]> Git Repo - linux.git/blob - drivers/base/power/main.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / drivers / base / power / main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44         list_for_each_entry_rcu(pos, head, member, \
45                         device_links_read_lock_held())
46
47 /*
48  * The entries in the dpm_list list are in a depth first order, simply
49  * because children are guaranteed to be discovered after parents, and
50  * are inserted at the back of the list on discovery.
51  *
52  * Since device_pm_add() may be called with a device lock held,
53  * we must never try to acquire a device lock while holding
54  * dpm_list_mutex.
55  */
56
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62
63 static DEFINE_MUTEX(dpm_list_mtx);
64 static pm_message_t pm_transition;
65
66 static int async_error;
67
68 static const char *pm_verb(int event)
69 {
70         switch (event) {
71         case PM_EVENT_SUSPEND:
72                 return "suspend";
73         case PM_EVENT_RESUME:
74                 return "resume";
75         case PM_EVENT_FREEZE:
76                 return "freeze";
77         case PM_EVENT_QUIESCE:
78                 return "quiesce";
79         case PM_EVENT_HIBERNATE:
80                 return "hibernate";
81         case PM_EVENT_THAW:
82                 return "thaw";
83         case PM_EVENT_RESTORE:
84                 return "restore";
85         case PM_EVENT_RECOVER:
86                 return "recover";
87         default:
88                 return "(unknown PM event)";
89         }
90 }
91
92 /**
93  * device_pm_sleep_init - Initialize system suspend-related device fields.
94  * @dev: Device object being initialized.
95  */
96 void device_pm_sleep_init(struct device *dev)
97 {
98         dev->power.is_prepared = false;
99         dev->power.is_suspended = false;
100         dev->power.is_noirq_suspended = false;
101         dev->power.is_late_suspended = false;
102         init_completion(&dev->power.completion);
103         complete_all(&dev->power.completion);
104         dev->power.wakeup = NULL;
105         INIT_LIST_HEAD(&dev->power.entry);
106 }
107
108 /**
109  * device_pm_lock - Lock the list of active devices used by the PM core.
110  */
111 void device_pm_lock(void)
112 {
113         mutex_lock(&dpm_list_mtx);
114 }
115
116 /**
117  * device_pm_unlock - Unlock the list of active devices used by the PM core.
118  */
119 void device_pm_unlock(void)
120 {
121         mutex_unlock(&dpm_list_mtx);
122 }
123
124 /**
125  * device_pm_add - Add a device to the PM core's list of active devices.
126  * @dev: Device to add to the list.
127  */
128 void device_pm_add(struct device *dev)
129 {
130         /* Skip PM setup/initialization. */
131         if (device_pm_not_required(dev))
132                 return;
133
134         pr_debug("Adding info for %s:%s\n",
135                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
136         device_pm_check_callbacks(dev);
137         mutex_lock(&dpm_list_mtx);
138         if (dev->parent && dev->parent->power.is_prepared)
139                 dev_warn(dev, "parent %s should not be sleeping\n",
140                         dev_name(dev->parent));
141         list_add_tail(&dev->power.entry, &dpm_list);
142         dev->power.in_dpm_list = true;
143         mutex_unlock(&dpm_list_mtx);
144 }
145
146 /**
147  * device_pm_remove - Remove a device from the PM core's list of active devices.
148  * @dev: Device to be removed from the list.
149  */
150 void device_pm_remove(struct device *dev)
151 {
152         if (device_pm_not_required(dev))
153                 return;
154
155         pr_debug("Removing info for %s:%s\n",
156                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
157         complete_all(&dev->power.completion);
158         mutex_lock(&dpm_list_mtx);
159         list_del_init(&dev->power.entry);
160         dev->power.in_dpm_list = false;
161         mutex_unlock(&dpm_list_mtx);
162         device_wakeup_disable(dev);
163         pm_runtime_remove(dev);
164         device_pm_check_callbacks(dev);
165 }
166
167 /**
168  * device_pm_move_before - Move device in the PM core's list of active devices.
169  * @deva: Device to move in dpm_list.
170  * @devb: Device @deva should come before.
171  */
172 void device_pm_move_before(struct device *deva, struct device *devb)
173 {
174         pr_debug("Moving %s:%s before %s:%s\n",
175                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
176                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
177         /* Delete deva from dpm_list and reinsert before devb. */
178         list_move_tail(&deva->power.entry, &devb->power.entry);
179 }
180
181 /**
182  * device_pm_move_after - Move device in the PM core's list of active devices.
183  * @deva: Device to move in dpm_list.
184  * @devb: Device @deva should come after.
185  */
186 void device_pm_move_after(struct device *deva, struct device *devb)
187 {
188         pr_debug("Moving %s:%s after %s:%s\n",
189                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
190                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
191         /* Delete deva from dpm_list and reinsert after devb. */
192         list_move(&deva->power.entry, &devb->power.entry);
193 }
194
195 /**
196  * device_pm_move_last - Move device to end of the PM core's list of devices.
197  * @dev: Device to move in dpm_list.
198  */
199 void device_pm_move_last(struct device *dev)
200 {
201         pr_debug("Moving %s:%s to end of list\n",
202                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
203         list_move_tail(&dev->power.entry, &dpm_list);
204 }
205
206 static ktime_t initcall_debug_start(struct device *dev, void *cb)
207 {
208         if (!pm_print_times_enabled)
209                 return 0;
210
211         dev_info(dev, "calling %ps @ %i, parent: %s\n", cb,
212                  task_pid_nr(current),
213                  dev->parent ? dev_name(dev->parent) : "none");
214         return ktime_get();
215 }
216
217 static void initcall_debug_report(struct device *dev, ktime_t calltime,
218                                   void *cb, int error)
219 {
220         ktime_t rettime;
221
222         if (!pm_print_times_enabled)
223                 return;
224
225         rettime = ktime_get();
226         dev_info(dev, "%ps returned %d after %Ld usecs\n", cb, error,
227                  (unsigned long long)ktime_us_delta(rettime, calltime));
228 }
229
230 /**
231  * dpm_wait - Wait for a PM operation to complete.
232  * @dev: Device to wait for.
233  * @async: If unset, wait only if the device's power.async_suspend flag is set.
234  */
235 static void dpm_wait(struct device *dev, bool async)
236 {
237         if (!dev)
238                 return;
239
240         if (async || (pm_async_enabled && dev->power.async_suspend))
241                 wait_for_completion(&dev->power.completion);
242 }
243
244 static int dpm_wait_fn(struct device *dev, void *async_ptr)
245 {
246         dpm_wait(dev, *((bool *)async_ptr));
247         return 0;
248 }
249
250 static void dpm_wait_for_children(struct device *dev, bool async)
251 {
252        device_for_each_child(dev, &async, dpm_wait_fn);
253 }
254
255 static void dpm_wait_for_suppliers(struct device *dev, bool async)
256 {
257         struct device_link *link;
258         int idx;
259
260         idx = device_links_read_lock();
261
262         /*
263          * If the supplier goes away right after we've checked the link to it,
264          * we'll wait for its completion to change the state, but that's fine,
265          * because the only things that will block as a result are the SRCU
266          * callbacks freeing the link objects for the links in the list we're
267          * walking.
