1 // SPDX-License-Identifier: GPL-2.0
3 * Xilinx 'Clocking Wizard' driver
5 * Copyright (C) 2013 - 2021 Xilinx
11 #include <linux/bitfield.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/slab.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/err.h>
21 #include <linux/iopoll.h>
23 #define WZRD_NUM_OUTPUTS 7
24 #define WZRD_ACLK_MAX_FREQ 250000000UL
26 #define WZRD_CLK_CFG_REG(v, n) (0x200 + 0x130 * (v) + 4 * (n))
28 #define WZRD_CLKOUT0_FRAC_EN BIT(18)
29 #define WZRD_CLKFBOUT_1 0
30 #define WZRD_CLKFBOUT_2 1
31 #define WZRD_CLKOUT0_1 2
32 #define WZRD_CLKOUT0_2 3
33 #define WZRD_DESKEW_2 20
34 #define WZRD_DIVCLK 21
35 #define WZRD_CLKFBOUT_4 51
36 #define WZRD_CLKFBOUT_3 48
37 #define WZRD_DUTY_CYCLE 2
40 #define WZRD_CLKFBOUT_FRAC_EN BIT(1)
41 #define WZRD_CLKFBOUT_PREDIV2 (BIT(11) | BIT(12) | BIT(9))
42 #define WZRD_MULT_PREDIV2 (BIT(10) | BIT(9) | BIT(12))
43 #define WZRD_CLKFBOUT_EDGE BIT(8)
44 #define WZRD_P5EN BIT(13)
45 #define WZRD_P5EN_SHIFT 13
46 #define WZRD_P5FEDGE BIT(15)
47 #define WZRD_DIVCLK_EDGE BIT(10)
48 #define WZRD_P5FEDGE_SHIFT 15
49 #define WZRD_CLKOUT0_PREDIV2 BIT(11)
50 #define WZRD_EDGE_SHIFT 8
52 #define WZRD_CLKFBOUT_MULT_SHIFT 8
53 #define WZRD_CLKFBOUT_MULT_MASK (0xff << WZRD_CLKFBOUT_MULT_SHIFT)
54 #define WZRD_CLKFBOUT_L_SHIFT 0
55 #define WZRD_CLKFBOUT_H_SHIFT 8
56 #define WZRD_CLKFBOUT_L_MASK GENMASK(7, 0)
57 #define WZRD_CLKFBOUT_H_MASK GENMASK(15, 8)
58 #define WZRD_CLKFBOUT_FRAC_SHIFT 16
59 #define WZRD_CLKFBOUT_FRAC_MASK (0x3ff << WZRD_CLKFBOUT_FRAC_SHIFT)
60 #define WZRD_VERSAL_FRAC_MASK GENMASK(5, 0)
61 #define WZRD_DIVCLK_DIVIDE_SHIFT 0
62 #define WZRD_DIVCLK_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
63 #define WZRD_CLKOUT_DIVIDE_SHIFT 0
64 #define WZRD_CLKOUT_DIVIDE_WIDTH 8
65 #define WZRD_CLKOUT_DIVIDE_MASK (0xff << WZRD_DIVCLK_DIVIDE_SHIFT)
66 #define WZRD_CLKOUT_FRAC_SHIFT 8
67 #define WZRD_CLKOUT_FRAC_MASK 0x3ff
68 #define WZRD_CLKOUT0_FRAC_MASK GENMASK(17, 8)
70 #define WZRD_DR_MAX_INT_DIV_VALUE 255
71 #define WZRD_DR_STATUS_REG_OFFSET 0x04
72 #define WZRD_DR_LOCK_BIT_MASK 0x00000001
73 #define WZRD_DR_INIT_REG_OFFSET 0x25C
74 #define WZRD_DR_INIT_VERSAL_OFFSET 0x14
75 #define WZRD_DR_DIV_TO_PHASE_OFFSET 4
76 #define WZRD_DR_BEGIN_DYNA_RECONF 0x03
77 #define WZRD_DR_BEGIN_DYNA_RECONF_5_2 0x07
78 #define WZRD_DR_BEGIN_DYNA_RECONF1_5_2 0x02
80 #define WZRD_USEC_POLL 10
81 #define WZRD_TIMEOUT_POLL 1000
82 #define WZRD_FRAC_GRADIENT 64
83 #define PREDIV2_MULT 2
85 /* Divider limits, from UG572 Table 3-4 for Ultrascale+ */
90 #define WZRD_M_MAX 128
92 #define WZRD_D_MAX 106
93 #define WZRD_VCO_MIN 800000000
94 #define WZRD_VCO_MAX 1600000000
96 #define WZRD_O_MAX 128
97 #define VER_WZRD_M_MIN 4
98 #define VER_WZRD_M_MAX 432
99 #define VER_WZRD_D_MIN 1
100 #define VER_WZRD_D_MAX 123
101 #define VER_WZRD_VCO_MIN 2160000000ULL
102 #define VER_WZRD_VCO_MAX 4320000000ULL
103 #define VER_WZRD_O_MIN 2
104 #define VER_WZRD_O_MAX 511
105 #define WZRD_MIN_ERR 20000
106 #define WZRD_FRAC_POINTS 1000
108 /* Get the mask from width */
109 #define div_mask(width) ((1 << (width)) - 1)
111 /* Extract divider instance from clock hardware instance */
112 #define to_clk_wzrd_divider(_hw) container_of(_hw, struct clk_wzrd_divider, hw)
114 enum clk_wzrd_int_clks {
122 * struct clk_wzrd - Clock wizard private data structure
124 * @clk_data: Clock data
125 * @nb: Notifier block
127 * @clk_in1: Handle to input clock 'clk_in1'
128 * @axi_clk: Handle to input clock 's_axi_aclk'
129 * @clks_internal: Internal clocks
130 * @clkout: Output clocks
131 * @speed_grade: Speed grade of the device
132 * @suspended: Flag indicating power state of the device
135 struct clk_onecell_data clk_data;
136 struct notifier_block nb;
140 struct clk *clks_internal[wzrd_clk_int_max];
141 struct clk *clkout[WZRD_NUM_OUTPUTS];
142 unsigned int speed_grade;
147 * struct clk_wzrd_divider - clock divider specific to clk_wzrd
149 * @hw: handle between common and hardware-specific interfaces
