]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/display/intel_hdcp.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / gpu / drm / i915 / display / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <[email protected]>
8  * Ramalingam C <[email protected]>
9  */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_hdcp_gsc.h"
27 #include "intel_hdcp_regs.h"
28 #include "intel_pcode.h"
29
30 #define KEY_LOAD_TRIES  5
31 #define HDCP2_LC_RETRY_CNT                      3
32
33 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
34                               struct intel_connector *connector)
35 {
36         struct drm_dp_mst_topology_mgr *mgr;
37         struct drm_dp_mst_atomic_payload *payload;
38         struct drm_dp_mst_topology_state *mst_state;
39         int vcpi = 0;
40
41         /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42         if (!connector->port)
43                 return 0;
44         mgr = connector->port->mgr;
45
46         drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
47         mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
48         payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
49         if (drm_WARN_ON(mgr->dev, !payload))
50                 goto out;
51
52         vcpi = payload->vcpi;
53         if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54                 vcpi = 0;
55                 goto out;
56         }
57 out:
58         return vcpi;
59 }
60
61 /*
62  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63  * content_type for all streams in DP MST topology because security f/w doesn't
64  * have any provision to mark content_type for each stream separately, it marks
65  * all available streams with the content_type proivided at the time of port
66  * authentication. This may prohibit the userspace to use type1 content on
67  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68  * DP MST topology. Though it is not compulsory, security fw should change its
69  * policy to mark different content_types for different streams.
70  */
71 static int
72 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
73                                    struct intel_digital_port *dig_port)
74 {
75         struct drm_connector_list_iter conn_iter;
76         struct intel_digital_port *conn_dig_port;
77         struct intel_connector *connector;
78         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
79         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
80         bool enforce_type0 = false;
81         int k;
82
83         if (dig_port->hdcp_auth_status)
84                 return 0;
85
86         data->k = 0;
87
88         if (!dig_port->hdcp_mst_type1_capable)
89                 enforce_type0 = true;
90
91         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
92         for_each_intel_connector_iter(connector, &conn_iter) {
93                 if (connector->base.status == connector_status_disconnected)
94                         continue;
95
96                 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
97                         continue;
98
99                 conn_dig_port = intel_attached_dig_port(connector);
100                 if (conn_dig_port != dig_port)
101                         continue;
102
103                 data->streams[data->k].stream_id =
104                         intel_conn_to_vcpi(state, connector);
105                 data->k++;
106
107                 /* if there is only one active stream */
108                 if (dig_port->dp.active_mst_links <= 1)
109                         break;
110         }
111         drm_connector_list_iter_end(&conn_iter);
112
113         if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
114                 return -EINVAL;
115
116         /*
117          * Apply common protection level across all streams in DP MST Topology.
118          * Use highest supported content type for all streams in DP MST Topology.
119          */
120         for (k = 0; k < data->k; k++)
121                 data->streams[k].stream_type =
122                         enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
123
124         return 0;
125 }
126
127 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
128                                       struct intel_connector *connector)
129 {
130         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
131         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
132         struct intel_hdcp *hdcp = &connector->hdcp;
133
134         if (intel_encoder_is_mst(intel_attached_encoder(connector)))
135                 return intel_hdcp_required_content_stream(state, dig_port);
136
137         data->k = 1;
138         data->streams[0].stream_id = 0;
139         data->streams[0].stream_type = hdcp->content_type;
140
141         return 0;
142 }
143
144 static
145 bool intel_hdcp_is_ksv_valid(u8 *ksv)
146 {
147         int i, ones = 0;
148         /* KSV has 20 1's and 20 0's */
149         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
150                 ones += hweight8(ksv[i]);
151         if (ones != 20)
152                 return false;
153
154         return true;
155 }
156
157 static
158 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
159                                const struct intel_hdcp_shim *shim, u8 *bksv)
160 {
161         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
162         int ret, i, tries = 2;
163
164         /* HDCP spec states that we must retry the bksv if it is invalid */
165         for (i = 0; i < tries; i++) {
166                 ret = shim->read_bksv(dig_port, bksv);
167                 if (ret)
168                         return ret;
169                 if (intel_hdcp_is_ksv_valid(bksv))
170                         break;
171         }
172         if (i == tries) {
173                 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
174                 return -ENODEV;
175         }
176
177         return 0;
178 }
179
180 /* Is HDCP1.4 capable on Platform and Sink */
181 bool intel_hdcp_get_capability(struct intel_connector *connector)
182 {
183         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
184         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
185         bool capable = false;
186         u8 bksv[5];
187
188         if (!shim)
189                 return capable;
190
191         if (shim->hdcp_get_capability) {
192                 shim->hdcp_get_capability(dig_port, &capable);
193         } else {
194                 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
195                         capable = true;
196         }
197
198         return capable;
199 }
200
201 /*
202  * Check if the source has all the building blocks ready to make
203  * HDCP 2.2 work
204  */
205 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
206 {
207         struct drm_i915_private *i915 = to_i915(connector->base.dev);
208         struct intel_hdcp *hdcp = &connector->hdcp;
209
210         /* I915 support for HDCP2.2 */
211         if (!hdcp->hdcp2_supported)
212                 return false;
213
214         /* If MTL+ make sure gsc is loaded and proxy is setup */
215         if (intel_hdcp_gsc_cs_required(i915)) {
216                 if (!intel_hdcp_gsc_check_status(i915))
217                         return false;
218         }
219
220         /* MEI/GSC interface is solid depending on which is used */
221         mutex_lock(&i915->display.hdcp.hdcp_mutex);
222         if (!i915->display.hdcp.comp_added ||  !i915->display.hdcp.arbiter) {
223                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
224                 return false;
225         }
226         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
227
228         return true;
229 }
230
231 /* Is HDCP2.2 capable on Platform and Sink */
232 bool intel_hdcp2_get_capability(struct intel_connector *connector)
233 {
234         struct intel_hdcp *hdcp = &connector->hdcp;
235         bool capable = false;
236
237         if (!intel_hdcp2_prerequisite(connector))
238                 return false;
239
240         /* Sink's capability for HDCP2.2 */
241         hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
242
243         return capable;
244 }
245
246 void intel_hdcp_get_remote_capability(struct intel_connector *connector,
247                                       bool *hdcp_capable,
248                                       bool *hdcp2_capable)
249 {
250         struct intel_hdcp *hdcp = &connector->hdcp;
251
252         if (!hdcp->shim->get_remote_hdcp_capability)
253                 return;
254
255         hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
256                                                hdcp2_capable);
257
258         if (!intel_hdcp2_prerequisite(connector))
259                 *hdcp2_capable = false;
260 }
261
262 static bool intel_hdcp_in_use(struct drm_i915_private *i915,
263                               enum transcoder cpu_transcoder, enum port port)
264 {
265         return intel_de_read(i915,
266                              HDCP_STATUS(i915, cpu_transcoder, port)) &
267                 HDCP_STATUS_ENC;
268 }
269
270 static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
271                                enum transcoder cpu_transcoder, enum port port)
272 {
273         return intel_de_read(i915,
274                              HDCP2_STATUS(i915, cpu_transcoder, port)) &
275                 LINK_ENCRYPTION_STATUS;
276 }
277
278 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
279                                     const struct intel_hdcp_shim *shim)
280 {
281         int ret, read_ret;
282         bool ksv_ready;
283
284         /* Poll for ksv list ready (spec says max time allowed is 5s) */
285         ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
286                                                          &ksv_ready),
287                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
288                          100 * 1000);
289         if (ret)
290                 return ret;
291         if (read_ret)
292                 return read_ret;
293         if (!ksv_ready)
294                 return -ETIMEDOUT;
295
296         return 0;
297 }
298
299 static bool hdcp_key_loadable(struct drm_i915_private *i915)
300 {
301         enum i915_power_well_id id;
302         intel_wakeref_t wakeref;
303         bool enabled = false;
304
305         /*
306          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
307          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
308          */
309         if (IS_HASWELL(i915) || IS_BROADWELL(i915))
310                 id = HSW_DISP_PW_GLOBAL;
311         else
312                 id = SKL_DISP_PW_1;
313
314         /* PG1 (power well #1) needs to be enabled */
315         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
316                 enabled = intel_display_power_well_is_enabled(i915, id);
317
318         /*
319          * Another req for hdcp key loadability is enabled state of pll for
320          * cdclk. Without active crtc we wont land here. So we are assuming that
321          * cdclk is already on.
322          */
323
324         return enabled;
325 }
326
327 static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
328 {
329         intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
330         intel_de_write(i915, HDCP_KEY_STATUS,
331                        HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
332 }
333
334 static int intel_hdcp_load_keys(struct drm_i915_private *i915)
335 {
336         int ret;
337         u32 val;
338
339         val = intel_de_read(i915, HDCP_KEY_STATUS);
340         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
341                 return 0;
342
343         /*
344          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
345          * out of reset. So if Key is not already loaded, its an error state.
346          */
347         if (IS_HASWELL(i915) || IS_BROADWELL(i915))
348                 if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
349                         return -ENXIO;
350
351         /*
352          * Initiate loading the HDCP key from fuses.
353          *
354          * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
355          * version 9 platforms (minus BXT) differ in the key load trigger
356          * process from other platforms. These platforms use the GT Driver
357          * Mailbox interface.
