]> Git Repo - linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <[email protected]>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <[email protected]>
8  *    Alexander Graf <[email protected]>
9  *    Kevin Wolf <[email protected]>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <[email protected]>.
16  */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 #include <linux/irqdomain.h>
46 #include <linux/smp.h>
47
48 #include <asm/ftrace.h>
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/archrandom.h>
53 #include <asm/debug.h>
54 #include <asm/disassemble.h>
55 #include <asm/cputable.h>
56 #include <asm/cacheflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/interrupt.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/pmc.h>
65 #include <asm/processor.h>
66 #include <asm/cputhreads.h>
67 #include <asm/page.h>
68 #include <asm/hvcall.h>
69 #include <asm/switch_to.h>
70 #include <asm/smp.h>
71 #include <asm/dbell.h>
72 #include <asm/hmi.h>
73 #include <asm/pnv-pci.h>
74 #include <asm/mmu.h>
75 #include <asm/opal.h>
76 #include <asm/xics.h>
77 #include <asm/xive.h>
78 #include <asm/hw_breakpoint.h>
79 #include <asm/kvm_book3s_uvmem.h>
80 #include <asm/ultravisor.h>
81 #include <asm/dtl.h>
82 #include <asm/plpar_wrappers.h>
83
84 #include <trace/events/ipi.h>
85
86 #include "book3s.h"
87 #include "book3s_hv.h"
88
89 #define CREATE_TRACE_POINTS
90 #include "trace_hv.h"
91
92 /* #define EXIT_DEBUG */
93 /* #define EXIT_DEBUG_SIMPLE */
94 /* #define EXIT_DEBUG_INT */
95
96 /* Used to indicate that a guest page fault needs to be handled */
97 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
98 /* Used to indicate that a guest passthrough interrupt needs to be handled */
99 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
100
101 /* Used as a "null" value for timebase values */
102 #define TB_NIL  (~(u64)0)
103
104 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105
106 static int dynamic_mt_modes = 6;
107 module_param(dynamic_mt_modes, int, 0644);
108 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109 static int target_smt_mode;
110 module_param(target_smt_mode, int, 0644);
111 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112
113 static bool one_vm_per_core;
114 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116
117 #ifdef CONFIG_KVM_XICS
118 static const struct kernel_param_ops module_param_ops = {
119         .set = param_set_int,
120         .get = param_get_int,
121 };
122
123 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125
126 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128 #endif
129
130 /* If set, guests are allowed to create and control nested guests */
131 static bool nested = true;
132 module_param(nested, bool, S_IRUGO | S_IWUSR);
133 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134
135 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137 /*
138  * RWMR values for POWER8.  These control the rate at which PURR
139  * and SPURR count and should be set according to the number of
140  * online threads in the vcore being run.
141  */
142 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
143 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
144 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
145 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
146 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
148 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
150
151 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152         RWMR_RPA_P8_1THREAD,
153         RWMR_RPA_P8_1THREAD,
154         RWMR_RPA_P8_2THREAD,
155         RWMR_RPA_P8_3THREAD,
156         RWMR_RPA_P8_4THREAD,
157         RWMR_RPA_P8_5THREAD,
158         RWMR_RPA_P8_6THREAD,
159         RWMR_RPA_P8_7THREAD,
160         RWMR_RPA_P8_8THREAD,
161 };
162
163 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164                 int *ip)
165 {
166         int i = *ip;
167         struct kvm_vcpu *vcpu;
168
169         while (++i < MAX_SMT_THREADS) {
170                 vcpu = READ_ONCE(vc->runnable_threads[i]);
171                 if (vcpu) {
172                         *ip = i;
173                         return vcpu;
174                 }
175         }
176         return NULL;
177 }
178
179 /* Used to traverse the list of runnable threads for a given vcore */
180 #define for_each_runnable_thread(i, vcpu, vc) \
181         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
183 static bool kvmppc_ipi_thread(int cpu)
184 {
185         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188         if (kvmhv_on_pseries())
189                 return false;
190
191         /* On POWER9 we can use msgsnd to IPI any cpu */
192         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193                 msg |= get_hard_smp_processor_id(cpu);
194                 smp_mb();
195                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196                 return true;
197         }
198
199         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
200         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201                 preempt_disable();
202                 if (cpu_first_thread_sibling(cpu) ==
203                     cpu_first_thread_sibling(smp_processor_id())) {
204                         msg |= cpu_thread_in_core(cpu);
205                         smp_mb();
206                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207                         preempt_enable();
208                         return true;
209                 }
210                 preempt_enable();
211         }
212
213 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214         if (cpu >= 0 && cpu < nr_cpu_ids) {
215                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216                         xics_wake_cpu(cpu);
217                         return true;
218                 }
219                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220                 return true;
221         }
222 #endif
223
224         return false;
225 }
226
227 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228 {
229         int cpu;
230         struct rcuwait *waitp;
231
232         /*
233          * rcuwait_wake_up contains smp_mb() which orders prior stores that
234          * create pending work vs below loads of cpu fields. The other side
235          * is the barrier in vcpu run that orders setting the cpu fields vs
236          * testing for pending work.