150 * @base: base address of register containing the divider
151 * @offset: offset address of register containing the divider
152 * @shift: shift to the divider bit field
153 * @width: width of the divider bit field
154 * @flags: clk_wzrd divider flags
155 * @table: array of value/divider pairs, last entry should have div = 0
156 * @m: value of the multiplier
157 * @d: value of the common divider
158 * @o: value of the leaf divider
159 * @lock: register lock
161 struct clk_wzrd_divider {
168 const struct clk_div_table *table;
172 spinlock_t *lock; /* divider lock */
175 struct versal_clk_data {
179 #define to_clk_wzrd(_nb) container_of(_nb, struct clk_wzrd, nb)
181 /* maximum frequencies for input/output clocks per speed grade */
182 static const unsigned long clk_wzrd_max_freq[] = {
188 /* spin lock variable for clk_wzrd */
189 static DEFINE_SPINLOCK(clkwzrd_lock);
191 static unsigned long clk_wzrd_recalc_rate_ver(struct clk_hw *hw,
192 unsigned long parent_rate)
194 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
195 void __iomem *div_addr = divider->base + divider->offset;
196 u32 div, p5en, edge, prediv2, all;
197 unsigned int vall, valh;
199 edge = !!(readl(div_addr) & WZRD_CLKFBOUT_EDGE);
200 p5en = !!(readl(div_addr) & WZRD_P5EN);
201 prediv2 = !!(readl(div_addr) & WZRD_CLKOUT0_PREDIV2);
202 vall = readl(div_addr + 4) & WZRD_CLKFBOUT_L_MASK;
203 valh = readl(div_addr + 4) >> WZRD_CLKFBOUT_H_SHIFT;
204 all = valh + vall + edge;
209 div = 2 * all + prediv2 * p5en;
213 return DIV_ROUND_UP_ULL((u64)parent_rate, div);
216 static unsigned long clk_wzrd_recalc_rate(struct clk_hw *hw,
217 unsigned long parent_rate)
219 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
220 void __iomem *div_addr = divider->base + divider->offset;
223 val = readl(div_addr) >> divider->shift;
224 val &= div_mask(divider->width);
226 return divider_recalc_rate(hw, parent_rate, val, divider->table,
227 divider->flags, divider->width);
230 static int clk_wzrd_ver_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
231 unsigned long parent_rate)
233 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
234 void __iomem *div_addr = divider->base + divider->offset;
235 u32 value, regh, edged, p5en, p5fedge, regval, regval1;
239 spin_lock_irqsave(divider->lock, flags);
241 value = DIV_ROUND_CLOSEST(parent_rate, rate);
244 regval1 = readl(div_addr);
245 regval1 |= WZRD_CLKFBOUT_PREDIV2;
246 regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
249 regval1 |= (edged << WZRD_EDGE_SHIFT);
253 regval1 = regval1 | p5en << WZRD_P5EN_SHIFT | p5fedge << WZRD_P5FEDGE_SHIFT;
254 writel(regval1, div_addr);
256 regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
257 writel(regval, div_addr + 4);
258 /* Check status register */
259 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
260 value, value & WZRD_DR_LOCK_BIT_MASK,
261 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
265 /* Initiate reconfiguration */
266 writel(WZRD_DR_BEGIN_DYNA_RECONF,
267 divider->base + WZRD_DR_INIT_VERSAL_OFFSET);
269 /* Check status register */
270 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
271 value, value & WZRD_DR_LOCK_BIT_MASK,
272 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
274 spin_unlock_irqrestore(divider->lock, flags);
278 static int clk_wzrd_dynamic_reconfig(struct clk_hw *hw, unsigned long rate,
279 unsigned long parent_rate)
281 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
282 void __iomem *div_addr = divider->base + divider->offset;
287 spin_lock_irqsave(divider->lock, flags);
289 value = DIV_ROUND_CLOSEST(parent_rate, rate);
291 /* Cap the value to max */
292 min_t(u32, value, WZRD_DR_MAX_INT_DIV_VALUE);
294 /* Set divisor and clear phase offset */
295 writel(value, div_addr);
296 writel(0x00, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
298 /* Check status register */
299 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
300 value, value & WZRD_DR_LOCK_BIT_MASK,
301 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