358          */
359         if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
360                 ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
361                 if (ret) {
362                         drm_err(&i915->drm,
363                                 "Failed to initiate HDCP key load (%d)\n",
364                                 ret);
365                         return ret;
366                 }
367         } else {
368                 intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
369         }
370
371         /* Wait for the keys to load (500us) */
372         ret = intel_de_wait_custom(i915, HDCP_KEY_STATUS,
373                                    HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
374                                    10, 1, &val);
375         if (ret)
376                 return ret;
377         else if (!(val & HDCP_KEY_LOAD_STATUS))
378                 return -ENXIO;
379
380         /* Send Aksv over to PCH display for use in authentication */
381         intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
382
383         return 0;
384 }
385
386 /* Returns updated SHA-1 index */
387 static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
388 {
389         intel_de_write(i915, HDCP_SHA_TEXT, sha_text);
390         if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
391                 drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
392                 return -ETIMEDOUT;
393         }
394         return 0;
395 }
396
397 static
398 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
399                                 enum transcoder cpu_transcoder, enum port port)
400 {
401         if (DISPLAY_VER(i915) >= 12) {
402                 switch (cpu_transcoder) {
403                 case TRANSCODER_A:
404                         return HDCP_TRANSA_REP_PRESENT |
405                                HDCP_TRANSA_SHA1_M0;
406                 case TRANSCODER_B:
407                         return HDCP_TRANSB_REP_PRESENT |
408                                HDCP_TRANSB_SHA1_M0;
409                 case TRANSCODER_C:
410                         return HDCP_TRANSC_REP_PRESENT |
411                                HDCP_TRANSC_SHA1_M0;
412                 case TRANSCODER_D:
413                         return HDCP_TRANSD_REP_PRESENT |
414                                HDCP_TRANSD_SHA1_M0;
415                 default:
416                         drm_err(&i915->drm, "Unknown transcoder %d\n",
417                                 cpu_transcoder);
418                         return 0;
419                 }
420         }
421
422         switch (port) {
423         case PORT_A:
424                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
425         case PORT_B:
426                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
427         case PORT_C:
428                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
429         case PORT_D:
430                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
431         case PORT_E:
432                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
433         default:
434                 drm_err(&i915->drm, "Unknown port %d\n", port);
435                 return 0;
436         }
437 }
438
439 static
440 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
441                                 const struct intel_hdcp_shim *shim,
442                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
443 {
444         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
445         struct drm_i915_private *i915 = to_i915(connector->base.dev);
446         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
447         enum port port = dig_port->base.port;
448         u32 vprime, sha_text, sha_leftovers, rep_ctl;
449         int ret, i, j, sha_idx;
450
451         /* Process V' values from the receiver */
452         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
453                 ret = shim->read_v_prime_part(dig_port, i, &vprime);
454                 if (ret)
455                         return ret;
456                 intel_de_write(i915, HDCP_SHA_V_PRIME(i), vprime);
457         }
458
459         /*
460          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
461          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
462          * stream is written via the HDCP_SHA_TEXT register in 32-bit
463          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
464          * index will keep track of our progress through the 64 bytes as well as
465          * helping us work the 40-bit KSVs through our 32-bit register.
466          *
467          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
468          */
469         sha_idx = 0;
470         sha_text = 0;
471         sha_leftovers = 0;
472         rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
473         intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
474         for (i = 0; i < num_downstream; i++) {
475                 unsigned int sha_empty;
476                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
477
478                 /* Fill up the empty slots in sha_text and write it out */
479                 sha_empty = sizeof(sha_text) - sha_leftovers;
480                 for (j = 0; j < sha_empty; j++) {
481                         u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
482                         sha_text |= ksv[j] << off;
483                 }
484
485                 ret = intel_write_sha_text(i915, sha_text);
486                 if (ret < 0)
487                         return ret;
488
489                 /* Programming guide writes this every 64 bytes */
490                 sha_idx += sizeof(sha_text);
491                 if (!(sha_idx % 64))
492                         intel_de_write(i915, HDCP_REP_CTL,
493                                        rep_ctl | HDCP_SHA1_TEXT_32);
494
495                 /* Store the leftover bytes from the ksv in sha_text */
496                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
497                 sha_text = 0;
498                 for (j = 0; j < sha_leftovers; j++)
499                         sha_text |= ksv[sha_empty + j] <<
500                                         ((sizeof(sha_text) - j - 1) * 8);
501
502                 /*
503                  * If we still have room in sha_text for more data, continue.
504                  * Otherwise, write it out immediately.
505                  */
506                 if (sizeof(sha_text) > sha_leftovers)
507                         continue;
508
509                 ret = intel_write_sha_text(i915, sha_text);
510                 if (ret < 0)
511                         return ret;
512                 sha_leftovers = 0;
513                 sha_text = 0;
514                 sha_idx += sizeof(sha_text);
515         }
516
517         /*
518          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
519          * bytes are leftover from the last ksv, we might be able to fit them
520          * all in sha_text (first 2 cases), or we might need to split them up
521          * into 2 writes (last 2 cases).
522          */
523         if (sha_leftovers == 0) {
524                 /* Write 16 bits of text, 16 bits of M0 */
525                 intel_de_write(i915, HDCP_REP_CTL,
526                                rep_ctl | HDCP_SHA1_TEXT_16);
527                 ret = intel_write_sha_text(i915,
528                                            bstatus[0] << 8 | bstatus[1]);
529                 if (ret < 0)
530                         return ret;
531                 sha_idx += sizeof(sha_text);
532
533                 /* Write 32 bits of M0 */
534                 intel_de_write(i915, HDCP_REP_CTL,
535                                rep_ctl | HDCP_SHA1_TEXT_0);
536                 ret = intel_write_sha_text(i915, 0);
537                 if (ret < 0)
538                         return ret;
539                 sha_idx += sizeof(sha_text);
540
541                 /* Write 16 bits of M0 */
542                 intel_de_write(i915, HDCP_REP_CTL,
543                                rep_ctl | HDCP_SHA1_TEXT_16);
544                 ret = intel_write_sha_text(i915, 0);
545                 if (ret < 0)
546                         return ret;
547                 sha_idx += sizeof(sha_text);
548
549         } else if (sha_leftovers == 1) {
550                 /* Write 24 bits of text, 8 bits of M0 */
551                 intel_de_write(i915, HDCP_REP_CTL,
552                                rep_ctl | HDCP_SHA1_TEXT_24);
553                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
554                 /* Only 24-bits of data, must be in the LSB */
555                 sha_text = (sha_text & 0xffffff00) >> 8;
556                 ret = intel_write_sha_text(i915, sha_text);
557                 if (ret < 0)
558                         return ret;
559                 sha_idx += sizeof(sha_text);
560
561                 /* Write 32 bits of M0 */
562                 intel_de_write(i915, HDCP_REP_CTL,
563                                rep_ctl | HDCP_SHA1_TEXT_0);
564                 ret = intel_write_sha_text(i915, 0);
565                 if (ret < 0)
566                         return ret;
567                 sha_idx += sizeof(sha_text);
568
569                 /* Write 24 bits of M0 */
570                 intel_de_write(i915, HDCP_REP_CTL,
571                                rep_ctl | HDCP_SHA1_TEXT_8);
572                 ret = intel_write_sha_text(i915, 0);
573                 if (ret < 0)
574                         return ret;
575                 sha_idx += sizeof(sha_text);
576
577         } else if (sha_leftovers == 2) {
578                 /* Write 32 bits of text */
579                 intel_de_write(i915, HDCP_REP_CTL,
580                                rep_ctl | HDCP_SHA1_TEXT_32);
581                 sha_text |= bstatus[0] << 8 | bstatus[1];
582                 ret = intel_write_sha_text(i915, sha_text);
583                 if (ret < 0)
584                         return ret;
585                 sha_idx += sizeof(sha_text);
586
587                 /* Write 64 bits of M0 */
588                 intel_de_write(i915, HDCP_REP_CTL,
589                                rep_ctl | HDCP_SHA1_TEXT_0);
590                 for (i = 0; i < 2; i++) {
591                         ret = intel_write_sha_text(i915, 0);
592                         if (ret < 0)
593                                 return ret;
594                         sha_idx += sizeof(sha_text);
595                 }
596
597                 /*
598                  * Terminate the SHA-1 stream by hand. For the other leftover
599                  * cases this is appended by the hardware.