268          */
269         list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
270                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
271                         dpm_wait(link->supplier, async);
272
273         device_links_read_unlock(idx);
274 }
275
276 static bool dpm_wait_for_superior(struct device *dev, bool async)
277 {
278         struct device *parent;
279
280         /*
281          * If the device is resumed asynchronously and the parent's callback
282          * deletes both the device and the parent itself, the parent object may
283          * be freed while this function is running, so avoid that by reference
284          * counting the parent once more unless the device has been deleted
285          * already (in which case return right away).
286          */
287         mutex_lock(&dpm_list_mtx);
288
289         if (!device_pm_initialized(dev)) {
290                 mutex_unlock(&dpm_list_mtx);
291                 return false;
292         }
293
294         parent = get_device(dev->parent);
295
296         mutex_unlock(&dpm_list_mtx);
297
298         dpm_wait(parent, async);
299         put_device(parent);
300
301         dpm_wait_for_suppliers(dev, async);
302
303         /*
304          * If the parent's callback has deleted the device, attempting to resume
305          * it would be invalid, so avoid doing that then.
306          */
307         return device_pm_initialized(dev);
308 }
309
310 static void dpm_wait_for_consumers(struct device *dev, bool async)
311 {
312         struct device_link *link;
313         int idx;
314
315         idx = device_links_read_lock();
316
317         /*
318          * The status of a device link can only be changed from "dormant" by a
319          * probe, but that cannot happen during system suspend/resume.  In
320          * theory it can change to "dormant" at that time, but then it is
321          * reasonable to wait for the target device anyway (eg. if it goes
322          * away, it's better to wait for it to go away completely and then
323          * continue instead of trying to continue in parallel with its
324          * unregistration).
325          */
326         list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
327                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
328                         dpm_wait(link->consumer, async);
329
330         device_links_read_unlock(idx);
331 }
332
333 static void dpm_wait_for_subordinate(struct device *dev, bool async)
334 {
335         dpm_wait_for_children(dev, async);
336         dpm_wait_for_consumers(dev, async);
337 }
338
339 /**
340  * pm_op - Return the PM operation appropriate for given PM event.
341  * @ops: PM operations to choose from.
342  * @state: PM transition of the system being carried out.
343  */
344 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
345 {
346         switch (state.event) {
347 #ifdef CONFIG_SUSPEND
348         case PM_EVENT_SUSPEND:
349                 return ops->suspend;
350         case PM_EVENT_RESUME:
351                 return ops->resume;
352 #endif /* CONFIG_SUSPEND */
353 #ifdef CONFIG_HIBERNATE_CALLBACKS
354         case PM_EVENT_FREEZE:
355         case PM_EVENT_QUIESCE:
356                 return ops->freeze;
357         case PM_EVENT_HIBERNATE:
358                 return ops->poweroff;
359         case PM_EVENT_THAW:
360         case PM_EVENT_RECOVER:
361                 return ops->thaw;
362         case PM_EVENT_RESTORE:
363                 return ops->restore;
364 #endif /* CONFIG_HIBERNATE_CALLBACKS */
365         }
366
367         return NULL;
368 }
369
370 /**
371  * pm_late_early_op - Return the PM operation appropriate for given PM event.
372  * @ops: PM operations to choose from.
373  * @state: PM transition of the system being carried out.
374  *
375  * Runtime PM is disabled for @dev while this function is being executed.
376  */
377 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
378                                       pm_message_t state)
379 {
380         switch (state.event) {
381 #ifdef CONFIG_SUSPEND
382         case PM_EVENT_SUSPEND:
383                 return ops->suspend_late;
384         case PM_EVENT_RESUME:
385                 return ops->resume_early;
386 #endif /* CONFIG_SUSPEND */
387 #ifdef CONFIG_HIBERNATE_CALLBACKS
388         case PM_EVENT_FREEZE:
389         case PM_EVENT_QUIESCE:
390                 return ops->freeze_late;
391         case PM_EVENT_HIBERNATE:
392                 return ops->poweroff_late;
393         case PM_EVENT_THAW:
394         case PM_EVENT_RECOVER:
395                 return ops->thaw_early;
396         case PM_EVENT_RESTORE:
397                 return ops->restore_early;
398 #endif /* CONFIG_HIBERNATE_CALLBACKS */
399         }
400
401         return NULL;
402 }
403
404 /**
405  * pm_noirq_op - Return the PM operation appropriate for given PM event.
406  * @ops: PM operations to choose from.
407  * @state: PM transition of the system being carried out.
408  *
409  * The driver of @dev will not receive interrupts while this function is being
410  * executed.
411  */
412 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
413 {
414         switch (state.event) {
415 #ifdef CONFIG_SUSPEND
416         case PM_EVENT_SUSPEND:
417                 return ops->suspend_noirq;
418         case PM_EVENT_RESUME:
419                 return ops->resume_noirq;
420 #endif /* CONFIG_SUSPEND */
421 #ifdef CONFIG_HIBERNATE_CALLBACKS
422         case PM_EVENT_FREEZE:
423         case PM_EVENT_QUIESCE:
424                 return ops->freeze_noirq;
425         case PM_EVENT_HIBERNATE:
426                 return ops->poweroff_noirq;
427         case PM_EVENT_THAW:
428         case PM_EVENT_RECOVER:
429                 return ops->thaw_noirq;
430         case PM_EVENT_RESTORE:
431                 return ops->restore_noirq;
432 #endif /* CONFIG_HIBERNATE_CALLBACKS */
433         }
434
435         return NULL;
436 }
437
438 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
439 {
440         dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
441                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
442                 ", may wakeup" : "", dev->power.driver_flags);
443 }
444
445 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
446                         int error)
447 {
448         dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
449                 error);
450 }
451
452 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
453                           const char *info)
454 {
455         ktime_t calltime;
456         u64 usecs64;
457         int usecs;
458
459         calltime = ktime_get();
460         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
461         do_div(usecs64, NSEC_PER_USEC);
462         usecs = usecs64;
463         if (usecs == 0)
464                 usecs = 1;
465
466         pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
467                   info ?: "", info ? " " : "", pm_verb(state.event),
468                   error ? "aborted" : "complete",
469                   usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
470 }
471
472 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
473                             pm_message_t state, const char *info)
474 {
475         ktime_t calltime;
476         int error;
477
478         if (!cb)
479                 return 0;
480
481         calltime = initcall_debug_start(dev, cb);
482
483         pm_dev_dbg(dev, state, info);
484         trace_device_pm_callback_start(dev, info, state.event);
485         error = cb(dev);
486         trace_device_pm_callback_end(dev, error);
487         suspend_report_result(dev, cb, error);
488
489         initcall_debug_report(dev, calltime, cb, error);
490
491         return error;
492 }
493
494 #ifdef CONFIG_DPM_WATCHDOG
495 struct dpm_watchdog {
496         struct device           *dev;
497         struct task_struct      *tsk;
498         struct timer_list       timer;
499 };
500
501 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
502         struct dpm_watchdog wd
503
504 /**
505  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
506  * @t: The timer that PM watchdog depends on.
507  *
508  * Called when a driver has timed out suspending or resuming.
509  * There's not much we can do here to recover so panic() to
510  * capture a crash-dump in pstore.
511  */
512 static void dpm_watchdog_handler(struct timer_list *t)
513 {
514         struct dpm_watchdog *wd = from_timer(wd, t, timer);
515
516         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
517         show_stack(wd->tsk, NULL, KERN_EMERG);
518         panic("%s %s: unrecoverable failure\n",
519                 dev_driver_string(wd->dev), dev_name(wd->dev));
520 }
521
522 /**
523  * dpm_watchdog_set - Enable pm watchdog for given device.