305 /* Initiate reconfiguration */
306 writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
307 divider->base + WZRD_DR_INIT_REG_OFFSET);
308 writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
309 divider->base + WZRD_DR_INIT_REG_OFFSET);
311 /* Check status register */
312 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET,
313 value, value & WZRD_DR_LOCK_BIT_MASK,
314 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
316 spin_unlock_irqrestore(divider->lock, flags);
320 static long clk_wzrd_round_rate(struct clk_hw *hw, unsigned long rate,
321 unsigned long *prate)
326 * since we don't change parent rate we just round rate to closest
329 div = DIV_ROUND_CLOSEST(*prate, rate);
334 static int clk_wzrd_get_divisors_ver(struct clk_hw *hw, unsigned long rate,
335 unsigned long parent_rate)
337 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
338 u64 vco_freq, freq, diff, vcomin, vcomax;
340 u32 mmin, mmax, dmin, dmax, omin, omax;
342 mmin = VER_WZRD_M_MIN;
343 mmax = VER_WZRD_M_MAX;
344 dmin = VER_WZRD_D_MIN;
345 dmax = VER_WZRD_D_MAX;
346 omin = VER_WZRD_O_MIN;
347 omax = VER_WZRD_O_MAX;
348 vcomin = VER_WZRD_VCO_MIN;
349 vcomax = VER_WZRD_VCO_MAX;
351 for (m = mmin; m <= mmax; m++) {
352 for (d = dmin; d <= dmax; d++) {
353 vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
354 if (vco_freq >= vcomin && vco_freq <= vcomax) {
355 for (o = omin; o <= omax; o++) {
356 freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
357 diff = abs(freq - rate);
359 if (diff < WZRD_MIN_ERR) {
372 static int clk_wzrd_get_divisors(struct clk_hw *hw, unsigned long rate,
373 unsigned long parent_rate)
375 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
376 u64 vco_freq, freq, diff, vcomin, vcomax;
378 u32 mmin, mmax, dmin, dmax, omin, omax;
386 vcomin = WZRD_VCO_MIN;
387 vcomax = WZRD_VCO_MAX;
389 for (m = mmin; m <= mmax; m++) {
390 for (d = dmin; d <= dmax; d++) {
391 vco_freq = DIV_ROUND_CLOSEST((parent_rate * m), d);
392 if (vco_freq >= vcomin && vco_freq <= vcomax) {
393 for (o = omin; o <= omax; o++) {
394 freq = DIV_ROUND_CLOSEST_ULL(vco_freq, o);
395 diff = abs(freq - rate);
397 if (diff < WZRD_MIN_ERR) {
410 static int clk_wzrd_reconfig(struct clk_wzrd_divider *divider, void __iomem *div_addr)
415 /* Check status register */
416 err = readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
417 value & WZRD_DR_LOCK_BIT_MASK,
418 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
422 /* Initiate reconfiguration */
423 writel(WZRD_DR_BEGIN_DYNA_RECONF, div_addr);
424 /* Check status register */
425 return readl_poll_timeout_atomic(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
426 value & WZRD_DR_LOCK_BIT_MASK,
427 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
430 static int clk_wzrd_dynamic_ver_all_nolock(struct clk_hw *hw, unsigned long rate,
431 unsigned long parent_rate)
433 u32 regh, edged, p5en, p5fedge, value2, m, regval, regval1, value;
434 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
435 void __iomem *div_addr;
438 err = clk_wzrd_get_divisors_ver(hw, rate, parent_rate);
442 writel(0, divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4));
445 edged = m % WZRD_DUTY_CYCLE;
446 regh = m / WZRD_DUTY_CYCLE;
447 regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
449 regval1 |= WZRD_MULT_PREDIV2;
451 regval1 = regval1 | WZRD_CLKFBOUT_EDGE;
453 regval1 = regval1 & ~WZRD_CLKFBOUT_EDGE;
455 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
457 regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
458 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
462 edged = value2 % WZRD_DUTY_CYCLE;
463 regh = (value2 / WZRD_DUTY_CYCLE);
464 regval1 = FIELD_PREP(WZRD_DIVCLK_EDGE, edged);
465 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
467 regval1 = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
468 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
471 regh = value / WZRD_O_DIV;
472 regval1 = readl(divider->base + WZRD_CLK_CFG_REG(1,
