]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/display/intel_dpll.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / gpu / drm / i915 / display / intel_dpll.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/string_helpers.h>
8
9 #include "i915_reg.h"
10 #include "intel_atomic.h"
11 #include "intel_crtc.h"
12 #include "intel_cx0_phy.h"
13 #include "intel_de.h"
14 #include "intel_display.h"
15 #include "intel_display_types.h"
16 #include "intel_dpio_phy.h"
17 #include "intel_dpll.h"
18 #include "intel_lvds.h"
19 #include "intel_lvds_regs.h"
20 #include "intel_panel.h"
21 #include "intel_pps.h"
22 #include "intel_snps_phy.h"
23 #include "vlv_dpio_phy_regs.h"
24 #include "vlv_sideband.h"
25
26 struct intel_dpll_funcs {
27         int (*crtc_compute_clock)(struct intel_atomic_state *state,
28                                   struct intel_crtc *crtc);
29         int (*crtc_get_shared_dpll)(struct intel_atomic_state *state,
30                                     struct intel_crtc *crtc);
31 };
32
33 struct intel_limit {
34         struct {
35                 int min, max;
36         } dot, vco, n, m, m1, m2, p, p1;
37
38         struct {
39                 int dot_limit;
40                 int p2_slow, p2_fast;
41         } p2;
42 };
43 static const struct intel_limit intel_limits_i8xx_dac = {
44         .dot = { .min = 25000, .max = 350000 },
45         .vco = { .min = 908000, .max = 1512000 },
46         .n = { .min = 2, .max = 16 },
47         .m = { .min = 96, .max = 140 },
48         .m1 = { .min = 18, .max = 26 },
49         .m2 = { .min = 6, .max = 16 },
50         .p = { .min = 4, .max = 128 },
51         .p1 = { .min = 2, .max = 33 },
52         .p2 = { .dot_limit = 165000,
53                 .p2_slow = 4, .p2_fast = 2 },
54 };
55
56 static const struct intel_limit intel_limits_i8xx_dvo = {
57         .dot = { .min = 25000, .max = 350000 },
58         .vco = { .min = 908000, .max = 1512000 },
59         .n = { .min = 2, .max = 16 },
60         .m = { .min = 96, .max = 140 },
61         .m1 = { .min = 18, .max = 26 },
62         .m2 = { .min = 6, .max = 16 },
63         .p = { .min = 4, .max = 128 },
64         .p1 = { .min = 2, .max = 33 },
65         .p2 = { .dot_limit = 165000,
66                 .p2_slow = 4, .p2_fast = 4 },
67 };
68
69 static const struct intel_limit intel_limits_i8xx_lvds = {
70         .dot = { .min = 25000, .max = 350000 },
71         .vco = { .min = 908000, .max = 1512000 },
72         .n = { .min = 2, .max = 16 },
73         .m = { .min = 96, .max = 140 },
74         .m1 = { .min = 18, .max = 26 },
75         .m2 = { .min = 6, .max = 16 },
76         .p = { .min = 4, .max = 128 },
77         .p1 = { .min = 1, .max = 6 },
78         .p2 = { .dot_limit = 165000,
79                 .p2_slow = 14, .p2_fast = 7 },
80 };
81
82 static const struct intel_limit intel_limits_i9xx_sdvo = {
83         .dot = { .min = 20000, .max = 400000 },
84         .vco = { .min = 1400000, .max = 2800000 },
85         .n = { .min = 1, .max = 6 },
86         .m = { .min = 70, .max = 120 },
87         .m1 = { .min = 8, .max = 18 },
88         .m2 = { .min = 3, .max = 7 },
89         .p = { .min = 5, .max = 80 },
90         .p1 = { .min = 1, .max = 8 },
91         .p2 = { .dot_limit = 200000,
92                 .p2_slow = 10, .p2_fast = 5 },
93 };
94
95 static const struct intel_limit intel_limits_i9xx_lvds = {
96         .dot = { .min = 20000, .max = 400000 },
97         .vco = { .min = 1400000, .max = 2800000 },
98         .n = { .min = 1, .max = 6 },
99         .m = { .min = 70, .max = 120 },
100         .m1 = { .min = 8, .max = 18 },
101         .m2 = { .min = 3, .max = 7 },
102         .p = { .min = 7, .max = 98 },
103         .p1 = { .min = 1, .max = 8 },
104         .p2 = { .dot_limit = 112000,
105                 .p2_slow = 14, .p2_fast = 7 },
106 };
107
108
109 static const struct intel_limit intel_limits_g4x_sdvo = {
110         .dot = { .min = 25000, .max = 270000 },
111         .vco = { .min = 1750000, .max = 3500000},
112         .n = { .min = 1, .max = 4 },
113         .m = { .min = 104, .max = 138 },
114         .m1 = { .min = 17, .max = 23 },
115         .m2 = { .min = 5, .max = 11 },
116         .p = { .min = 10, .max = 30 },
117         .p1 = { .min = 1, .max = 3},
118         .p2 = { .dot_limit = 270000,
119                 .p2_slow = 10,
120                 .p2_fast = 10
121         },
122 };
123
124 static const struct intel_limit intel_limits_g4x_hdmi = {
125         .dot = { .min = 22000, .max = 400000 },
126         .vco = { .min = 1750000, .max = 3500000},
127         .n = { .min = 1, .max = 4 },
128         .m = { .min = 104, .max = 138 },
129         .m1 = { .min = 16, .max = 23 },
130         .m2 = { .min = 5, .max = 11 },
131         .p = { .min = 5, .max = 80 },
132         .p1 = { .min = 1, .max = 8},
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 10, .p2_fast = 5 },
135 };
136
137 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
138         .dot = { .min = 20000, .max = 115000 },
139         .vco = { .min = 1750000, .max = 3500000 },
140         .n = { .min = 1, .max = 3 },
141         .m = { .min = 104, .max = 138 },
142         .m1 = { .min = 17, .max = 23 },
143         .m2 = { .min = 5, .max = 11 },
144         .p = { .min = 28, .max = 112 },
145         .p1 = { .min = 2, .max = 8 },
146         .p2 = { .dot_limit = 0,
147                 .p2_slow = 14, .p2_fast = 14
148         },
149 };
150
151 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
152         .dot = { .min = 80000, .max = 224000 },
153         .vco = { .min = 1750000, .max = 3500000 },
154         .n = { .min = 1, .max = 3 },
155         .m = { .min = 104, .max = 138 },
156         .m1 = { .min = 17, .max = 23 },
157         .m2 = { .min = 5, .max = 11 },
158         .p = { .min = 14, .max = 42 },
159         .p1 = { .min = 2, .max = 6 },
160         .p2 = { .dot_limit = 0,
161                 .p2_slow = 7, .p2_fast = 7
162         },
163 };
164
165 static const struct intel_limit pnv_limits_sdvo = {
166         .dot = { .min = 20000, .max = 400000},
167         .vco = { .min = 1700000, .max = 3500000 },
168         /* Pineview's Ncounter is a ring counter */
169         .n = { .min = 3, .max = 6 },
170         .m = { .min = 2, .max = 256 },
171         /* Pineview only has one combined m divider, which we treat as m2. */
172         .m1 = { .min = 0, .max = 0 },
173         .m2 = { .min = 0, .max = 254 },
174         .p = { .min = 5, .max = 80 },
175         .p1 = { .min = 1, .max = 8 },
176         .p2 = { .dot_limit = 200000,
177                 .p2_slow = 10, .p2_fast = 5 },
178 };
179
180 static const struct intel_limit pnv_limits_lvds = {
181         .dot = { .min = 20000, .max = 400000 },
182         .vco = { .min = 1700000, .max = 3500000 },
183         .n = { .min = 3, .max = 6 },
184         .m = { .min = 2, .max = 256 },
185         .m1 = { .min = 0, .max = 0 },
186         .m2 = { .min = 0, .max = 254 },
187         .p = { .min = 7, .max = 112 },
188         .p1 = { .min = 1, .max = 8 },
189         .p2 = { .dot_limit = 112000,
190                 .p2_slow = 14, .p2_fast = 14 },
191 };
192
193 /* Ironlake / Sandybridge
194  *
195  * We calculate clock using (register_value + 2) for N/M1/M2, so here
196  * the range value for them is (actual_value - 2).
197  */
198 static const struct intel_limit ilk_limits_dac = {
199         .dot = { .min = 25000, .max = 350000 },
200         .vco = { .min = 1760000, .max = 3510000 },
201         .n = { .min = 1, .max = 5 },
202         .m = { .min = 79, .max = 127 },
203         .m1 = { .min = 12, .max = 22 },
204         .m2 = { .min = 5, .max = 9 },
205         .p = { .min = 5, .max = 80 },
206         .p1 = { .min = 1, .max = 8 },
207         .p2 = { .dot_limit = 225000,
208                 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const struct intel_limit ilk_limits_single_lvds = {
212         .dot = { .min = 25000, .max = 350000 },
213         .vco = { .min = 1760000, .max = 3510000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 79, .max = 118 },
216         .m1 = { .min = 12, .max = 22 },
217         .m2 = { .min = 5, .max = 9 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 225000,
221                 .p2_slow = 14, .p2_fast = 14 },
222 };
223
224 static const struct intel_limit ilk_limits_dual_lvds = {
225         .dot = { .min = 25000, .max = 350000 },
226         .vco = { .min = 1760000, .max = 3510000 },
227         .n = { .min = 1, .max = 3 },
228         .m = { .min = 79, .max = 127 },
229         .m1 = { .min = 12, .max = 22 },
230         .m2 = { .min = 5, .max = 9 },
231         .p = { .min = 14, .max = 56 },
232         .p1 = { .min = 2, .max = 8 },
233         .p2 = { .dot_limit = 225000,
234                 .p2_slow = 7, .p2_fast = 7 },
235 };
236
237 /* LVDS 100mhz refclk limits. */
238 static const struct intel_limit ilk_limits_single_lvds_100m = {
239         .dot = { .min = 25000, .max = 350000 },
240         .vco = { .min = 1760000, .max = 3510000 },
241         .n = { .min = 1, .max = 2 },
242         .m = { .min = 79, .max = 126 },
243         .m1 = { .min = 12, .max = 22 },
244         .m2 = { .min = 5, .max = 9 },
245         .p = { .min = 28, .max = 112 },
246         .p1 = { .min = 2, .max = 8 },
247         .p2 = { .dot_limit = 225000,
248                 .p2_slow = 14, .p2_fast = 14 },
249 };
250
251 static const struct intel_limit ilk_limits_dual_lvds_100m = {
252         .dot = { .min = 25000, .max = 350000 },
253         .vco = { .min = 1760000, .max = 3510000 },
254         .n = { .min = 1, .max = 3 },
255         .m = { .min = 79, .max = 126 },
256         .m1 = { .min = 12, .max = 22 },
257         .m2 = { .min = 5, .max = 9 },
258         .p = { .min = 14, .max = 42 },
259         .p1 = { .min = 2, .max = 6 },
260         .p2 = { .dot_limit = 225000,
261                 .p2_slow = 7, .p2_fast = 7 },
262 };
263
264 static const struct intel_limit intel_limits_vlv = {
265          /*
266           * These are based on the data rate limits (measured in fast clocks)
267           * since those are the strictest limits we have. The fast
268           * clock and actual rate limits are more relaxed, so checking
269           * them would make no difference.