600                  */
601                 intel_de_write(i915, HDCP_REP_CTL,
602                                rep_ctl | HDCP_SHA1_TEXT_32);
603                 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
604                 ret = intel_write_sha_text(i915, sha_text);
605                 if (ret < 0)
606                         return ret;
607                 sha_idx += sizeof(sha_text);
608         } else if (sha_leftovers == 3) {
609                 /* Write 32 bits of text (filled from LSB) */
610                 intel_de_write(i915, HDCP_REP_CTL,
611                                rep_ctl | HDCP_SHA1_TEXT_32);
612                 sha_text |= bstatus[0];
613                 ret = intel_write_sha_text(i915, sha_text);
614                 if (ret < 0)
615                         return ret;
616                 sha_idx += sizeof(sha_text);
617
618                 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
619                 intel_de_write(i915, HDCP_REP_CTL,
620                                rep_ctl | HDCP_SHA1_TEXT_8);
621                 ret = intel_write_sha_text(i915, bstatus[1]);
622                 if (ret < 0)
623                         return ret;
624                 sha_idx += sizeof(sha_text);
625
626                 /* Write 32 bits of M0 */
627                 intel_de_write(i915, HDCP_REP_CTL,
628                                rep_ctl | HDCP_SHA1_TEXT_0);
629                 ret = intel_write_sha_text(i915, 0);
630                 if (ret < 0)
631                         return ret;
632                 sha_idx += sizeof(sha_text);
633
634                 /* Write 8 bits of M0 */
635                 intel_de_write(i915, HDCP_REP_CTL,
636                                rep_ctl | HDCP_SHA1_TEXT_24);
637                 ret = intel_write_sha_text(i915, 0);
638                 if (ret < 0)
639                         return ret;
640                 sha_idx += sizeof(sha_text);
641         } else {
642                 drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
643                             sha_leftovers);
644                 return -EINVAL;
645         }
646
647         intel_de_write(i915, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
648         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
649         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
650                 ret = intel_write_sha_text(i915, 0);
651                 if (ret < 0)
652                         return ret;
653                 sha_idx += sizeof(sha_text);
654         }
655
656         /*
657          * Last write gets the length of the concatenation in bits. That is:
658          *  - 5 bytes per device
659          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
660          */
661         sha_text = (num_downstream * 5 + 10) * 8;
662         ret = intel_write_sha_text(i915, sha_text);
663         if (ret < 0)
664                 return ret;
665
666         /* Tell the HW we're done with the hash and wait for it to ACK */
667         intel_de_write(i915, HDCP_REP_CTL,
668                        rep_ctl | HDCP_SHA1_COMPLETE_HASH);
669         if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
670                                   HDCP_SHA1_COMPLETE, 1)) {
671                 drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
672                 return -ETIMEDOUT;
673         }
674         if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
675                 drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
676                 return -ENXIO;
677         }
678
679         return 0;
680 }
681
682 /* Implements Part 2 of the HDCP authorization procedure */
683 static
684 int intel_hdcp_auth_downstream(struct intel_connector *connector)
685 {
686         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
687         struct drm_i915_private *i915 = to_i915(connector->base.dev);
688         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
689         u8 bstatus[2], num_downstream, *ksv_fifo;
690         int ret, i, tries = 3;
691
692         ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
693         if (ret) {
694                 drm_dbg_kms(&i915->drm,
695                             "KSV list failed to become ready (%d)\n", ret);
696                 return ret;
697         }
698
699         ret = shim->read_bstatus(dig_port, bstatus);
700         if (ret)
701                 return ret;
702
703         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
704             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
705                 drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
706                 return -EPERM;
707         }
708
709         /*
710          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
711          * the HDCP encryption. That implies that repeater can't have its own
712          * display. As there is no consumption of encrypted content in the
713          * repeater with 0 downstream devices, we are failing the
714          * authentication.
715          */
716         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
717         if (num_downstream == 0) {
718                 drm_dbg_kms(&i915->drm,
719                             "Repeater with zero downstream devices\n");
720                 return -EINVAL;
721         }
722
723         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
724         if (!ksv_fifo) {
725                 drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
726                 return -ENOMEM;
727         }
728
729         ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
730         if (ret)
731                 goto err;
732
733         if (drm_hdcp_check_ksvs_revoked(&i915->drm, ksv_fifo,
734                                         num_downstream) > 0) {
735                 drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
736                 ret = -EPERM;
737                 goto err;
738         }
739
740         /*
741          * When V prime mismatches, DP Spec mandates re-read of
742          * V prime atleast twice.
743          */
744         for (i = 0; i < tries; i++) {
745                 ret = intel_hdcp_validate_v_prime(connector, shim,
746                                                   ksv_fifo, num_downstream,
747                                                   bstatus);
748                 if (!ret)
749                         break;
750         }
751
752         if (i == tries) {
753                 drm_dbg_kms(&i915->drm,
754                             "V Prime validation failed.(%d)\n", ret);
755                 goto err;
756         }
757
758         drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
759                     num_downstream);
760         ret = 0;
761 err:
762         kfree(ksv_fifo);
763         return ret;
764 }
765
766 /* Implements Part 1 of the HDCP authorization procedure */
767 static int intel_hdcp_auth(struct intel_connector *connector)
768 {
769         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
770         struct drm_i915_private *i915 = to_i915(connector->base.dev);
771         struct intel_hdcp *hdcp = &connector->hdcp;
772         const struct intel_hdcp_shim *shim = hdcp->shim;
773         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
774         enum port port = dig_port->base.port;
775         unsigned long r0_prime_gen_start;
776         int ret, i, tries = 2;
777         union {
778                 u32 reg[2];
779                 u8 shim[DRM_HDCP_AN_LEN];
780         } an;
781         union {
782                 u32 reg[2];
783                 u8 shim[DRM_HDCP_KSV_LEN];
784         } bksv;
785         union {
786                 u32 reg;
787                 u8 shim[DRM_HDCP_RI_LEN];
788         } ri;
789         bool repeater_present, hdcp_capable;
790
791         /*
792          * Detects whether the display is HDCP capable. Although we check for
793          * valid Bksv below, the HDCP over DP spec requires that we check
794          * whether the display supports HDCP before we write An. For HDMI
795          * displays, this is not necessary.
796          */
797         if (shim->hdcp_get_capability) {
798                 ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
799                 if (ret)
800                         return ret;
801                 if (!hdcp_capable) {
802                         drm_dbg_kms(&i915->drm,
803                                     "Panel is not HDCP capable\n");
804                         return -EINVAL;
805                 }
806         }
807
808         /* Initialize An with 2 random values and acquire it */
809         for (i = 0; i < 2; i++)
810                 intel_de_write(i915,
811                                HDCP_ANINIT(i915, cpu_transcoder, port),
812                                get_random_u32());
813         intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
814                        HDCP_CONF_CAPTURE_AN);
815
816         /* Wait for An to be acquired */
817         if (intel_de_wait_for_set(i915,
818                                   HDCP_STATUS(i915, cpu_transcoder, port),
819                                   HDCP_STATUS_AN_READY, 1)) {
820                 drm_err(&i915->drm, "Timed out waiting for An\n");
821                 return -ETIMEDOUT;
822         }
823
824         an.reg[0] = intel_de_read(i915,
825                                   HDCP_ANLO(i915, cpu_transcoder, port));
826         an.reg[1] = intel_de_read(i915,
827                                   HDCP_ANHI(i915, cpu_transcoder, port));
828         ret = shim->write_an_aksv(dig_port, an.shim);
829         if (ret)
830                 return ret;
831
832         r0_prime_gen_start = jiffies;
833
834         memset(&bksv, 0, sizeof(bksv));
835
836         ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
837         if (ret < 0)
838                 return ret;
839
840         if (drm_hdcp_check_ksvs_revoked(&i915->drm, bksv.shim, 1) > 0) {
841                 drm_err(&i915->drm, "BKSV is revoked\n");
842                 return -EPERM;
843         }
844
845         intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
846                        bksv.reg[0]);
847         intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
848                        bksv.reg[1]);
849
850         ret = shim->repeater_present(dig_port, &repeater_present);
851         if (ret)
852                 return ret;
853         if (repeater_present)
854                 intel_de_write(i915, HDCP_REP_CTL,
855                                intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
856
857         ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
858         if (ret)
859                 return ret;
860
861         intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
862                        HDCP_CONF_AUTH_AND_ENC);
863
864         /* Wait for R0 ready */
865         if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
866                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
867                 drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
868                 return -ETIMEDOUT;
869         }
870
871         /*
872          * Wait for R0' to become available. The spec says 100ms from Aksv, but
873          * some monitors can take longer than this. We'll set the timeout at
874          * 300ms just to be sure.
875          *
876          * On DP, there's an R0_READY bit available but no such bit
877          * exists on HDMI. Since the upper-bound is the same, we'll just do
878          * the stupid thing instead of polling on one and not the other.
879          */
880         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
881
882         tries = 3;
883
884         /*
885          * DP HDCP Spec mandates the two more reattempt to read R0, incase
886          * of R0 mismatch.
887          */
888         for (i = 0; i < tries; i++) {
889                 ri.reg = 0;
890                 ret = shim->read_ri_prime(dig_port, ri.shim);
891                 if (ret)
892                         return ret;
893                 intel_de_write(i915,
894                                HDCP_RPRIME(i915, cpu_transcoder, port),
895                                ri.reg);
896
897                 /* Wait for Ri prime match */
898                 if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
899                               (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
900                         break;
901         }
902
903         if (i == tries) {
904                 drm_dbg_kms(&i915->drm,
905                             "Timed out waiting for Ri prime match (%x)\n",
906                             intel_de_read(i915,
907                                           HDCP_STATUS(i915, cpu_transcoder, port)));
908                 return -ETIMEDOUT;
909         }
910
911         /* Wait for encryption confirmation */
912         if (intel_de_wait_for_set(i915,
913                                   HDCP_STATUS(i915, cpu_transcoder, port),
914                                   HDCP_STATUS_ENC,
915                                   HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
916                 drm_err(&i915->drm, "Timed out waiting for encryption\n");
917                 return -ETIMEDOUT;
918         }
919
920         /* DP MST Auth Part 1 Step 2.a and Step 2.b */
921         if (shim->stream_encryption) {
922                 ret = shim->stream_encryption(connector, true);
923                 if (ret) {
924                         drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
925                                 connector->base.base.id, connector->base.name);
926                         return ret;
927                 }
928                 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
929                             transcoder_name(hdcp->stream_transcoder));
930         }
931
932         if (repeater_present)
933                 return intel_hdcp_auth_downstream(connector);
934
935         drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
936         return 0;
937 }
938
939 static int _intel_hdcp_disable(struct intel_connector *connector)
940 {
941         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
942         struct drm_i915_private *i915 = to_i915(connector->base.dev);
943         struct intel_hdcp *hdcp = &connector->hdcp;
944         enum port port = dig_port->base.port;
945         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
946         u32 repeater_ctl;
947         int ret;
948
949         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
950                     connector->base.base.id, connector->base.name);
951
952         if (hdcp->shim->stream_encryption) {
953                 ret = hdcp->shim->stream_encryption(connector, false);
954                 if (ret) {
955                         drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
956                                 connector->base.base.id, connector->base.name);
957                         return ret;
958                 }
959                 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
960                             transcoder_name(hdcp->stream_transcoder));
961                 /*
962                  * If there are other connectors on this port using HDCP,
963                  * don't disable it until it disabled HDCP encryption for
964                  * all connectors in MST topology.