474 regval1 |= WZRD_CLKFBOUT_PREDIV2;
475 regval1 = regval1 & ~(WZRD_CLKFBOUT_EDGE | WZRD_P5EN | WZRD_P5FEDGE);
477 if (value % WZRD_O_DIV > 1) {
479 regval1 |= edged << WZRD_CLKFBOUT_H_SHIFT;
482 p5fedge = value % WZRD_DUTY_CYCLE;
483 p5en = value % WZRD_DUTY_CYCLE;
485 regval1 = regval1 | FIELD_PREP(WZRD_P5EN, p5en) | FIELD_PREP(WZRD_P5FEDGE, p5fedge);
486 writel(regval1, divider->base + WZRD_CLK_CFG_REG(1,
488 regval = regh | regh << WZRD_CLKFBOUT_H_SHIFT;
489 writel(regval, divider->base + WZRD_CLK_CFG_REG(1,
491 div_addr = divider->base + WZRD_DR_INIT_VERSAL_OFFSET;
493 return clk_wzrd_reconfig(divider, div_addr);
496 static int clk_wzrd_dynamic_all_nolock(struct clk_hw *hw, unsigned long rate,
497 unsigned long parent_rate)
499 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
500 unsigned long vco_freq, rate_div, clockout0_div;
501 void __iomem *div_addr;
505 err = clk_wzrd_get_divisors(hw, rate, parent_rate);
509 vco_freq = DIV_ROUND_CLOSEST(parent_rate * divider->m, divider->d);
510 rate_div = DIV_ROUND_CLOSEST_ULL((vco_freq * WZRD_FRAC_POINTS), rate);
512 clockout0_div = div_u64(rate_div, WZRD_FRAC_POINTS);
514 pre = DIV_ROUND_CLOSEST_ULL(vco_freq * WZRD_FRAC_POINTS, rate);
515 f = (pre - (clockout0_div * WZRD_FRAC_POINTS));
516 f &= WZRD_CLKOUT_FRAC_MASK;
518 reg = FIELD_PREP(WZRD_CLKOUT_DIVIDE_MASK, clockout0_div) |
519 FIELD_PREP(WZRD_CLKOUT0_FRAC_MASK, f);
521 writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 2));
522 /* Set divisor and clear phase offset */
523 reg = FIELD_PREP(WZRD_CLKFBOUT_MULT_MASK, divider->m) |
524 FIELD_PREP(WZRD_DIVCLK_DIVIDE_MASK, divider->d);
525 writel(reg, divider->base + WZRD_CLK_CFG_REG(0, 0));
526 writel(divider->o, divider->base + WZRD_CLK_CFG_REG(0, 2));
527 writel(0, divider->base + WZRD_CLK_CFG_REG(0, 3));
528 div_addr = divider->base + WZRD_DR_INIT_REG_OFFSET;
529 return clk_wzrd_reconfig(divider, div_addr);
532 static int clk_wzrd_dynamic_all(struct clk_hw *hw, unsigned long rate,
533 unsigned long parent_rate)
535 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
539 spin_lock_irqsave(divider->lock, flags);
541 ret = clk_wzrd_dynamic_all_nolock(hw, rate, parent_rate);
543 spin_unlock_irqrestore(divider->lock, flags);
548 static int clk_wzrd_dynamic_all_ver(struct clk_hw *hw, unsigned long rate,
549 unsigned long parent_rate)
551 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
555 spin_lock_irqsave(divider->lock, flags);
557 ret = clk_wzrd_dynamic_ver_all_nolock(hw, rate, parent_rate);
559 spin_unlock_irqrestore(divider->lock, flags);
564 static unsigned long clk_wzrd_recalc_rate_all(struct clk_hw *hw,
565 unsigned long parent_rate)
567 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
568 u32 m, d, o, div, reg, f;
570 reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 0));
571 d = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
572 m = FIELD_GET(WZRD_CLKFBOUT_MULT_MASK, reg);
573 reg = readl(divider->base + WZRD_CLK_CFG_REG(0, 2));
574 o = FIELD_GET(WZRD_DIVCLK_DIVIDE_MASK, reg);
575 f = FIELD_GET(WZRD_CLKOUT0_FRAC_MASK, reg);
577 div = DIV_ROUND_CLOSEST(d * (WZRD_FRAC_POINTS * o + f), WZRD_FRAC_POINTS);
578 return divider_recalc_rate(hw, parent_rate * m, div, divider->table,
579 divider->flags, divider->width);
582 static unsigned long clk_wzrd_recalc_rate_all_ver(struct clk_hw *hw,
583 unsigned long parent_rate)
585 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
586 u32 edged, div2, p5en, edge, prediv2, all, regl, regh, mult;
589 edge = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_1)) &
592 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_2));
593 regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
594 regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
596 mult = regl + regh + edge;
600 regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_4)) &
601 WZRD_CLKFBOUT_FRAC_EN;
603 regl = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKFBOUT_3))
604 & WZRD_VERSAL_FRAC_MASK;
605 mult = mult * WZRD_FRAC_GRADIENT + regl;