524  * @wd: Watchdog. Must be allocated on the stack.
525  * @dev: Device to handle.
526  */
527 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
528 {
529         struct timer_list *timer = &wd->timer;
530
531         wd->dev = dev;
532         wd->tsk = current;
533
534         timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
535         /* use same timeout value for both suspend and resume */
536         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
537         add_timer(timer);
538 }
539
540 /**
541  * dpm_watchdog_clear - Disable suspend/resume watchdog.
542  * @wd: Watchdog to disable.
543  */
544 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
545 {
546         struct timer_list *timer = &wd->timer;
547
548         del_timer_sync(timer);
549         destroy_timer_on_stack(timer);
550 }
551 #else
552 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
553 #define dpm_watchdog_set(x, y)
554 #define dpm_watchdog_clear(x)
555 #endif
556
557 /*------------------------- Resume routines -------------------------*/
558
559 /**
560  * dev_pm_skip_resume - System-wide device resume optimization check.
561  * @dev: Target device.
562  *
563  * Return:
564  * - %false if the transition under way is RESTORE.
565  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
566  * - The logical negation of %power.must_resume otherwise (that is, when the
567  *   transition under way is RESUME).
568  */
569 bool dev_pm_skip_resume(struct device *dev)
570 {
571         if (pm_transition.event == PM_EVENT_RESTORE)
572                 return false;
573
574         if (pm_transition.event == PM_EVENT_THAW)
575                 return dev_pm_skip_suspend(dev);
576
577         return !dev->power.must_resume;
578 }
579
580 static bool is_async(struct device *dev)
581 {
582         return dev->power.async_suspend && pm_async_enabled
583                 && !pm_trace_is_enabled();
584 }
585
586 static bool dpm_async_fn(struct device *dev, async_func_t func)
587 {
588         reinit_completion(&dev->power.completion);
589
590         if (is_async(dev)) {
591                 dev->power.async_in_progress = true;
592
593                 get_device(dev);
594
595                 if (async_schedule_dev_nocall(func, dev))
596                         return true;
597
598                 put_device(dev);
599         }
600         /*
601          * Because async_schedule_dev_nocall() above has returned false or it
602          * has not been called at all, func() is not running and it is safe to
603          * update the async_in_progress flag without extra synchronization.
604          */
605         dev->power.async_in_progress = false;
606         return false;
607 }
608
609 /**
610  * device_resume_noirq - Execute a "noirq resume" callback for given device.
611  * @dev: Device to handle.
612  * @state: PM transition of the system being carried out.
613  * @async: If true, the device is being resumed asynchronously.
614  *
615  * The driver of @dev will not receive interrupts while this function is being
616  * executed.
617  */
618 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
619 {
620         pm_callback_t callback = NULL;
621         const char *info = NULL;
622         bool skip_resume;
623         int error = 0;
624
625         TRACE_DEVICE(dev);
626         TRACE_RESUME(0);
627
628         if (dev->power.syscore || dev->power.direct_complete)
629                 goto Out;
630
631         if (!dev->power.is_noirq_suspended)
632                 goto Out;
633
634         if (!dpm_wait_for_superior(dev, async))
635                 goto Out;
636
637         skip_resume = dev_pm_skip_resume(dev);
638         /*
639          * If the driver callback is skipped below or by the middle layer
640          * callback and device_resume_early() also skips the driver callback for
641          * this device later, it needs to appear as "suspended" to PM-runtime,
642          * so change its status accordingly.
643          *
644          * Otherwise, the device is going to be resumed, so set its PM-runtime
645          * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
646          * to avoid confusing drivers that don't use it.
647          */
648         if (skip_resume)
649                 pm_runtime_set_suspended(dev);
650         else if (dev_pm_skip_suspend(dev))
651                 pm_runtime_set_active(dev);
652
653         if (dev->pm_domain) {
654                 info = "noirq power domain ";
655                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
656         } else if (dev->type && dev->type->pm) {
657                 info = "noirq type ";
658                 callback = pm_noirq_op(dev->type->pm, state);
659         } else if (dev->class && dev->class->pm) {
660                 info = "noirq class ";
661                 callback = pm_noirq_op(dev->class->pm, state);
662         } else if (dev->bus && dev->bus->pm) {
663                 info = "noirq bus ";
664                 callback = pm_noirq_op(dev->bus->pm, state);
665         }
666         if (callback)
667                 goto Run;
668
669         if (skip_resume)
670                 goto Skip;
671
672         if (dev->driver && dev->driver->pm) {
673                 info = "noirq driver ";
674                 callback = pm_noirq_op(dev->driver->pm, state);
675         }
676
677 Run:
678         error = dpm_run_callback(callback, dev, state, info);
679
680 Skip:
681         dev->power.is_noirq_suspended = false;
682
683 Out:
684         complete_all(&dev->power.completion);
685         TRACE_RESUME(error);
686
687         if (error) {
688                 async_error = error;
689                 dpm_save_failed_dev(dev_name(dev));
690                 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
691         }
692 }
693
694 static void async_resume_noirq(void *data, async_cookie_t cookie)
695 {
696         struct device *dev = data;
697
698         device_resume_noirq(dev, pm_transition, true);
699         put_device(dev);
700 }
701
702 static void dpm_noirq_resume_devices(pm_message_t state)
703 {
704         struct device *dev;
705         ktime_t starttime = ktime_get();
706
707         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
708
709         async_error = 0;
710         pm_transition = state;
711
712         mutex_lock(&dpm_list_mtx);
713
714         /*
715          * Trigger the resume of "async" devices upfront so they don't have to
716          * wait for the "non-async" ones they don't depend on.
717          */
718         list_for_each_entry(dev, &dpm_noirq_list, power.entry)
719                 dpm_async_fn(dev, async_resume_noirq);
720
721         while (!list_empty(&dpm_noirq_list)) {
722                 dev = to_device(dpm_noirq_list.next);
723                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
724
725                 if (!dev->power.async_in_progress) {
726                         get_device(dev);
727
728                         mutex_unlock(&dpm_list_mtx);
729
730                         device_resume_noirq(dev, state, false);
731
732                         put_device(dev);
733
734                         mutex_lock(&dpm_list_mtx);
735                 }
736         }
737         mutex_unlock(&dpm_list_mtx);
738         async_synchronize_full();
739         dpm_show_time(starttime, state, 0, "noirq");
740         if (async_error)
741                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
742
743         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
744 }
745
746 /**
747  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
748  * @state: PM transition of the system being carried out.
749  *
750  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
751  * allow device drivers' interrupt handlers to be called.
752  */
753 void dpm_resume_noirq(pm_message_t state)
754 {
755         dpm_noirq_resume_devices(state);
756
757         resume_device_irqs();
758         device_wakeup_disarm_wake_irqs();
759 }
760
761 /**
762  * device_resume_early - Execute an "early resume" callback for given device.
763  * @dev: Device to handle.
764  * @state: PM transition of the system being carried out.
765  * @async: If true, the device is being resumed asynchronously.
766  *
767  * Runtime PM is disabled for @dev while this function is being executed.
