1 // SPDX-License-Identifier: MIT
3 * Copyright © 2020 Intel Corporation
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_dpio_phy_regs.h"
24 #include "vlv_sideband.h"
26 struct intel_dpll_funcs {
27 int (*crtc_compute_clock)(struct intel_atomic_state *state,
28 struct intel_crtc *crtc);
29 int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
30 struct intel_crtc *crtc);
36 } dot, vco, n, m, m1, m2, p, p1;
43 static const struct intel_limit intel_limits_i8xx_dac = {
44 .dot = { .min = 25000, .max = 350000 },
45 .vco = { .min = 908000, .max = 1512000 },
46 .n = { .min = 2, .max = 16 },
47 .m = { .min = 96, .max = 140 },
48 .m1 = { .min = 18, .max = 26 },
49 .m2 = { .min = 6, .max = 16 },
50 .p = { .min = 4, .max = 128 },
51 .p1 = { .min = 2, .max = 33 },
52 .p2 = { .dot_limit = 165000,
53 .p2_slow = 4, .p2_fast = 2 },
56 static const struct intel_limit intel_limits_i8xx_dvo = {
57 .dot = { .min = 25000, .max = 350000 },
58 .vco = { .min = 908000, .max = 1512000 },
59 .n = { .min = 2, .max = 16 },
60 .m = { .min = 96, .max = 140 },
61 .m1 = { .min = 18, .max = 26 },
62 .m2 = { .min = 6, .max = 16 },
63 .p = { .min = 4, .max = 128 },
64 .p1 = { .min = 2, .max = 33 },
65 .p2 = { .dot_limit = 165000,
66 .p2_slow = 4, .p2_fast = 4 },
69 static const struct intel_limit intel_limits_i8xx_lvds = {
70 .dot = { .min = 25000, .max = 350000 },
71 .vco = { .min = 908000, .max = 1512000 },
72 .n = { .min = 2, .max = 16 },
73 .m = { .min = 96, .max = 140 },
74 .m1 = { .min = 18, .max = 26 },
75 .m2 = { .min = 6, .max = 16 },
76 .p = { .min = 4, .max = 128 },
77 .p1 = { .min = 1, .max = 6 },
78 .p2 = { .dot_limit = 165000,
79 .p2_slow = 14, .p2_fast = 7 },
82 static const struct intel_limit intel_limits_i9xx_sdvo = {
83 .dot = { .min = 20000, .max = 400000 },
84 .vco = { .min = 1400000, .max = 2800000 },
85 .n = { .min = 1, .max = 6 },
86 .m = { .min = 70, .max = 120 },
87 .m1 = { .min = 8, .max = 18 },
88 .m2 = { .min = 3, .max = 7 },
89 .p = { .min = 5, .max = 80 },
90 .p1 = { .min = 1, .max = 8 },
91 .p2 = { .dot_limit = 200000,
92 .p2_slow = 10, .p2_fast = 5 },
95 static const struct intel_limit intel_limits_i9xx_lvds = {
96 .dot = { .min = 20000, .max = 400000 },
97 .vco = { .min = 1400000, .max = 2800000 },
98 .n = { .min = 1, .max = 6 },
99 .m = { .min = 70, .max = 120 },
100 .m1 = { .min = 8, .max = 18 },
101 .m2 = { .min = 3, .max = 7 },
102 .p = { .min = 7, .max = 98 },
103 .p1 = { .min = 1, .max = 8 },
104 .p2 = { .dot_limit = 112000,
105 .p2_slow = 14, .p2_fast = 7 },
109 static const struct intel_limit intel_limits_g4x_sdvo = {
110 .dot = { .min = 25000, .max = 270000 },
111 .vco = { .min = 1750000, .max = 3500000},
112 .n = { .min = 1, .max = 4 },
113 .m = { .min = 104, .max = 138 },
114 .m1 = { .min = 17, .max = 23 },
115 .m2 = { .min = 5, .max = 11 },
116 .p = { .min = 10, .max = 30 },
117 .p1 = { .min = 1, .max = 3},
118 .p2 = { .dot_limit = 270000,
124 static const struct intel_limit intel_limits_g4x_hdmi = {
125 .dot = { .min = 22000, .max = 400000 },
126 .vco = { .min = 1750000, .max = 3500000},
127 .n = { .min = 1, .max = 4 },
128 .m = { .min = 104, .max = 138 },
129 .m1 = { .min = 16, .max = 23 },
130 .m2 = { .min = 5, .max = 11 },
131 .p = { .min = 5, .max = 80 },
132 .p1 = { .min = 1, .max = 8},
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 10, .p2_fast = 5 },
137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
138 .dot = { .min = 20000, .max = 115000 },
139 .vco = { .min = 1750000, .max = 3500000 },
140 .n = { .min = 1, .max = 3 },
141 .m = { .min = 104, .max = 138 },
142 .m1 = { .min = 17, .max = 23 },
143 .m2 = { .min = 5, .max = 11 },
144 .p = { .min = 28, .max = 112 },
145 .p1 = { .min = 2, .max = 8 },
146 .p2 = { .dot_limit = 0,
147 .p2_slow = 14, .p2_fast = 14
151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
152 .dot = { .min = 80000, .max = 224000 },
153 .vco = { .min = 1750000, .max = 3500000 },
154 .n = { .min = 1, .max = 3 },
155 .m = { .min = 104, .max = 138 },
156 .m1 = { .min = 17, .max = 23 },
157 .m2 = { .min = 5, .max = 11 },
158 .p = { .min = 14, .max = 42 },
159 .p1 = { .min = 2, .max = 6 },
160 .p2 = { .dot_limit = 0,
161 .p2_slow = 7, .p2_fast = 7
165 static const struct intel_limit pnv_limits_sdvo = {
166 .dot = { .min = 20000, .max = 400000},
167 .vco = { .min = 1700000, .max = 3500000 },
168 /* Pineview's Ncounter is a ring counter */
169 .n = { .min = 3, .max = 6 },
170 .m = { .min = 2, .max = 256 },
171 /* Pineview only has one combined m divider, which we treat as m2. */
172 .m1 = { .min = 0, .max = 0 },
173 .m2 = { .min = 0, .max = 254 },
174 .p = { .min = 5, .max = 80 },
175 .p1 = { .min = 1, .max = 8 },
176 .p2 = { .dot_limit = 200000,
177 .p2_slow = 10, .p2_fast = 5 },
180 static const struct intel_limit pnv_limits_lvds = {
181 .dot = { .min = 20000, .max = 400000 },
182 .vco = { .min = 1700000, .max = 3500000 },
183 .n = { .min = 3, .max = 6 },
184 .m = { .min = 2, .max = 256 },
185 .m1 = { .min = 0, .max = 0 },
186 .m2 = { .min = 0, .max = 254 },
187 .p = { .min = 7, .max = 112 },
188 .p1 = { .min = 1, .max = 8 },
189 .p2 = { .dot_limit = 112000,
190 .p2_slow = 14, .p2_fast = 14 },
193 /* Ironlake / Sandybridge
195 * We calculate clock using (register_value + 2) for N/M1/M2, so here
196 * the range value for them is (actual_value - 2).