606 parent_rate = DIV_ROUND_CLOSEST((parent_rate * mult), WZRD_FRAC_GRADIENT);
608 parent_rate = parent_rate * mult;
612 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_1));
613 edged = FIELD_GET(WZRD_CLKFBOUT_EDGE, reg);
614 p5en = FIELD_GET(WZRD_P5EN, reg);
615 prediv2 = FIELD_GET(WZRD_CLKOUT0_PREDIV2, reg);
617 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_CLKOUT0_2));
619 regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
621 regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
622 all = regh + regl + edged;
627 div2 = PREDIV2_MULT * all + p5en;
632 edged = !!(readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DESKEW_2)) &
634 reg = readl(divider->base + WZRD_CLK_CFG_REG(1, WZRD_DIVCLK));
636 regl = FIELD_GET(WZRD_CLKFBOUT_L_MASK, reg);
638 regh = FIELD_GET(WZRD_CLKFBOUT_H_MASK, reg);
639 div = regl + regh + edged;
644 return divider_recalc_rate(hw, parent_rate, div, divider->table,
645 divider->flags, divider->width);
648 static long clk_wzrd_round_rate_all(struct clk_hw *hw, unsigned long rate,
649 unsigned long *prate)
651 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
652 unsigned long int_freq;
656 err = clk_wzrd_get_divisors(hw, rate, *prate);
665 int_freq = divider_recalc_rate(hw, *prate * m, div, divider->table,
666 divider->flags, divider->width);
668 if (rate > int_freq) {
669 f = DIV_ROUND_CLOSEST_ULL(rate * WZRD_FRAC_POINTS, int_freq);
670 rate = DIV_ROUND_CLOSEST(int_freq * f, WZRD_FRAC_POINTS);
675 static const struct clk_ops clk_wzrd_ver_divider_ops = {
676 .round_rate = clk_wzrd_round_rate,
677 .set_rate = clk_wzrd_ver_dynamic_reconfig,
678 .recalc_rate = clk_wzrd_recalc_rate_ver,
681 static const struct clk_ops clk_wzrd_ver_div_all_ops = {
682 .round_rate = clk_wzrd_round_rate_all,
683 .set_rate = clk_wzrd_dynamic_all_ver,
684 .recalc_rate = clk_wzrd_recalc_rate_all_ver,
687 static const struct clk_ops clk_wzrd_clk_divider_ops = {
688 .round_rate = clk_wzrd_round_rate,
689 .set_rate = clk_wzrd_dynamic_reconfig,
690 .recalc_rate = clk_wzrd_recalc_rate,
693 static const struct clk_ops clk_wzrd_clk_div_all_ops = {
694 .round_rate = clk_wzrd_round_rate_all,
695 .set_rate = clk_wzrd_dynamic_all,
696 .recalc_rate = clk_wzrd_recalc_rate_all,
699 static unsigned long clk_wzrd_recalc_ratef(struct clk_hw *hw,
700 unsigned long parent_rate)
704 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
705 void __iomem *div_addr = divider->base + divider->offset;
707 val = readl(div_addr);
708 div = val & div_mask(divider->width);
709 frac = (val >> WZRD_CLKOUT_FRAC_SHIFT) & WZRD_CLKOUT_FRAC_MASK;
711 return mult_frac(parent_rate, 1000, (div * 1000) + frac);
714 static int clk_wzrd_dynamic_reconfig_f(struct clk_hw *hw, unsigned long rate,
715 unsigned long parent_rate)
719 unsigned long rate_div, f, clockout0_div;
720 struct clk_wzrd_divider *divider = to_clk_wzrd_divider(hw);
721 void __iomem *div_addr = divider->base + divider->offset;
723 rate_div = DIV_ROUND_DOWN_ULL(parent_rate * 1000, rate);
724 clockout0_div = rate_div / 1000;
726 pre = DIV_ROUND_CLOSEST((parent_rate * 1000), rate);
727 f = (u32)(pre - (clockout0_div * 1000));
728 f = f & WZRD_CLKOUT_FRAC_MASK;
729 f = f << WZRD_CLKOUT_DIVIDE_WIDTH;
731 value = (f | (clockout0_div & WZRD_CLKOUT_DIVIDE_MASK));
733 /* Set divisor and clear phase offset */
734 writel(value, div_addr);
735 writel(0x0, div_addr + WZRD_DR_DIV_TO_PHASE_OFFSET);
737 /* Check status register */
738 err = readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
739 value & WZRD_DR_LOCK_BIT_MASK,
740 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
744 /* Initiate reconfiguration */
745 writel(WZRD_DR_BEGIN_DYNA_RECONF_5_2,
746 divider->base + WZRD_DR_INIT_REG_OFFSET);
747 writel(WZRD_DR_BEGIN_DYNA_RECONF1_5_2,
748 divider->base + WZRD_DR_INIT_REG_OFFSET);
750 /* Check status register */
751 return readl_poll_timeout(divider->base + WZRD_DR_STATUS_REG_OFFSET, value,
752 value & WZRD_DR_LOCK_BIT_MASK,
753 WZRD_USEC_POLL, WZRD_TIMEOUT_POLL);