270           */
271         .dot = { .min = 25000, .max = 270000 },
272         .vco = { .min = 4000000, .max = 6000000 },
273         .n = { .min = 1, .max = 7 },
274         .m1 = { .min = 2, .max = 3 },
275         .m2 = { .min = 11, .max = 156 },
276         .p1 = { .min = 2, .max = 3 },
277         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
278 };
279
280 static const struct intel_limit intel_limits_chv = {
281         /*
282          * These are based on the data rate limits (measured in fast clocks)
283          * since those are the strictest limits we have.  The fast
284          * clock and actual rate limits are more relaxed, so checking
285          * them would make no difference.
286          */
287         .dot = { .min = 25000, .max = 540000 },
288         .vco = { .min = 4800000, .max = 6480000 },
289         .n = { .min = 1, .max = 1 },
290         .m1 = { .min = 2, .max = 2 },
291         .m2 = { .min = 24 << 22, .max = 175 << 22 },
292         .p1 = { .min = 2, .max = 4 },
293         .p2 = { .p2_slow = 1, .p2_fast = 14 },
294 };
295
296 static const struct intel_limit intel_limits_bxt = {
297         .dot = { .min = 25000, .max = 594000 },
298         .vco = { .min = 4800000, .max = 6700000 },
299         .n = { .min = 1, .max = 1 },
300         .m1 = { .min = 2, .max = 2 },
301         /* FIXME: find real m2 limits */
302         .m2 = { .min = 2 << 22, .max = 255 << 22 },
303         .p1 = { .min = 2, .max = 4 },
304         .p2 = { .p2_slow = 1, .p2_fast = 20 },
305 };
306
307 /*
308  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
309  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
310  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
311  * The helpers' return value is the rate of the clock that is fed to the
312  * display engine's pipe which can be the above fast dot clock rate or a
313  * divided-down version of it.
314  */
315 /* m1 is reserved as 0 in Pineview, n is a ring counter */
316 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
317 {
318         clock->m = clock->m2 + 2;
319         clock->p = clock->p1 * clock->p2;
320
321         clock->vco = clock->n == 0 ? 0 :
322                 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
323         clock->dot = clock->p == 0 ? 0 :
324                 DIV_ROUND_CLOSEST(clock->vco, clock->p);
325
326         return clock->dot;
327 }
328
329 static u32 i9xx_dpll_compute_m(const struct dpll *dpll)
330 {
331         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
332 }
333
334 int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
335 {
336         clock->m = i9xx_dpll_compute_m(clock);
337         clock->p = clock->p1 * clock->p2;
338
339         clock->vco = clock->n + 2 == 0 ? 0 :
340                 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
341         clock->dot = clock->p == 0 ? 0 :
342                 DIV_ROUND_CLOSEST(clock->vco, clock->p);
343
344         return clock->dot;
345 }
346
347 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
348 {
349         clock->m = clock->m1 * clock->m2;
350         clock->p = clock->p1 * clock->p2 * 5;
351
352         clock->vco = clock->n == 0 ? 0 :
353                 DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
354         clock->dot = clock->p == 0 ? 0 :
355                 DIV_ROUND_CLOSEST(clock->vco, clock->p);
356
357         return clock->dot;
358 }
359
360 int chv_calc_dpll_params(int refclk, struct dpll *clock)
361 {
362         clock->m = clock->m1 * clock->m2;
363         clock->p = clock->p1 * clock->p2 * 5;
364
365         clock->vco = clock->n == 0 ? 0 :
366                 DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), clock->n << 22);
367         clock->dot = clock->p == 0 ? 0 :
368                 DIV_ROUND_CLOSEST(clock->vco, clock->p);
369
370         return clock->dot;
371 }
372
373 static int i9xx_pll_refclk(const struct intel_crtc_state *crtc_state)
374 {
375         struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
376         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
377
378         if ((hw_state->dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
379                 return i915->display.vbt.lvds_ssc_freq;
380         else if (HAS_PCH_SPLIT(i915))
381                 return 120000;
382         else if (DISPLAY_VER(i915) != 2)
383                 return 96000;
384         else
385                 return 48000;
386 }
387
388 void i9xx_dpll_get_hw_state(struct intel_crtc *crtc,
389                             struct intel_dpll_hw_state *dpll_hw_state)
390 {
391         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
392         struct i9xx_dpll_hw_state *hw_state = &dpll_hw_state->i9xx;
393
394         if (DISPLAY_VER(dev_priv) >= 4) {
395                 u32 tmp;
396
397                 /* No way to read it out on pipes B and C */
398                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
399                         tmp = dev_priv->display.state.chv_dpll_md[crtc->pipe];
400                 else
401                         tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe));
402
403                 hw_state->dpll_md = tmp;
404         }
405
406         hw_state->dpll = intel_de_read(dev_priv, DPLL(crtc->pipe));
407
408         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
409                 hw_state->fp0 = intel_de_read(dev_priv, FP0(crtc->pipe));
410                 hw_state->fp1 = intel_de_read(dev_priv, FP1(crtc->pipe));
411         } else {
412                 /* Mask out read-only status bits. */
413                 hw_state->dpll &= ~(DPLL_LOCK_VLV |
414                                     DPLL_PORTC_READY_MASK |
415                                     DPLL_PORTB_READY_MASK);
416         }
417 }
418
419 /* Returns the clock of the currently programmed mode of the given pipe. */
420 void i9xx_crtc_clock_get(struct intel_crtc_state *crtc_state)
421 {
422         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
423         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
425         u32 dpll = hw_state->dpll;
426         u32 fp;
427         struct dpll clock;
428         int port_clock;
429         int refclk = i9xx_pll_refclk(crtc_state);
430
431         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
432                 fp = hw_state->fp0;
433         else
434                 fp = hw_state->fp1;
435
436         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
437         if (IS_PINEVIEW(dev_priv)) {
438                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
439                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
440         } else {
441                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
442                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
443         }
444
445         if (DISPLAY_VER(dev_priv) != 2) {
446                 if (IS_PINEVIEW(dev_priv))
447                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
448                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
449                 else
450                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
451                                DPLL_FPA01_P1_POST_DIV_SHIFT);
452
453                 switch (dpll & DPLL_MODE_MASK) {
454                 case DPLLB_MODE_DAC_SERIAL:
455                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
456                                 5 : 10;
457                         break;
458                 case DPLLB_MODE_LVDS:
459                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
460                                 7 : 14;
461                         break;
462                 default:
463                         drm_dbg_kms(&dev_priv->drm,
464                                     "Unknown DPLL mode %08x in programmed "
465                                     "mode\n", (int)(dpll & DPLL_MODE_MASK));
466                         return;
467                 }
468
469                 if (IS_PINEVIEW(dev_priv))
470                         port_clock = pnv_calc_dpll_params(refclk, &clock);
471                 else
472                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
473         } else {
474                 enum pipe lvds_pipe;
475
476                 if (IS_I85X(dev_priv) &&
477                     intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) &&
478                     lvds_pipe == crtc->pipe) {
479                         u32 lvds = intel_de_read(dev_priv, LVDS);
480
481                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
482                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
483
484                         if (lvds & LVDS_CLKB_POWER_UP)
485                                 clock.p2 = 7;
486                         else
487                                 clock.p2 = 14;
488                 } else {
489                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
490                                 clock.p1 = 2;
491                         else {
492                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
493                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
494                         }
495                         if (dpll & PLL_P2_DIVIDE_BY_4)
496                                 clock.p2 = 4;
497                         else
498                                 clock.p2 = 2;
499                 }
500
501                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
502         }
503
504         /*
505          * This value includes pixel_multiplier. We will use
506          * port_clock to compute adjusted_mode.crtc_clock in the
507          * encoder's get_config() function.