768  */
769 static void device_resume_early(struct device *dev, pm_message_t state, bool async)
770 {
771         pm_callback_t callback = NULL;
772         const char *info = NULL;
773         int error = 0;
774
775         TRACE_DEVICE(dev);
776         TRACE_RESUME(0);
777
778         if (dev->power.syscore || dev->power.direct_complete)
779                 goto Out;
780
781         if (!dev->power.is_late_suspended)
782                 goto Out;
783
784         if (!dpm_wait_for_superior(dev, async))
785                 goto Out;
786
787         if (dev->pm_domain) {
788                 info = "early power domain ";
789                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
790         } else if (dev->type && dev->type->pm) {
791                 info = "early type ";
792                 callback = pm_late_early_op(dev->type->pm, state);
793         } else if (dev->class && dev->class->pm) {
794                 info = "early class ";
795                 callback = pm_late_early_op(dev->class->pm, state);
796         } else if (dev->bus && dev->bus->pm) {
797                 info = "early bus ";
798                 callback = pm_late_early_op(dev->bus->pm, state);
799         }
800         if (callback)
801                 goto Run;
802
803         if (dev_pm_skip_resume(dev))
804                 goto Skip;
805
806         if (dev->driver && dev->driver->pm) {
807                 info = "early driver ";
808                 callback = pm_late_early_op(dev->driver->pm, state);
809         }
810
811 Run:
812         error = dpm_run_callback(callback, dev, state, info);
813
814 Skip:
815         dev->power.is_late_suspended = false;
816
817 Out:
818         TRACE_RESUME(error);
819
820         pm_runtime_enable(dev);
821         complete_all(&dev->power.completion);
822
823         if (error) {
824                 async_error = error;
825                 dpm_save_failed_dev(dev_name(dev));
826                 pm_dev_err(dev, state, async ? " async early" : " early", error);
827         }
828 }
829
830 static void async_resume_early(void *data, async_cookie_t cookie)
831 {
832         struct device *dev = data;
833
834         device_resume_early(dev, pm_transition, true);
835         put_device(dev);
836 }
837
838 /**
839  * dpm_resume_early - Execute "early resume" callbacks for all devices.
840  * @state: PM transition of the system being carried out.
841  */
842 void dpm_resume_early(pm_message_t state)
843 {
844         struct device *dev;
845         ktime_t starttime = ktime_get();
846
847         trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
848
849         async_error = 0;
850         pm_transition = state;
851
852         mutex_lock(&dpm_list_mtx);
853
854         /*
855          * Trigger the resume of "async" devices upfront so they don't have to
856          * wait for the "non-async" ones they don't depend on.
857          */
858         list_for_each_entry(dev, &dpm_late_early_list, power.entry)
859                 dpm_async_fn(dev, async_resume_early);
860
861         while (!list_empty(&dpm_late_early_list)) {
862                 dev = to_device(dpm_late_early_list.next);
863                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
864
865                 if (!dev->power.async_in_progress) {
866                         get_device(dev);
867
868                         mutex_unlock(&dpm_list_mtx);
869
870                         device_resume_early(dev, state, false);
871
872                         put_device(dev);
873
874                         mutex_lock(&dpm_list_mtx);
875                 }
876         }
877         mutex_unlock(&dpm_list_mtx);
878         async_synchronize_full();
879         dpm_show_time(starttime, state, 0, "early");
880         if (async_error)
881                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
882
883         trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
884 }
885
886 /**
887  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
888  * @state: PM transition of the system being carried out.
889  */
890 void dpm_resume_start(pm_message_t state)
891 {
892         dpm_resume_noirq(state);
893         dpm_resume_early(state);
894 }
895 EXPORT_SYMBOL_GPL(dpm_resume_start);
896
897 /**
898  * device_resume - Execute "resume" callbacks for given device.
899  * @dev: Device to handle.
900  * @state: PM transition of the system being carried out.
901  * @async: If true, the device is being resumed asynchronously.
902  */
903 static void device_resume(struct device *dev, pm_message_t state, bool async)
904 {
905         pm_callback_t callback = NULL;
906         const char *info = NULL;
907         int error = 0;
908         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
909
910         TRACE_DEVICE(dev);
911         TRACE_RESUME(0);
912
913         if (dev->power.syscore)
914                 goto Complete;
915
916         if (dev->power.direct_complete) {
917                 /* Match the pm_runtime_disable() in __device_suspend(). */
918                 pm_runtime_enable(dev);
919                 goto Complete;
920         }
921
922         if (!dpm_wait_for_superior(dev, async))
923                 goto Complete;
924
925         dpm_watchdog_set(&wd, dev);
926         device_lock(dev);
927
928         /*
929          * This is a fib.  But we'll allow new children to be added below
930          * a resumed device, even if the device hasn't been completed yet.
931          */
932         dev->power.is_prepared = false;
933
934         if (!dev->power.is_suspended)
935                 goto Unlock;
936
937         if (dev->pm_domain) {
938                 info = "power domain ";
939                 callback = pm_op(&dev->pm_domain->ops, state);
940                 goto Driver;
941         }
942
943         if (dev->type && dev->type->pm) {
944                 info = "type ";
945                 callback = pm_op(dev->type->pm, state);
946                 goto Driver;
947         }
948
949         if (dev->class && dev->class->pm) {
950                 info = "class ";
951                 callback = pm_op(dev->class->pm, state);
952                 goto Driver;
953         }
954
955         if (dev->bus) {
956                 if (dev->bus->pm) {
957                         info = "bus ";
958                         callback = pm_op(dev->bus->pm, state);
959                 } else if (dev->bus->resume) {
960                         info = "legacy bus ";
961                         callback = dev->bus->resume;
962                         goto End;
963                 }
964         }
965
966  Driver:
967         if (!callback && dev->driver && dev->driver->pm) {
968                 info = "driver ";
969                 callback = pm_op(dev->driver->pm, state);
970         }
971
972  End:
973         error = dpm_run_callback(callback, dev, state, info);
974         dev->power.is_suspended = false;
975
976  Unlock:
977         device_unlock(dev);
978         dpm_watchdog_clear(&wd);
979
980  Complete:
981         complete_all(&dev->power.completion);
982
983         TRACE_RESUME(error);
984
985         if (error) {
986                 async_error = error;
987                 dpm_save_failed_dev(dev_name(dev));
988                 pm_dev_err(dev, state, async ? " async" : "", error);
989         }
990 }
991
992 static void async_resume(void *data, async_cookie_t cookie)
993 {
994         struct device *dev = data;
995
996         device_resume(dev, pm_transition, true);
997         put_device(dev);
998 }
999
1000 /**
1001  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1002  * @state: PM transition of the system being carried out.
1003  *
1004  * Execute the appropriate "resume" callback for all devices whose status
1005  * indicates that they are suspended.
1006  */
1007 void dpm_resume(pm_message_t state)
1008 {
1009         struct device *dev;
1010         ktime_t starttime = ktime_get();
1011
1012         trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1013         might_sleep();
1014
1015         pm_transition = state;
1016         async_error = 0;
1017
1018         mutex_lock(&dpm_list_mtx);
1019
1020         /*
1021          * Trigger the resume of "async" devices upfront so they don't have to
1022          * wait for the "non-async" ones they don't depend on.