756 static long clk_wzrd_round_rate_f(struct clk_hw *hw, unsigned long rate,
757 unsigned long *prate)
762 static const struct clk_ops clk_wzrd_clk_divider_ops_f = {
763 .round_rate = clk_wzrd_round_rate_f,
764 .set_rate = clk_wzrd_dynamic_reconfig_f,
765 .recalc_rate = clk_wzrd_recalc_ratef,
768 static struct clk *clk_wzrd_register_divf(struct device *dev,
770 const char *parent_name,
772 void __iomem *base, u16 offset,
774 u8 clk_divider_flags,
778 struct clk_wzrd_divider *div;
780 struct clk_init_data init;
783 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
785 return ERR_PTR(-ENOMEM);
789 init.ops = &clk_wzrd_clk_divider_ops_f;
792 init.parent_names = &parent_name;
793 init.num_parents = 1;
796 div->offset = offset;
799 div->flags = clk_divider_flags;
801 div->hw.init = &init;
804 ret = devm_clk_hw_register(dev, hw);
811 static struct clk *clk_wzrd_ver_register_divider(struct device *dev,
813 const char *parent_name,
818 u8 clk_divider_flags,
822 struct clk_wzrd_divider *div;
824 struct clk_init_data init;
827 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
829 return ERR_PTR(-ENOMEM);
832 if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
833 init.ops = &clk_divider_ro_ops;
834 else if (div_type == DIV_O)
835 init.ops = &clk_wzrd_ver_divider_ops;
837 init.ops = &clk_wzrd_ver_div_all_ops;
839 init.parent_names = &parent_name;
840 init.num_parents = 1;
843 div->offset = offset;
846 div->flags = clk_divider_flags;
848 div->hw.init = &init;
851 ret = devm_clk_hw_register(dev, hw);
858 static struct clk *clk_wzrd_register_divider(struct device *dev,
860 const char *parent_name,
862 void __iomem *base, u16 offset,
864 u8 clk_divider_flags,
868 struct clk_wzrd_divider *div;
870 struct clk_init_data init;
873 div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
875 return ERR_PTR(-ENOMEM);
878 if (clk_divider_flags & CLK_DIVIDER_READ_ONLY)
879 init.ops = &clk_divider_ro_ops;
880 else if (div_type == DIV_O)
881 init.ops = &clk_wzrd_clk_divider_ops;
883 init.ops = &clk_wzrd_clk_div_all_ops;
885 init.parent_names = &parent_name;
886 init.num_parents = 1;
889 div->offset = offset;
892 div->flags = clk_divider_flags;
894 div->hw.init = &init;
897 ret = devm_clk_hw_register(dev, hw);
904 static int clk_wzrd_clk_notifier(struct notifier_block *nb, unsigned long event,
908 struct clk_notifier_data *ndata = data;
909 struct clk_wzrd *clk_wzrd = to_clk_wzrd(nb);
911 if (clk_wzrd->suspended)
914 if (ndata->clk == clk_wzrd->clk_in1)
915 max = clk_wzrd_max_freq[clk_wzrd->speed_grade - 1];
916 else if (ndata->clk == clk_wzrd->axi_clk)
917 max = WZRD_ACLK_MAX_FREQ;
919 return NOTIFY_DONE; /* should never happen */
922 case PRE_RATE_CHANGE:
923 if (ndata->new_rate > max)
926 case POST_RATE_CHANGE:
927 case ABORT_RATE_CHANGE:
933 static int __maybe_unused clk_wzrd_suspend(struct device *dev)
935 struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
937 clk_disable_unprepare(clk_wzrd->axi_clk);
938 clk_wzrd->suspended = true;
943 static int __maybe_unused clk_wzrd_resume(struct device *dev)
946 struct clk_wzrd *clk_wzrd = dev_get_drvdata(dev);
948 ret = clk_prepare_enable(clk_wzrd->axi_clk);
950 dev_err(dev, "unable to enable s_axi_aclk\n");
954 clk_wzrd->suspended = false;
959 static SIMPLE_DEV_PM_OPS(clk_wzrd_dev_pm_ops, clk_wzrd_suspend,
962 static const struct versal_clk_data versal_data = {
966 static int clk_wzrd_probe(struct platform_device *pdev)
968 const char *clkout_name, *clk_name, *clk_mul_name;
969 u32 regl, regh, edge, regld, reghd, edged, div;
970 struct device_node *np = pdev->dev.of_node;
971 const struct versal_clk_data *data;
972 struct clk_wzrd *clk_wzrd;
973 unsigned long flags = 0;
974 void __iomem *ctrl_reg;
975 u32 reg, reg_f, mult;
976 bool is_versal = false;
981 clk_wzrd = devm_kzalloc(&pdev->dev, sizeof(*clk_wzrd), GFP_KERNEL);
984 platform_set_drvdata(pdev, clk_wzrd);
986 clk_wzrd->base = devm_platform_ioremap_resource(pdev, 0);
987 if (IS_ERR(clk_wzrd->base))
988 return PTR_ERR(clk_wzrd->base);