508          */
509         crtc_state->port_clock = port_clock;
510 }
511
512 void vlv_crtc_clock_get(struct intel_crtc_state *crtc_state)
513 {
514         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
515         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
516         enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
517         enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
518         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
519         int refclk = 100000;
520         struct dpll clock;
521         u32 tmp;
522
523         /* In case of DSI, DPLL will not be used */
524         if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
525                 return;
526
527         vlv_dpio_get(dev_priv);
528         tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW3(ch));
529         vlv_dpio_put(dev_priv);
530
531         clock.m1 = REG_FIELD_GET(DPIO_M1_DIV_MASK, tmp);
532         clock.m2 = REG_FIELD_GET(DPIO_M2_DIV_MASK, tmp);
533         clock.n = REG_FIELD_GET(DPIO_N_DIV_MASK, tmp);
534         clock.p1 = REG_FIELD_GET(DPIO_P1_DIV_MASK, tmp);
535         clock.p2 = REG_FIELD_GET(DPIO_P2_DIV_MASK, tmp);
536
537         crtc_state->port_clock = vlv_calc_dpll_params(refclk, &clock);
538 }
539
540 void chv_crtc_clock_get(struct intel_crtc_state *crtc_state)
541 {
542         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
543         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
544         enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
545         enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
546         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
547         struct dpll clock;
548         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
549         int refclk = 100000;
550
551         /* In case of DSI, DPLL will not be used */
552         if ((hw_state->dpll & DPLL_VCO_ENABLE) == 0)
553                 return;
554
555         vlv_dpio_get(dev_priv);
556         cmn_dw13 = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW13(ch));
557         pll_dw0 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW0(ch));
558         pll_dw1 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW1(ch));
559         pll_dw2 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW2(ch));
560         pll_dw3 = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
561         vlv_dpio_put(dev_priv);
562
563         clock.m1 = REG_FIELD_GET(DPIO_CHV_M1_DIV_MASK, pll_dw1) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
564         clock.m2 = REG_FIELD_GET(DPIO_CHV_M2_DIV_MASK, pll_dw0) << 22;
565         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
566                 clock.m2 |= REG_FIELD_GET(DPIO_CHV_M2_FRAC_DIV_MASK, pll_dw2);
567         clock.n = REG_FIELD_GET(DPIO_CHV_N_DIV_MASK, pll_dw1);
568         clock.p1 = REG_FIELD_GET(DPIO_CHV_P1_DIV_MASK, cmn_dw13);
569         clock.p2 = REG_FIELD_GET(DPIO_CHV_P2_DIV_MASK, cmn_dw13);
570
571         crtc_state->port_clock = chv_calc_dpll_params(refclk, &clock);
572 }
573
574 /*
575  * Returns whether the given set of divisors are valid for a given refclk with
576  * the given connectors.
577  */
578 static bool intel_pll_is_valid(struct drm_i915_private *dev_priv,
579                                const struct intel_limit *limit,
580                                const struct dpll *clock)
581 {
582         if (clock->n < limit->n.min || limit->n.max < clock->n)
583                 return false;
584         if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
585                 return false;
586         if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
587                 return false;
588         if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
589                 return false;
590
591         if (!IS_PINEVIEW(dev_priv) && !IS_LP(dev_priv))
592                 if (clock->m1 <= clock->m2)
593                         return false;
594
595         if (!IS_LP(dev_priv)) {
596                 if (clock->p < limit->p.min || limit->p.max < clock->p)
597                         return false;
598                 if (clock->m < limit->m.min || limit->m.max < clock->m)
599                         return false;
600         }
601
602         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
603                 return false;
604         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
605          * connector, etc., rather than just a single range.
606          */
607         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
608                 return false;
609
610         return true;
611 }
612
613 static int
614 i9xx_select_p2_div(const struct intel_limit *limit,
615                    const struct intel_crtc_state *crtc_state,
616                    int target)
617 {
618         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
619
620         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
621                 /*
622                  * For LVDS just rely on its current settings for dual-channel.
623                  * We haven't figured out how to reliably set up different
624                  * single/dual channel state, if we even can.
625                  */
626                 if (intel_is_dual_link_lvds(dev_priv))
627                         return limit->p2.p2_fast;
628                 else
629                         return limit->p2.p2_slow;
630         } else {
631                 if (target < limit->p2.dot_limit)
632                         return limit->p2.p2_slow;
633                 else
634                         return limit->p2.p2_fast;
635         }
636 }
637
638 /*
639  * Returns a set of divisors for the desired target clock with the given
640  * refclk, or FALSE.
641  *
642  * Target and reference clocks are specified in kHz.
643  *
644  * If match_clock is provided, then best_clock P divider must match the P
645  * divider from @match_clock used for LVDS downclocking.
646  */
647 static bool
648 i9xx_find_best_dpll(const struct intel_limit *limit,
649                     struct intel_crtc_state *crtc_state,
650                     int target, int refclk,
651                     const struct dpll *match_clock,
652                     struct dpll *best_clock)
653 {
654         struct drm_device *dev = crtc_state->uapi.crtc->dev;
655         struct dpll clock;
656         int err = target;
657
658         memset(best_clock, 0, sizeof(*best_clock));
659
660         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
661
662         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
663              clock.m1++) {
664                 for (clock.m2 = limit->m2.min;
665                      clock.m2 <= limit->m2.max; clock.m2++) {
666                         if (clock.m2 >= clock.m1)
667                                 break;
668                         for (clock.n = limit->n.min;
669                              clock.n <= limit->n.max; clock.n++) {
670                                 for (clock.p1 = limit->p1.min;
671                                         clock.p1 <= limit->p1.max; clock.p1++) {
672                                         int this_err;
673
674                                         i9xx_calc_dpll_params(refclk, &clock);
675                                         if (!intel_pll_is_valid(to_i915(dev),
676                                                                 limit,
677                                                                 &clock))
678                                                 continue;
679                                         if (match_clock &&
680                                             clock.p != match_clock->p)
681                                                 continue;
682
683                                         this_err = abs(clock.dot - target);
684                                         if (this_err < err) {
685                                                 *best_clock = clock;
686                                                 err = this_err;
687                                         }
688                                 }
689                         }
690                 }
691         }
692
693         return (err != target);
694 }
695
696 /*
697  * Returns a set of divisors for the desired target clock with the given
698  * refclk, or FALSE.
699  *
700  * Target and reference clocks are specified in kHz.
701  *
702  * If match_clock is provided, then best_clock P divider must match the P
703  * divider from @match_clock used for LVDS downclocking.
704  */
705 static bool
706 pnv_find_best_dpll(const struct intel_limit *limit,
707                    struct intel_crtc_state *crtc_state,
708                    int target, int refclk,
709                    const struct dpll *match_clock,
710                    struct dpll *best_clock)
711 {
712         struct drm_device *dev = crtc_state->uapi.crtc->dev;
713         struct dpll clock;
714         int err = target;
715
716         memset(best_clock, 0, sizeof(*best_clock));
717
718         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
719
720         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
721              clock.m1++) {
722                 for (clock.m2 = limit->m2.min;
723                      clock.m2 <= limit->m2.max; clock.m2++) {
724                         for (clock.n = limit->n.min;
725                              clock.n <= limit->n.max; clock.n++) {
726                                 for (clock.p1 = limit->p1.min;
727                                         clock.p1 <= limit->p1.max; clock.p1++) {
728                                         int this_err;
729
730                                         pnv_calc_dpll_params(refclk, &clock);
731                                         if (!intel_pll_is_valid(to_i915(dev),
732                                                                 limit,
733                                                                 &clock))
734                                                 continue;
735                                         if (match_clock &&
736                                             clock.p != match_clock->p)
737                                                 continue;
738
739                                         this_err = abs(clock.dot - target);
740                                         if (this_err < err) {
741                                                 *best_clock = clock;
742                                                 err = this_err;
743                                         }
744                                 }
745                         }
746                 }
747         }
748
749         return (err != target);
750 }
751
752 /*
753  * Returns a set of divisors for the desired target clock with the given
754  * refclk, or FALSE.
755  *
756  * Target and reference clocks are specified in kHz.
757  *
758  * If match_clock is provided, then best_clock P divider must match the P
759  * divider from @match_clock used for LVDS downclocking.
760  */
761 static bool
762 g4x_find_best_dpll(const struct intel_limit *limit,
763                    struct intel_crtc_state *crtc_state,
764                    int target, int refclk,
765                    const struct dpll *match_clock,
766                    struct dpll *best_clock)
767 {
768         struct drm_device *dev = crtc_state->uapi.crtc->dev;
769         struct dpll clock;
770         int max_n;
771         bool found = false;
772         /* approximately equals target * 0.00585 */
773         int err_most = (target >> 8) + (target >> 9);
774
775         memset(best_clock, 0, sizeof(*best_clock));
776
777         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
778
779         max_n = limit->n.max;
780         /* based on hardware requirement, prefer smaller n to precision */
781         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
782                 /* based on hardware requirement, prefere larger m1,m2 */
783                 for (clock.m1 = limit->m1.max;
784                      clock.m1 >= limit->m1.min; clock.m1--) {
785                         for (clock.m2 = limit->m2.max;
786                              clock.m2 >= limit->m2.min; clock.m2--) {
787                                 for (clock.p1 = limit->p1.max;
788                                      clock.p1 >= limit->p1.min; clock.p1--) {
789                                         int this_err;
790
791                                         i9xx_calc_dpll_params(refclk, &clock);
792                                         if (!intel_pll_is_valid(to_i915(dev),
793                                                                 limit,
794                                                                 &clock))
795                                                 continue;
796
797                                         this_err = abs(clock.dot - target);
798                                         if (this_err < err_most) {
799                                                 *best_clock = clock;
800                                                 err_most = this_err;
801                                                 max_n = clock.n;
802                                                 found = true;
803                                         }
804                                 }
805                         }
806                 }
807         }
808         return found;
809 }
810
811 /*
812  * Check if the calculated PLL configuration is more optimal compared to the
813  * best configuration and error found so far. Return the calculated error.
814  */
815 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
816                                const struct dpll *calculated_clock,
817                                const struct dpll *best_clock,
818                                unsigned int best_error_ppm,
819                                unsigned int *error_ppm)
820 {
821         /*
822          * For CHV ignore the error and consider only the P value.
823          * Prefer a bigger P value based on HW requirements.
824          */
825         if (IS_CHERRYVIEW(to_i915(dev))) {
826                 *error_ppm = 0;
827
828                 return calculated_clock->p > best_clock->p;
829         }
830
831         if (drm_WARN_ON_ONCE(dev, !target_freq))
832                 return false;
833
834         *error_ppm = div_u64(1000000ULL *
835                                 abs(target_freq - calculated_clock->dot),
836                              target_freq);
837         /*
838          * Prefer a better P value over a better (smaller) error if the error
839          * is small. Ensure this preference for future configurations too by
840          * setting the error to 0.
841          */
842         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
843                 *error_ppm = 0;
844
845                 return true;
846         }
847
848         return *error_ppm + 10 < best_error_ppm;
849 }
850
851 /*
852  * Returns a set of divisors for the desired target clock with the given
853  * refclk, or FALSE.