198 static const struct intel_limit ilk_limits_dac = {
199 .dot = { .min = 25000, .max = 350000 },
200 .vco = { .min = 1760000, .max = 3510000 },
201 .n = { .min = 1, .max = 5 },
202 .m = { .min = 79, .max = 127 },
203 .m1 = { .min = 12, .max = 22 },
204 .m2 = { .min = 5, .max = 9 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 225000,
208 .p2_slow = 10, .p2_fast = 5 },
211 static const struct intel_limit ilk_limits_single_lvds = {
212 .dot = { .min = 25000, .max = 350000 },
213 .vco = { .min = 1760000, .max = 3510000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 79, .max = 118 },
216 .m1 = { .min = 12, .max = 22 },
217 .m2 = { .min = 5, .max = 9 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 225000,
221 .p2_slow = 14, .p2_fast = 14 },
224 static const struct intel_limit ilk_limits_dual_lvds = {
225 .dot = { .min = 25000, .max = 350000 },
226 .vco = { .min = 1760000, .max = 3510000 },
227 .n = { .min = 1, .max = 3 },
228 .m = { .min = 79, .max = 127 },
229 .m1 = { .min = 12, .max = 22 },
230 .m2 = { .min = 5, .max = 9 },
231 .p = { .min = 14, .max = 56 },
232 .p1 = { .min = 2, .max = 8 },
233 .p2 = { .dot_limit = 225000,
234 .p2_slow = 7, .p2_fast = 7 },
237 /* LVDS 100mhz refclk limits. */
238 static const struct intel_limit ilk_limits_single_lvds_100m = {
239 .dot = { .min = 25000, .max = 350000 },
240 .vco = { .min = 1760000, .max = 3510000 },
241 .n = { .min = 1, .max = 2 },
242 .m = { .min = 79, .max = 126 },
243 .m1 = { .min = 12, .max = 22 },
244 .m2 = { .min = 5, .max = 9 },
245 .p = { .min = 28, .max = 112 },
246 .p1 = { .min = 2, .max = 8 },
247 .p2 = { .dot_limit = 225000,
248 .p2_slow = 14, .p2_fast = 14 },
251 static const struct intel_limit ilk_limits_dual_lvds_100m = {
252 .dot = { .min = 25000, .max = 350000 },
253 .vco = { .min = 1760000, .max = 3510000 },
254 .n = { .min = 1, .max = 3 },
255 .m = { .min = 79, .max = 126 },
256 .m1 = { .min = 12, .max = 22 },
257 .m2 = { .min = 5, .max = 9 },
258 .p = { .min = 14, .max = 42 },
259 .p1 = { .min = 2, .max = 6 },
260 .p2 = { .dot_limit = 225000,
261 .p2_slow = 7, .p2_fast = 7 },
264 static const struct intel_limit intel_limits_vlv = {
266 * These are based on the data rate limits (measured in fast clocks)
267 * since those are the strictest limits we have. The fast
268 * clock and actual rate limits are more relaxed, so checking
269 * them would make no difference.
271 .dot = { .min = 25000, .max = 270000 },
272 .vco = { .min = 4000000, .max = 6000000 },
273 .n = { .min = 1, .max = 7 },
274 .m1 = { .min = 2, .max = 3 },
275 .m2 = { .min = 11, .max = 156 },
276 .p1 = { .min = 2, .max = 3 },
277 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
280 static const struct intel_limit intel_limits_chv = {
282 * These are based on the data rate limits (measured in fast clocks)
283 * since those are the strictest limits we have. The fast
284 * clock and actual rate limits are more relaxed, so checking
285 * them would make no difference.
287 .dot = { .min = 25000, .max = 540000 },
288 .vco = { .min = 4800000, .max = 6480000 },
289 .n = { .min = 1, .max = 1 },
290 .m1 = { .min = 2, .max = 2 },
291 .m2 = { .min = 24 << 22, .max = 175 << 22 },
292 .p1 = { .min = 2, .max = 4 },
293 .p2 = { .p2_slow = 1, .p2_fast = 14 },
296 static const struct intel_limit intel_limits_bxt = {
297 .dot = { .min = 25000, .max = 594000 },
298 .vco = { .min = 4800000, .max = 6700000 },
299 .n = { .min = 1, .max = 1 },
300 .m1 = { .min = 2, .max = 2 },
301 /* FIXME: find real m2 limits */
302 .m2 = { .min = 2 << 22, .max = 255 << 22 },
303 .p1 = { .min = 2, .max = 4 },
304 .p2 = { .p2_slow = 1, .p2_fast = 20 },
308 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
309 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
310 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
311 * The helpers' return value is the rate of the clock that is fed to the
312 * display engine's pipe which can be the above fast dot clock rate or a
313 * divided-down version of it.