965                  */
966                 if (dig_port->num_hdcp_streams > 0)
967                         return 0;
968         }
969
970         hdcp->hdcp_encrypted = false;
971         intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), 0);
972         if (intel_de_wait_for_clear(i915,
973                                     HDCP_STATUS(i915, cpu_transcoder, port),
974                                     ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
975                 drm_err(&i915->drm,
976                         "Failed to disable HDCP, timeout clearing status\n");
977                 return -ETIMEDOUT;
978         }
979
980         repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
981                                                    port);
982         intel_de_rmw(i915, HDCP_REP_CTL, repeater_ctl, 0);
983
984         ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
985         if (ret) {
986                 drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
987                 return ret;
988         }
989
990         drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
991         return 0;
992 }
993
994 static int intel_hdcp1_enable(struct intel_connector *connector)
995 {
996         struct drm_i915_private *i915 = to_i915(connector->base.dev);
997         struct intel_hdcp *hdcp = &connector->hdcp;
998         int i, ret, tries = 3;
999
1000         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1001                     connector->base.base.id, connector->base.name);
1002
1003         if (!hdcp_key_loadable(i915)) {
1004                 drm_err(&i915->drm, "HDCP key Load is not possible\n");
1005                 return -ENXIO;
1006         }
1007
1008         for (i = 0; i < KEY_LOAD_TRIES; i++) {
1009                 ret = intel_hdcp_load_keys(i915);
1010                 if (!ret)
1011                         break;
1012                 intel_hdcp_clear_keys(i915);
1013         }
1014         if (ret) {
1015                 drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
1016                         ret);
1017                 return ret;
1018         }
1019
1020         /* Incase of authentication failures, HDCP spec expects reauth. */
1021         for (i = 0; i < tries; i++) {
1022                 ret = intel_hdcp_auth(connector);
1023                 if (!ret) {
1024                         hdcp->hdcp_encrypted = true;
1025                         return 0;
1026                 }
1027
1028                 drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
1029
1030                 /* Ensuring HDCP encryption and signalling are stopped. */
1031                 _intel_hdcp_disable(connector);
1032         }
1033
1034         drm_dbg_kms(&i915->drm,
1035                     "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1036         return ret;
1037 }
1038
1039 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1040 {
1041         return container_of(hdcp, struct intel_connector, hdcp);
1042 }
1043
1044 static void intel_hdcp_update_value(struct intel_connector *connector,
1045                                     u64 value, bool update_property)
1046 {
1047         struct drm_device *dev = connector->base.dev;
1048         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1049         struct intel_hdcp *hdcp = &connector->hdcp;
1050         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1051
1052         drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
1053
1054         if (hdcp->value == value)
1055                 return;
1056
1057         drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
1058
1059         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1060                 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1061                         dig_port->num_hdcp_streams--;
1062         } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1063                 dig_port->num_hdcp_streams++;
1064         }
1065
1066         hdcp->value = value;
1067         if (update_property) {
1068                 drm_connector_get(&connector->base);
1069                 queue_work(i915->unordered_wq, &hdcp->prop_work);
1070         }
1071 }
1072
1073 /* Implements Part 3 of the HDCP authorization procedure */
1074 static int intel_hdcp_check_link(struct intel_connector *connector)
1075 {
1076         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1077         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1078         struct intel_hdcp *hdcp = &connector->hdcp;
1079         enum port port = dig_port->base.port;
1080         enum transcoder cpu_transcoder;
1081         int ret = 0;
1082
1083         mutex_lock(&hdcp->mutex);
1084         mutex_lock(&dig_port->hdcp_mutex);
1085
1086         cpu_transcoder = hdcp->cpu_transcoder;
1087
1088         /* Check_link valid only when HDCP1.4 is enabled */
1089         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1090             !hdcp->hdcp_encrypted) {
1091                 ret = -EINVAL;
1092                 goto out;
1093         }
1094
1095         if (drm_WARN_ON(&i915->drm,
1096                         !intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1097                 drm_err(&i915->drm,
1098                         "[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1099                         connector->base.base.id, connector->base.name,
1100                         intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1101                 ret = -ENXIO;
1102                 intel_hdcp_update_value(connector,
1103                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1104                                         true);
1105                 goto out;
1106         }
1107
1108         if (hdcp->shim->check_link(dig_port, connector)) {
1109                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1110                         intel_hdcp_update_value(connector,
1111                                 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1112                 }
1113                 goto out;
1114         }
1115
1116         drm_dbg_kms(&i915->drm,
1117                     "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1118                     connector->base.base.id, connector->base.name);
1119
1120         ret = _intel_hdcp_disable(connector);
1121         if (ret) {
1122                 drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1123                 intel_hdcp_update_value(connector,
1124                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1125                                         true);
1126                 goto out;
1127         }
1128
1129         intel_hdcp_update_value(connector,
1130                                 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1131                                 true);
1132 out:
1133         mutex_unlock(&dig_port->hdcp_mutex);
1134         mutex_unlock(&hdcp->mutex);
1135         return ret;
1136 }
1137
1138 static void intel_hdcp_prop_work(struct work_struct *work)
1139 {
1140         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1141                                                prop_work);
1142         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1143         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1144
1145         drm_modeset_lock(&i915->drm.mode_config.connection_mutex, NULL);
1146         mutex_lock(&hdcp->mutex);
1147
1148         /*
1149          * This worker is only used to flip between ENABLED/DESIRED. Either of
1150          * those to UNDESIRED is handled by core. If value == UNDESIRED,
1151          * we're running just after hdcp has been disabled, so just exit
1152          */
1153         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1154                 drm_hdcp_update_content_protection(&connector->base,
1155                                                    hdcp->value);
1156
1157         mutex_unlock(&hdcp->mutex);
1158         drm_modeset_unlock(&i915->drm.mode_config.connection_mutex);
1159
1160         drm_connector_put(&connector->base);
1161 }
1162
1163 bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1164 {
1165         return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1166                 (DISPLAY_VER(i915) >= 12 || port < PORT_E);
1167 }
1168
1169 static int
1170 hdcp2_prepare_ake_init(struct intel_connector *connector,
1171                        struct hdcp2_ake_init *ake_data)
1172 {
1173         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1176         struct i915_hdcp_arbiter *arbiter;
1177         int ret;
1178
1179         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1180         arbiter = i915->display.hdcp.arbiter;
1181
1182         if (!arbiter || !arbiter->ops) {
1183                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1184                 return -EINVAL;
1185         }
1186
1187         ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1188         if (ret)
1189                 drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1190                             ret);
1191         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1192
1193         return ret;
1194 }
1195
1196 static int
1197 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1198                                 struct hdcp2_ake_send_cert *rx_cert,
1199                                 bool *paired,
1200                                 struct hdcp2_ake_no_stored_km *ek_pub_km,
1201                                 size_t *msg_sz)
1202 {
1203         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1204         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1205         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1206         struct i915_hdcp_arbiter *arbiter;
1207         int ret;
1208
1209         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1210         arbiter = i915->display.hdcp.arbiter;
1211
1212         if (!arbiter || !arbiter->ops) {
1213                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1214                 return -EINVAL;
1215         }
1216
1217         ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1218                                                          rx_cert, paired,
1219                                                          ek_pub_km, msg_sz);
1220         if (ret < 0)
1221                 drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1222                             ret);
1223         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1224
1225         return ret;
1226 }
1227
1228 static int hdcp2_verify_hprime(struct intel_connector *connector,
1229                                struct hdcp2_ake_send_hprime *rx_hprime)
1230 {
1231         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1232         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1233         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1234         struct i915_hdcp_arbiter *arbiter;
1235         int ret;
1236
1237         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1238         arbiter = i915->display.hdcp.arbiter;
1239
1240         if (!arbiter || !arbiter->ops) {
1241                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1242                 return -EINVAL;
1243         }
1244
1245         ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1246         if (ret < 0)
1247                 drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1248         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1249
1250         return ret;
1251 }
1252
1253 static int
1254 hdcp2_store_pairing_info(struct intel_connector *connector,
1255                          struct hdcp2_ake_send_pairing_info *pairing_info)
1256 {
1257         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1258         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1259         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1260         struct i915_hdcp_arbiter *arbiter;
1261         int ret;
1262
1263         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1264         arbiter = i915->display.hdcp.arbiter;
1265
1266         if (!arbiter || !arbiter->ops) {
1267                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1268                 return -EINVAL;
1269         }
1270
1271         ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1272         if (ret < 0)
1273                 drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1274                             ret);
1275         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1276
1277         return ret;
1278 }
1279
1280 static int
1281 hdcp2_prepare_lc_init(struct intel_connector *connector,
1282                       struct hdcp2_lc_init *lc_init)
1283 {
1284         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1285         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1286         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1287         struct i915_hdcp_arbiter *arbiter;
1288         int ret;
1289
1290         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1291         arbiter = i915->display.hdcp.arbiter;
1292
1293         if (!arbiter || !arbiter->ops) {
1294                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1295                 return -EINVAL;
1296         }
1297
1298         ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1299         if (ret < 0)
1300                 drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1301                             ret);
1302         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1303