854  */
855 static bool
856 vlv_find_best_dpll(const struct intel_limit *limit,
857                    struct intel_crtc_state *crtc_state,
858                    int target, int refclk,
859                    const struct dpll *match_clock,
860                    struct dpll *best_clock)
861 {
862         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
863         struct drm_device *dev = crtc->base.dev;
864         struct dpll clock;
865         unsigned int bestppm = 1000000;
866         /* min update 19.2 MHz */
867         int max_n = min(limit->n.max, refclk / 19200);
868         bool found = false;
869
870         memset(best_clock, 0, sizeof(*best_clock));
871
872         /* based on hardware requirement, prefer smaller n to precision */
873         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
874                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
875                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
876                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
877                                 clock.p = clock.p1 * clock.p2 * 5;
878                                 /* based on hardware requirement, prefer bigger m1,m2 values */
879                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
880                                         unsigned int ppm;
881
882                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
883                                                                      refclk * clock.m1);
884
885                                         vlv_calc_dpll_params(refclk, &clock);
886
887                                         if (!intel_pll_is_valid(to_i915(dev),
888                                                                 limit,
889                                                                 &clock))
890                                                 continue;
891
892                                         if (!vlv_PLL_is_optimal(dev, target,
893                                                                 &clock,
894                                                                 best_clock,
895                                                                 bestppm, &ppm))
896                                                 continue;
897
898                                         *best_clock = clock;
899                                         bestppm = ppm;
900                                         found = true;
901                                 }
902                         }
903                 }
904         }
905
906         return found;
907 }
908
909 /*
910  * Returns a set of divisors for the desired target clock with the given
911  * refclk, or FALSE.
912  */
913 static bool
914 chv_find_best_dpll(const struct intel_limit *limit,
915                    struct intel_crtc_state *crtc_state,
916                    int target, int refclk,
917                    const struct dpll *match_clock,
918                    struct dpll *best_clock)
919 {
920         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
921         struct drm_device *dev = crtc->base.dev;
922         unsigned int best_error_ppm;
923         struct dpll clock;
924         u64 m2;
925         int found = false;
926
927         memset(best_clock, 0, sizeof(*best_clock));
928         best_error_ppm = 1000000;
929
930         /*
931          * Based on hardware doc, the n always set to 1, and m1 always
932          * set to 2.  If requires to support 200Mhz refclk, we need to
933          * revisit this because n may not 1 anymore.
934          */
935         clock.n = 1;
936         clock.m1 = 2;
937
938         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
939                 for (clock.p2 = limit->p2.p2_fast;
940                                 clock.p2 >= limit->p2.p2_slow;
941                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
942                         unsigned int error_ppm;
943
944                         clock.p = clock.p1 * clock.p2 * 5;
945
946                         m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
947                                                    refclk * clock.m1);
948
949                         if (m2 > INT_MAX/clock.m1)
950                                 continue;
951
952                         clock.m2 = m2;
953
954                         chv_calc_dpll_params(refclk, &clock);
955
956                         if (!intel_pll_is_valid(to_i915(dev), limit, &clock))
957                                 continue;
958
959                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
960                                                 best_error_ppm, &error_ppm))
961                                 continue;
962
963                         *best_clock = clock;
964                         best_error_ppm = error_ppm;
965                         found = true;
966                 }
967         }
968
969         return found;
970 }
971
972 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
973                         struct dpll *best_clock)
974 {
975         const struct intel_limit *limit = &intel_limits_bxt;
976         int refclk = 100000;
977
978         return chv_find_best_dpll(limit, crtc_state,
979                                   crtc_state->port_clock, refclk,
980                                   NULL, best_clock);
981 }
982
983 u32 i9xx_dpll_compute_fp(const struct dpll *dpll)
984 {
985         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
986 }
987
988 static u32 pnv_dpll_compute_fp(const struct dpll *dpll)
989 {
990         return (1 << dpll->n) << 16 | dpll->m2;
991 }
992
993 static u32 i965_dpll_md(const struct intel_crtc_state *crtc_state)
994 {
995         return (crtc_state->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
996 }
997
998 static u32 i9xx_dpll(const struct intel_crtc_state *crtc_state,
999                      const struct dpll *clock,
1000                      const struct dpll *reduced_clock)
1001 {
1002         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1003         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1004         u32 dpll;
1005
1006         dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1007
1008         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1009                 dpll |= DPLLB_MODE_LVDS;
1010         else
1011                 dpll |= DPLLB_MODE_DAC_SERIAL;
1012
1013         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
1014             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
1015                 dpll |= (crtc_state->pixel_multiplier - 1)
1016                         << SDVO_MULTIPLIER_SHIFT_HIRES;
1017         }
1018
1019         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1020             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1021                 dpll |= DPLL_SDVO_HIGH_SPEED;
1022
1023         if (intel_crtc_has_dp_encoder(crtc_state))
1024                 dpll |= DPLL_SDVO_HIGH_SPEED;
1025
1026         /* compute bitmask from p1 value */
1027         if (IS_G4X(dev_priv)) {
1028                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1029                 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1030         } else if (IS_PINEVIEW(dev_priv)) {
1031                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
1032                 WARN_ON(reduced_clock->p1 != clock->p1);
1033         } else {
1034                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1035                 WARN_ON(reduced_clock->p1 != clock->p1);
1036         }
1037
1038         switch (clock->p2) {
1039         case 5:
1040                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1041                 break;
1042         case 7:
1043                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1044                 break;
1045         case 10:
1046                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1047                 break;
1048         case 14:
1049                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1050                 break;
1051         }
1052         WARN_ON(reduced_clock->p2 != clock->p2);
1053
1054         if (DISPLAY_VER(dev_priv) >= 4)
1055                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1056
1057         if (crtc_state->sdvo_tv_clock)
1058                 dpll |= PLL_REF_INPUT_TVCLKINBC;
1059         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1060                  intel_panel_use_ssc(dev_priv))
1061                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1062         else
1063                 dpll |= PLL_REF_INPUT_DREFCLK;
1064
1065         return dpll;
1066 }
1067
1068 static void i9xx_compute_dpll(struct intel_crtc_state *crtc_state,
1069                               const struct dpll *clock,
1070                               const struct dpll *reduced_clock)
1071 {
1072         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1073         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1074         struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1075
1076         if (IS_PINEVIEW(dev_priv)) {
1077                 hw_state->fp0 = pnv_dpll_compute_fp(clock);
1078                 hw_state->fp1 = pnv_dpll_compute_fp(reduced_clock);
1079         } else {
1080                 hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1081                 hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1082         }
1083
1084         hw_state->dpll = i9xx_dpll(crtc_state, clock, reduced_clock);
1085
1086         if (DISPLAY_VER(dev_priv) >= 4)
1087                 hw_state->dpll_md = i965_dpll_md(crtc_state);
1088 }
1089
1090 static u32 i8xx_dpll(const struct intel_crtc_state *crtc_state,
1091                      const struct dpll *clock,
1092                      const struct dpll *reduced_clock)
1093 {
1094         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1095         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1096         u32 dpll;
1097
1098         dpll = DPLL_VCO_ENABLE | DPLL_VGA_MODE_DIS;
1099
1100         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1101                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1102         } else {
1103                 if (clock->p1 == 2)
1104                         dpll |= PLL_P1_DIVIDE_BY_TWO;
1105                 else
1106                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1107                 if (clock->p2 == 4)
1108                         dpll |= PLL_P2_DIVIDE_BY_4;
1109         }
1110         WARN_ON(reduced_clock->p1 != clock->p1);
1111         WARN_ON(reduced_clock->p2 != clock->p2);
1112
1113         /*
1114          * Bspec:
1115          * "[Almador Errata}: For the correct operation of the muxed DVO pins
1116          *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
1117          *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
1118          *  Enable) must be set to “1” in both the DPLL A Control Register
1119          *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
1120          *
1121          * For simplicity We simply keep both bits always enabled in
1122          * both DPLLS. The spec says we should disable the DVO 2X clock
1123          * when not needed, but this seems to work fine in practice.