1023          */
1024         list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1025                 dpm_async_fn(dev, async_resume);
1026
1027         while (!list_empty(&dpm_suspended_list)) {
1028                 dev = to_device(dpm_suspended_list.next);
1029                 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1030
1031                 if (!dev->power.async_in_progress) {
1032                         get_device(dev);
1033
1034                         mutex_unlock(&dpm_list_mtx);
1035
1036                         device_resume(dev, state, false);
1037
1038                         put_device(dev);
1039
1040                         mutex_lock(&dpm_list_mtx);
1041                 }
1042         }
1043         mutex_unlock(&dpm_list_mtx);
1044         async_synchronize_full();
1045         dpm_show_time(starttime, state, 0, NULL);
1046         if (async_error)
1047                 dpm_save_failed_step(SUSPEND_RESUME);
1048
1049         cpufreq_resume();
1050         devfreq_resume();
1051         trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1052 }
1053
1054 /**
1055  * device_complete - Complete a PM transition for given device.
1056  * @dev: Device to handle.
1057  * @state: PM transition of the system being carried out.
1058  */
1059 static void device_complete(struct device *dev, pm_message_t state)
1060 {
1061         void (*callback)(struct device *) = NULL;
1062         const char *info = NULL;
1063
1064         if (dev->power.syscore)
1065                 goto out;
1066
1067         device_lock(dev);
1068
1069         if (dev->pm_domain) {
1070                 info = "completing power domain ";
1071                 callback = dev->pm_domain->ops.complete;
1072         } else if (dev->type && dev->type->pm) {
1073                 info = "completing type ";
1074                 callback = dev->type->pm->complete;
1075         } else if (dev->class && dev->class->pm) {
1076                 info = "completing class ";
1077                 callback = dev->class->pm->complete;
1078         } else if (dev->bus && dev->bus->pm) {
1079                 info = "completing bus ";
1080                 callback = dev->bus->pm->complete;
1081         }
1082
1083         if (!callback && dev->driver && dev->driver->pm) {
1084                 info = "completing driver ";
1085                 callback = dev->driver->pm->complete;
1086         }
1087
1088         if (callback) {
1089                 pm_dev_dbg(dev, state, info);
1090                 callback(dev);
1091         }
1092
1093         device_unlock(dev);
1094
1095 out:
1096         pm_runtime_put(dev);
1097 }
1098
1099 /**
1100  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1101  * @state: PM transition of the system being carried out.
1102  *
1103  * Execute the ->complete() callbacks for all devices whose PM status is not
1104  * DPM_ON (this allows new devices to be registered).
1105  */
1106 void dpm_complete(pm_message_t state)
1107 {
1108         struct list_head list;
1109
1110         trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1111         might_sleep();
1112
1113         INIT_LIST_HEAD(&list);
1114         mutex_lock(&dpm_list_mtx);
1115         while (!list_empty(&dpm_prepared_list)) {
1116                 struct device *dev = to_device(dpm_prepared_list.prev);
1117
1118                 get_device(dev);
1119                 dev->power.is_prepared = false;
1120                 list_move(&dev->power.entry, &list);
1121
1122                 mutex_unlock(&dpm_list_mtx);
1123
1124                 trace_device_pm_callback_start(dev, "", state.event);
1125                 device_complete(dev, state);
1126                 trace_device_pm_callback_end(dev, 0);
1127
1128                 put_device(dev);
1129
1130                 mutex_lock(&dpm_list_mtx);
1131         }
1132         list_splice(&list, &dpm_list);
1133         mutex_unlock(&dpm_list_mtx);
1134
1135         /* Allow device probing and trigger re-probing of deferred devices */
1136         device_unblock_probing();
1137         trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1138 }
1139
1140 /**
1141  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1142  * @state: PM transition of the system being carried out.
1143  *
1144  * Execute "resume" callbacks for all devices and complete the PM transition of
1145  * the system.
1146  */
1147 void dpm_resume_end(pm_message_t state)
1148 {
1149         dpm_resume(state);
1150         dpm_complete(state);
1151 }
1152 EXPORT_SYMBOL_GPL(dpm_resume_end);
1153
1154
1155 /*------------------------- Suspend routines -------------------------*/
1156
1157 /**
1158  * resume_event - Return a "resume" message for given "suspend" sleep state.
1159  * @sleep_state: PM message representing a sleep state.
1160  *
1161  * Return a PM message representing the resume event corresponding to given
1162  * sleep state.
1163  */
1164 static pm_message_t resume_event(pm_message_t sleep_state)
1165 {
1166         switch (sleep_state.event) {
1167         case PM_EVENT_SUSPEND:
1168                 return PMSG_RESUME;
1169         case PM_EVENT_FREEZE:
1170         case PM_EVENT_QUIESCE:
1171                 return PMSG_RECOVER;
1172         case PM_EVENT_HIBERNATE:
1173                 return PMSG_RESTORE;
1174         }
1175         return PMSG_ON;
1176 }
1177
1178 static void dpm_superior_set_must_resume(struct device *dev)
1179 {
1180         struct device_link *link;
1181         int idx;
1182
1183         if (dev->parent)
1184                 dev->parent->power.must_resume = true;
1185
1186         idx = device_links_read_lock();
1187
1188         list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1189                 link->supplier->power.must_resume = true;
1190
1191         device_links_read_unlock(idx);
1192 }
1193
1194 /**
1195  * device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1196  * @dev: Device to handle.
1197  * @state: PM transition of the system being carried out.
1198  * @async: If true, the device is being suspended asynchronously.
1199  *
1200  * The driver of @dev will not receive interrupts while this function is being
1201  * executed.
1202  */
1203 static int device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1204 {
1205         pm_callback_t callback = NULL;
1206         const char *info = NULL;
1207         int error = 0;
1208
1209         TRACE_DEVICE(dev);
1210         TRACE_SUSPEND(0);
1211
1212         dpm_wait_for_subordinate(dev, async);
1213
1214         if (async_error)
1215                 goto Complete;
1216
1217         if (dev->power.syscore || dev->power.direct_complete)
1218                 goto Complete;
1219
1220         if (dev->pm_domain) {
1221                 info = "noirq power domain ";
1222                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1223         } else if (dev->type && dev->type->pm) {
1224                 info = "noirq type ";
1225                 callback = pm_noirq_op(dev->type->pm, state);
1226         } else if (dev->class && dev->class->pm) {
1227                 info = "noirq class ";
1228                 callback = pm_noirq_op(dev->class->pm, state);
1229         } else if (dev->bus && dev->bus->pm) {
1230                 info = "noirq bus ";
1231                 callback = pm_noirq_op(dev->bus->pm, state);
1232         }
1233         if (callback)
1234                 goto Run;
1235
1236         if (dev_pm_skip_suspend(dev))
1237                 goto Skip;
1238
1239         if (dev->driver && dev->driver->pm) {
1240                 info = "noirq driver ";
1241                 callback = pm_noirq_op(dev->driver->pm, state);
1242         }
1243
1244 Run:
1245         error = dpm_run_callback(callback, dev, state, info);
1246         if (error) {
1247                 async_error = error;
1248                 dpm_save_failed_dev(dev_name(dev));
1249                 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
1250                 goto Complete;
1251         }
1252
1253 Skip:
1254         dev->power.is_noirq_suspended = true;
1255
1256         /*
1257          * Skipping the resume of devices that were in use right before the
1258          * system suspend (as indicated by their PM-runtime usage counters)
1259          * would be suboptimal.  Also resume them if doing that is not allowed
1260          * to be skipped.