1304         return ret;
1305 }
1306
1307 static int
1308 hdcp2_verify_lprime(struct intel_connector *connector,
1309                     struct hdcp2_lc_send_lprime *rx_lprime)
1310 {
1311         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1312         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1313         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1314         struct i915_hdcp_arbiter *arbiter;
1315         int ret;
1316
1317         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1318         arbiter = i915->display.hdcp.arbiter;
1319
1320         if (!arbiter || !arbiter->ops) {
1321                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1322                 return -EINVAL;
1323         }
1324
1325         ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1326         if (ret < 0)
1327                 drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1328                             ret);
1329         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1330
1331         return ret;
1332 }
1333
1334 static int hdcp2_prepare_skey(struct intel_connector *connector,
1335                               struct hdcp2_ske_send_eks *ske_data)
1336 {
1337         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1338         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1339         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1340         struct i915_hdcp_arbiter *arbiter;
1341         int ret;
1342
1343         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1344         arbiter = i915->display.hdcp.arbiter;
1345
1346         if (!arbiter || !arbiter->ops) {
1347                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1348                 return -EINVAL;
1349         }
1350
1351         ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1352         if (ret < 0)
1353                 drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1354                             ret);
1355         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1356
1357         return ret;
1358 }
1359
1360 static int
1361 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1362                                       struct hdcp2_rep_send_receiverid_list
1363                                                                 *rep_topology,
1364                                       struct hdcp2_rep_send_ack *rep_send_ack)
1365 {
1366         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1369         struct i915_hdcp_arbiter *arbiter;
1370         int ret;
1371
1372         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1373         arbiter = i915->display.hdcp.arbiter;
1374
1375         if (!arbiter || !arbiter->ops) {
1376                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1377                 return -EINVAL;
1378         }
1379
1380         ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1381                                                             data,
1382                                                             rep_topology,
1383                                                             rep_send_ack);
1384         if (ret < 0)
1385                 drm_dbg_kms(&i915->drm,
1386                             "Verify rep topology failed. %d\n", ret);
1387         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1388
1389         return ret;
1390 }
1391
1392 static int
1393 hdcp2_verify_mprime(struct intel_connector *connector,
1394                     struct hdcp2_rep_stream_ready *stream_ready)
1395 {
1396         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1397         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1398         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1399         struct i915_hdcp_arbiter *arbiter;
1400         int ret;
1401
1402         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1403         arbiter = i915->display.hdcp.arbiter;
1404
1405         if (!arbiter || !arbiter->ops) {
1406                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1407                 return -EINVAL;
1408         }
1409
1410         ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1411         if (ret < 0)
1412                 drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1413         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1414
1415         return ret;
1416 }
1417
1418 static int hdcp2_authenticate_port(struct intel_connector *connector)
1419 {
1420         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1421         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1422         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1423         struct i915_hdcp_arbiter *arbiter;
1424         int ret;
1425
1426         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1427         arbiter = i915->display.hdcp.arbiter;
1428
1429         if (!arbiter || !arbiter->ops) {
1430                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1431                 return -EINVAL;
1432         }
1433
1434         ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1435         if (ret < 0)
1436                 drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1437                             ret);
1438         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1439
1440         return ret;
1441 }
1442
1443 static int hdcp2_close_session(struct intel_connector *connector)
1444 {
1445         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1446         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1447         struct i915_hdcp_arbiter *arbiter;
1448         int ret;
1449
1450         mutex_lock(&i915->display.hdcp.hdcp_mutex);
1451         arbiter = i915->display.hdcp.arbiter;
1452
1453         if (!arbiter || !arbiter->ops) {
1454                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1455                 return -EINVAL;
1456         }
1457
1458         ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1459                                              &dig_port->hdcp_port_data);
1460         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
1461
1462         return ret;
1463 }
1464
1465 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1466 {
1467         return hdcp2_close_session(connector);
1468 }
1469
1470 /* Authentication flow starts from here */
1471 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1472 {
1473         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1474         struct intel_hdcp *hdcp = &connector->hdcp;
1475         union {
1476                 struct hdcp2_ake_init ake_init;
1477                 struct hdcp2_ake_send_cert send_cert;
1478                 struct hdcp2_ake_no_stored_km no_stored_km;
1479                 struct hdcp2_ake_send_hprime send_hprime;
1480                 struct hdcp2_ake_send_pairing_info pairing_info;
1481         } msgs;
1482         const struct intel_hdcp_shim *shim = hdcp->shim;
1483         size_t size;
1484         int ret;
1485
1486         /* Init for seq_num */
1487         hdcp->seq_num_v = 0;
1488         hdcp->seq_num_m = 0;
1489
1490         ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1491         if (ret < 0)
1492                 return ret;
1493
1494         ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1495                                   sizeof(msgs.ake_init));
1496         if (ret < 0)
1497                 return ret;
1498
1499         ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1500                                  &msgs.send_cert, sizeof(msgs.send_cert));
1501         if (ret < 0)
1502                 return ret;
1503
1504         if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1505                 drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1506                 return -EINVAL;
1507         }
1508
1509         hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1510
1511         if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1512                                         msgs.send_cert.cert_rx.receiver_id,
1513                                         1) > 0) {
1514                 drm_err(&i915->drm, "Receiver ID is revoked\n");
1515                 return -EPERM;
1516         }
1517
1518         /*
1519          * Here msgs.no_stored_km will hold msgs corresponding to the km
1520          * stored also.
1521          */
1522         ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1523                                               &hdcp->is_paired,
1524                                               &msgs.no_stored_km, &size);
1525         if (ret < 0)
1526                 return ret;
1527
1528         ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1529         if (ret < 0)
1530                 return ret;
1531
1532         ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1533                                  &msgs.send_hprime, sizeof(msgs.send_hprime));
1534         if (ret < 0)
1535                 return ret;
1536
1537         ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1538         if (ret < 0)
1539                 return ret;
1540
1541         if (!hdcp->is_paired) {
1542                 /* Pairing is required */
1543                 ret = shim->read_2_2_msg(connector,
1544                                          HDCP_2_2_AKE_SEND_PAIRING_INFO,
1545                                          &msgs.pairing_info,
1546                                          sizeof(msgs.pairing_info));
1547                 if (ret < 0)
1548                         return ret;
1549
1550                 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1551                 if (ret < 0)
1552                         return ret;
1553                 hdcp->is_paired = true;
1554         }
1555
1556         return 0;
1557 }
1558
1559 static int hdcp2_locality_check(struct intel_connector *connector)
1560 {
1561         struct intel_hdcp *hdcp = &connector->hdcp;
1562         union {
1563                 struct hdcp2_lc_init lc_init;
1564                 struct hdcp2_lc_send_lprime send_lprime;
1565         } msgs;
1566         const struct intel_hdcp_shim *shim = hdcp->shim;
1567         int tries = HDCP2_LC_RETRY_CNT, ret, i;
1568
1569         for (i = 0; i < tries; i++) {
1570                 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1571                 if (ret < 0)
1572                         continue;
1573
1574                 ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1575                                       sizeof(msgs.lc_init));
1576                 if (ret < 0)
1577                         continue;
1578
1579                 ret = shim->read_2_2_msg(connector,
1580                                          HDCP_2_2_LC_SEND_LPRIME,
1581                                          &msgs.send_lprime,
1582                                          sizeof(msgs.send_lprime));
1583                 if (ret < 0)
1584                         continue;
1585
1586                 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1587                 if (!ret)
1588                         break;
1589         }
1590
1591         return ret;
1592 }
1593
1594 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1595 {
1596         struct intel_hdcp *hdcp = &connector->hdcp;
1597         struct hdcp2_ske_send_eks send_eks;
1598         int ret;
1599
1600         ret = hdcp2_prepare_skey(connector, &send_eks);
1601         if (ret < 0)
1602                 return ret;
1603
1604         ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1605                                         sizeof(send_eks));
1606         if (ret < 0)
1607                 return ret;
1608
1609         return 0;
1610 }
1611
1612 static
1613 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1614 {
1615         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1616         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1617         struct intel_hdcp *hdcp = &connector->hdcp;
1618         union {
1619                 struct hdcp2_rep_stream_manage stream_manage;
1620                 struct hdcp2_rep_stream_ready stream_ready;
1621         } msgs;
1622         const struct intel_hdcp_shim *shim = hdcp->shim;
1623         int ret, streams_size_delta, i;
1624
1625         if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1626                 return -ERANGE;
1627
1628         /* Prepare RepeaterAuth_Stream_Manage msg */
1629         msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1630         drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1631
1632         msgs.stream_manage.k = cpu_to_be16(data->k);
1633
1634         for (i = 0; i < data->k; i++) {
1635                 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1636                 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1637         }
1638
1639         streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1640                                 sizeof(struct hdcp2_streamid_type);
1641         /* Send it to Repeater */
1642         ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1643                                   sizeof(msgs.stream_manage) - streams_size_delta);
1644         if (ret < 0)
1645                 goto out;
1646
1647         ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1648                                  &msgs.stream_ready, sizeof(msgs.stream_ready));
1649         if (ret < 0)
1650                 goto out;
1651
1652         data->seq_num_m = hdcp->seq_num_m;
1653
1654         ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1655
1656 out:
1657         hdcp->seq_num_m++;
1658
1659         return ret;
1660 }
1661
1662 static
1663 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1664 {
1665         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1666         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1667         struct intel_hdcp *hdcp = &connector->hdcp;
1668         union {
1669                 struct hdcp2_rep_send_receiverid_list recvid_list;
1670                 struct hdcp2_rep_send_ack rep_ack;
1671         } msgs;
1672         const struct intel_hdcp_shim *shim = hdcp->shim;
1673         u32 seq_num_v, device_cnt;
1674         u8 *rx_info;
1675         int ret;
1676
1677         ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1678                                  &msgs.recvid_list, sizeof(msgs.recvid_list));
1679         if (ret < 0)
1680                 return ret;
1681
1682         rx_info = msgs.recvid_list.rx_info;
1683
1684         if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1685             HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1686                 drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1687                 return -EINVAL;
1688         }
1689
1690         /*
1691          * MST topology is not Type 1 capable if it contains a downstream
1692          * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1693          */
1694         dig_port->hdcp_mst_type1_capable =
1695                 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1696                 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1697
1698         if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) {
1699                 drm_dbg_kms(&i915->drm,
1700                             "HDCP1.x or 2.0 Legacy Device Downstream\n");
1701                 return -EINVAL;
1702         }
1703
1704         /* Converting and Storing the seq_num_v to local variable as DWORD */
1705         seq_num_v =
1706                 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1707
1708         if (!hdcp->hdcp2_encrypted && seq_num_v) {
1709                 drm_dbg_kms(&i915->drm,
1710                             "Non zero Seq_num_v at first RecvId_List msg\n");
1711                 return -EINVAL;
1712         }
1713
1714         if (seq_num_v < hdcp->seq_num_v) {
1715                 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1716                 drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1717                 return -EINVAL;
1718         }
1719
1720         device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1721                       HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1722         if (drm_hdcp_check_ksvs_revoked(&i915->drm,
1723                                         msgs.recvid_list.receiver_ids,
1724                                         device_cnt) > 0) {
1725                 drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1726                 return -EPERM;
1727         }
1728
1729         ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1730                                                     &msgs.recvid_list,
1731                                                     &msgs.rep_ack);
1732         if (ret < 0)
1733                 return ret;
1734
1735         hdcp->seq_num_v = seq_num_v;
1736         ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1737                                   sizeof(msgs.rep_ack));
1738         if (ret < 0)
1739                 return ret;
1740
1741         return 0;
1742 }
1743
1744 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1745 {
1746         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1747         struct intel_hdcp *hdcp = &connector->hdcp;
1748         const struct intel_hdcp_shim *shim = hdcp->shim;
1749         int ret;
1750
1751         ret = hdcp2_authentication_key_exchange(connector);
1752         if (ret < 0) {
1753                 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1754                 return ret;
1755         }
1756
1757         ret = hdcp2_locality_check(connector);
1758         if (ret < 0) {
1759                 drm_dbg_kms(&i915->drm,
1760                             "Locality Check failed. Err : %d\n", ret);
1761                 return ret;
1762         }
1763
1764         ret = hdcp2_session_key_exchange(connector);
1765         if (ret < 0) {
1766                 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1767                 return ret;
1768         }
1769
1770         if (shim->config_stream_type) {
1771                 ret = shim->config_stream_type(connector,
1772                                                hdcp->is_repeater,
1773                                                hdcp->content_type);
1774                 if (ret < 0)
1775                         return ret;
1776         }
1777
1778         if (hdcp->is_repeater) {
1779                 ret = hdcp2_authenticate_repeater_topology(connector);
1780                 if (ret < 0) {
1781                         drm_dbg_kms(&i915->drm,
1782                                     "Repeater Auth Failed. Err: %d\n", ret);
1783                         return ret;
1784                 }
1785         }
1786
1787         return ret;
1788 }
1789
1790 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1791 {
1792         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1793         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1794         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1795         struct intel_hdcp *hdcp = &connector->hdcp;
1796         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1797         enum port port = dig_port->base.port;
1798         int ret = 0;
1799
1800         if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1801                             LINK_ENCRYPTION_STATUS)) {
1802                 drm_err(&i915->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1803                         connector->base.base.id, connector->base.name);
1804                 ret = -EPERM;
1805                 goto link_recover;
1806         }
1807
1808         if (hdcp->shim->stream_2_2_encryption) {
1809                 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1810                 if (ret) {
1811                         drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1812                                 connector->base.base.id, connector->base.name);
1813                         return ret;
1814                 }
1815                 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1816                             transcoder_name(hdcp->stream_transcoder));
1817         }
1818
1819         return 0;
1820
1821 link_recover:
1822         if (hdcp2_deauthenticate_port(connector) < 0)
1823                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1824
1825         dig_port->hdcp_auth_status = false;
1826         data->k = 0;
1827
1828         return ret;
1829 }
1830
1831 static int hdcp2_enable_encryption(struct intel_connector *connector)
1832 {
1833         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1834         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1835         struct intel_hdcp *hdcp = &connector->hdcp;
1836         enum port port = dig_port->base.port;
1837         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1838         int ret;
1839
1840         drm_WARN_ON(&i915->drm,
1841                     intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1842                     LINK_ENCRYPTION_STATUS);
1843         if (hdcp->shim->toggle_signalling) {
1844                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1845                                                     true);
1846                 if (ret) {
1847                         drm_err(&i915->drm,
1848                                 "Failed to enable HDCP signalling. %d\n",
1849                                 ret);
1850                         return ret;
1851                 }
1852         }
1853
1854         if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1855             LINK_AUTH_STATUS)
1856                 /* Link is Authenticated. Now set for Encryption */
1857                 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1858                              0, CTL_LINK_ENCRYPTION_REQ);
1859
1860         ret = intel_de_wait_for_set(i915,
1861                                     HDCP2_STATUS(i915, cpu_transcoder,
1862                                                  port),
1863                                     LINK_ENCRYPTION_STATUS,
1864                                     HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1865         dig_port->hdcp_auth_status = true;
1866
1867         return ret;
1868 }
1869
1870 static int hdcp2_disable_encryption(struct intel_connector *connector)
1871 {
1872         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1873         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1874         struct intel_hdcp *hdcp = &connector->hdcp;
1875         enum port port = dig_port->base.port;
1876         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1877         int ret;
1878
1879         drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1880                                       LINK_ENCRYPTION_STATUS));
1881
1882         intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1883                      CTL_LINK_ENCRYPTION_REQ, 0);
1884
1885         ret = intel_de_wait_for_clear(i915,
1886                                       HDCP2_STATUS(i915, cpu_transcoder,
1887                                                    port),
1888                                       LINK_ENCRYPTION_STATUS,
1889                                       HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1890         if (ret == -ETIMEDOUT)
1891                 drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1892
1893         if (hdcp->shim->toggle_signalling) {
1894                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1895                                                     false);
1896                 if (ret) {
1897                         drm_err(&i915->drm,
1898                                 "Failed to disable HDCP signalling. %d\n",
1899                                 ret);
1900                         return ret;
1901                 }
1902         }
1903
1904         return ret;
1905 }
1906
1907 static int
1908 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1909 {
1910         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1911         int i, tries = 3, ret;
1912
1913         if (!connector->hdcp.is_repeater)
1914                 return 0;
1915
1916         for (i = 0; i < tries; i++) {
1917                 ret = _hdcp2_propagate_stream_management_info(connector);
1918                 if (!ret)
1919                         break;
1920
1921                 /* Lets restart the auth incase of seq_num_m roll over */
1922                 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1923                         drm_dbg_kms(&i915->drm,
1924                                     "seq_num_m roll over.(%d)\n", ret);
1925                         break;
1926                 }
1927
1928                 drm_dbg_kms(&i915->drm,
1929                             "HDCP2 stream management %d of %d Failed.(%d)\n",
1930                             i + 1, tries, ret);
1931         }
1932
1933         return ret;
1934 }
1935
1936 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
1937                                           struct intel_connector *connector)
1938 {
1939         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1940         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1941         int ret = 0, i, tries = 3;
1942
1943         for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1944                 ret = hdcp2_authenticate_sink(connector);
1945                 if (!ret) {
1946                         ret = intel_hdcp_prepare_streams(state, connector);
1947                         if (ret) {
1948                                 drm_dbg_kms(&i915->drm,
1949                                             "Prepare stream failed.(%d)\n",
1950                                             ret);
1951                                 break;
1952                         }
1953
1954                         ret = hdcp2_propagate_stream_management_info(connector);
1955                         if (ret) {
1956                                 drm_dbg_kms(&i915->drm,
1957                                             "Stream management failed.(%d)\n",
1958                                             ret);
1959                                 break;
1960                         }
1961
1962                         ret = hdcp2_authenticate_port(connector);
1963                         if (!ret)
1964                                 break;
1965                         drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1966                                     ret);
1967                 }
1968
1969                 /* Clearing the mei hdcp session */
1970                 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1971                             i + 1, tries, ret);
1972                 if (hdcp2_deauthenticate_port(connector) < 0)
1973                         drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1974         }
1975
1976         if (!ret && !dig_port->hdcp_auth_status) {
1977                 /*
1978                  * Ensuring the required 200mSec min time interval between
1979                  * Session Key Exchange and encryption.
