dma_len(it->sg);
674         } while (bytes_to_cpy);
675 }
676
677 int
678 intel_context_migrate_copy(struct intel_context *ce,
679                            const struct i915_deps *deps,
680                            struct scatterlist *src,
681                            unsigned int src_pat_index,
682                            bool src_is_lmem,
683                            struct scatterlist *dst,
684                            unsigned int dst_pat_index,
685                            bool dst_is_lmem,
686                            struct i915_request **out)
687 {
688         struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
689         struct drm_i915_private *i915 = ce->engine->i915;
690         u64 ccs_bytes_to_cpy = 0, bytes_to_cpy;
691         unsigned int ccs_pat_index;
692         u32 src_offset, dst_offset;
693         u8 src_access, dst_access;
694         struct i915_request *rq;
695         u64 src_sz, dst_sz;
696         bool ccs_is_src, overwrite_ccs;
697         int err;
698
699         GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
700         GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
701         *out = NULL;
702
703         GEM_BUG_ON(ce->ring->size < SZ_64K);
704
705         src_sz = scatter_list_length(src);
706         bytes_to_cpy = src_sz;
707
708         if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
709                 src_access = !src_is_lmem && dst_is_lmem;
710                 dst_access = !src_access;
711
712                 dst_sz = scatter_list_length(dst);
713                 if (src_is_lmem) {
714                         it_ccs = it_dst;
715                         ccs_pat_index = dst_pat_index;
716                         ccs_is_src = false;
717                 } else if (dst_is_lmem) {
718                         bytes_to_cpy = dst_sz;
719                         it_ccs = it_src;
720                         ccs_pat_index = src_pat_index;
721                         ccs_is_src = true;
722                 }
723
724                 /*
725                  * When there is a eviction of ccs needed smem will have the
726                  * extra pages for the ccs data
727                  *
728                  * TO-DO: Want to move the size mismatch check to a WARN_ON,
729                  * but still we have some requests of smem->lmem with same size.
730                  * Need to fix it.
731                  */
732                 ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
733                 if (ccs_bytes_to_cpy)
734                         get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
735         }
736
737         overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
738
739         src_offset = 0;
740         dst_offset = CHUNK_SZ;
741         if (HAS_64K_PAGES(ce->engine->i915)) {
742                 src_offset = 0;
743                 dst_offset = 0;
744                 if (src_is_lmem)
745                         src_offset = CHUNK_SZ;
746                 if (dst_is_lmem)
747                         dst_offset = 2 * CHUNK_SZ;
748         }
749
750         do {
751                 int len;
752
753                 rq = i915_request_create(ce);
754                 if (IS_ERR(rq)) {
755                         err = PTR_ERR(rq);
756                         goto out_ce;
757                 }
758
759                 if (deps) {
760                         err = i915_request_await_deps(rq, deps);
761                         if (err)
762                                 goto out_rq;
763
764                         if (rq->engine->emit_init_breadcrumb) {
765                                 err = rq->engine->emit_init_breadcrumb(rq);
766                                 if (err)
767                                         goto out_rq;
768                         }
769
770                         deps = NULL;
771                 }
772
773                 /* The PTE updates + copy must not be interrupted. */
774                 err = emit_no_arbitration(rq);
775                 if (err)
776                         goto out_rq;
777
778                 src_sz = calculate_chunk_sz(i915, src_is_lmem,
779                                             bytes_to_cpy, ccs_bytes_to_cpy);
780
781                 len = emit_pte(rq, &it_src, src_pat_index, src_is_lmem,
782                                src_offset, src_sz);
783                 if (!len) {
784                         err = -EINVAL;
785                         goto out_rq;
786                 }
787                 if (len < 0) {
788                         err = len;
789                         goto out_rq;
790                 }
791
792                 err = emit_pte(rq, &it_dst, dst_pat_index, dst_is_lmem,
793                                dst_offset, len);
794                 if (err < 0)
795                         goto out_rq;
796                 if (err < len) {
797                         err = -EINVAL;
798                         goto out_rq;
799                 }
800
801                 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
802                 if (err)
803                         goto out_rq;
804
805                 err = emit_copy(rq, dst_offset, src_offset, len);
806                 if (err)
807                         goto out_rq;
808
809                 bytes_to_cpy -= len;
810
811                 if (ccs_bytes_to_cpy) {
812                         int ccs_sz;
813
814                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
815                         if (err)
816                                 goto out_rq;
817
818                         ccs_sz = GET_CCS_BYTES(i915, len);
819                         err = emit_pte(rq, &it_ccs, ccs_pat_index, false,
820                                        ccs_is_src ? src_offset : dst_offset,
821                                        ccs_sz);
822                         if (err < 0)
823                                 goto out_rq;
824                         if (err < ccs_sz) {
825                                 err = -EINVAL;
826                                 goto out_rq;
827                         }
828
829                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
830                         if (err)
831                                 goto out_rq;
832
833                         err = emit_copy_ccs(rq, dst_offset, dst_access,
834                                             src_offset, src_access, len);
835                         if (err)
836                                 goto out_rq;
837
838                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
839                         if (err)
840                                 goto out_rq;
841                         ccs_bytes_to_cpy -= ccs_sz;
842                 } else if (overwrite_ccs) {
843                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
844                         if (err)
845                                 goto out_rq;
846
847                         if (src_is_lmem) {
848                                 /*
849                                  * If the src is already in lmem, then we must
850                                  * be doing an lmem -> lmem transfer, and so
851                                  * should be safe to directly copy the CCS
852                                  * state. In this case we have either
853                                  * initialised the CCS aux state when first
854                                  * clearing the pages (since it is already
855                                  * allocated in lmem), or the user has
856                                  * potentially populated it, in which case we
857                                  * need to copy the CCS state as-is.