1261          */
1262         if (atomic_read(&dev->power.usage_count) > 1 ||
1263             !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1264               dev->power.may_skip_resume))
1265                 dev->power.must_resume = true;
1266
1267         if (dev->power.must_resume)
1268                 dpm_superior_set_must_resume(dev);
1269
1270 Complete:
1271         complete_all(&dev->power.completion);
1272         TRACE_SUSPEND(error);
1273         return error;
1274 }
1275
1276 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1277 {
1278         struct device *dev = data;
1279
1280         device_suspend_noirq(dev, pm_transition, true);
1281         put_device(dev);
1282 }
1283
1284 static int dpm_noirq_suspend_devices(pm_message_t state)
1285 {
1286         ktime_t starttime = ktime_get();
1287         int error = 0;
1288
1289         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1290
1291         pm_transition = state;
1292         async_error = 0;
1293
1294         mutex_lock(&dpm_list_mtx);
1295
1296         while (!list_empty(&dpm_late_early_list)) {
1297                 struct device *dev = to_device(dpm_late_early_list.prev);
1298
1299                 list_move(&dev->power.entry, &dpm_noirq_list);
1300
1301                 if (dpm_async_fn(dev, async_suspend_noirq))
1302                         continue;
1303
1304                 get_device(dev);
1305
1306                 mutex_unlock(&dpm_list_mtx);
1307
1308                 error = device_suspend_noirq(dev, state, false);
1309
1310                 put_device(dev);
1311
1312                 mutex_lock(&dpm_list_mtx);
1313
1314                 if (error || async_error)
1315                         break;
1316         }
1317
1318         mutex_unlock(&dpm_list_mtx);
1319
1320         async_synchronize_full();
1321         if (!error)
1322                 error = async_error;
1323
1324         if (error)
1325                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1326
1327         dpm_show_time(starttime, state, error, "noirq");
1328         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1329         return error;
1330 }
1331
1332 /**
1333  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1334  * @state: PM transition of the system being carried out.
1335  *
1336  * Prevent device drivers' interrupt handlers from being called and invoke
1337  * "noirq" suspend callbacks for all non-sysdev devices.
1338  */
1339 int dpm_suspend_noirq(pm_message_t state)
1340 {
1341         int ret;
1342
1343         device_wakeup_arm_wake_irqs();
1344         suspend_device_irqs();
1345
1346         ret = dpm_noirq_suspend_devices(state);
1347         if (ret)
1348                 dpm_resume_noirq(resume_event(state));
1349
1350         return ret;
1351 }
1352
1353 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1354 {
1355         struct device *parent = dev->parent;
1356
1357         if (!parent)
1358                 return;
1359
1360         spin_lock_irq(&parent->power.lock);
1361
1362         if (device_wakeup_path(dev) && !parent->power.ignore_children)
1363                 parent->power.wakeup_path = true;
1364
1365         spin_unlock_irq(&parent->power.lock);
1366 }
1367
1368 /**
1369  * device_suspend_late - Execute a "late suspend" callback for given device.
1370  * @dev: Device to handle.
1371  * @state: PM transition of the system being carried out.
1372  * @async: If true, the device is being suspended asynchronously.
1373  *
1374  * Runtime PM is disabled for @dev while this function is being executed.
1375  */
1376 static int device_suspend_late(struct device *dev, pm_message_t state, bool async)
1377 {
1378         pm_callback_t callback = NULL;
1379         const char *info = NULL;
1380         int error = 0;
1381
1382         TRACE_DEVICE(dev);
1383         TRACE_SUSPEND(0);
1384
1385         __pm_runtime_disable(dev, false);
1386
1387         dpm_wait_for_subordinate(dev, async);
1388
1389         if (async_error)
1390                 goto Complete;
1391
1392         if (pm_wakeup_pending()) {
1393                 async_error = -EBUSY;
1394                 goto Complete;
1395         }
1396
1397         if (dev->power.syscore || dev->power.direct_complete)
1398                 goto Complete;
1399
1400         if (dev->pm_domain) {
1401                 info = "late power domain ";
1402                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1403         } else if (dev->type && dev->type->pm) {
1404                 info = "late type ";
1405                 callback = pm_late_early_op(dev->type->pm, state);
1406         } else if (dev->class && dev->class->pm) {
1407                 info = "late class ";
1408                 callback = pm_late_early_op(dev->class->pm, state);
1409         } else if (dev->bus && dev->bus->pm) {
1410                 info = "late bus ";
1411                 callback = pm_late_early_op(dev->bus->pm, state);
1412         }
1413         if (callback)
1414                 goto Run;
1415
1416         if (dev_pm_skip_suspend(dev))
1417                 goto Skip;
1418
1419         if (dev->driver && dev->driver->pm) {
1420                 info = "late driver ";
1421                 callback = pm_late_early_op(dev->driver->pm, state);
1422         }
1423
1424 Run:
1425         error = dpm_run_callback(callback, dev, state, info);
1426         if (error) {
1427                 async_error = error;
1428                 dpm_save_failed_dev(dev_name(dev));
1429                 pm_dev_err(dev, state, async ? " async late" : " late", error);
1430                 goto Complete;
1431         }
1432         dpm_propagate_wakeup_to_parent(dev);
1433
1434 Skip:
1435         dev->power.is_late_suspended = true;
1436
1437 Complete:
1438         TRACE_SUSPEND(error);
1439         complete_all(&dev->power.completion);
1440         return error;
1441 }
1442
1443 static void async_suspend_late(void *data, async_cookie_t cookie)
1444 {
1445         struct device *dev = data;
1446
1447         device_suspend_late(dev, pm_transition, true);
1448         put_device(dev);
1449 }
1450
1451 /**
1452  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1453  * @state: PM transition of the system being carried out.
1454  */
1455 int dpm_suspend_late(pm_message_t state)
1456 {
1457         ktime_t starttime = ktime_get();
1458         int error = 0;
1459
1460         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1461
1462         pm_transition = state;
1463         async_error = 0;
1464
1465         wake_up_all_idle_cpus();
1466
1467         mutex_lock(&dpm_list_mtx);
1468
1469         while (!list_empty(&dpm_suspended_list)) {
1470                 struct device *dev = to_device(dpm_suspended_list.prev);
1471
1472                 list_move(&dev->power.entry, &dpm_late_early_list);
1473
1474                 if (dpm_async_fn(dev, async_suspend_late))
1475                         continue;
1476
1477                 get_device(dev);
1478
1479                 mutex_unlock(&dpm_list_mtx);
1480
1481                 error = device_suspend_late(dev, state, false);
1482
1483                 put_device(dev);
1484
1485                 mutex_lock(&dpm_list_mtx);
1486
1487                 if (error || async_error)
1488                         break;
1489         }
1490
1491         mutex_unlock(&dpm_list_mtx);
1492
1493         async_synchronize_full();
1494         if (!error)
1495                 error = async_error;
1496
1497         if (error) {
1498                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1499                 dpm_resume_early(resume_event(state));
1500         }
1501         dpm_show_time(starttime, state, error, "late");
1502         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1503         return error;
1504 }
1505
1506 /**
1507  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1508  * @state: PM transition of the system being carried out.
1509  */
1510 int dpm_suspend_end(pm_message_t state)
1511 {
1512         ktime_t starttime = ktime_get();
1513         int error;
1514
1515         error = dpm_suspend_late(state);
1516         if (error)
1517                 goto out;
1518
1519         error = dpm_suspend_noirq(state);
1520         if (error)
1521                 dpm_resume_early(resume_event(state));
1522
1523 out:
1524         dpm_show_time(starttime, state, error, "end");
1525         return error;
1526 }
1527 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1528
1529 /**
1530  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1531  * @dev: Device to suspend.