1124          */
1125         if (IS_I830(dev_priv) ||
1126             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
1127                 dpll |= DPLL_DVO_2X_MODE;
1128
1129         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1130             intel_panel_use_ssc(dev_priv))
1131                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1132         else
1133                 dpll |= PLL_REF_INPUT_DREFCLK;
1134
1135         return dpll;
1136 }
1137
1138 static void i8xx_compute_dpll(struct intel_crtc_state *crtc_state,
1139                               const struct dpll *clock,
1140                               const struct dpll *reduced_clock)
1141 {
1142         struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1143
1144         hw_state->fp0 = i9xx_dpll_compute_fp(clock);
1145         hw_state->fp1 = i9xx_dpll_compute_fp(reduced_clock);
1146
1147         hw_state->dpll = i8xx_dpll(crtc_state, clock, reduced_clock);
1148 }
1149
1150 static int hsw_crtc_compute_clock(struct intel_atomic_state *state,
1151                                   struct intel_crtc *crtc)
1152 {
1153         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1154         struct intel_crtc_state *crtc_state =
1155                 intel_atomic_get_new_crtc_state(state, crtc);
1156         struct intel_encoder *encoder =
1157                 intel_get_crtc_new_encoder(state, crtc_state);
1158         int ret;
1159
1160         if (DISPLAY_VER(dev_priv) < 11 &&
1161             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1162                 return 0;
1163
1164         ret = intel_compute_shared_dplls(state, crtc, encoder);
1165         if (ret)
1166                 return ret;
1167
1168         /* FIXME this is a mess */
1169         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1170                 return 0;
1171
1172         /* CRT dotclock is determined via other means */
1173         if (!crtc_state->has_pch_encoder)
1174                 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1175
1176         return 0;
1177 }
1178
1179 static int hsw_crtc_get_shared_dpll(struct intel_atomic_state *state,
1180                                     struct intel_crtc *crtc)
1181 {
1182         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1183         struct intel_crtc_state *crtc_state =
1184                 intel_atomic_get_new_crtc_state(state, crtc);
1185         struct intel_encoder *encoder =
1186                 intel_get_crtc_new_encoder(state, crtc_state);
1187
1188         if (DISPLAY_VER(dev_priv) < 11 &&
1189             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1190                 return 0;
1191
1192         return intel_reserve_shared_dplls(state, crtc, encoder);
1193 }
1194
1195 static int dg2_crtc_compute_clock(struct intel_atomic_state *state,
1196                                   struct intel_crtc *crtc)
1197 {
1198         struct intel_crtc_state *crtc_state =
1199                 intel_atomic_get_new_crtc_state(state, crtc);
1200         struct intel_encoder *encoder =
1201                 intel_get_crtc_new_encoder(state, crtc_state);
1202         int ret;
1203
1204         ret = intel_mpllb_calc_state(crtc_state, encoder);
1205         if (ret)
1206                 return ret;
1207
1208         crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1209
1210         return 0;
1211 }
1212
1213 static int mtl_crtc_compute_clock(struct intel_atomic_state *state,
1214                                   struct intel_crtc *crtc)
1215 {
1216         struct intel_crtc_state *crtc_state =
1217                 intel_atomic_get_new_crtc_state(state, crtc);
1218         struct intel_encoder *encoder =
1219                 intel_get_crtc_new_encoder(state, crtc_state);
1220         int ret;
1221
1222         ret = intel_cx0pll_calc_state(crtc_state, encoder);
1223         if (ret)
1224                 return ret;
1225
1226         /* TODO: Do the readback via intel_compute_shared_dplls() */
1227         crtc_state->port_clock = intel_cx0pll_calc_port_clock(encoder, &crtc_state->dpll_hw_state.cx0pll);
1228
1229         crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1230
1231         return 0;
1232 }
1233
1234 static int ilk_fb_cb_factor(const struct intel_crtc_state *crtc_state)
1235 {
1236         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1237         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1238
1239         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1240             ((intel_panel_use_ssc(i915) && i915->display.vbt.lvds_ssc_freq == 100000) ||
1241              (HAS_PCH_IBX(i915) && intel_is_dual_link_lvds(i915))))
1242                 return 25;
1243
1244         if (crtc_state->sdvo_tv_clock)
1245                 return 20;
1246
1247         return 21;
1248 }
1249
1250 static bool ilk_needs_fb_cb_tune(const struct dpll *dpll, int factor)
1251 {
1252         return dpll->m < factor * dpll->n;
1253 }
1254
1255 static u32 ilk_dpll_compute_fp(const struct dpll *clock, int factor)
1256 {
1257         u32 fp;
1258
1259         fp = i9xx_dpll_compute_fp(clock);
1260         if (ilk_needs_fb_cb_tune(clock, factor))
1261                 fp |= FP_CB_TUNE;
1262
1263         return fp;
1264 }
1265
1266 static u32 ilk_dpll(const struct intel_crtc_state *crtc_state,
1267                     const struct dpll *clock,
1268                     const struct dpll *reduced_clock)
1269 {
1270         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1271         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1272         u32 dpll;
1273
1274         dpll = DPLL_VCO_ENABLE;
1275
1276         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
1277                 dpll |= DPLLB_MODE_LVDS;
1278         else
1279                 dpll |= DPLLB_MODE_DAC_SERIAL;
1280
1281         dpll |= (crtc_state->pixel_multiplier - 1)
1282                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1283
1284         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
1285             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1286                 dpll |= DPLL_SDVO_HIGH_SPEED;
1287
1288         if (intel_crtc_has_dp_encoder(crtc_state))
1289                 dpll |= DPLL_SDVO_HIGH_SPEED;
1290
1291         /*
1292          * The high speed IO clock is only really required for
1293          * SDVO/HDMI/DP, but we also enable it for CRT to make it
1294          * possible to share the DPLL between CRT and HDMI. Enabling
1295          * the clock needlessly does no real harm, except use up a
1296          * bit of power potentially.
1297          *
1298          * We'll limit this to IVB with 3 pipes, since it has only two
1299          * DPLLs and so DPLL sharing is the only way to get three pipes
1300          * driving PCH ports at the same time. On SNB we could do this,
1301          * and potentially avoid enabling the second DPLL, but it's not
1302          * clear if it''s a win or loss power wise. No point in doing
1303          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
1304          */
1305         if (INTEL_NUM_PIPES(dev_priv) == 3 &&
1306             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
1307                 dpll |= DPLL_SDVO_HIGH_SPEED;
1308
1309         /* compute bitmask from p1 value */
1310         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1311         /* also FPA1 */
1312         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1313
1314         switch (clock->p2) {
1315         case 5:
1316                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1317                 break;
1318         case 7:
1319                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1320                 break;
1321         case 10:
1322                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1323                 break;
1324         case 14:
1325                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1326                 break;
1327         }
1328         WARN_ON(reduced_clock->p2 != clock->p2);
1329
1330         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
1331             intel_panel_use_ssc(dev_priv))
1332                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1333         else
1334                 dpll |= PLL_REF_INPUT_DREFCLK;
1335
1336         return dpll;
1337 }
1338
1339 static void ilk_compute_dpll(struct intel_crtc_state *crtc_state,
1340                              const struct dpll *clock,
1341                              const struct dpll *reduced_clock)
1342 {
1343         struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1344         int factor = ilk_fb_cb_factor(crtc_state);
1345
1346         hw_state->fp0 = ilk_dpll_compute_fp(clock, factor);
1347         hw_state->fp1 = ilk_dpll_compute_fp(reduced_clock, factor);
1348
1349         hw_state->dpll = ilk_dpll(crtc_state, clock, reduced_clock);
1350 }
1351
1352 static int ilk_crtc_compute_clock(struct intel_atomic_state *state,
1353                                   struct intel_crtc *crtc)
1354 {
1355         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1356         struct intel_crtc_state *crtc_state =
1357                 intel_atomic_get_new_crtc_state(state, crtc);
1358         const struct intel_limit *limit;
1359         int refclk = 120000;
1360         int ret;
1361
1362         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1363         if (!crtc_state->has_pch_encoder)
1364                 return 0;
1365
1366         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1367                 if (intel_panel_use_ssc(dev_priv)) {
1368                         drm_dbg_kms(&dev_priv->drm,
1369                                     "using SSC reference clock of %d kHz\n",
1370                                     dev_priv->display.vbt.lvds_ssc_freq);
1371                         refclk = dev_priv->display.vbt.lvds_ssc_freq;
1372                 }
1373
1374                 if (intel_is_dual_link_lvds(dev_priv)) {
1375                         if (refclk == 100000)
1376                                 limit = &ilk_limits_dual_lvds_100m;
1377                         else
1378                                 limit = &ilk_limits_dual_lvds;
1379                 } else {
1380                         if (refclk == 100000)
1381                                 limit = &ilk_limits_single_lvds_100m;
1382                         else
1383                                 limit = &ilk_limits_single_lvds;
1384                 }
1385         } else {
1386                 limit = &ilk_limits_dac;
1387         }
1388
1389         if (!crtc_state->clock_set &&
1390             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1391                                 refclk, NULL, &crtc_state->dpll))
1392                 return -EINVAL;
1393
1394         i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1395
1396         ilk_compute_dpll(crtc_state, &crtc_state->dpll,
1397                          &crtc_state->dpll);
1398
1399         ret = intel_compute_shared_dplls(state, crtc, NULL);
1400         if (ret)
1401                 return ret;
1402
1403         crtc_state->port_clock = crtc_state->dpll.dot;
1404         crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1405
1406         return ret;
1407 }
1408
1409 static int ilk_crtc_get_shared_dpll(struct intel_atomic_state *state,
1410                                     struct intel_crtc *crtc)
1411 {
1412         struct intel_crtc_state *crtc_state =
1413                 intel_atomic_get_new_crtc_state(state, crtc);
1414
1415         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
1416         if (!crtc_state->has_pch_encoder)
1417                 return 0;
1418
1419         return intel_reserve_shared_dplls(state, crtc, NULL);
1420 }
1421
1422 static u32 vlv_dpll(const struct intel_crtc_state *crtc_state)
1423 {
1424         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1425         u32 dpll;
1426
1427         dpll = DPLL_INTEGRATED_REF_CLK_VLV |
1428                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1429
1430         if (crtc->pipe != PIPE_A)
1431                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1432
1433         /* DPLL not used with DSI, but still need the rest set up */
1434         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1435                 dpll |= DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
1436
1437         return dpll;
1438 }
1439
1440 void vlv_compute_dpll(struct intel_crtc_state *crtc_state)
1441 {
1442         struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1443
1444         hw_state->dpll = vlv_dpll(crtc_state);
1445         hw_state->dpll_md = i965_dpll_md(crtc_state);
1446 }
1447
1448 static u32 chv_dpll(const struct intel_crtc_state *crtc_state)
1449 {
1450         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1451         u32 dpll;
1452
1453         dpll = DPLL_SSC_REF_CLK_CHV |
1454                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1455
1456         if (crtc->pipe != PIPE_A)
1457                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1458
1459         /* DPLL not used with DSI, but still need the rest set up */
1460         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1461                 dpll |= DPLL_VCO_ENABLE;
1462
1463         return dpll;
1464 }
1465
1466 void chv_compute_dpll(struct intel_crtc_state *crtc_state)
1467 {
1468         struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1469
1470         hw_state->dpll = chv_dpll(crtc_state);
1471         hw_state->dpll_md = i965_dpll_md(crtc_state);
1472 }
1473
1474 static int chv_crtc_compute_clock(struct intel_atomic_state *state,
1475                                   struct intel_crtc *crtc)
1476 {
1477         struct intel_crtc_state *crtc_state =
1478                 intel_atomic_get_new_crtc_state(state, crtc);
1479         const struct intel_limit *limit = &intel_limits_chv;
1480         int refclk = 100000;
1481
1482         if (!crtc_state->clock_set &&
1483             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1484                                 refclk, NULL, &crtc_state->dpll))
1485                 return -EINVAL;
1486
1487         chv_calc_dpll_params(refclk, &crtc_state->dpll);
1488
1489         chv_compute_dpll(crtc_state);
1490
1491         /* FIXME this is a mess */