858                                  */
859                                 err = emit_copy_ccs(rq,
860                                                     dst_offset, INDIRECT_ACCESS,
861                                                     src_offset, INDIRECT_ACCESS,
862                                                     len);
863                         } else {
864                                 /*
865                                  * While we can't always restore/manage the CCS
866                                  * state, we still need to ensure we don't leak
867                                  * the CCS state from the previous user, so make
868                                  * sure we overwrite it with something.
869                                  */
870                                 err = emit_copy_ccs(rq,
871                                                     dst_offset, INDIRECT_ACCESS,
872                                                     dst_offset, DIRECT_ACCESS,
873                                                     len);
874                         }
875
876                         if (err)
877                                 goto out_rq;
878
879                         err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
880                         if (err)
881                                 goto out_rq;
882                 }
883
884                 /* Arbitration is re-enabled between requests. */
885 out_rq:
886                 if (*out)
887                         i915_request_put(*out);
888                 *out = i915_request_get(rq);
889                 i915_request_add(rq);
890
891                 if (err)
892                         break;
893
894                 if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
895                         if (src_is_lmem)
896                                 WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
897                         else
898                                 WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
899                         break;
900                 }
901
902                 if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
903                             !it_dst.sg || !sg_dma_len(it_dst.sg) ||
904                             (ccs_bytes_to_cpy && (!it_ccs.sg ||
905                                                   !sg_dma_len(it_ccs.sg))))) {
906                         err = -EINVAL;
907                         break;
908                 }
909
910                 cond_resched();
911         } while (1);
912
913 out_ce:
914         return err;
915 }
916
917 static int emit_clear(struct i915_request *rq, u32 offset, int size,
918                       u32 value, bool is_lmem)
919 {
920         struct drm_i915_private *i915 = rq->i915;
921         int mocs = rq->engine->gt->mocs.uc_index << 1;
922         const int ver = GRAPHICS_VER(i915);
923         int ring_sz;
924         u32 *cs;
925
926         GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
927
928         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
929                 ring_sz = XY_FAST_COLOR_BLT_DW;
930         else if (ver >= 8)
931                 ring_sz = 8;
932         else
933                 ring_sz = 6;
934
935         cs = intel_ring_begin(rq, ring_sz);
936         if (IS_ERR(cs))
937                 return PTR_ERR(cs);
938
939         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
940                 *cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
941                         (XY_FAST_COLOR_BLT_DW - 2);
942                 *cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
943                         (PAGE_SIZE - 1);
944                 *cs++ = 0;
945                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
946                 *cs++ = offset;
947                 *cs++ = rq->engine->instance;
948                 *cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
949                 /* BG7 */
950                 *cs++ = value;
951                 *cs++ = 0;
952                 *cs++ = 0;
953                 *cs++ = 0;
954                 /* BG11 */
955                 *cs++ = 0;
956                 *cs++ = 0;
957                 /* BG13 */
958                 *cs++ = 0;
959                 *cs++ = 0;
960                 *cs++ = 0;
961         } else if (ver >= 8) {
962                 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
963                 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
964                 *cs++ = 0;
965                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
966                 *cs++ = offset;
967                 *cs++ = rq->engine->instance;
968                 *cs++ = value;
969                 *cs++ = MI_NOOP;
970         } else {
971                 *cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
972                 *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
973                 *cs++ = 0;
974                 *cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
975                 *cs++ = offset;
976                 *cs++ = value;
977         }
978
979         intel_ring_advance(rq, cs);
980         return 0;
981 }
982
983 int
984 intel_context_migrate_clear(struct intel_context *ce,
985                             const struct i915_deps *deps,
986                             struct scatterlist *sg,
987                             unsigned int pat_index,
988                             bool is_lmem,
989                             u32 value,
990                             struct i915_request **out)
991 {
992         struct drm_i915_private *i915 = ce->engine->i915;
993         struct sgt_dma it = sg_sgt(sg);
994         struct i915_request *rq;
995         u32 offset;
996         int err;
997