315 /* m1 is reserved as 0 in Pineview, n is a ring counter */
316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
318 clock->m = clock->m2 + 2;
319 clock->p = clock->p1 * clock->p2;
321 clock->vco = clock->n == 0 ? 0 :
322 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
323 clock->dot = clock->p == 0 ? 0 :
324 DIV_ROUND_CLOSEST(clock->vco, clock->p);
329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
331 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
336 clock->m = i9xx_dpll_compute_m(clock);
337 clock->p = clock->p1 * clock->p2;
339 clock->vco = clock->n + 2 == 0 ? 0 :
340 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
341 clock->dot = clock->p == 0 ? 0 :
342 DIV_ROUND_CLOSEST(clock->vco, clock->p);
347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
349 clock->m = clock->m1 * clock->m2;
350 clock->p = clock->p1 * clock->p2 * 5;
352 clock->vco = clock->n == 0 ? 0 :
353 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
354 clock->dot = clock->p == 0 ? 0 :
355 DIV_ROUND_CLOSEST(clock->vco, clock->p);
360 int chv_calc_dpll_params(int refclk, struct dpll *clock)
362 clock->m = clock->m1 * clock->m2;
363 clock->p = clock->p1 * clock->p2 * 5;
365 clock->vco = clock->n == 0 ? 0 :
366 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
367 clock->dot = clock->p == 0 ? 0 :
368 DIV_ROUND_CLOSEST(clock->vco, clock->p);
373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
375 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
376 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
378 if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379 return i915->display.vbt.lvds_ssc_freq;
380 else if (HAS_PCH_SPLIT(i915))
382 else if (DISPLAY_VER(i915) != 2)
388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
389 struct intel_dpll_hw_state *dpll_hw_state)
391 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
392 struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
394 if (DISPLAY_VER(dev_priv) >= 4) {
397 /* No way to read it out on pipes B and C */
398 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
399 tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
401 tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
403 hw_state->dpll_md = tmp;
406 hw_state->dpll = intel_de_read(dev_priv, DPLL(crtc->pipe));
408 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
409 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
410 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
412 /* Mask out read-only status bits. */
413 hw_state->dpll &= ~(DPLL_LOCK_VLV |
414 DPLL_PORTC_READY_MASK |
415 DPLL_PORTB_READY_MASK);
419 /* Returns the clock of the currently programmed mode of the given pipe. */
420 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
422 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
425 u32 dpll = hw_state->dpll;
429 int refclk = i9xx_pll_refclk(crtc_state);
431 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
436 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
437 if (IS_PINEVIEW(dev_priv)) {
438 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
439 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
441 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
442 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
445 if (DISPLAY_VER(dev_priv) != 2) {
446 if (IS_PINEVIEW(dev_priv))
447 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
448 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
450 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
451 DPLL_FPA01_P1_POST_DIV_SHIFT);
453 switch (dpll & DPLL_MODE_MASK) {
454 case DPLLB_MODE_DAC_SERIAL:
455 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
458 case DPLLB_MODE_LVDS:
459 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
463 drm_dbg_kms(&dev_priv->drm,
464 "Unknown DPLL mode %08x in programmed "
465 "mode\n", (int)(dpll & DPLL_MODE_MASK));
469 if (IS_PINEVIEW(dev_priv))
470 port_clock = pnv_calc_dpll_params(refclk, &clock);
472 port_clock = i9xx_calc_dpll_params(refclk, &clock);
476 if (IS_I85X(dev_priv) &&
477 intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
478 lvds_pipe == crtc->pipe) {
479 u32 lvds = intel_de_read(dev_priv, LVDS);
481 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
482 DPLL_FPA01_P1_POST_DIV_SHIFT);
484 if (lvds & LVDS_CLKB_POWER_UP)
489 if (dpll & PLL_P1_DIVIDE_BY_TWO)
492 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
493 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
495 if (dpll & PLL_P2_DIVIDE_BY_4)
501 port_clock = i9xx_calc_dpll_params(refclk, &clock);
505 * This value includes pixel_multiplier. We will use
506 * port_clock to compute adjusted_mode.crtc_clock in the
507 * encoder's get_config() function.
509 crtc_state->port_clock = port_clock;
512 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
514 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
515 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
516 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
517 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
518 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
523 /* In case of DSI, DPLL will not be used */
524 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
527 vlv_dpio_get(dev_priv);
528 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
529 vlv_dpio_put(dev_priv);
531 clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
532 clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
533 clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
534 clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
535 clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
537 crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
540 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
542 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
543 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
544 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
545 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
546 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
548 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
551 /* In case of DSI, DPLL will not be used */
552 if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
555 vlv_dpio_get(dev_priv);
556 cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
557 pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
558 pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
559 pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
560 pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
561 vlv_dpio_put(dev_priv);
563 clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
564 clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
565 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
566 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
567 clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
568 clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
569 clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
571 crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
575 * Returns whether the given set of divisors are valid for a given refclk with
576 * the given connectors.
578 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
579 const struct intel_limit *limit,
580 const struct dpll *clock)
582 if (clock->n < limit->n.min || limit->n.max < clock->n)
584 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
586 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
588 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
591 if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
592 if (clock->m1 <= clock->m2)
595 if (!IS_LP(dev_priv)) {
596 if (clock->p < limit->p.min || limit->p.max < clock->p)
598 if (clock->m < limit->m.min || limit->m.max < clock->m)
602 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
604 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
605 * connector, etc., rather than just a single range.
607 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
614 i9xx_select_p2_div(const struct intel_limit *limit,
615 const struct intel_crtc_state *crtc_state,
618 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
620 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
622 * For LVDS just rely on its current settings for dual-channel.
623 * We haven't figured out how to reliably set up different
624 * single/dual channel state, if we even can.
626 if (intel_is_dual_link_lvds(dev_priv))
627 return limit->p2.p2_fast;
629 return limit->p2.p2_slow;
631 if (target < limit->p2.dot_limit)
632 return limit->p2.p2_slow;
634 return limit->p2.p2_fast;
639 * Returns a set of divisors for the desired target clock with the given
642 * Target and reference clocks are specified in kHz.
644 * If match_clock is provided, then best_clock P divider must match the P
645 * divider from @match_clock used for LVDS downclocking.
648 i9xx_find_best_dpll(const struct intel_limit *limit,
649 struct intel_crtc_state *crtc_state,
650 int target, int refclk,
651 const struct dpll *match_clock,
652 struct dpll *best_clock)
654 struct drm_device *dev = crtc_state->uapi.crtc->dev;
658 memset(best_clock, 0, sizeof(*best_clock));
660 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
662 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 for (clock.m2 = limit->m2.min;
665 clock.m2 <= limit->m2.max; clock.m2++) {
666 if (clock.m2 >= clock.m1)
668 for (clock.n = limit->n.min;
669 clock.n <= limit->n.max; clock.n++) {
670 for (clock.p1 = limit->p1.min;
671 clock.p1 <= limit->p1.max; clock.p1++) {
674 i9xx_calc_dpll_params(refclk, &clock);
675 if (!intel_pll_is_valid(to_i915(dev),
680 clock.p != match_clock->p)
683 this_err = abs(clock.dot - target);
684 if (this_err < err) {
693 return (err != target);
697 * Returns a set of divisors for the desired target clock with the given
700 * Target and reference clocks are specified in kHz.
702 * If match_clock is provided, then best_clock P divider must match the P
703 * divider from @match_clock used for LVDS downclocking.