1492         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1493                 return 0;
1494
1495         crtc_state->port_clock = crtc_state->dpll.dot;
1496         crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1497
1498         return 0;
1499 }
1500
1501 static int vlv_crtc_compute_clock(struct intel_atomic_state *state,
1502                                   struct intel_crtc *crtc)
1503 {
1504         struct intel_crtc_state *crtc_state =
1505                 intel_atomic_get_new_crtc_state(state, crtc);
1506         const struct intel_limit *limit = &intel_limits_vlv;
1507         int refclk = 100000;
1508
1509         if (!crtc_state->clock_set &&
1510             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1511                                 refclk, NULL, &crtc_state->dpll))
1512                 return -EINVAL;
1513
1514         vlv_calc_dpll_params(refclk, &crtc_state->dpll);
1515
1516         vlv_compute_dpll(crtc_state);
1517
1518         /* FIXME this is a mess */
1519         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
1520                 return 0;
1521
1522         crtc_state->port_clock = crtc_state->dpll.dot;
1523         crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1524
1525         return 0;
1526 }
1527
1528 static int g4x_crtc_compute_clock(struct intel_atomic_state *state,
1529                                   struct intel_crtc *crtc)
1530 {
1531         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1532         struct intel_crtc_state *crtc_state =
1533                 intel_atomic_get_new_crtc_state(state, crtc);
1534         const struct intel_limit *limit;
1535         int refclk = 96000;
1536
1537         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1538                 if (intel_panel_use_ssc(dev_priv)) {
1539                         refclk = dev_priv->display.vbt.lvds_ssc_freq;
1540                         drm_dbg_kms(&dev_priv->drm,
1541                                     "using SSC reference clock of %d kHz\n",
1542                                     refclk);
1543                 }
1544
1545                 if (intel_is_dual_link_lvds(dev_priv))
1546                         limit = &intel_limits_g4x_dual_channel_lvds;
1547                 else
1548                         limit = &intel_limits_g4x_single_channel_lvds;
1549         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
1550                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
1551                 limit = &intel_limits_g4x_hdmi;
1552         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
1553                 limit = &intel_limits_g4x_sdvo;
1554         } else {
1555                 /* The option is for other outputs */
1556                 limit = &intel_limits_i9xx_sdvo;
1557         }
1558
1559         if (!crtc_state->clock_set &&
1560             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1561                                 refclk, NULL, &crtc_state->dpll))
1562                 return -EINVAL;
1563
1564         i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1565
1566         i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1567                           &crtc_state->dpll);
1568
1569         crtc_state->port_clock = crtc_state->dpll.dot;
1570         /* FIXME this is a mess */
1571         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1572                 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1573
1574         return 0;
1575 }
1576
1577 static int pnv_crtc_compute_clock(struct intel_atomic_state *state,
1578                                   struct intel_crtc *crtc)
1579 {
1580         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1581         struct intel_crtc_state *crtc_state =
1582                 intel_atomic_get_new_crtc_state(state, crtc);
1583         const struct intel_limit *limit;
1584         int refclk = 96000;
1585
1586         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1587                 if (intel_panel_use_ssc(dev_priv)) {
1588                         refclk = dev_priv->display.vbt.lvds_ssc_freq;
1589                         drm_dbg_kms(&dev_priv->drm,
1590                                     "using SSC reference clock of %d kHz\n",
1591                                     refclk);
1592                 }
1593
1594                 limit = &pnv_limits_lvds;
1595         } else {
1596                 limit = &pnv_limits_sdvo;
1597         }
1598
1599         if (!crtc_state->clock_set &&
1600             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1601                                 refclk, NULL, &crtc_state->dpll))
1602                 return -EINVAL;
1603
1604         pnv_calc_dpll_params(refclk, &crtc_state->dpll);
1605
1606         i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1607                           &crtc_state->dpll);
1608
1609         crtc_state->port_clock = crtc_state->dpll.dot;
1610         crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1611
1612         return 0;
1613 }
1614
1615 static int i9xx_crtc_compute_clock(struct intel_atomic_state *state,
1616                                    struct intel_crtc *crtc)
1617 {
1618         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1619         struct intel_crtc_state *crtc_state =
1620                 intel_atomic_get_new_crtc_state(state, crtc);
1621         const struct intel_limit *limit;
1622         int refclk = 96000;
1623
1624         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1625                 if (intel_panel_use_ssc(dev_priv)) {
1626                         refclk = dev_priv->display.vbt.lvds_ssc_freq;
1627                         drm_dbg_kms(&dev_priv->drm,
1628                                     "using SSC reference clock of %d kHz\n",
1629                                     refclk);
1630                 }
1631
1632                 limit = &intel_limits_i9xx_lvds;
1633         } else {
1634                 limit = &intel_limits_i9xx_sdvo;
1635         }
1636
1637         if (!crtc_state->clock_set &&
1638             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1639                                  refclk, NULL, &crtc_state->dpll))
1640                 return -EINVAL;
1641
1642         i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1643
1644         i9xx_compute_dpll(crtc_state, &crtc_state->dpll,
1645                           &crtc_state->dpll);
1646
1647         crtc_state->port_clock = crtc_state->dpll.dot;
1648         /* FIXME this is a mess */
1649         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_TVOUT))
1650                 crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1651
1652         return 0;
1653 }
1654
1655 static int i8xx_crtc_compute_clock(struct intel_atomic_state *state,
1656                                    struct intel_crtc *crtc)
1657 {
1658         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1659         struct intel_crtc_state *crtc_state =
1660                 intel_atomic_get_new_crtc_state(state, crtc);
1661         const struct intel_limit *limit;
1662         int refclk = 48000;
1663
1664         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1665                 if (intel_panel_use_ssc(dev_priv)) {
1666                         refclk = dev_priv->display.vbt.lvds_ssc_freq;
1667                         drm_dbg_kms(&dev_priv->drm,
1668                                     "using SSC reference clock of %d kHz\n",
1669                                     refclk);
1670                 }
1671
1672                 limit = &intel_limits_i8xx_lvds;
1673         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
1674                 limit = &intel_limits_i8xx_dvo;
1675         } else {
1676                 limit = &intel_limits_i8xx_dac;
1677         }
1678
1679         if (!crtc_state->clock_set &&
1680             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
1681                                  refclk, NULL, &crtc_state->dpll))
1682                 return -EINVAL;
1683
1684         i9xx_calc_dpll_params(refclk, &crtc_state->dpll);
1685
1686         i8xx_compute_dpll(crtc_state, &crtc_state->dpll,
1687                           &crtc_state->dpll);
1688
1689         crtc_state->port_clock = crtc_state->dpll.dot;
1690         crtc_state->hw.adjusted_mode.crtc_clock = intel_crtc_dotclock(crtc_state);
1691
1692         return 0;
1693 }
1694
1695 static const struct intel_dpll_funcs mtl_dpll_funcs = {
1696         .crtc_compute_clock = mtl_crtc_compute_clock,
1697 };
1698
1699 static const struct intel_dpll_funcs dg2_dpll_funcs = {
1700         .crtc_compute_clock = dg2_crtc_compute_clock,
1701 };
1702
1703 static const struct intel_dpll_funcs hsw_dpll_funcs = {
1704         .crtc_compute_clock = hsw_crtc_compute_clock,
1705         .crtc_get_shared_dpll = hsw_crtc_get_shared_dpll,
1706 };
1707
1708 static const struct intel_dpll_funcs ilk_dpll_funcs = {
1709         .crtc_compute_clock = ilk_crtc_compute_clock,
1710         .crtc_get_shared_dpll = ilk_crtc_get_shared_dpll,
1711 };
1712
1713 static const struct intel_dpll_funcs chv_dpll_funcs = {
1714         .crtc_compute_clock = chv_crtc_compute_clock,
1715 };
1716
1717 static const struct intel_dpll_funcs vlv_dpll_funcs = {
1718         .crtc_compute_clock = vlv_crtc_compute_clock,
1719 };
1720
1721 static const struct intel_dpll_funcs g4x_dpll_funcs = {
1722         .crtc_compute_clock = g4x_crtc_compute_clock,
1723 };
1724
1725 static const struct intel_dpll_funcs pnv_dpll_funcs = {
1726         .crtc_compute_clock = pnv_crtc_compute_clock,
1727 };
1728
1729 static const struct intel_dpll_funcs i9xx_dpll_funcs = {
1730         .crtc_compute_clock = i9xx_crtc_compute_clock,
1731 };
1732
1733 static const struct intel_dpll_funcs i8xx_dpll_funcs = {
1734         .crtc_compute_clock = i8xx_crtc_compute_clock,
1735 };
1736
1737 int intel_dpll_crtc_compute_clock(struct intel_atomic_state *state,
1738                                   struct intel_crtc *crtc)
1739 {
1740         struct drm_i915_private *i915 = to_i915(state->base.dev);
1741         struct intel_crtc_state *crtc_state =
1742                 intel_atomic_get_new_crtc_state(state, crtc);
1743         int ret;
1744
1745         drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1746
1747         memset(&crtc_state->dpll_hw_state, 0,
1748                sizeof(crtc_state->dpll_hw_state));
1749
1750         if (!crtc_state->hw.enable)
1751                 return 0;
1752
1753         ret = i915->display.funcs.dpll->crtc_compute_clock(state, crtc);
1754         if (ret) {
1755                 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't calculate DPLL settings\n",
1756                             crtc->base.base.id, crtc->base.name);
1757                 return ret;
1758         }
1759
1760         return 0;
1761 }
1762
1763 int intel_dpll_crtc_get_shared_dpll(struct intel_atomic_state *state,
1764                                     struct intel_crtc *crtc)
1765 {
1766         struct drm_i915_private *i915 = to_i915(state->base.dev);
1767         struct intel_crtc_state *crtc_state =
1768                 intel_atomic_get_new_crtc_state(state, crtc);
1769         int ret;
1770
1771         drm_WARN_ON(&i915->drm, !intel_crtc_needs_modeset(crtc_state));
1772         drm_WARN_ON(&i915->drm, !crtc_state->hw.enable && crtc_state->shared_dpll);
1773
1774         if (!crtc_state->hw.enable || crtc_state->shared_dpll)
1775                 return 0;
1776
1777         if (!i915->display.funcs.dpll->crtc_get_shared_dpll)
1778                 return 0;
1779
1780         ret = i915->display.funcs.dpll->crtc_get_shared_dpll(state, crtc);
1781         if (ret) {
1782                 drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Couldn't get a shared DPLL\n",
1783                             crtc->base.base.id, crtc->base.name);
1784                 return ret;
1785         }
1786
1787         return 0;
1788 }
1789
1790 void
1791 intel_dpll_init_clock_hook(struct drm_i915_private *dev_priv)
1792 {
1793         if (DISPLAY_VER(dev_priv) >= 14)
1794                 dev_priv->display.funcs.dpll = &mtl_dpll_funcs;
1795         else if (IS_DG2(dev_priv))
1796                 dev_priv->display.funcs.dpll = &dg2_dpll_funcs;
1797         else if (DISPLAY_VER(dev_priv) >= 9 || HAS_DDI(dev_priv))
1798                 dev_priv->display.funcs.dpll = &hsw_dpll_funcs;
1799         else if (HAS_PCH_SPLIT(dev_priv))
1800                 dev_priv->display.funcs.dpll = &ilk_dpll_funcs;
1801         else if (IS_CHERRYVIEW(dev_priv))
1802                 dev_priv->display.funcs.dpll = &chv_dpll_funcs;
1803         else if (IS_VALLEYVIEW(dev_priv))
1804                 dev_priv->display.funcs.dpll = &vlv_dpll_funcs;
1805         else if (IS_G4X(dev_priv))
1806                 dev_priv->display.funcs.dpll = &g4x_dpll_funcs;
1807         else if (IS_PINEVIEW(dev_priv))
1808                 dev_priv->display.funcs.dpll = &pnv_dpll_funcs;
1809         else if (DISPLAY_VER(dev_priv) != 2)
1810                 dev_priv->display.funcs.dpll = &i9xx_dpll_funcs;
1811         else
1812                 dev_priv->display.funcs.dpll = &i8xx_dpll_funcs;
1813 }
1814
1815 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1816 {
1817         if (IS_I830(dev_priv))
1818                 return false;
1819
1820         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1821 }
1822
1823 void i9xx_enable_pll(const struct intel_crtc_state *crtc_state)
1824 {
1825         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1826         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1827         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1828         enum pipe pipe = crtc->pipe;
1829         int i;
1830
1831         assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
1832
1833         /* PLL is protected by panel, make sure we can write it */
1834         if (i9xx_has_pps(dev_priv))
1835                 assert_pps_unlocked(dev_priv, pipe);
1836
1837         intel_de_write(dev_priv, FP0(pipe), hw_state->fp0);
1838         intel_de_write(dev_priv, FP1(pipe), hw_state->fp1);
1839
1840         /*
1841          * Apparently we need to have VGA mode enabled prior to changing
1842          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1843          * dividers, even though the register value does change.