998         GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
999         *out = NULL;
1000
1001         GEM_BUG_ON(ce->ring->size < SZ_64K);
1002
1003         offset = 0;
1004         if (HAS_64K_PAGES(i915) && is_lmem)
1005                 offset = CHUNK_SZ;
1006
1007         do {
1008                 int len;
1009
1010                 rq = i915_request_create(ce);
1011                 if (IS_ERR(rq)) {
1012                         err = PTR_ERR(rq);
1013                         goto out_ce;
1014                 }
1015
1016                 if (deps) {
1017                         err = i915_request_await_deps(rq, deps);
1018                         if (err)
1019                                 goto out_rq;
1020
1021                         if (rq->engine->emit_init_breadcrumb) {
1022                                 err = rq->engine->emit_init_breadcrumb(rq);
1023                                 if (err)
1024                                         goto out_rq;
1025                         }
1026
1027                         deps = NULL;
1028                 }
1029
1030                 /* The PTE updates + clear must not be interrupted. */
1031                 err = emit_no_arbitration(rq);
1032                 if (err)
1033                         goto out_rq;
1034
1035                 len = emit_pte(rq, &it, pat_index, is_lmem, offset, CHUNK_SZ);
1036                 if (len <= 0) {
1037                         err = len;
1038                         goto out_rq;
1039                 }
1040
1041                 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1042                 if (err)
1043                         goto out_rq;
1044
1045                 err = emit_clear(rq, offset, len, value, is_lmem);
1046                 if (err)
1047                         goto out_rq;
1048
1049                 if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
1050                         /*
1051                          * copy the content of memory into corresponding
1052                          * ccs surface
1053                          */
1054                         err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
1055                                             DIRECT_ACCESS, len);
1056                         if (err)
1057                                 goto out_rq;
1058                 }
1059
1060                 err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1061
1062                 /* Arbitration is re-enabled between requests. */
1063 out_rq:
1064                 if (*out)
1065                         i915_request_put(*out);
1066                 *out = i915_request_get(rq);
1067                 i915_request_add(rq);
1068                 if (err || !it.sg || !sg_dma_len(it.sg))
1069                         break;
1070
1071                 cond_resched();
1072         } while (1);
1073
1074 out_ce:
1075         return err;
1076 }
1077
1078 int intel_migrate_copy(struct intel_migrate *m,
1079                        struct i915_gem_ww_ctx *ww,
1080                        const struct i915_deps *deps,
1081                        struct scatterlist *src,
1082                        unsigned int src_pat_index,
1083                        bool src_is_lmem,
1084                        struct scatterlist *dst,
1085                        unsigned int dst_pat_index,
1086                        bool dst_is_lmem,
1087                        struct i915_request **out)
1088 {
1089         struct intel_context *ce;
1090         int err;
1091
1092         *out = NULL;
1093         if (!m->context)
1094                 return -ENODEV;
1095
1096         ce = intel_migrate_create_context(m);
1097         if (IS_ERR(ce))
1098                 ce = intel_context_get(m->context);
1099         GEM_BUG_ON(IS_ERR(ce));
1100
1101         err = intel_context_pin_ww(ce, ww);
1102         if (err)
1103                 goto out;
1104
1105         err = intel_context_migrate_copy(ce, deps,
1106                                          src, src_pat_index, src_is_lmem,
1107                                          dst, dst_pat_index, dst_is_lmem,
1108                                          out);
1109
1110         intel_context_unpin(ce);
1111 out:
1112         intel_context_put(ce);
1113         return err;
1114 }
1115
1116 int
1117 intel_migrate_clear(struct intel_migrate *m,
1118                     struct i915_gem_ww_ctx *ww,
1119                     const struct i915_deps *deps,
1120                     struct scatterlist *sg,
1121                     unsigned int pat_index,
1122                     bool is_lmem,
1123                     u32 value,
1124                     struct i915_request **out)
1125 {
1126         struct intel_context *ce;
1127         int err;
1128
1129         *out = NULL;
1130         if (!m->context)
1131                 return -ENODEV;
1132
1133         ce = intel_migrate_create_context(m);
1134         if (IS_ERR(ce))
1135                 ce = intel_context_get(m->context);
1136         GEM_BUG_ON(IS_ERR(ce));
1137
1138         err = intel_context_pin_ww(ce, ww);
1139         if (err)
1140                 goto out;
1141
1142         err = intel_context_migrate_clear(ce, deps, sg, pat_index,
1143                                           is_lmem, value, out);
1144
1145         intel_context_unpin(ce);
1146 out:
1147         intel_context_put(ce);
1148         return err;
1149 }
1150
1151 void intel_migrate_fini(struct intel_migrate *m)
1152 {
1153         struct intel_context *ce;
1154
1155         ce = fetch_and_zero(&m->context);
1156         if (!ce)
1157                 return;
1158
1159         intel_engine_destroy_pinned_context(ce);
1160 }
1161
1162 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1163 #include "selftest_migrate.c"
1164 #endif
This page took 0.10895 seconds and 4 git commands to generate.