237          */
238
239         waitp = kvm_arch_vcpu_get_wait(vcpu);
240         if (rcuwait_wake_up(waitp))
241                 ++vcpu->stat.generic.halt_wakeup;
242
243         cpu = READ_ONCE(vcpu->arch.thread_cpu);
244         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245                 return;
246
247         /* CPU points to the first thread of the core */
248         cpu = vcpu->cpu;
249         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250                 smp_send_reschedule(cpu);
251 }
252
253 /*
254  * We use the vcpu_load/put functions to measure stolen time.
255  *
256  * Stolen time is counted as time when either the vcpu is able to
257  * run as part of a virtual core, but the task running the vcore
258  * is preempted or sleeping, or when the vcpu needs something done
259  * in the kernel by the task running the vcpu, but that task is
260  * preempted or sleeping.  Those two things have to be counted
261  * separately, since one of the vcpu tasks will take on the job
262  * of running the core, and the other vcpu tasks in the vcore will
263  * sleep waiting for it to do that, but that sleep shouldn't count
264  * as stolen time.
265  *
266  * Hence we accumulate stolen time when the vcpu can run as part of
267  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268  * needs its task to do other things in the kernel (for example,
269  * service a page fault) in busy_stolen.  We don't accumulate
270  * stolen time for a vcore when it is inactive, or for a vcpu
271  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
272  * a misnomer; it means that the vcpu task is not executing in
273  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274  * the kernel.  We don't have any way of dividing up that time
275  * between time that the vcpu is genuinely stopped, time that
276  * the task is actively working on behalf of the vcpu, and time
277  * that the task is preempted, so we don't count any of it as
278  * stolen.
279  *
280  * Updates to busy_stolen are protected by arch.tbacct_lock;
281  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282  * lock.  The stolen times are measured in units of timebase ticks.
283  * (Note that the != TB_NIL checks below are purely defensive;
284  * they should never fail.)
285  *
286  * The POWER9 path is simpler, one vcpu per virtual core so the
287  * former case does not exist. If a vcpu is preempted when it is
288  * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289  * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290  * state in the P9 path.
291  */
292
293 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294 {
295         unsigned long flags;
296
297         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298
299         spin_lock_irqsave(&vc->stoltb_lock, flags);
300         vc->preempt_tb = tb;
301         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
304 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305 {
306         unsigned long flags;
307
308         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309
310         spin_lock_irqsave(&vc->stoltb_lock, flags);
311         if (vc->preempt_tb != TB_NIL) {
312                 vc->stolen_tb += tb - vc->preempt_tb;
313                 vc->preempt_tb = TB_NIL;
314         }
315         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316 }
317
318 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319 {
320         struct kvmppc_vcore *vc = vcpu->arch.vcore;
321         unsigned long flags;
322         u64 now;
323
324         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325                 if (vcpu->arch.busy_preempt != TB_NIL) {
326                         WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327                         vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328                         vcpu->arch.busy_preempt = TB_NIL;
329                 }
330                 return;
331         }
332
333         now = mftb();
334
335         /*
336          * We can test vc->runner without taking the vcore lock,
337          * because only this task ever sets vc->runner to this
338          * vcpu, and once it is set to this vcpu, only this task
339          * ever sets it to NULL.