1844          */
1845         intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll & ~DPLL_VGA_MODE_DIS);
1846         intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1847
1848         /* Wait for the clocks to stabilize. */
1849         intel_de_posting_read(dev_priv, DPLL(pipe));
1850         udelay(150);
1851
1852         if (DISPLAY_VER(dev_priv) >= 4) {
1853                 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
1854         } else {
1855                 /* The pixel multiplier can only be updated once the
1856                  * DPLL is enabled and the clocks are stable.
1857                  *
1858                  * So write it again.
1859                  */
1860                 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1861         }
1862
1863         /* We do this three times for luck */
1864         for (i = 0; i < 3; i++) {
1865                 intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1866                 intel_de_posting_read(dev_priv, DPLL(pipe));
1867                 udelay(150); /* wait for warmup */
1868         }
1869 }
1870
1871 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv,
1872                                  enum dpio_phy phy, enum dpio_channel ch)
1873 {
1874         u32 tmp;
1875
1876         /*
1877          * PLLB opamp always calibrates to max value of 0x3f, force enable it
1878          * and set it to a reasonable value instead.
1879          */
1880         tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1881         tmp &= 0xffffff00;
1882         tmp |= 0x00000030;
1883         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1884
1885         tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1886         tmp &= 0x00ffffff;
1887         tmp |= 0x8c000000;
1888         vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1889
1890         tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW17(ch));
1891         tmp &= 0xffffff00;
1892         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW17(ch), tmp);
1893
1894         tmp = vlv_dpio_read(dev_priv, phy, VLV_REF_DW11);
1895         tmp &= 0x00ffffff;
1896         tmp |= 0xb0000000;
1897         vlv_dpio_write(dev_priv, phy, VLV_REF_DW11, tmp);
1898 }
1899
1900 static void vlv_prepare_pll(const struct intel_crtc_state *crtc_state)
1901 {
1902         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1903         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1904         const struct dpll *clock = &crtc_state->dpll;
1905         enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
1906         enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
1907         enum pipe pipe = crtc->pipe;
1908         u32 tmp, coreclk;
1909
1910         vlv_dpio_get(dev_priv);
1911
1912         /* See eDP HDMI DPIO driver vbios notes doc */
1913
1914         /* PLL B needs special handling */
1915         if (pipe == PIPE_B)
1916                 vlv_pllb_recal_opamp(dev_priv, phy, ch);
1917
1918         /* Set up Tx target for periodic Rcomp update */
1919         vlv_dpio_write(dev_priv, phy, VLV_PCS_DW17_BCAST, 0x0100000f);
1920
1921         /* Disable target IRef on PLL */
1922         tmp = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW16(ch));
1923         tmp &= 0x00ffffff;
1924         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW16(ch), tmp);
1925
1926         /* Disable fast lock */
1927         vlv_dpio_write(dev_priv, phy, VLV_CMN_DW0, 0x610);
1928
1929         /* Set idtafcrecal before PLL is enabled */
1930         tmp = DPIO_M1_DIV(clock->m1) |
1931                 DPIO_M2_DIV(clock->m2) |
1932                 DPIO_P1_DIV(clock->p1) |
1933                 DPIO_P2_DIV(clock->p2) |
1934                 DPIO_N_DIV(clock->n) |
1935                 DPIO_K_DIV(1);
1936
1937         /*
1938          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
1939          * but we don't support that).
1940          * Note: don't use the DAC post divider as it seems unstable.
1941          */
1942         tmp |= DPIO_S1_DIV(DPIO_S1_DIV_HDMIDP);
1943         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1944
1945         tmp |= DPIO_ENABLE_CALIBRATION;
1946         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW3(ch), tmp);
1947
1948         /* Set HBR and RBR LPF coefficients */
1949         if (crtc_state->port_clock == 162000 ||
1950             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG) ||
1951             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1952                 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1953                                  0x009f0003);
1954         else
1955                 vlv_dpio_write(dev_priv, phy, VLV_PLL_DW18(ch),
1956                                  0x00d0000f);
1957
1958         if (intel_crtc_has_dp_encoder(crtc_state)) {
1959                 /* Use SSC source */
1960                 if (pipe == PIPE_A)
1961                         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1962                                          0x0df40000);
1963                 else
1964                         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1965                                          0x0df70000);
1966         } else { /* HDMI or VGA */
1967                 /* Use bend source */
1968                 if (pipe == PIPE_A)
1969                         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1970                                          0x0df70000);
1971                 else
1972                         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW5(ch),
1973                                          0x0df40000);
1974         }
1975
1976         coreclk = vlv_dpio_read(dev_priv, phy, VLV_PLL_DW7(ch));
1977         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
1978         if (intel_crtc_has_dp_encoder(crtc_state))
1979                 coreclk |= 0x01000000;
1980         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW7(ch), coreclk);
1981
1982         vlv_dpio_write(dev_priv, phy, VLV_PLL_DW19(ch), 0x87871000);
1983
1984         vlv_dpio_put(dev_priv);
1985 }
1986
1987 static void _vlv_enable_pll(const struct intel_crtc_state *crtc_state)
1988 {
1989         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1990         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1991         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
1992         enum pipe pipe = crtc->pipe;
1993
1994         intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
1995         intel_de_posting_read(dev_priv, DPLL(pipe));
1996         udelay(150);
1997
1998         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1999                 drm_err(&dev_priv->drm, "DPLL %d failed to lock\n", pipe);
2000 }
2001
2002 void vlv_enable_pll(const struct intel_crtc_state *crtc_state)
2003 {
2004         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2005         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2006         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2007         enum pipe pipe = crtc->pipe;
2008
2009         assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2010
2011         /* PLL is protected by panel, make sure we can write it */
2012         assert_pps_unlocked(dev_priv, pipe);
2013
2014         /* Enable Refclk */
2015         intel_de_write(dev_priv, DPLL(pipe),
2016                        hw_state->dpll & ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
2017
2018         if (hw_state->dpll & DPLL_VCO_ENABLE) {
2019                 vlv_prepare_pll(crtc_state);
2020                 _vlv_enable_pll(crtc_state);
2021         }
2022
2023         intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
2024         intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2025 }
2026
2027 static void chv_prepare_pll(const struct intel_crtc_state *crtc_state)
2028 {
2029         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2030         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2031         const struct dpll *clock = &crtc_state->dpll;
2032         enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2033         enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2034         u32 tmp, loopfilter, tribuf_calcntr;
2035         u32 m2_frac;
2036
2037         m2_frac = clock->m2 & 0x3fffff;
2038
2039         vlv_dpio_get(dev_priv);
2040
2041         /* p1 and p2 divider */
2042         vlv_dpio_write(dev_priv, phy, CHV_CMN_DW13(ch),
2043                        DPIO_CHV_S1_DIV(5) |
2044                        DPIO_CHV_P1_DIV(clock->p1) |
2045                        DPIO_CHV_P2_DIV(clock->p2) |
2046                        DPIO_CHV_K_DIV(1));
2047
2048         /* Feedback post-divider - m2 */
2049         vlv_dpio_write(dev_priv, phy, CHV_PLL_DW0(ch),
2050                        DPIO_CHV_M2_DIV(clock->m2 >> 22));
2051
2052         /* Feedback refclk divider - n and m1 */
2053         vlv_dpio_write(dev_priv, phy, CHV_PLL_DW1(ch),
2054                        DPIO_CHV_M1_DIV(DPIO_CHV_M1_DIV_BY_2) |
2055                        DPIO_CHV_N_DIV(1));
2056
2057         /* M2 fraction division */
2058         vlv_dpio_write(dev_priv, phy, CHV_PLL_DW2(ch),
2059                        DPIO_CHV_M2_FRAC_DIV(m2_frac));
2060
2061         /* M2 fraction division enable */
2062         tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW3(ch));
2063         tmp &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
2064         tmp |= DPIO_CHV_FEEDFWD_GAIN(2);
2065         if (m2_frac)
2066                 tmp |= DPIO_CHV_FRAC_DIV_EN;
2067         vlv_dpio_write(dev_priv, phy, CHV_PLL_DW3(ch), tmp);
2068
2069         /* Program digital lock detect threshold */
2070         tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW9(ch));
2071         tmp &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
2072                       DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
2073         tmp |= DPIO_CHV_INT_LOCK_THRESHOLD(0x5);
2074         if (!m2_frac)
2075                 tmp |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