990 ret = of_property_read_u32(np, "xlnx,speed-grade", &clk_wzrd->speed_grade);
992 if (clk_wzrd->speed_grade < 1 || clk_wzrd->speed_grade > 3) {
993 dev_warn(&pdev->dev, "invalid speed grade '%d'\n",
994 clk_wzrd->speed_grade);
995 clk_wzrd->speed_grade = 0;
999 clk_wzrd->clk_in1 = devm_clk_get(&pdev->dev, "clk_in1");
1000 if (IS_ERR(clk_wzrd->clk_in1))
1001 return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->clk_in1),
1002 "clk_in1 not found\n");
1004 clk_wzrd->axi_clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
1005 if (IS_ERR(clk_wzrd->axi_clk))
1006 return dev_err_probe(&pdev->dev, PTR_ERR(clk_wzrd->axi_clk),
1007 "s_axi_aclk not found\n");
1008 ret = clk_prepare_enable(clk_wzrd->axi_clk);
1010 dev_err(&pdev->dev, "enabling s_axi_aclk failed\n");
1013 rate = clk_get_rate(clk_wzrd->axi_clk);
1014 if (rate > WZRD_ACLK_MAX_FREQ) {
1015 dev_err(&pdev->dev, "s_axi_aclk frequency (%lu) too high\n",
1018 goto err_disable_clk;
1021 data = device_get_match_data(&pdev->dev);
1023 is_versal = data->is_versal;
1025 ret = of_property_read_u32(np, "xlnx,nr-outputs", &nr_outputs);
1026 if (ret || nr_outputs > WZRD_NUM_OUTPUTS) {
1028 goto err_disable_clk;
1031 clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_out0", dev_name(&pdev->dev));
1034 goto err_disable_clk;
1038 if (nr_outputs == 1) {
1039 clk_wzrd->clkout[0] = clk_wzrd_ver_register_divider
1040 (&pdev->dev, clkout_name,
1041 __clk_get_name(clk_wzrd->clk_in1), 0,
1042 clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
1043 WZRD_CLKOUT_DIVIDE_SHIFT,
1044 WZRD_CLKOUT_DIVIDE_WIDTH,
1045 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
1046 DIV_ALL, &clkwzrd_lock);
1050 /* register multiplier */
1051 edge = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0)) &
1053 regl = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
1054 WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
1055 regh = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 1)) &
1056 WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
1057 mult = regl + regh + edge;
1060 mult = mult * WZRD_FRAC_GRADIENT;
1062 regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 51)) &
1063 WZRD_CLKFBOUT_FRAC_EN;
1065 regl = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 48)) &
1066 WZRD_VERSAL_FRAC_MASK;
1071 if (nr_outputs == 1) {
1072 clk_wzrd->clkout[0] = clk_wzrd_register_divider
1073 (&pdev->dev, clkout_name,
1074 __clk_get_name(clk_wzrd->clk_in1), 0,
1075 clk_wzrd->base, WZRD_CLK_CFG_REG(is_versal, 3),
1076 WZRD_CLKOUT_DIVIDE_SHIFT,
1077 WZRD_CLKOUT_DIVIDE_WIDTH,
1078 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
1079 DIV_ALL, &clkwzrd_lock);
1083 reg = readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0));
1084 reg_f = reg & WZRD_CLKFBOUT_FRAC_MASK;
1085 reg_f = reg_f >> WZRD_CLKFBOUT_FRAC_SHIFT;
1087 reg = reg & WZRD_CLKFBOUT_MULT_MASK;
1088 reg = reg >> WZRD_CLKFBOUT_MULT_SHIFT;
1089 mult = (reg * 1000) + reg_f;
1092 clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul", dev_name(&pdev->dev));
1095 goto err_disable_clk;
1097 clk_wzrd->clks_internal[wzrd_clk_mul] = clk_register_fixed_factor
1098 (&pdev->dev, clk_name,
1099 __clk_get_name(clk_wzrd->clk_in1),
1101 if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul])) {
1102 dev_err(&pdev->dev, "unable to register fixed-factor clock\n");
1103 ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul]);
1104 goto err_disable_clk;
1107 clk_name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "%s_mul_div", dev_name(&pdev->dev));
1110 goto err_rm_int_clk;
1114 edged = !!(readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 20)) &
1116 regld = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
1117 WZRD_CLKFBOUT_L_MASK) >> WZRD_CLKFBOUT_L_SHIFT;
1118 reghd = (readl(clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 21)) &
1119 WZRD_CLKFBOUT_H_MASK) >> WZRD_CLKFBOUT_H_SHIFT;
1120 div = (regld + reghd + edged);
1124 clk_mul_name = __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]);