1980                  */
1981                 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1982                 ret = hdcp2_enable_encryption(connector);
1983                 if (ret < 0) {
1984                         drm_dbg_kms(&i915->drm,
1985                                     "Encryption Enable Failed.(%d)\n", ret);
1986                         if (hdcp2_deauthenticate_port(connector) < 0)
1987                                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1988                 }
1989         }
1990
1991         if (!ret)
1992                 ret = hdcp2_enable_stream_encryption(connector);
1993
1994         return ret;
1995 }
1996
1997 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
1998                                struct intel_connector *connector)
1999 {
2000         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2001         struct intel_hdcp *hdcp = &connector->hdcp;
2002         int ret;
2003
2004         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2005                     connector->base.base.id, connector->base.name,
2006                     hdcp->content_type);
2007
2008         ret = hdcp2_authenticate_and_encrypt(state, connector);
2009         if (ret) {
2010                 drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
2011                             hdcp->content_type, ret);
2012                 return ret;
2013         }
2014
2015         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2016                     connector->base.base.id, connector->base.name,
2017                     hdcp->content_type);
2018
2019         hdcp->hdcp2_encrypted = true;
2020         return 0;
2021 }
2022
2023 static int
2024 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2025 {
2026         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2027         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2028         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2029         struct intel_hdcp *hdcp = &connector->hdcp;
2030         int ret;
2031
2032         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2033                     connector->base.base.id, connector->base.name);
2034
2035         if (hdcp->shim->stream_2_2_encryption) {
2036                 ret = hdcp->shim->stream_2_2_encryption(connector, false);
2037                 if (ret) {
2038                         drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2039                                 connector->base.base.id, connector->base.name);
2040                         return ret;
2041                 }
2042                 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2043                             transcoder_name(hdcp->stream_transcoder));
2044
2045                 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2046                         return 0;
2047         }
2048
2049         ret = hdcp2_disable_encryption(connector);
2050
2051         if (hdcp2_deauthenticate_port(connector) < 0)
2052                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
2053
2054         connector->hdcp.hdcp2_encrypted = false;
2055         dig_port->hdcp_auth_status = false;
2056         data->k = 0;
2057
2058         return ret;
2059 }
2060
2061 /* Implements the Link Integrity Check for HDCP2.2 */
2062 static int intel_hdcp2_check_link(struct intel_connector *connector)
2063 {
2064         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2065         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2066         struct intel_hdcp *hdcp = &connector->hdcp;
2067         enum port port = dig_port->base.port;
2068         enum transcoder cpu_transcoder;
2069         int ret = 0;
2070
2071         mutex_lock(&hdcp->mutex);
2072         mutex_lock(&dig_port->hdcp_mutex);
2073         cpu_transcoder = hdcp->cpu_transcoder;
2074
2075         /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2076         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2077             !hdcp->hdcp2_encrypted) {
2078                 ret = -EINVAL;
2079                 goto out;
2080         }
2081
2082         if (drm_WARN_ON(&i915->drm,
2083                         !intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2084                 drm_err(&i915->drm,
2085                         "HDCP2.2 link stopped the encryption, %x\n",
2086                         intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2087                 ret = -ENXIO;
2088                 _intel_hdcp2_disable(connector, true);
2089                 intel_hdcp_update_value(connector,
2090                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
2091                                         true);
2092                 goto out;
2093         }
2094
2095         ret = hdcp->shim->check_2_2_link(dig_port, connector);
2096         if (ret == HDCP_LINK_PROTECTED) {
2097                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2098                         intel_hdcp_update_value(connector,
2099                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2100                                         true);
2101                 }
2102                 goto out;
2103         }
2104
2105         if (ret == HDCP_TOPOLOGY_CHANGE) {
2106                 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2107                         goto out;
2108
2109                 drm_dbg_kms(&i915->drm,
2110                             "HDCP2.2 Downstream topology change\n");
2111         } else {
2112                 drm_dbg_kms(&i915->drm,
2113                             "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2114                             connector->base.base.id, connector->base.name);
2115         }
2116
2117         ret = _intel_hdcp2_disable(connector, true);
2118         if (ret) {
2119                 drm_err(&i915->drm,
2120                         "[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2121                         connector->base.base.id, connector->base.name, ret);
2122                 intel_hdcp_update_value(connector,
2123                                 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2124                 goto out;
2125         }
2126
2127         intel_hdcp_update_value(connector,
2128                                 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2129 out:
2130         mutex_unlock(&dig_port->hdcp_mutex);
2131         mutex_unlock(&hdcp->mutex);
2132         return ret;
2133 }
2134
2135 static void intel_hdcp_check_work(struct work_struct *work)
2136 {
2137         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2138                                                struct intel_hdcp,
2139                                                check_work);
2140         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2141         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2142
2143         if (drm_connector_is_unregistered(&connector->base))
2144                 return;
2145
2146         if (!intel_hdcp2_check_link(connector))
2147                 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2148                                    DRM_HDCP2_CHECK_PERIOD_MS);
2149         else if (!intel_hdcp_check_link(connector))
2150                 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2151                                    DRM_HDCP_CHECK_PERIOD_MS);
2152 }
2153
2154 static int i915_hdcp_component_bind(struct device *i915_kdev,
2155                                     struct device *mei_kdev, void *data)
2156 {
2157         struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2158
2159         drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2160         mutex_lock(&i915->display.hdcp.hdcp_mutex);
2161         i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2162         i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2163         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2164
2165         return 0;
2166 }
2167
2168 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2169                                        struct device *mei_kdev, void *data)
2170 {
2171         struct drm_i915_private *i915 = kdev_to_i915(i915_kdev);
2172
2173         drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2174         mutex_lock(&i915->display.hdcp.hdcp_mutex);
2175         i915->display.hdcp.arbiter = NULL;
2176         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2177 }
2178
2179 static const struct component_ops i915_hdcp_ops = {
2180         .bind   = i915_hdcp_component_bind,
2181         .unbind = i915_hdcp_component_unbind,
2182 };
2183
2184 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2185 {
2186         switch (port) {
2187         case PORT_A:
2188                 return HDCP_DDI_A;
2189         case PORT_B ... PORT_F:
2190                 return (enum hdcp_ddi)port;
2191         default:
2192                 return HDCP_DDI_INVALID_PORT;
2193         }
2194 }
2195
2196 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2197 {
2198         switch (cpu_transcoder) {
2199         case TRANSCODER_A ... TRANSCODER_D:
2200                 return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2201         default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2202                 return HDCP_INVALID_TRANSCODER;
2203         }
2204 }
2205
2206 static int initialize_hdcp_port_data(struct intel_connector *connector,
2207                                      struct intel_digital_port *dig_port,
2208                                      const struct intel_hdcp_shim *shim)
2209 {
2210         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2211         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2212         enum port port = dig_port->base.port;
2213
2214         if (DISPLAY_VER(i915) < 12)
2215                 data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2216         else
2217                 /*
2218                  * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2219                  * with zero(INVALID PORT index).
2220                  */
2221                 data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2222
2223         /*
2224          * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2225          * is initialized to zero (invalid transcoder index). This will be
2226          * retained for <Gen12 forever.
2227          */
2228         data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2229
2230         data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2231         data->protocol = (u8)shim->protocol;
2232
2233         if (!data->streams)
2234                 data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2235                                         sizeof(struct hdcp2_streamid_type),
2236                                         GFP_KERNEL);
2237         if (!data->streams) {
2238                 drm_err(&i915->drm, "Out of Memory\n");
2239                 return -ENOMEM;
2240         }
2241
2242         return 0;
2243 }
2244
2245 static bool is_hdcp2_supported(struct drm_i915_private *i915)
2246 {
2247         if (intel_hdcp_gsc_cs_required(i915))
2248                 return true;
2249
2250         if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2251                 return false;
2252
2253         return (DISPLAY_VER(i915) >= 10 ||
2254                 IS_KABYLAKE(i915) ||
2255                 IS_COFFEELAKE(i915) ||
2256                 IS_COMETLAKE(i915));
2257 }
2258
2259 void intel_hdcp_component_init(struct drm_i915_private *i915)
2260 {
2261         int ret;
2262
2263         if (!is_hdcp2_supported(i915))
2264                 return;
2265
2266         mutex_lock(&i915->display.hdcp.hdcp_mutex);
2267         drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2268
2269         i915->display.hdcp.comp_added = true;
2270         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2271         if (intel_hdcp_gsc_cs_required(i915))
2272                 ret = intel_hdcp_gsc_init(i915);
2273         else
2274                 ret = component_add_typed(i915->drm.dev, &i915_hdcp_ops,
2275                                           I915_COMPONENT_HDCP);
2276
2277         if (ret < 0) {
2278                 drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2279                             ret);
2280                 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2281                 i915->display.hdcp.comp_added = false;
2282                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2283                 return;
2284         }
2285 }
2286
2287 static void intel_hdcp2_init(struct intel_connector *connector,
2288                              struct intel_digital_port *dig_port,
2289                              const struct intel_hdcp_shim *shim)
2290 {
2291         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2292         struct intel_hdcp *hdcp = &connector->hdcp;
2293         int ret;
2294
2295         ret = initialize_hdcp_port_data(connector, dig_port, shim);
2296         if (ret) {
2297                 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2298                 return;
2299         }
2300
2301         hdcp->hdcp2_supported = true;
2302 }
2303
2304 int intel_hdcp_init(struct intel_connector *connector,
2305                     struct intel_digital_port *dig_port,
2306                     const struct intel_hdcp_shim *shim)
2307 {
2308         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2309         struct intel_hdcp *hdcp = &connector->hdcp;
2310         int ret;
2311
2312         if (!shim)
2313                 return -EINVAL;
2314
2315         if (is_hdcp2_supported(i915))
2316                 intel_hdcp2_init(connector, dig_port, shim);
2317
2318         ret =
2319         drm_connector_attach_content_protection_property(&connector->base,
2320                                                          hdcp->hdcp2_supported);
2321         if (ret) {
2322                 hdcp->hdcp2_supported = false;
2323                 kfree(dig_port->hdcp_port_data.streams);
2324                 return ret;
2325         }
2326
2327         hdcp->shim = shim;
2328         mutex_init(&hdcp->mutex);
2329         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2330         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2331         init_waitqueue_head(&hdcp->cp_irq_queue);
2332
2333         return 0;
2334 }
2335
2336 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2337                               struct intel_encoder *encoder,
2338                               const struct intel_crtc_state *pipe_config,
2339                               const struct drm_connector_state *conn_state)
2340 {
2341         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2342         struct intel_connector *connector =
2343                 to_intel_connector(conn_state->connector);
2344         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2345         struct intel_hdcp *hdcp = &connector->hdcp;
2346         unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2347         int ret = -EINVAL;
2348
2349         if (!hdcp->shim)
2350                 return -ENOENT;
2351
2352         if (!connector->encoder) {
2353                 drm_err(&i915->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2354                         connector->base.base.id, connector->base.name);
2355                 return -ENODEV;
2356         }
2357
2358         mutex_lock(&hdcp->mutex);
2359         mutex_lock(&dig_port->hdcp_mutex);
2360         drm_WARN_ON(&i915->drm,
2361                     hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2362         hdcp->content_type = (u8)conn_state->hdcp_content_type;
2363
2364         if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2365                 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2366                 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2367         } else {
2368                 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2369                 hdcp->stream_transcoder = INVALID_TRANSCODER;
2370         }
2371
2372         if (DISPLAY_VER(i915) >= 12)
2373                 dig_port->hdcp_port_data.hdcp_transcoder =
2374                         intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2375
2376         /*
2377          * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2378          * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2379          */
2380         if (intel_hdcp2_get_capability(connector)) {
2381                 ret = _intel_hdcp2_enable(state, connector);
2382                 if (!ret)
2383                         check_link_interval =
2384                                 DRM_HDCP2_CHECK_PERIOD_MS;
2385         }
2386
2387         /*
2388          * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2389          * be attempted.