340          */
341         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342                 kvmppc_core_end_stolen(vc, now);
343
344         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346             vcpu->arch.busy_preempt != TB_NIL) {
347                 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348                 vcpu->arch.busy_preempt = TB_NIL;
349         }
350         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351 }
352
353 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354 {
355         struct kvmppc_vcore *vc = vcpu->arch.vcore;
356         unsigned long flags;
357         u64 now;
358
359         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360                 /*
361                  * In the P9 path, RUNNABLE is not preemptible
362                  * (nor takes host interrupts)
363                  */
364                 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365                 /*
366                  * Account stolen time when preempted while the vcpu task is
367                  * running in the kernel (but not in qemu, which is INACTIVE).
368                  */
369                 if (task_is_running(current) &&
370                                 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371                         vcpu->arch.busy_preempt = mftb();
372                 return;
373         }
374
375         now = mftb();
376
377         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378                 kvmppc_core_start_stolen(vc, now);
379
380         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382                 vcpu->arch.busy_preempt = now;
383         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384 }
385
386 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387 {
388         vcpu->arch.pvr = pvr;
389 }
390
391 /* Dummy value used in computing PCR value below */
392 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
393
394 static inline unsigned long map_pcr_to_cap(unsigned long pcr)
395 {
396         unsigned long cap = 0;
397
398         switch (pcr) {
399         case PCR_ARCH_300:
400                 cap = H_GUEST_CAP_POWER9;
401                 break;
402         case PCR_ARCH_31:
403                 cap = H_GUEST_CAP_POWER10;
404                 break;
405         default:
406                 break;
407         }
408
409         return cap;
410 }
411
412 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
413 {
414         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0, cap = 0;
415         struct kvmppc_vcore *vc = vcpu->arch.vcore;
416
417         /* We can (emulate) our own architecture version and anything older */
418         if (cpu_has_feature(CPU_FTR_ARCH_31))
419                 host_pcr_bit = PCR_ARCH_31;
420         else if (cpu_has_feature(CPU_FTR_ARCH_300))
421                 host_pcr_bit = PCR_ARCH_300;
422         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
423                 host_pcr_bit = PCR_ARCH_207;
424         else if (cpu_has_feature(CPU_FTR_ARCH_206))
425                 host_pcr_bit = PCR_ARCH_206;
426         else
427                 host_pcr_bit = PCR_ARCH_205;
428
429         /* Determine lowest PCR bit needed to run guest in given PVR level */
430         guest_pcr_bit = host_pcr_bit;
431         if (arch_compat) {
432                 switch (arch_compat) {
433                 case PVR_ARCH_205:
434                         guest_pcr_bit = PCR_ARCH_205;
435                         break;
436                 case PVR_ARCH_206:
437                 case PVR_ARCH_206p:
438                         guest_pcr_bit = PCR_ARCH_206;
439                         break;
440                 case PVR_ARCH_207:
441                         guest_pcr_bit = PCR_ARCH_207;
442                         break;
443                 case PVR_ARCH_300:
444                         guest_pcr_bit = PCR_ARCH_300;
445                         break;
446                 case PVR_ARCH_31:
447                 case PVR_ARCH_31_P11:
448                         guest_pcr_bit = PCR_ARCH_31;
449                         break;
450                 default:
451                         return -EINVAL;
452                 }
453         }
454
455         /* Check requested PCR bits don't exceed our capabilities */
456         if (guest_pcr_bit > host_pcr_bit)
457                 return -EINVAL;
458
459         if (kvmhv_on_pseries() && kvmhv_is_nestedv2()) {
460                 /*
461                  * 'arch_compat == 0' would mean the guest should default to
462                  * L1's compatibility. In this case, the guest would pick
463                  * host's PCR and evaluate the corresponding capabilities.