706 pnv_find_best_dpll(const struct intel_limit *limit,
707 struct intel_crtc_state *crtc_state,
708 int target, int refclk,
709 const struct dpll *match_clock,
710 struct dpll *best_clock)
712 struct drm_device *dev = crtc_state->uapi.crtc->dev;
716 memset(best_clock, 0, sizeof(*best_clock));
718 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
720 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
722 for (clock.m2 = limit->m2.min;
723 clock.m2 <= limit->m2.max; clock.m2++) {
724 for (clock.n = limit->n.min;
725 clock.n <= limit->n.max; clock.n++) {
726 for (clock.p1 = limit->p1.min;
727 clock.p1 <= limit->p1.max; clock.p1++) {
730 pnv_calc_dpll_params(refclk, &clock);
731 if (!intel_pll_is_valid(to_i915(dev),
736 clock.p != match_clock->p)
739 this_err = abs(clock.dot - target);
740 if (this_err < err) {
749 return (err != target);
753 * Returns a set of divisors for the desired target clock with the given
756 * Target and reference clocks are specified in kHz.
758 * If match_clock is provided, then best_clock P divider must match the P
759 * divider from @match_clock used for LVDS downclocking.
762 g4x_find_best_dpll(const struct intel_limit *limit,
763 struct intel_crtc_state *crtc_state,
764 int target, int refclk,
765 const struct dpll *match_clock,
766 struct dpll *best_clock)
768 struct drm_device *dev = crtc_state->uapi.crtc->dev;
772 /* approximately equals target * 0.00585 */
773 int err_most = (target >> 8) + (target >> 9);
775 memset(best_clock, 0, sizeof(*best_clock));
777 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779 max_n = limit->n.max;
780 /* based on hardware requirement, prefer smaller n to precision */
781 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
782 /* based on hardware requirement, prefere larger m1,m2 */
783 for (clock.m1 = limit->m1.max;
784 clock.m1 >= limit->m1.min; clock.m1--) {
785 for (clock.m2 = limit->m2.max;
786 clock.m2 >= limit->m2.min; clock.m2--) {
787 for (clock.p1 = limit->p1.max;
788 clock.p1 >= limit->p1.min; clock.p1--) {
791 i9xx_calc_dpll_params(refclk, &clock);
792 if (!intel_pll_is_valid(to_i915(dev),
797 this_err = abs(clock.dot - target);
798 if (this_err < err_most) {
812 * Check if the calculated PLL configuration is more optimal compared to the
813 * best configuration and error found so far. Return the calculated error.
815 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
816 const struct dpll *calculated_clock,
817 const struct dpll *best_clock,
818 unsigned int best_error_ppm,
819 unsigned int *error_ppm)
822 * For CHV ignore the error and consider only the P value.
823 * Prefer a bigger P value based on HW requirements.
825 if (IS_CHERRYVIEW(to_i915(dev))) {
828 return calculated_clock->p > best_clock->p;
831 if (drm_WARN_ON_ONCE(dev, !target_freq))
834 *error_ppm = div_u64(1000000ULL *
835 abs(target_freq - calculated_clock->dot),
838 * Prefer a better P value over a better (smaller) error if the error
839 * is small. Ensure this preference for future configurations too by
840 * setting the error to 0.
842 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
848 return *error_ppm + 10 < best_error_ppm;
852 * Returns a set of divisors for the desired target clock with the given
856 vlv_find_best_dpll(const struct intel_limit *limit,
857 struct intel_crtc_state *crtc_state,
858 int target, int refclk,
859 const struct dpll *match_clock,
860 struct dpll *best_clock)
862 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
863 struct drm_device *dev = crtc->base.dev;
865 unsigned int bestppm = 1000000;
866 /* min update 19.2 MHz */
867 int max_n = min(limit->n.max, refclk / 19200);
870 memset(best_clock, 0, sizeof(*best_clock));
872 /* based on hardware requirement, prefer smaller n to precision */
873 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
874 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
875 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
876 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
877 clock.p = clock.p1 * clock.p2 * 5;
878 /* based on hardware requirement, prefer bigger m1,m2 values */
879 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
882 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
885 vlv_calc_dpll_params(refclk, &clock);
887 if (!intel_pll_is_valid(to_i915(dev),
892 if (!vlv_PLL_is_optimal(dev, target,
910 * Returns a set of divisors for the desired target clock with the given
914 chv_find_best_dpll(const struct intel_limit *limit,
915 struct intel_crtc_state *crtc_state,
916 int target, int refclk,
917 const struct dpll *match_clock,
918 struct dpll *best_clock)
920 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
921 struct drm_device *dev = crtc->base.dev;
922 unsigned int best_error_ppm;
927 memset(best_clock, 0, sizeof(*best_clock));
928 best_error_ppm = 1000000;
931 * Based on hardware doc, the n always set to 1, and m1 always
932 * set to 2. If requires to support 200Mhz refclk, we need to
933 * revisit this because n may not 1 anymore.
938 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
939 for (clock.p2 = limit->p2.p2_fast;
940 clock.p2 >= limit->p2.p2_slow;
941 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
942 unsigned int error_ppm;
944 clock.p = clock.p1 * clock.p2 * 5;
946 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
949 if (m2 > INT_MAX/clock.m1)
954 chv_calc_dpll_params(refclk, &clock);
956 if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
959 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
960 best_error_ppm, &error_ppm))
964 best_error_ppm = error_ppm;
972 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
973 struct dpll *best_clock)
975 const struct intel_limit *limit = &intel_limits_bxt;
978 return chv_find_best_dpll(limit, crtc_state,
979 crtc_state->port_clock, refclk,
983 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
985 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
988 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
990 return (1 << dpll->n) << 16 | dpll->m2;
993 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
995 return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
998 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
999 const struct dpll *clock,
1000 const struct dpll *reduced_clock)
1002 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1003 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1006 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1008 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1009 dpll |= DPLLB_MODE_LVDS;
1011 dpll |= DPLLB_MODE_DAC_SERIAL;
1013 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1014 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1015 dpll |= (crtc_state->pixel_multiplier - 1)
1016 << SDVO_MULTIPLIER_SHIFT_HIRES;
1019 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1020 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1021 dpll |= DPLL_SDVO_HIGH_SPEED;
1023 if (intel_crtc_has_dp_encoder(crtc_state))
1024 dpll |= DPLL_SDVO_HIGH_SPEED;
1026 /* compute bitmask from p1 value */
1027 if (IS_G4X(dev_priv)) {
1028 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1029 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1030 } else if (IS_PINEVIEW(dev_priv)) {
1031 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1032 WARN_ON(reduced_clock->p1 != clock->p1);
1034 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1035 WARN_ON(reduced_clock->p1 != clock->p1);
1038 switch (clock->p2) {
1040 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1043 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1046 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1049 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1052 WARN_ON(reduced_clock->p2 != clock->p2);
1054 if (DISPLAY_VER(dev_priv) >= 4)
1055 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1057 if (crtc_state->sdvo_tv_clock)
1058 dpll |= PLL_REF_INPUT_TVCLKINBC;
1059 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1060 intel_panel_use_ssc(dev_priv))
1061 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1063 dpll |= PLL_REF_INPUT_DREFCLK;
1068 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1069 const struct dpll *clock,
1070 const struct dpll *reduced_clock)
1072 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1073 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1074 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1076 if (IS_PINEVIEW(dev_priv)) {
1077 hw_state->fp0 = pnv_dpll_compute_fp(clock);
1078 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1080 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1081 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1084 hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1086 if (DISPLAY_VER(dev_priv) >= 4)
1087 hw_state->dpll_md = i965_dpll_md(crtc_state);
1090 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1091 const struct dpll *clock,
1092 const struct dpll *reduced_clock)
1094 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1095 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1098 dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1100 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1101 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1104 dpll |= PLL_P1_DIVIDE_BY_TWO;
1106 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1108 dpll |= PLL_P2_DIVIDE_BY_4;
1110 WARN_ON(reduced_clock->p1 != clock->p1);
1111 WARN_ON(reduced_clock->p2 != clock->p2);
1115 * "[Almador Errata}: For the correct operation of the muxed DVO pins
1116 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1117 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1118 * Enable) must be set to “1” in both the DPLL A Control Register
1119 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1121 * For simplicity We simply keep both bits always enabled in
1122 * both DPLLS. The spec says we should disable the DVO 2X clock
1123 * when not needed, but this seems to work fine in practice.