1532  * @state: PM transition of the system being carried out.
1533  * @cb: Suspend callback to execute.
1534  * @info: string description of caller.
1535  */
1536 static int legacy_suspend(struct device *dev, pm_message_t state,
1537                           int (*cb)(struct device *dev, pm_message_t state),
1538                           const char *info)
1539 {
1540         int error;
1541         ktime_t calltime;
1542
1543         calltime = initcall_debug_start(dev, cb);
1544
1545         trace_device_pm_callback_start(dev, info, state.event);
1546         error = cb(dev, state);
1547         trace_device_pm_callback_end(dev, error);
1548         suspend_report_result(dev, cb, error);
1549
1550         initcall_debug_report(dev, calltime, cb, error);
1551
1552         return error;
1553 }
1554
1555 static void dpm_clear_superiors_direct_complete(struct device *dev)
1556 {
1557         struct device_link *link;
1558         int idx;
1559
1560         if (dev->parent) {
1561                 spin_lock_irq(&dev->parent->power.lock);
1562                 dev->parent->power.direct_complete = false;
1563                 spin_unlock_irq(&dev->parent->power.lock);
1564         }
1565
1566         idx = device_links_read_lock();
1567
1568         list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1569                 spin_lock_irq(&link->supplier->power.lock);
1570                 link->supplier->power.direct_complete = false;
1571                 spin_unlock_irq(&link->supplier->power.lock);
1572         }
1573
1574         device_links_read_unlock(idx);
1575 }
1576
1577 /**
1578  * device_suspend - Execute "suspend" callbacks for given device.
1579  * @dev: Device to handle.
1580  * @state: PM transition of the system being carried out.
1581  * @async: If true, the device is being suspended asynchronously.
1582  */
1583 static int device_suspend(struct device *dev, pm_message_t state, bool async)
1584 {
1585         pm_callback_t callback = NULL;
1586         const char *info = NULL;
1587         int error = 0;
1588         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1589
1590         TRACE_DEVICE(dev);
1591         TRACE_SUSPEND(0);
1592
1593         dpm_wait_for_subordinate(dev, async);
1594
1595         if (async_error) {
1596                 dev->power.direct_complete = false;
1597                 goto Complete;
1598         }
1599
1600         /*
1601          * Wait for possible runtime PM transitions of the device in progress
1602          * to complete and if there's a runtime resume request pending for it,
1603          * resume it before proceeding with invoking the system-wide suspend
1604          * callbacks for it.
1605          *
1606          * If the system-wide suspend callbacks below change the configuration
1607          * of the device, they must disable runtime PM for it or otherwise
1608          * ensure that its runtime-resume callbacks will not be confused by that
1609          * change in case they are invoked going forward.
1610          */
1611         pm_runtime_barrier(dev);
1612
1613         if (pm_wakeup_pending()) {
1614                 dev->power.direct_complete = false;
1615                 async_error = -EBUSY;
1616                 goto Complete;
1617         }
1618
1619         if (dev->power.syscore)
1620                 goto Complete;
1621
1622         /* Avoid direct_complete to let wakeup_path propagate. */
1623         if (device_may_wakeup(dev) || device_wakeup_path(dev))
1624                 dev->power.direct_complete = false;
1625
1626         if (dev->power.direct_complete) {
1627                 if (pm_runtime_status_suspended(dev)) {
1628                         pm_runtime_disable(dev);
1629                         if (pm_runtime_status_suspended(dev)) {
1630                                 pm_dev_dbg(dev, state, "direct-complete ");
1631                                 goto Complete;
1632                         }
1633
1634                         pm_runtime_enable(dev);
1635                 }
1636                 dev->power.direct_complete = false;
1637         }
1638
1639         dev->power.may_skip_resume = true;
1640         dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1641
1642         dpm_watchdog_set(&wd, dev);
1643         device_lock(dev);
1644
1645         if (dev->pm_domain) {
1646                 info = "power domain ";
1647                 callback = pm_op(&dev->pm_domain->ops, state);
1648                 goto Run;
1649         }
1650
1651         if (dev->type && dev->type->pm) {
1652                 info = "type ";
1653                 callback = pm_op(dev->type->pm, state);
1654                 goto Run;
1655         }
1656
1657         if (dev->class && dev->class->pm) {
1658                 info = "class ";
1659                 callback = pm_op(dev->class->pm, state);
1660                 goto Run;
1661         }
1662
1663         if (dev->bus) {
1664                 if (dev->bus->pm) {
1665                         info = "bus ";
1666                         callback = pm_op(dev->bus->pm, state);
1667                 } else if (dev->bus->suspend) {
1668                         pm_dev_dbg(dev, state, "legacy bus ");
1669                         error = legacy_suspend(dev, state, dev->bus->suspend,
1670                                                 "legacy bus ");
1671                         goto End;
1672                 }
1673         }
1674
1675  Run:
1676         if (!callback && dev->driver && dev->driver->pm) {
1677                 info = "driver ";
1678                 callback = pm_op(dev->driver->pm, state);
1679         }
1680
1681         error = dpm_run_callback(callback, dev, state, info);
1682
1683  End:
1684         if (!error) {
1685                 dev->power.is_suspended = true;
1686                 if (device_may_wakeup(dev))
1687                         dev->power.wakeup_path = true;
1688
1689                 dpm_propagate_wakeup_to_parent(dev);
1690                 dpm_clear_superiors_direct_complete(dev);
1691         }
1692
1693         device_unlock(dev);
1694         dpm_watchdog_clear(&wd);
1695
1696  Complete:
1697         if (error) {
1698                 async_error = error;
1699                 dpm_save_failed_dev(dev_name(dev));
1700                 pm_dev_err(dev, state, async ? " async" : "", error);
1701         }
1702
1703         complete_all(&dev->power.completion);
1704         TRACE_SUSPEND(error);
1705         return error;
1706 }
1707
1708 static void async_suspend(void *data, async_cookie_t cookie)
1709 {
1710         struct device *dev = data;
1711
1712         device_suspend(dev, pm_transition, true);
1713         put_device(dev);
1714 }
1715
1716 /**
1717  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1718  * @state: PM transition of the system being carried out.
1719  */
1720 int dpm_suspend(pm_message_t state)
1721 {
1722         ktime_t starttime = ktime_get();
1723         int error = 0;
1724
1725         trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1726         might_sleep();
1727
1728         devfreq_suspend();
1729         cpufreq_suspend();
1730
1731         pm_transition = state;
1732         async_error = 0;
1733
1734         mutex_lock(&dpm_list_mtx);
1735
1736         while (!list_empty(&dpm_prepared_list)) {
1737                 struct device *dev = to_device(dpm_prepared_list.prev);
1738
1739                 list_move(&dev->power.entry, &dpm_suspended_list);
1740
1741                 if (dpm_async_fn(dev, async_suspend))
1742                         continue;
1743
1744                 get_device(dev);
1745
1746                 mutex_unlock(&dpm_list_mtx);
1747
1748                 error = device_suspend(dev, state, false);
1749
1750                 put_device(dev);
1751
1752                 mutex_lock(&dpm_list_mtx);
1753
1754                 if (error || async_error)
1755                         break;
1756         }
1757
1758         mutex_unlock(&dpm_list_mtx);
1759
1760         async_synchronize_full();
1761         if (!error)
1762                 error = async_error;
1763
1764         if (error)
1765                 dpm_save_failed_step(SUSPEND_SUSPEND);
1766
1767         dpm_show_time(starttime, state, error, NULL);
1768         trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1769         return error;
1770 }
1771
1772 /**
1773  * device_prepare - Prepare a device for system power transition.