464                  */
465                 cap = map_pcr_to_cap(guest_pcr_bit);
466                 if (!(cap & nested_capabilities))
467                         return -EINVAL;
468         }
469
470         spin_lock(&vc->lock);
471         vc->arch_compat = arch_compat;
472         kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LOGICAL_PVR);
473         /*
474          * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
475          * Also set all reserved PCR bits
476          */
477         vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
478         spin_unlock(&vc->lock);
479
480         return 0;
481 }
482
483 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
484 {
485         int r;
486
487         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
488         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
489                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
490         for (r = 0; r < 16; ++r)
491                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
492                        r, kvmppc_get_gpr(vcpu, r),
493                        r+16, kvmppc_get_gpr(vcpu, r+16));
494         pr_err("ctr = %.16lx  lr  = %.16lx\n",
495                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
496         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
497                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
498         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
499                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
500         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
501                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
502         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
503                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
504         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
505         pr_err("fault dar = %.16lx dsisr = %.8x\n",
506                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
507         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
508         for (r = 0; r < vcpu->arch.slb_max; ++r)
509                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
510                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
511         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
512                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
513                vcpu->arch.last_inst);
514 }
515
516 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
517 {
518         return kvm_get_vcpu_by_id(kvm, id);
519 }
520
521 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
522 {
523         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
524         vpa->yield_count = cpu_to_be32(1);
525 }
526
527 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
528                    unsigned long addr, unsigned long len)
529 {
530         /* check address is cacheline aligned */
531         if (addr & (L1_CACHE_BYTES - 1))
532                 return -EINVAL;
533         spin_lock(&vcpu->arch.vpa_update_lock);
534         if (v->next_gpa != addr || v->len != len) {
535                 v->next_gpa = addr;
536                 v->len = addr ? len : 0;
537                 v->update_pending = 1;
538         }
539         spin_unlock(&vcpu->arch.vpa_update_lock);
540         return 0;
541 }
542
543 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
544 struct reg_vpa {
545         u32 dummy;
546         union {
547                 __be16 hword;
548                 __be32 word;
549         } length;
550 };
551
552 static int vpa_is_registered(struct kvmppc_vpa *vpap)
553 {
554         if (vpap->update_pending)
555                 return vpap->next_gpa != 0;
556         return vpap->pinned_addr != NULL;
557 }
558
559 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
560                                        unsigned long flags,
561                                        unsigned long vcpuid, unsigned long vpa)
562 {
563         struct kvm *kvm = vcpu->kvm;
564         unsigned long len, nb;
565         void *va;
566         struct kvm_vcpu *tvcpu;
567         int err;
568         int subfunc;
569         struct kvmppc_vpa *vpap;
570
571         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
572         if (!tvcpu)
573                 return H_PARAMETER;
574
575         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
576         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
577             subfunc == H_VPA_REG_SLB) {
578                 /* Registering new area - address must be cache-line aligned */
579                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
580                         return H_PARAMETER;
581
582                 /* convert logical addr to kernel addr and read length */
583                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
584                 if (va == NULL)
585                         return H_PARAMETER;
586                 if (subfunc == H_VPA_REG_VPA)
587                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
588                 else
589                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
590                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
591
592                 /* Check length */
593                 if (len > nb || len < sizeof(struct reg_vpa))
594                         return H_PARAMETER;
595         } else {
596                 vpa = 0;
597                 len = 0;
598         }
599
600         err = H_PARAMETER;
601         vpap = NULL;
602         spin_lock(&tvcpu->arch.vpa_update_lock);
603
604         switch (subfunc) {
605         case H_VPA_REG_VPA:             /* register VPA */
606                 /*
607                  * The size of our lppaca is 1kB because of the way we align
608                  * it for the guest to avoid crossing a 4kB boundary. We only
609                  * use 640 bytes of the structure though, so we should accept
610                  * clients that set a size of 640.