1125 if (IS_I830(dev_priv) ||
1126 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1127 dpll |= DPLL_DVO_2X_MODE;
1129 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1130 intel_panel_use_ssc(dev_priv))
1131 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1133 dpll |= PLL_REF_INPUT_DREFCLK;
1138 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1139 const struct dpll *clock,
1140 const struct dpll *reduced_clock)
1142 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1144 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1145 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1147 hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1150 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1151 struct intel_crtc *crtc)
1153 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1154 struct intel_crtc_state *crtc_state =
1155 intel_atomic_get_new_crtc_state(state, crtc);
1156 struct intel_encoder *encoder =
1157 intel_get_crtc_new_encoder(state, crtc_state);
1160 if (DISPLAY_VER(dev_priv) < 11 &&
1161 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1164 ret = intel_compute_shared_dplls(state, crtc, encoder);
1168 /* FIXME this is a mess */
1169 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1172 /* CRT dotclock is determined via other means */
1173 if (!crtc_state->has_pch_encoder)
1174 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1179 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1180 struct intel_crtc *crtc)
1182 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1183 struct intel_crtc_state *crtc_state =
1184 intel_atomic_get_new_crtc_state(state, crtc);
1185 struct intel_encoder *encoder =
1186 intel_get_crtc_new_encoder(state, crtc_state);
1188 if (DISPLAY_VER(dev_priv) < 11 &&
1189 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1192 return intel_reserve_shared_dplls(state, crtc, encoder);
1195 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1196 struct intel_crtc *crtc)
1198 struct intel_crtc_state *crtc_state =
1199 intel_atomic_get_new_crtc_state(state, crtc);
1200 struct intel_encoder *encoder =
1201 intel_get_crtc_new_encoder(state, crtc_state);
1204 ret = intel_mpllb_calc_state(crtc_state, encoder);
1208 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1213 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1214 struct intel_crtc *crtc)
1216 struct intel_crtc_state *crtc_state =
1217 intel_atomic_get_new_crtc_state(state, crtc);
1218 struct intel_encoder *encoder =
1219 intel_get_crtc_new_encoder(state, crtc_state);
1222 ret = intel_cx0pll_calc_state(crtc_state, encoder);
1226 /* TODO: Do the readback via intel_compute_shared_dplls() */
1227 crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1229 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1234 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1236 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1237 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1239 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1240 ((intel_panel_use_ssc(i915) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1241 (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1244 if (crtc_state->sdvo_tv_clock)
1250 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1252 return dpll->m < factor * dpll->n;
1255 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1259 fp = i9xx_dpll_compute_fp(clock);
1260 if (ilk_needs_fb_cb_tune(clock, factor))
1266 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1267 const struct dpll *clock,
1268 const struct dpll *reduced_clock)
1270 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1271 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1274 dpll = DPLL_VCO_ENABLE;
1276 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1277 dpll |= DPLLB_MODE_LVDS;
1279 dpll |= DPLLB_MODE_DAC_SERIAL;
1281 dpll |= (crtc_state->pixel_multiplier - 1)
1282 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1284 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1285 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1286 dpll |= DPLL_SDVO_HIGH_SPEED;
1288 if (intel_crtc_has_dp_encoder(crtc_state))
1289 dpll |= DPLL_SDVO_HIGH_SPEED;
1292 * The high speed IO clock is only really required for
1293 * SDVO/HDMI/DP, but we also enable it for CRT to make it
1294 * possible to share the DPLL between CRT and HDMI. Enabling
1295 * the clock needlessly does no real harm, except use up a
1296 * bit of power potentially.