1125 clk_wzrd->clks_internal[wzrd_clk_mul_div] =
1126 clk_register_fixed_factor(&pdev->dev, clk_name,
1127 clk_mul_name, 0, 1, div);
1129 ctrl_reg = clk_wzrd->base + WZRD_CLK_CFG_REG(is_versal, 0);
1130 clk_wzrd->clks_internal[wzrd_clk_mul_div] = clk_register_divider
1131 (&pdev->dev, clk_name,
1132 __clk_get_name(clk_wzrd->clks_internal[wzrd_clk_mul]),
1133 flags, ctrl_reg, 0, 8, CLK_DIVIDER_ONE_BASED |
1134 CLK_DIVIDER_ALLOW_ZERO, &clkwzrd_lock);
1136 if (IS_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div])) {
1137 dev_err(&pdev->dev, "unable to register divider clock\n");
1138 ret = PTR_ERR(clk_wzrd->clks_internal[wzrd_clk_mul_div]);
1139 goto err_rm_int_clk;
1142 /* register div per output */
1143 for (i = nr_outputs - 1; i >= 0 ; i--) {
1144 clkout_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
1145 "%s_out%d", dev_name(&pdev->dev), i);
1148 goto err_rm_int_clk;
1152 clk_wzrd->clkout[i] = clk_wzrd_ver_register_divider
1154 clkout_name, clk_name, 0,
1156 (WZRD_CLK_CFG_REG(is_versal, 3) + i * 8),
1157 WZRD_CLKOUT_DIVIDE_SHIFT,
1158 WZRD_CLKOUT_DIVIDE_WIDTH,
1159 CLK_DIVIDER_ONE_BASED |
1160 CLK_DIVIDER_ALLOW_ZERO,
1161 DIV_O, &clkwzrd_lock);
1164 clk_wzrd->clkout[i] = clk_wzrd_register_divf
1165 (&pdev->dev, clkout_name, clk_name, flags, clk_wzrd->base,
1166 (WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
1167 WZRD_CLKOUT_DIVIDE_SHIFT,
1168 WZRD_CLKOUT_DIVIDE_WIDTH,
1169 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
1170 DIV_O, &clkwzrd_lock);
1172 clk_wzrd->clkout[i] = clk_wzrd_register_divider
1173 (&pdev->dev, clkout_name, clk_name, 0, clk_wzrd->base,
1174 (WZRD_CLK_CFG_REG(is_versal, 2) + i * 12),
1175 WZRD_CLKOUT_DIVIDE_SHIFT,
1176 WZRD_CLKOUT_DIVIDE_WIDTH,
1177 CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
1178 DIV_O, &clkwzrd_lock);
1180 if (IS_ERR(clk_wzrd->clkout[i])) {
1183 for (j = i + 1; j < nr_outputs; j++)
1184 clk_unregister(clk_wzrd->clkout[j]);
1186 "unable to register divider clock\n");
1187 ret = PTR_ERR(clk_wzrd->clkout[i]);
1188 goto err_rm_int_clks;
1193 clk_wzrd->clk_data.clks = clk_wzrd->clkout;
1194 clk_wzrd->clk_data.clk_num = ARRAY_SIZE(clk_wzrd->clkout);
1195 of_clk_add_provider(np, of_clk_src_onecell_get, &clk_wzrd->clk_data);
1197 if (clk_wzrd->speed_grade) {
1198 clk_wzrd->nb.notifier_call = clk_wzrd_clk_notifier;
1200 ret = clk_notifier_register(clk_wzrd->clk_in1,
1203 dev_warn(&pdev->dev,
1204 "unable to register clock notifier\n");
1206 ret = clk_notifier_register(clk_wzrd->axi_clk, &clk_wzrd->nb);
1208 dev_warn(&pdev->dev,
1209 "unable to register clock notifier\n");
1215 clk_unregister(clk_wzrd->clks_internal[1]);
1217 clk_unregister(clk_wzrd->clks_internal[0]);
1219 clk_disable_unprepare(clk_wzrd->axi_clk);
1224 static void clk_wzrd_remove(struct platform_device *pdev)
1227 struct clk_wzrd *clk_wzrd = platform_get_drvdata(pdev);
1229 of_clk_del_provider(pdev->dev.of_node);
1231 for (i = 0; i < WZRD_NUM_OUTPUTS; i++)
1232 clk_unregister(clk_wzrd->clkout[i]);
1233 for (i = 0; i < wzrd_clk_int_max; i++)
1234 clk_unregister(clk_wzrd->clks_internal[i]);
1236 if (clk_wzrd->speed_grade) {
1237 clk_notifier_unregister(clk_wzrd->axi_clk, &clk_wzrd->nb);
1238 clk_notifier_unregister(clk_wzrd->clk_in1, &clk_wzrd->nb);
1241 clk_disable_unprepare(clk_wzrd->axi_clk);
1244 static const struct of_device_id clk_wzrd_ids[] = {
1245 { .compatible = "xlnx,versal-clk-wizard", .data = &versal_data },
1246 { .compatible = "xlnx,clocking-wizard" },
1247 { .compatible = "xlnx,clocking-wizard-v5.2" },
1248 { .compatible = "xlnx,clocking-wizard-v6.0" },
1251 MODULE_DEVICE_TABLE(of, clk_wzrd_ids);
1253 static struct platform_driver clk_wzrd_driver = {
1255 .name = "clk-wizard",
1256 .of_match_table = clk_wzrd_ids,
1257 .pm = &clk_wzrd_dev_pm_ops,
1259 .probe = clk_wzrd_probe,
1260 .remove_new = clk_wzrd_remove,
1262 module_platform_driver(clk_wzrd_driver);
1264 MODULE_LICENSE("GPL");
1266 MODULE_DESCRIPTION("Driver for the Xilinx Clocking Wizard IP core");