611                  */
612                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
613                 if (len < sizeof(struct lppaca))
614                         break;
615                 vpap = &tvcpu->arch.vpa;
616                 err = 0;
617                 break;
618
619         case H_VPA_REG_DTL:             /* register DTL */
620                 if (len < sizeof(struct dtl_entry))
621                         break;
622                 len -= len % sizeof(struct dtl_entry);
623
624                 /* Check that they have previously registered a VPA */
625                 err = H_RESOURCE;
626                 if (!vpa_is_registered(&tvcpu->arch.vpa))
627                         break;
628
629                 vpap = &tvcpu->arch.dtl;
630                 err = 0;
631                 break;
632
633         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
634                 /* Check that they have previously registered a VPA */
635                 err = H_RESOURCE;
636                 if (!vpa_is_registered(&tvcpu->arch.vpa))
637                         break;
638
639                 vpap = &tvcpu->arch.slb_shadow;
640                 err = 0;
641                 break;
642
643         case H_VPA_DEREG_VPA:           /* deregister VPA */
644                 /* Check they don't still have a DTL or SLB buf registered */
645                 err = H_RESOURCE;
646                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
647                     vpa_is_registered(&tvcpu->arch.slb_shadow))
648                         break;
649
650                 vpap = &tvcpu->arch.vpa;
651                 err = 0;
652                 break;
653
654         case H_VPA_DEREG_DTL:           /* deregister DTL */
655                 vpap = &tvcpu->arch.dtl;
656                 err = 0;
657                 break;
658
659         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
660                 vpap = &tvcpu->arch.slb_shadow;
661                 err = 0;
662                 break;
663         }
664
665         if (vpap) {
666                 vpap->next_gpa = vpa;
667                 vpap->len = len;
668                 vpap->update_pending = 1;
669         }
670
671         spin_unlock(&tvcpu->arch.vpa_update_lock);
672
673         return err;
674 }
675
676 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap,
677                                struct kvmppc_vpa *old_vpap)
678 {
679         struct kvm *kvm = vcpu->kvm;
680         void *va;
681         unsigned long nb;
682         unsigned long gpa;
683
684         /*
685          * We need to pin the page pointed to by vpap->next_gpa,
686          * but we can't call kvmppc_pin_guest_page under the lock
687          * as it does get_user_pages() and down_read().  So we
688          * have to drop the lock, pin the page, then get the lock
689          * again and check that a new area didn't get registered
690          * in the meantime.
691          */
692         for (;;) {
693                 gpa = vpap->next_gpa;
694                 spin_unlock(&vcpu->arch.vpa_update_lock);
695                 va = NULL;
696                 nb = 0;
697                 if (gpa)
698                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
699                 spin_lock(&vcpu->arch.vpa_update_lock);
700                 if (gpa == vpap->next_gpa)
701                         break;
702                 /* sigh... unpin that one and try again */
703                 if (va)
704                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
705         }
706
707         vpap->update_pending = 0;
708         if (va && nb < vpap->len) {
709                 /*
710                  * If it's now too short, it must be that userspace
711                  * has changed the mappings underlying guest memory,
712                  * so unregister the region.