1298 * We'll limit this to IVB with 3 pipes, since it has only two
1299 * DPLLs and so DPLL sharing is the only way to get three pipes
1300 * driving PCH ports at the same time. On SNB we could do this,
1301 * and potentially avoid enabling the second DPLL, but it's not
1302 * clear if it''s a win or loss power wise. No point in doing
1303 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1305 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1306 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1307 dpll |= DPLL_SDVO_HIGH_SPEED;
1309 /* compute bitmask from p1 value */
1310 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1312 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1314 switch (clock->p2) {
1316 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1319 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1322 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1325 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1328 WARN_ON(reduced_clock->p2 != clock->p2);
1330 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1331 intel_panel_use_ssc(dev_priv))
1332 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1334 dpll |= PLL_REF_INPUT_DREFCLK;
1339 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1340 const struct dpll *clock,
1341 const struct dpll *reduced_clock)
1343 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1344 int factor = ilk_fb_cb_factor(crtc_state);
1346 hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1347 hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1349 hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
1352 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1353 struct intel_crtc *crtc)
1355 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1356 struct intel_crtc_state *crtc_state =
1357 intel_atomic_get_new_crtc_state(state, crtc);
1358 const struct intel_limit *limit;
1359 int refclk = 120000;
1362 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1363 if (!crtc_state->has_pch_encoder)
1366 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1367 if (intel_panel_use_ssc(dev_priv)) {
1368 drm_dbg_kms(&dev_priv->drm,
1369 "using SSC reference clock of %d kHz\n",
1370 dev_priv->display.vbt.lvds_ssc_freq);
1371 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1374 if (intel_is_dual_link_lvds(dev_priv)) {
1375 if (refclk == 100000)
1376 limit = &ilk_limits_dual_lvds_100m;
1378 limit = &ilk_limits_dual_lvds;
1380 if (refclk == 100000)
1381 limit = &ilk_limits_single_lvds_100m;
1383 limit = &ilk_limits_single_lvds;
1386 limit = &ilk_limits_dac;
1389 if (!crtc_state->clock_set &&
1390 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1391 refclk, NULL, &crtc_state->dpll))
1394 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1396 ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1399 ret = intel_compute_shared_dplls(state, crtc, NULL);
1403 crtc_state->port_clock = crtc_state->dpll.dot;
1404 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1409 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1410 struct intel_crtc *crtc)
1412 struct intel_crtc_state *crtc_state =
1413 intel_atomic_get_new_crtc_state(state, crtc);
1415 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1416 if (!crtc_state->has_pch_encoder)
1419 return intel_reserve_shared_dplls(state, crtc, NULL);
1422 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1424 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1427 dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1428 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1430 if (crtc->pipe != PIPE_A)
1431 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1433 /* DPLL not used with DSI, but still need the rest set up */
1434 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1435 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
1440 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1442 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1444 hw_state->dpll = vlv_dpll(crtc_state);
1445 hw_state->dpll_md = i965_dpll_md(crtc_state);
1448 static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1450 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1453 dpll = DPLL_SSC_REF_CLK_CHV |
1454 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1456 if (crtc->pipe != PIPE_A)
1457 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1459 /* DPLL not used with DSI, but still need the rest set up */
1460 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1461 dpll |= DPLL_VCO_ENABLE;
1466 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1468 struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1470 hw_state->dpll = chv_dpll(crtc_state);
1471 hw_state->dpll_md = i965_dpll_md(crtc_state);
1474 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1475 struct intel_crtc *crtc)
1477 struct intel_crtc_state *crtc_state =
1478 intel_atomic_get_new_crtc_state(state, crtc);
1479 const struct intel_limit *limit = &intel_limits_chv;
1480 int refclk = 100000;
1482 if (!crtc_state->clock_set &&
1483 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1484 refclk, NULL, &crtc_state->dpll))
1487 chv_calc_dpll_params(refclk, &crtc_state->dpll);
1489 chv_compute_dpll(crtc_state);
1491 /* FIXME this is a mess */
1492 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1495 crtc_state->port_clock = crtc_state->dpll.dot;
1496 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1501 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1502 struct intel_crtc *crtc)
1504 struct intel_crtc_state *crtc_state =
1505 intel_atomic_get_new_crtc_state(state, crtc);
1506 const struct intel_limit *limit = &intel_limits_vlv;
1507 int refclk = 100000;
1509 if (!crtc_state->clock_set &&
1510 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1511 refclk, NULL, &crtc_state->dpll))
1514 vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1516 vlv_compute_dpll(crtc_state);
1518 /* FIXME this is a mess */
1519 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1522 crtc_state->port_clock = crtc_state->dpll.dot;
1523 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1528 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1529 struct intel_crtc *crtc)
1531 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1532 struct intel_crtc_state *crtc_state =
1533 intel_atomic_get_new_crtc_state(state, crtc);
1534 const struct intel_limit *limit;
1537 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1538 if (intel_panel_use_ssc(dev_priv)) {
1539 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1540 drm_dbg_kms(&dev_priv->drm,
1541 "using SSC reference clock of %d kHz\n",
1545 if (intel_is_dual_link_lvds(dev_priv))
1546 limit = &intel_limits_g4x_dual_channel_lvds;
1548 limit = &intel_limits_g4x_single_channel_lvds;
1549 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1550 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1551 limit = &intel_limits_g4x_hdmi;
1552 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1553 limit = &intel_limits_g4x_sdvo;
1555 /* The option is for other outputs */
1556 limit = &intel_limits_i9xx_sdvo;
1559 if (!crtc_state->clock_set &&
1560 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1561 refclk, NULL, &crtc_state->dpll))
1564 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1566 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1569 crtc_state->port_clock = crtc_state->dpll.dot;
1570 /* FIXME this is a mess */
1571 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1572 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1577 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1578 struct intel_crtc *crtc)
1580 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1581 struct intel_crtc_state *crtc_state =
1582 intel_atomic_get_new_crtc_state(state, crtc);
1583 const struct intel_limit *limit;
1586 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1587 if (intel_panel_use_ssc(dev_priv)) {
1588 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1589 drm_dbg_kms(&dev_priv->drm,
1590 "using SSC reference clock of %d kHz\n",
1594 limit = &pnv_limits_lvds;
1596 limit = &pnv_limits_sdvo;
1599 if (!crtc_state->clock_set &&
1600 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1601 refclk, NULL, &crtc_state->dpll))
1604 pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1606 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1609 crtc_state->port_clock = crtc_state->dpll.dot;
1610 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1615 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1616 struct intel_crtc *crtc)
1618 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1619 struct intel_crtc_state *crtc_state =
1620 intel_atomic_get_new_crtc_state(state, crtc);
1621 const struct intel_limit *limit;