1774  * @dev: Device to handle.
1775  * @state: PM transition of the system being carried out.
1776  *
1777  * Execute the ->prepare() callback(s) for given device.  No new children of the
1778  * device may be registered after this function has returned.
1779  */
1780 static int device_prepare(struct device *dev, pm_message_t state)
1781 {
1782         int (*callback)(struct device *) = NULL;
1783         int ret = 0;
1784
1785         /*
1786          * If a device's parent goes into runtime suspend at the wrong time,
1787          * it won't be possible to resume the device.  To prevent this we
1788          * block runtime suspend here, during the prepare phase, and allow
1789          * it again during the complete phase.
1790          */
1791         pm_runtime_get_noresume(dev);
1792
1793         if (dev->power.syscore)
1794                 return 0;
1795
1796         device_lock(dev);
1797
1798         dev->power.wakeup_path = false;
1799
1800         if (dev->power.no_pm_callbacks)
1801                 goto unlock;
1802
1803         if (dev->pm_domain)
1804                 callback = dev->pm_domain->ops.prepare;
1805         else if (dev->type && dev->type->pm)
1806                 callback = dev->type->pm->prepare;
1807         else if (dev->class && dev->class->pm)
1808                 callback = dev->class->pm->prepare;
1809         else if (dev->bus && dev->bus->pm)
1810                 callback = dev->bus->pm->prepare;
1811
1812         if (!callback && dev->driver && dev->driver->pm)
1813                 callback = dev->driver->pm->prepare;
1814
1815         if (callback)
1816                 ret = callback(dev);
1817
1818 unlock:
1819         device_unlock(dev);
1820
1821         if (ret < 0) {
1822                 suspend_report_result(dev, callback, ret);
1823                 pm_runtime_put(dev);
1824                 return ret;
1825         }
1826         /*
1827          * A positive return value from ->prepare() means "this device appears
1828          * to be runtime-suspended and its state is fine, so if it really is
1829          * runtime-suspended, you can leave it in that state provided that you
1830          * will do the same thing with all of its descendants".  This only
1831          * applies to suspend transitions, however.
1832          */
1833         spin_lock_irq(&dev->power.lock);
1834         dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1835                 (ret > 0 || dev->power.no_pm_callbacks) &&
1836                 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1837         spin_unlock_irq(&dev->power.lock);
1838         return 0;
1839 }
1840
1841 /**
1842  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1843  * @state: PM transition of the system being carried out.
1844  *
1845  * Execute the ->prepare() callback(s) for all devices.
1846  */
1847 int dpm_prepare(pm_message_t state)
1848 {
1849         int error = 0;
1850
1851         trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1852         might_sleep();
1853
1854         /*
1855          * Give a chance for the known devices to complete their probes, before
1856          * disable probing of devices. This sync point is important at least
1857          * at boot time + hibernation restore.
1858          */
1859         wait_for_device_probe();
1860         /*
1861          * It is unsafe if probing of devices will happen during suspend or
1862          * hibernation and system behavior will be unpredictable in this case.
1863          * So, let's prohibit device's probing here and defer their probes
1864          * instead. The normal behavior will be restored in dpm_complete().
1865          */
1866         device_block_probing();
1867
1868         mutex_lock(&dpm_list_mtx);
1869         while (!list_empty(&dpm_list) && !error) {
1870                 struct device *dev = to_device(dpm_list.next);
1871
1872                 get_device(dev);
1873
1874                 mutex_unlock(&dpm_list_mtx);
1875
1876                 trace_device_pm_callback_start(dev, "", state.event);
1877                 error = device_prepare(dev, state);
1878                 trace_device_pm_callback_end(dev, error);
1879
1880                 mutex_lock(&dpm_list_mtx);
1881
1882                 if (!error) {
1883                         dev->power.is_prepared = true;
1884                         if (!list_empty(&dev->power.entry))
1885                                 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1886                 } else if (error == -EAGAIN) {
1887                         error = 0;
1888                 } else {
1889                         dev_info(dev, "not prepared for power transition: code %d\n",
1890                                  error);
1891                 }
1892
1893                 mutex_unlock(&dpm_list_mtx);
1894
1895                 put_device(dev);
1896
1897                 mutex_lock(&dpm_list_mtx);
1898         }
1899         mutex_unlock(&dpm_list_mtx);
1900         trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1901         return error;
1902 }
1903
1904 /**
1905  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1906  * @state: PM transition of the system being carried out.
1907  *
1908  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1909  * callbacks for them.
1910  */
1911 int dpm_suspend_start(pm_message_t state)
1912 {
1913         ktime_t starttime = ktime_get();
1914         int error;
1915
1916         error = dpm_prepare(state);
1917         if (error)
1918                 dpm_save_failed_step(SUSPEND_PREPARE);
1919         else
1920                 error = dpm_suspend(state);
1921
1922         dpm_show_time(starttime, state, error, "start");
1923         return error;
1924 }
1925 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1926
1927 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1928 {
1929         if (ret)
1930                 dev_err(dev, "%s(): %ps returns %d\n", function, fn, ret);
1931 }
1932 EXPORT_SYMBOL_GPL(__suspend_report_result);
1933
1934 /**
1935  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1936  * @subordinate: Device that needs to wait for @dev.
1937  * @dev: Device to wait for.
1938  */
1939 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1940 {
1941         dpm_wait(dev, subordinate->power.async_suspend);
1942         return async_error;
1943 }
1944 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1945
1946 /**
1947  * dpm_for_each_dev - device iterator.
1948  * @data: data for the callback.
1949  * @fn: function to be called for each device.
1950  *
1951  * Iterate over devices in dpm_list, and call @fn for each device,
1952  * passing it @data.
1953  */
1954 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1955 {
1956         struct device *dev;
1957
1958         if (!fn)
1959                 return;
1960
1961         device_pm_lock();
1962         list_for_each_entry(dev, &dpm_list, power.entry)
1963                 fn(dev, data);
1964         device_pm_unlock();
1965 }
1966 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1967
1968 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1969 {
1970         if (!ops)
1971                 return true;
1972
1973         return !ops->prepare &&
1974                !ops->suspend &&
1975                !ops->suspend_late &&
1976                !ops->suspend_noirq &&
1977                !ops->resume_noirq &&
1978                !ops->resume_early &&
1979                !ops->resume &&
1980                !ops->complete;
1981 }
1982
1983 void device_pm_check_callbacks(struct device *dev)
1984 {
1985         unsigned long flags;
1986
1987         spin_lock_irqsave(&dev->power.lock, flags);
1988         dev->power.no_pm_callbacks =
1989                 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1990                  !dev->bus->suspend && !dev->bus->resume)) &&
1991                 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1992                 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1993                 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1994                 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1995                  !dev->driver->suspend && !dev->driver->resume));
1996         spin_unlock_irqrestore(&dev->power.lock, flags);
1997 }
1998
1999 bool dev_pm_skip_suspend(struct device *dev)
2000 {
2001         return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2002                 pm_runtime_status_suspended(dev);
2003 }
This page took 0.157299 seconds and 4 git commands to generate.