713                  */
714                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
715                 va = NULL;
716         }
717         *old_vpap = *vpap;
718
719         vpap->gpa = gpa;
720         vpap->pinned_addr = va;
721         vpap->dirty = false;
722         if (va)
723                 vpap->pinned_end = va + vpap->len;
724 }
725
726 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
727 {
728         struct kvm *kvm = vcpu->kvm;
729         struct kvmppc_vpa old_vpa = { 0 };
730
731         if (!(vcpu->arch.vpa.update_pending ||
732               vcpu->arch.slb_shadow.update_pending ||
733               vcpu->arch.dtl.update_pending))
734                 return;
735
736         spin_lock(&vcpu->arch.vpa_update_lock);
737         if (vcpu->arch.vpa.update_pending) {
738                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa, &old_vpa);
739                 if (old_vpa.pinned_addr) {
740                         if (kvmhv_is_nestedv2())
741                                 kvmhv_nestedv2_set_vpa(vcpu, ~0ull);
742                         kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
743                                                 old_vpa.dirty);
744                 }
745                 if (vcpu->arch.vpa.pinned_addr) {
746                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
747                         if (kvmhv_is_nestedv2())
748                                 kvmhv_nestedv2_set_vpa(vcpu, __pa(vcpu->arch.vpa.pinned_addr));
749                 }
750         }
751         if (vcpu->arch.dtl.update_pending) {
752                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl, &old_vpa);
753                 if (old_vpa.pinned_addr)
754                         kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
755                                                 old_vpa.dirty);
756                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
757                 vcpu->arch.dtl_index = 0;
758         }
759         if (vcpu->arch.slb_shadow.update_pending) {
760                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow, &old_vpa);
761                 if (old_vpa.pinned_addr)
762                         kvmppc_unpin_guest_page(kvm, old_vpa.pinned_addr, old_vpa.gpa,
763                                                 old_vpa.dirty);
764         }
765
766         spin_unlock(&vcpu->arch.vpa_update_lock);
767 }
768
769 /*
770  * Return the accumulated stolen time for the vcore up until `now'.
771  * The caller should hold the vcore lock.
772  */
773 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
774 {
775         u64 p;
776         unsigned long flags;
777
778         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
779
780         spin_lock_irqsave(&vc->stoltb_lock, flags);
781         p = vc->stolen_tb;
782         if (vc->vcore_state != VCORE_INACTIVE &&
783             vc->preempt_tb != TB_NIL)
784                 p += now - vc->preempt_tb;
785         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
786         return p;
787 }
788
789 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
790                                         struct lppaca *vpa,
791                                         unsigned int pcpu, u64 now,
792                                         unsigned long stolen)
793 {
794         struct dtl_entry *dt;
795
796         dt = vcpu->arch.dtl_ptr;
797
798         if (!dt)
799                 return;
800
801         dt->dispatch_reason = 7;
802         dt->preempt_reason = 0;
803         dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
804         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
805         dt->ready_to_enqueue_time = 0;
806         dt->waiting_to_ready_time = 0;
807         dt->timebase = cpu_to_be64(now);
808         dt->fault_addr = 0;
809         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
810         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
811
812         ++dt;
813         if (dt == vcpu->arch.dtl.pinned_end)
814                 dt = vcpu->arch.dtl.pinned_addr;
815         vcpu->arch.dtl_ptr = dt;
816         /* order writing *dt vs. writing vpa->dtl_idx */
817         smp_wmb();
818         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
819
820         /* vcpu->arch.dtl.dirty is set by the caller */
821 }
822
823 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
824                                        struct kvmppc_vcore *vc)
825 {
826         struct lppaca *vpa;
827         unsigned long stolen;
828         unsigned long core_stolen;
829         u64 now;
830         unsigned long flags;
831
832         vpa = vcpu->arch.vpa.pinned_addr;
833         if (!vpa)
834                 return;
835
836         now = mftb();
837
838         core_stolen = vcore_stolen_time(vc, now);
839         stolen = core_stolen - vcpu->arch.stolen_logged;
840         vcpu->arch.stolen_logged = core_stolen;
841         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
842         stolen += vcpu->arch.busy_stolen;
843         vcpu->arch.busy_stolen = 0;
844         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
845
846         vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
847
848         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + kvmppc_get_tb_offset(vcpu), stolen);
849
850         vcpu->arch.vpa.dirty = true;
851 }
852
853 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
854                                        struct kvmppc_vcore *vc,
855                                        u64 now)
856 {
857         struct lppaca *vpa;
858         unsigned long stolen;
859         unsigned long stolen_delta;
860
861         vpa = vcpu->arch.vpa.pinned_addr;
862         if (!vpa)
863                 return;
864
865         stolen = vc->stolen_tb;
866         stolen_delta = stolen - vcpu->arch.stolen_logged;
867         vcpu->arch.stolen_logged = stolen;
868
869         vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
870
871         __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
872
873         vcpu->arch.vpa.dirty = true;
874 }
875
876 /* See if there is a doorbell interrupt pending for a vcpu */
877 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
878 {
879         int thr;
880         struct kvmppc_vcore *vc;
881
882         if (vcpu->arch.doorbell_request)
883                 return true;
884         if (cpu_has_feature(CPU_FTR_ARCH_300))
885                 return false;
886         /*
887          * Ensure that the read of vcore->dpdes comes after the read
888          * of vcpu->doorbell_request.  This barrier matches the
889          * smp_wmb() in kvmppc_guest_entry_inject().