1624 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1625 if (intel_panel_use_ssc(dev_priv)) {
1626 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1627 drm_dbg_kms(&dev_priv->drm,
1628 "using SSC reference clock of %d kHz\n",
1632 limit = &intel_limits_i9xx_lvds;
1634 limit = &intel_limits_i9xx_sdvo;
1637 if (!crtc_state->clock_set &&
1638 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1639 refclk, NULL, &crtc_state->dpll))
1642 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1644 i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1647 crtc_state->port_clock = crtc_state->dpll.dot;
1648 /* FIXME this is a mess */
1649 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1650 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1655 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1656 struct intel_crtc *crtc)
1658 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1659 struct intel_crtc_state *crtc_state =
1660 intel_atomic_get_new_crtc_state(state, crtc);
1661 const struct intel_limit *limit;
1664 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1665 if (intel_panel_use_ssc(dev_priv)) {
1666 refclk = dev_priv->display.vbt.lvds_ssc_freq;
1667 drm_dbg_kms(&dev_priv->drm,
1668 "using SSC reference clock of %d kHz\n",
1672 limit = &intel_limits_i8xx_lvds;
1673 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1674 limit = &intel_limits_i8xx_dvo;
1676 limit = &intel_limits_i8xx_dac;
1679 if (!crtc_state->clock_set &&
1680 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1681 refclk, NULL, &crtc_state->dpll))
1684 i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1686 i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1689 crtc_state->port_clock = crtc_state->dpll.dot;
1690 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1695 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1696 .crtc_compute_clock = mtl_crtc_compute_clock,
1699 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1700 .crtc_compute_clock = dg2_crtc_compute_clock,
1703 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1704 .crtc_compute_clock = hsw_crtc_compute_clock,
1705 .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1708 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1709 .crtc_compute_clock = ilk_crtc_compute_clock,
1710 .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1713 static const struct intel_dpll_funcs chv_dpll_funcs = {
1714 .crtc_compute_clock = chv_crtc_compute_clock,
1717 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1718 .crtc_compute_clock = vlv_crtc_compute_clock,
1721 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1722 .crtc_compute_clock = g4x_crtc_compute_clock,
1725 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1726 .crtc_compute_clock = pnv_crtc_compute_clock,
1729 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1730 .crtc_compute_clock = i9xx_crtc_compute_clock,
1733 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1734 .crtc_compute_clock = i8xx_crtc_compute_clock,
1737 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1738 struct intel_crtc *crtc)
1740 struct drm_i915_private *i915 = to_i915(state->base.dev);
1741 struct intel_crtc_state *crtc_state =
1742 intel_atomic_get_new_crtc_state(state, crtc);
1745 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1747 memset(&crtc_state->dpll_hw_state, 0,
1748 sizeof(crtc_state->dpll_hw_state));
1750 if (!crtc_state->hw.enable)
1753 ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1755 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1756 crtc->base.base.id, crtc->base.name);
1763 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1764 struct intel_crtc *crtc)
1766 struct drm_i915_private *i915 = to_i915(state->base.dev);
1767 struct intel_crtc_state *crtc_state =
1768 intel_atomic_get_new_crtc_state(state, crtc);
1771 drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1772 drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1774 if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1777 if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1780 ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1782 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1783 crtc->base.base.id, crtc->base.name);
1791 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1793 if (DISPLAY_VER(dev_priv) >= 14)
1794 dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1795 else if (IS_DG2(dev_priv))
1796 dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1797 else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1798 dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1799 else if (HAS_PCH_SPLIT(dev_priv))
1800 dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1801 else if (IS_CHERRYVIEW(dev_priv))
1802 dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1803 else if (IS_VALLEYVIEW(dev_priv))
1804 dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1805 else if (IS_G4X(dev_priv))
1806 dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1807 else if (IS_PINEVIEW(dev_priv))
1808 dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1809 else if (DISPLAY_VER(dev_priv) != 2)
1810 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1812 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1815 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1817 if (IS_I830(dev_priv))
1820 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1823 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1825 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1826 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1827 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1828 enum pipe pipe = crtc->pipe;
1831 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1833 /* PLL is protected by panel, make sure we can write it */
1834 if (i9xx_has_pps(dev_priv))
1835 assert_pps_unlocked(dev_priv, pipe);
1837 intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1838 intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1841 * Apparently we need to have VGA mode enabled prior to changing
1842 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1843 * dividers, even though the register value does change.
1845 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1846 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1848 /* Wait for the clocks to stabilize. */
1849 intel_de_posting_read(dev_priv, DPLL(pipe));
1852 if (DISPLAY_VER(dev_priv) >= 4) {
1853 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
1855 /* The pixel multiplier can only be updated once the
1856 * DPLL is enabled and the clocks are stable.
1858 * So write it again.
1860 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1863 /* We do this three times for luck */
1864 for (i = 0; i < 3; i++) {
1865 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1866 intel_de_posting_read(dev_priv, DPLL(pipe));
1867 udelay(150); /* wait for warmup */
1871 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1872 enum dpio_phy phy, enum dpio_channel ch)
1877 * PLLB opamp always calibrates to max value of 0x3f, force enable it
1878 * and set it to a reasonable value instead.
1880 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1883 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1885 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1888 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1890 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1892 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1894 tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1897 vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1900 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1902 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1904 const struct dpll *clock = &crtc_state->dpll;
1905 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1906 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1907 enum pipe pipe = crtc->pipe;
1910 vlv_dpio_get(dev_priv);
1912 /* See eDP HDMI DPIO driver vbios notes doc */
1914 /* PLL B needs special handling */
1916 vlv_pllb_recal_opamp(dev_priv, phy, ch);
1918 /* Set up Tx target for periodic Rcomp update */
1919 vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1921 /* Disable target IRef on PLL */
1922 tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1924 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1926 /* Disable fast lock */
1927 vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1929 /* Set idtafcrecal before PLL is enabled */
1930 tmp = DPIO_M1_DIV(clock->m1) |
1931 DPIO_M2_DIV(clock->m2) |
1932 DPIO_P1_DIV(clock->p1) |
1933 DPIO_P2_DIV(clock->p2) |
1934 DPIO_N_DIV(clock->n) |
1938 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1939 * but we don't support that).
1940 * Note: don't use the DAC post divider as it seems unstable.