2390          */
2391         if (ret && intel_hdcp_get_capability(connector) &&
2392             hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2393                 ret = intel_hdcp1_enable(connector);
2394         }
2395
2396         if (!ret) {
2397                 queue_delayed_work(i915->unordered_wq, &hdcp->check_work,
2398                                    check_link_interval);
2399                 intel_hdcp_update_value(connector,
2400                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2401                                         true);
2402         }
2403
2404         mutex_unlock(&dig_port->hdcp_mutex);
2405         mutex_unlock(&hdcp->mutex);
2406         return ret;
2407 }
2408
2409 void intel_hdcp_enable(struct intel_atomic_state *state,
2410                        struct intel_encoder *encoder,
2411                        const struct intel_crtc_state *crtc_state,
2412                        const struct drm_connector_state *conn_state)
2413 {
2414         struct intel_connector *connector =
2415                 to_intel_connector(conn_state->connector);
2416         struct intel_hdcp *hdcp = &connector->hdcp;
2417
2418         /*
2419          * Enable hdcp if it's desired or if userspace is enabled and
2420          * driver set its state to undesired
2421          */
2422         if (conn_state->content_protection ==
2423             DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2424             (conn_state->content_protection ==
2425             DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2426             DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2427                 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2428 }
2429
2430 int intel_hdcp_disable(struct intel_connector *connector)
2431 {
2432         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2433         struct intel_hdcp *hdcp = &connector->hdcp;
2434         int ret = 0;
2435
2436         if (!hdcp->shim)
2437                 return -ENOENT;
2438
2439         mutex_lock(&hdcp->mutex);
2440         mutex_lock(&dig_port->hdcp_mutex);
2441
2442         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2443                 goto out;
2444
2445         intel_hdcp_update_value(connector,
2446                                 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2447         if (hdcp->hdcp2_encrypted)
2448                 ret = _intel_hdcp2_disable(connector, false);
2449         else if (hdcp->hdcp_encrypted)
2450                 ret = _intel_hdcp_disable(connector);
2451
2452 out:
2453         mutex_unlock(&dig_port->hdcp_mutex);
2454         mutex_unlock(&hdcp->mutex);
2455         cancel_delayed_work_sync(&hdcp->check_work);
2456         return ret;
2457 }
2458
2459 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2460                             struct intel_encoder *encoder,
2461                             const struct intel_crtc_state *crtc_state,
2462                             const struct drm_connector_state *conn_state)
2463 {
2464         struct intel_connector *connector =
2465                                 to_intel_connector(conn_state->connector);
2466         struct intel_hdcp *hdcp = &connector->hdcp;
2467         bool content_protection_type_changed, desired_and_not_enabled = false;
2468         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2469
2470         if (!connector->hdcp.shim)
2471                 return;
2472
2473         content_protection_type_changed =
2474                 (conn_state->hdcp_content_type != hdcp->content_type &&
2475                  conn_state->content_protection !=
2476                  DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2477
2478         /*
2479          * During the HDCP encryption session if Type change is requested,
2480          * disable the HDCP and reenable it with new TYPE value.
2481          */
2482         if (conn_state->content_protection ==
2483             DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2484             content_protection_type_changed)
2485                 intel_hdcp_disable(connector);
2486
2487         /*
2488          * Mark the hdcp state as DESIRED after the hdcp disable of type
2489          * change procedure.
2490          */
2491         if (content_protection_type_changed) {
2492                 mutex_lock(&hdcp->mutex);
2493                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2494                 drm_connector_get(&connector->base);
2495                 queue_work(i915->unordered_wq, &hdcp->prop_work);
2496                 mutex_unlock(&hdcp->mutex);
2497         }
2498
2499         if (conn_state->content_protection ==
2500             DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2501                 mutex_lock(&hdcp->mutex);
2502                 /* Avoid enabling hdcp, if it already ENABLED */
2503                 desired_and_not_enabled =
2504                         hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2505                 mutex_unlock(&hdcp->mutex);
2506                 /*
2507                  * If HDCP already ENABLED and CP property is DESIRED, schedule
2508                  * prop_work to update correct CP property to user space.
2509                  */
2510                 if (!desired_and_not_enabled && !content_protection_type_changed) {
2511                         drm_connector_get(&connector->base);
2512                         queue_work(i915->unordered_wq, &hdcp->prop_work);
2513                 }
2514         }
2515
2516         if (desired_and_not_enabled || content_protection_type_changed)
2517                 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2518 }
2519
2520 void intel_hdcp_component_fini(struct drm_i915_private *i915)
2521 {
2522         mutex_lock(&i915->display.hdcp.hdcp_mutex);
2523         if (!i915->display.hdcp.comp_added) {
2524                 mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2525                 return;
2526         }
2527
2528         i915->display.hdcp.comp_added = false;
2529         mutex_unlock(&i915->display.hdcp.hdcp_mutex);
2530
2531         if (intel_hdcp_gsc_cs_required(i915))
2532                 intel_hdcp_gsc_fini(i915);
2533         else
2534                 component_del(i915->drm.dev, &i915_hdcp_ops);
2535 }
2536
2537 void intel_hdcp_cleanup(struct intel_connector *connector)
2538 {
2539         struct intel_hdcp *hdcp = &connector->hdcp;
2540
2541         if (!hdcp->shim)
2542                 return;
2543
2544         /*
2545          * If the connector is registered, it's possible userspace could kick
2546          * off another HDCP enable, which would re-spawn the workers.
2547          */
2548         drm_WARN_ON(connector->base.dev,
2549                 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2550
2551         /*
2552          * Now that the connector is not registered, check_work won't be run,
2553          * but cancel any outstanding instances of it
2554          */
2555         cancel_delayed_work_sync(&hdcp->check_work);
2556
2557         /*
2558          * We don't cancel prop_work in the same way as check_work since it
2559          * requires connection_mutex which could be held while calling this
2560          * function. Instead, we rely on the connector references grabbed before
2561          * scheduling prop_work to ensure the connector is alive when prop_work
2562          * is run. So if we're in the destroy path (which is where this
2563          * function should be called), we're "guaranteed" that prop_work is not
2564          * active (tl;dr This Should Never Happen).
2565          */
2566         drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2567
2568         mutex_lock(&hdcp->mutex);
2569         hdcp->shim = NULL;
2570         mutex_unlock(&hdcp->mutex);
2571 }
2572
2573 void intel_hdcp_atomic_check(struct drm_connector *connector,
2574                              struct drm_connector_state *old_state,
2575                              struct drm_connector_state *new_state)
2576 {
2577         u64 old_cp = old_state->content_protection;
2578         u64 new_cp = new_state->content_protection;
2579         struct drm_crtc_state *crtc_state;
2580
2581         if (!new_state->crtc) {
2582                 /*
2583                  * If the connector is being disabled with CP enabled, mark it
2584                  * desired so it's re-enabled when the connector is brought back
2585                  */
2586                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2587                         new_state->content_protection =
2588                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2589                 return;
2590         }
2591
2592         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2593                                                    new_state->crtc);
2594         /*
2595          * Fix the HDCP uapi content protection state in case of modeset.
2596          * FIXME: As per HDCP content protection property uapi doc, an uevent()
2597          * need to be sent if there is transition from ENABLED->DESIRED.
2598          */
2599         if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2600             (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2601             new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2602                 new_state->content_protection =
2603                         DRM_MODE_CONTENT_PROTECTION_DESIRED;
2604
2605         /*
2606          * Nothing to do if the state didn't change, or HDCP was activated since
2607          * the last commit. And also no change in hdcp content type.
2608          */
2609         if (old_cp == new_cp ||
2610             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2611              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2612                 if (old_state->hdcp_content_type ==
2613                                 new_state->hdcp_content_type)
2614                         return;
2615         }
2616
2617         crtc_state->mode_changed = true;
2618 }
2619
2620 /* Handles the CP_IRQ raised from the DP HDCP sink */
2621 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2622 {
2623         struct intel_hdcp *hdcp = &connector->hdcp;
2624         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2625
2626         if (!hdcp->shim)
2627                 return;
2628
2629         atomic_inc(&connector->hdcp.cp_irq_count);
2630         wake_up_all(&connector->hdcp.cp_irq_queue);
2631
2632         queue_delayed_work(i915->unordered_wq, &hdcp->check_work, 0);
2633 }
This page took 0.195848 seconds and 4 git commands to generate.