2076         vlv_dpio_write(dev_priv, phy, CHV_PLL_DW9(ch), tmp);
2077
2078         /* Loop filter */
2079         if (clock->vco == 5400000) {
2080                 loopfilter = DPIO_CHV_PROP_COEFF(0x3) |
2081                         DPIO_CHV_INT_COEFF(0x8) |
2082                         DPIO_CHV_GAIN_CTRL(0x1);
2083                 tribuf_calcntr = 0x9;
2084         } else if (clock->vco <= 6200000) {
2085                 loopfilter = DPIO_CHV_PROP_COEFF(0x5) |
2086                         DPIO_CHV_INT_COEFF(0xB) |
2087                         DPIO_CHV_GAIN_CTRL(0x3);
2088                 tribuf_calcntr = 0x9;
2089         } else if (clock->vco <= 6480000) {
2090                 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2091                         DPIO_CHV_INT_COEFF(0x9) |
2092                         DPIO_CHV_GAIN_CTRL(0x3);
2093                 tribuf_calcntr = 0x8;
2094         } else {
2095                 /* Not supported. Apply the same limits as in the max case */
2096                 loopfilter = DPIO_CHV_PROP_COEFF(0x4) |
2097                         DPIO_CHV_INT_COEFF(0x9) |
2098                         DPIO_CHV_GAIN_CTRL(0x3);
2099                 tribuf_calcntr = 0;
2100         }
2101         vlv_dpio_write(dev_priv, phy, CHV_PLL_DW6(ch), loopfilter);
2102
2103         tmp = vlv_dpio_read(dev_priv, phy, CHV_PLL_DW8(ch));
2104         tmp &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
2105         tmp |= DPIO_CHV_TDC_TARGET_CNT(tribuf_calcntr);
2106         vlv_dpio_write(dev_priv, phy, CHV_PLL_DW8(ch), tmp);
2107
2108         /* AFC Recal */
2109         vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch),
2110                        vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch)) |
2111                        DPIO_AFC_RECAL);
2112
2113         vlv_dpio_put(dev_priv);
2114 }
2115
2116 static void _chv_enable_pll(const struct intel_crtc_state *crtc_state)
2117 {
2118         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2119         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2120         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2121         enum dpio_channel ch = vlv_pipe_to_channel(crtc->pipe);
2122         enum dpio_phy phy = vlv_pipe_to_phy(crtc->pipe);
2123         enum pipe pipe = crtc->pipe;
2124         u32 tmp;
2125
2126         vlv_dpio_get(dev_priv);
2127
2128         /* Enable back the 10bit clock to display controller */
2129         tmp = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2130         tmp |= DPIO_DCLKP_EN;
2131         vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), tmp);
2132
2133         vlv_dpio_put(dev_priv);
2134
2135         /*
2136          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
2137          */
2138         udelay(1);
2139
2140         /* Enable PLL */
2141         intel_de_write(dev_priv, DPLL(pipe), hw_state->dpll);
2142
2143         /* Check PLL is locked */
2144         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
2145                 drm_err(&dev_priv->drm, "PLL %d failed to lock\n", pipe);
2146 }
2147
2148 void chv_enable_pll(const struct intel_crtc_state *crtc_state)
2149 {
2150         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2151         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2152         const struct i9xx_dpll_hw_state *hw_state = &crtc_state->dpll_hw_state.i9xx;
2153         enum pipe pipe = crtc->pipe;
2154
2155         assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2156
2157         /* PLL is protected by panel, make sure we can write it */
2158         assert_pps_unlocked(dev_priv, pipe);
2159
2160         /* Enable Refclk and SSC */
2161         intel_de_write(dev_priv, DPLL(pipe),
2162                        hw_state->dpll & ~DPLL_VCO_ENABLE);
2163
2164         if (hw_state->dpll & DPLL_VCO_ENABLE) {
2165                 chv_prepare_pll(crtc_state);
2166                 _chv_enable_pll(crtc_state);
2167         }
2168
2169         if (pipe != PIPE_A) {
2170                 /*
2171                  * WaPixelRepeatModeFixForC0:chv
2172                  *
2173                  * DPLLCMD is AWOL. Use chicken bits to propagate
2174                  * the value from DPLLBMD to either pipe B or C.
2175                  */
2176                 intel_de_write(dev_priv, CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
2177                 intel_de_write(dev_priv, DPLL_MD(PIPE_B), hw_state->dpll_md);
2178                 intel_de_write(dev_priv, CBR4_VLV, 0);
2179                 dev_priv->display.state.chv_dpll_md[pipe] = hw_state->dpll_md;
2180
2181                 /*
2182                  * DPLLB VGA mode also seems to cause problems.
2183                  * We should always have it disabled.
2184                  */
2185                 drm_WARN_ON(&dev_priv->drm,
2186                             (intel_de_read(dev_priv, DPLL(PIPE_B)) &
2187                              DPLL_VGA_MODE_DIS) == 0);
2188         } else {
2189                 intel_de_write(dev_priv, DPLL_MD(pipe), hw_state->dpll_md);
2190                 intel_de_posting_read(dev_priv, DPLL_MD(pipe));
2191         }
2192 }
2193
2194 /**
2195  * vlv_force_pll_on - forcibly enable just the PLL
2196  * @dev_priv: i915 private structure
2197  * @pipe: pipe PLL to enable
2198  * @dpll: PLL configuration
2199  *
2200  * Enable the PLL for @pipe using the supplied @dpll config. To be used
2201  * in cases where we need the PLL enabled even when @pipe is not going to
2202  * be enabled.
2203  */
2204 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
2205                      const struct dpll *dpll)
2206 {
2207         struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe);
2208         struct intel_crtc_state *crtc_state;
2209
2210         crtc_state = intel_crtc_state_alloc(crtc);
2211         if (!crtc_state)
2212                 return -ENOMEM;
2213
2214         crtc_state->cpu_transcoder = (enum transcoder)pipe;
2215         crtc_state->pixel_multiplier = 1;
2216         crtc_state->dpll = *dpll;
2217         crtc_state->output_types = BIT(INTEL_OUTPUT_EDP);
2218
2219         if (IS_CHERRYVIEW(dev_priv)) {
2220                 chv_compute_dpll(crtc_state);
2221                 chv_enable_pll(crtc_state);
2222         } else {
2223                 vlv_compute_dpll(crtc_state);
2224                 vlv_enable_pll(crtc_state);
2225         }
2226
2227         intel_crtc_destroy_state(&crtc->base, &crtc_state->uapi);
2228
2229         return 0;
2230 }
2231
2232 void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2233 {
2234         u32 val;
2235
2236         /* Make sure the pipe isn't still relying on us */
2237         assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2238
2239         val = DPLL_INTEGRATED_REF_CLK_VLV |
2240                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2241         if (pipe != PIPE_A)
2242                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2243
2244         intel_de_write(dev_priv, DPLL(pipe), val);
2245         intel_de_posting_read(dev_priv, DPLL(pipe));
2246 }
2247
2248 void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2249 {
2250         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
2251         enum dpio_phy phy = vlv_pipe_to_phy(pipe);
2252         u32 val;
2253
2254         /* Make sure the pipe isn't still relying on us */
2255         assert_transcoder_disabled(dev_priv, (enum transcoder)pipe);
2256
2257         val = DPLL_SSC_REF_CLK_CHV |
2258                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
2259         if (pipe != PIPE_A)
2260                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
2261
2262         intel_de_write(dev_priv, DPLL(pipe), val);
2263         intel_de_posting_read(dev_priv, DPLL(pipe));
2264
2265         vlv_dpio_get(dev_priv);
2266
2267         /* Disable 10bit clock to display controller */
2268         val = vlv_dpio_read(dev_priv, phy, CHV_CMN_DW14(ch));
2269         val &= ~DPIO_DCLKP_EN;
2270         vlv_dpio_write(dev_priv, phy, CHV_CMN_DW14(ch), val);
2271
2272         vlv_dpio_put(dev_priv);
2273 }
2274
2275 void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
2276 {
2277         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2278         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2279         enum pipe pipe = crtc->pipe;
2280
2281         /* Don't disable pipe or pipe PLLs if needed */
2282         if (IS_I830(dev_priv))
2283                 return;
2284
2285         /* Make sure the pipe isn't still relying on us */
2286         assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder);
2287
2288         intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS);
2289         intel_de_posting_read(dev_priv, DPLL(pipe));
2290 }
2291
2292
2293 /**
2294  * vlv_force_pll_off - forcibly disable just the PLL
2295  * @dev_priv: i915 private structure
2296  * @pipe: pipe PLL to disable
2297  *
2298  * Disable the PLL for @pipe. To be used in cases where we need
2299  * the PLL enabled even when @pipe is not going to be enabled.
2300  */
2301 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
2302 {
2303         if (IS_CHERRYVIEW(dev_priv))
2304                 chv_disable_pll(dev_priv, pipe);
2305         else
2306                 vlv_disable_pll(dev_priv, pipe);
2307 }
2308
2309 /* Only for pre-ILK configs */
2310 static void assert_pll(struct drm_i915_private *dev_priv,
2311                        enum pipe pipe, bool state)
2312 {
2313         bool cur_state;
2314
2315         cur_state = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
2316         I915_STATE_WARN(dev_priv, cur_state != state,
2317                         "PLL state assertion failure (expected %s, current %s)\n",
2318                         str_on_off(state), str_on_off(cur_state));
2319 }
2320
2321 void assert_pll_enabled(struct drm_i915_private *i915, enum pipe pipe)
2322 {
2323         assert_pll(i915, pipe, true);
2324 }
2325
2326 void assert_pll_disabled(struct drm_i915_private *i915, enum pipe pipe)
2327 {
2328         assert_pll(i915, pipe, false);
2329 }
This page took 0.183265 seconds and 4 git commands to generate.