1942 tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1943 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1945 tmp |= DPIO_ENABLE_CALIBRATION;
1946 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1948 /* Set HBR and RBR LPF coefficients */
1949 if (crtc_state->port_clock == 162000 ||
1950 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1951 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1952 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1955 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1958 if (intel_crtc_has_dp_encoder(crtc_state)) {
1959 /* Use SSC source */
1961 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1964 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1966 } else { /* HDMI or VGA */
1967 /* Use bend source */
1969 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1972 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1976 coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1977 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1978 if (intel_crtc_has_dp_encoder(crtc_state))
1979 coreclk |= 0x01000000;
1980 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1982 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
1984 vlv_dpio_put(dev_priv);
1987 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1990 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1991 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1992 enum pipe pipe = crtc->pipe;
1994 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1995 intel_de_posting_read(dev_priv, DPLL(pipe));
1998 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1999 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2002 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2004 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2005 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2006 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2007 enum pipe pipe = crtc->pipe;
2009 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2011 /* PLL is protected by panel, make sure we can write it */
2012 assert_pps_unlocked(dev_priv, pipe);
2015 intel_de_write(dev_priv, DPLL(pipe),
2016 hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2018 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2019 vlv_prepare_pll(crtc_state);
2020 _vlv_enable_pll(crtc_state);
2023 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
2024 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2027 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2029 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2030 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2031 const struct dpll *clock = &crtc_state->dpll;
2032 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2033 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2034 u32 tmp, loopfilter, tribuf_calcntr;
2037 m2_frac = clock->m2 & 0x3fffff;
2039 vlv_dpio_get(dev_priv);
2041 /* p1 and p2 divider */
2042 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2043 DPIO_CHV_S1_DIV(5) |
2044 DPIO_CHV_P1_DIV(clock->p1) |
2045 DPIO_CHV_P2_DIV(clock->p2) |
2048 /* Feedback post-divider - m2 */
2049 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2050 DPIO_CHV_M2_DIV(clock->m2 >> 22));
2052 /* Feedback refclk divider - n and m1 */
2053 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2054 DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2057 /* M2 fraction division */
2058 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2059 DPIO_CHV_M2_FRAC_DIV(m2_frac));
2061 /* M2 fraction division enable */
2062 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2063 tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2064 tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2066 tmp |= DPIO_CHV_FRAC_DIV_EN;
2067 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2069 /* Program digital lock detect threshold */
2070 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2071 tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2072 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2073 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2075 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2076 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2079 if (clock->vco == 5400000) {
2080 loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2081 DPIO_CHV_INT_COEFF(0x8) |
2082 DPIO_CHV_GAIN_CTRL(0x1);
2083 tribuf_calcntr = 0x9;
2084 } else if (clock->vco <= 6200000) {
2085 loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2086 DPIO_CHV_INT_COEFF(0xB) |
2087 DPIO_CHV_GAIN_CTRL(0x3);
2088 tribuf_calcntr = 0x9;
2089 } else if (clock->vco <= 6480000) {
2090 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2091 DPIO_CHV_INT_COEFF(0x9) |
2092 DPIO_CHV_GAIN_CTRL(0x3);
2093 tribuf_calcntr = 0x8;
2095 /* Not supported. Apply the same limits as in the max case */
2096 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2097 DPIO_CHV_INT_COEFF(0x9) |
2098 DPIO_CHV_GAIN_CTRL(0x3);
2101 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2103 tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2104 tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2105 tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2106 vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2109 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2110 vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2113 vlv_dpio_put(dev_priv);
2116 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2118 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2119 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2120 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2121 enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2122 enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2123 enum pipe pipe = crtc->pipe;
2126 vlv_dpio_get(dev_priv);
2128 /* Enable back the 10bit clock to display controller */
2129 tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2130 tmp |= DPIO_DCLKP_EN;
2131 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2133 vlv_dpio_put(dev_priv);
2136 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2141 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
2143 /* Check PLL is locked */
2144 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
2145 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2148 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2150 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2151 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2152 const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2153 enum pipe pipe = crtc->pipe;
2155 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2157 /* PLL is protected by panel, make sure we can write it */
2158 assert_pps_unlocked(dev_priv, pipe);
2160 /* Enable Refclk and SSC */
2161 intel_de_write(dev_priv, DPLL(pipe),
2162 hw_state->dpll & ~DPLL_VCO_ENABLE);
2164 if (hw_state->dpll & DPLL_VCO_ENABLE) {
2165 chv_prepare_pll(crtc_state);
2166 _chv_enable_pll(crtc_state);
2169 if (pipe != PIPE_A) {
2171 * WaPixelRepeatModeFixForC0:chv
2173 * DPLLCMD is AWOL. Use chicken bits to propagate
2174 * the value from DPLLBMD to either pipe B or C.
2176 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2177 intel_de_write(dev_priv, DPLL_MD(PIPE_B), hw_state->dpll_md);
2178 intel_de_write(dev_priv, CBR4_VLV, 0);
2179 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2182 * DPLLB VGA mode also seems to cause problems.
2183 * We should always have it disabled.
2185 drm_WARN_ON(&dev_priv->drm,
2186 (intel_de_read(dev_priv, DPLL(PIPE_B)) &
2187 DPLL_VGA_MODE_DIS) == 0);
2189 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
2190 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2195 * vlv_force_pll_on - forcibly enable just the PLL
2196 * @dev_priv: i915 private structure
2197 * @pipe: pipe PLL to enable
2198 * @dpll: PLL configuration
2200 * Enable the PLL for @pipe using the supplied @dpll config. To be used
2201 * in cases where we need the PLL enabled even when @pipe is not going to
2204 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2205 const struct dpll *dpll)
2207 struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
2208 struct intel_crtc_state *crtc_state;
2210 crtc_state = intel_crtc_state_alloc(crtc);
2214 crtc_state->cpu_transcoder = (enum transcoder)pipe;
2215 crtc_state->pixel_multiplier = 1;
2216 crtc_state->dpll = *dpll;
2217 crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2219 if (IS_CHERRYVIEW(dev_priv)) {
2220 chv_compute_dpll(crtc_state);
2221 chv_enable_pll(crtc_state);
2223 vlv_compute_dpll(crtc_state);
2224 vlv_enable_pll(crtc_state);
2227 intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2232 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2236 /* Make sure the pipe isn't still relying on us */
2237 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2239 val = DPLL_INTEGRATED_REF_CLK_VLV |
2240 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2242 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2244 intel_de_write(dev_priv, DPLL(pipe), val);
2245 intel_de_posting_read(dev_priv, DPLL(pipe));
2248 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2250 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2251 enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2254 /* Make sure the pipe isn't still relying on us */
2255 assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2257 val = DPLL_SSC_REF_CLK_CHV |
2258 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2260 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2262 intel_de_write(dev_priv, DPLL(pipe), val);
2263 intel_de_posting_read(dev_priv, DPLL(pipe));
2265 vlv_dpio_get(dev_priv);
2267 /* Disable 10bit clock to display controller */
2268 val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2269 val &= ~DPIO_DCLKP_EN;
2270 vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2272 vlv_dpio_put(dev_priv);
2275 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2277 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2278 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2279 enum pipe pipe = crtc->pipe;
2281 /* Don't disable pipe or pipe PLLs if needed */
2282 if (IS_I830(dev_priv))
2285 /* Make sure the pipe isn't still relying on us */
2286 assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2288 intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2289 intel_de_posting_read(dev_priv, DPLL(pipe));
2294 * vlv_force_pll_off - forcibly disable just the PLL
2295 * @dev_priv: i915 private structure
2296 * @pipe: pipe PLL to disable
2298 * Disable the PLL for @pipe. To be used in cases where we need
2299 * the PLL enabled even when @pipe is not going to be enabled.
2301 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2303 if (IS_CHERRYVIEW(dev_priv))
2304 chv_disable_pll(dev_priv, pipe);
2306 vlv_disable_pll(dev_priv, pipe);
2309 /* Only for pre-ILK configs */
2310 static void assert_pll(struct drm_i915_private *dev_priv,
2311 enum pipe pipe, bool state)
2315 cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2316 I915_STATE_WARN(dev_priv, cur_state != state,
2317 "PLL state assertion failure (expected %s, current %s)\n",
2318 str_on_off(state), str_on_off(cur_state));
2321 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2323 assert_pll(i915, pipe, true);
2326 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2328 assert_pll(i915, pipe, false);