890          */
891         smp_rmb();
892         vc = vcpu->arch.vcore;
893         thr = vcpu->vcpu_id - vc->first_vcpuid;
894         return !!(vc->dpdes & (1 << thr));
895 }
896
897 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
898 {
899         if (kvmppc_get_arch_compat(vcpu) >= PVR_ARCH_207)
900                 return true;
901         if ((!kvmppc_get_arch_compat(vcpu)) &&
902             cpu_has_feature(CPU_FTR_ARCH_207S))
903                 return true;
904         return false;
905 }
906
907 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
908                              unsigned long resource, unsigned long value1,
909                              unsigned long value2)
910 {
911         switch (resource) {
912         case H_SET_MODE_RESOURCE_SET_CIABR:
913                 if (!kvmppc_power8_compatible(vcpu))
914                         return H_P2;
915                 if (value2)
916                         return H_P4;
917                 if (mflags)
918                         return H_UNSUPPORTED_FLAG_START;
919                 /* Guests can't breakpoint the hypervisor */
920                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
921                         return H_P3;
922                 kvmppc_set_ciabr_hv(vcpu, value1);
923                 return H_SUCCESS;
924         case H_SET_MODE_RESOURCE_SET_DAWR0:
925                 if (!kvmppc_power8_compatible(vcpu))
926                         return H_P2;
927                 if (!ppc_breakpoint_available())
928                         return H_P2;
929                 if (mflags)
930                         return H_UNSUPPORTED_FLAG_START;
931                 if (value2 & DABRX_HYP)
932                         return H_P4;
933                 kvmppc_set_dawr0_hv(vcpu, value1);
934                 kvmppc_set_dawrx0_hv(vcpu, value2);
935                 return H_SUCCESS;
936         case H_SET_MODE_RESOURCE_SET_DAWR1:
937                 if (!kvmppc_power8_compatible(vcpu))
938                         return H_P2;
939                 if (!ppc_breakpoint_available())
940                         return H_P2;
941                 if (!cpu_has_feature(CPU_FTR_DAWR1))
942                         return H_P2;
943                 if (!vcpu->kvm->arch.dawr1_enabled)
944                         return H_FUNCTION;
945                 if (mflags)
946                         return H_UNSUPPORTED_FLAG_START;
947                 if (value2 & DABRX_HYP)
948                         return H_P4;
949                 kvmppc_set_dawr1_hv(vcpu, value1);
950                 kvmppc_set_dawrx1_hv(vcpu, value2);
951                 return H_SUCCESS;
952         case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
953                 /*
954                  * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
955                  * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
956                  */
957                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
958                                 kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
959                         return H_UNSUPPORTED_FLAG_START;
960                 return H_TOO_HARD;
961         default:
962                 return H_TOO_HARD;
963         }
964 }
965
966 /* Copy guest memory in place - must reside within a single memslot */
967 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
968                                   unsigned long len)
969 {
970         struct kvm_memory_slot *to_memslot = NULL;
971         struct kvm_memory_slot *from_memslot = NULL;
972         unsigned long to_addr, from_addr;
973         int r;
974
975         /* Get HPA for from address */
976         from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
977         if (!from_memslot)
978                 return -EFAULT;
979         if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
980                              << PAGE_SHIFT))
981                 return -EINVAL;
982         from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
983         if (kvm_is_error_hva(from_addr))
984                 return -EFAULT;
985         from_addr |= (from & (PAGE_SIZE - 1));
986
987         /* Get HPA for to address */
988         to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
989         if (!to_memslot)
990                 return -EFAULT;
991         if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
992                            << PAGE_SHIFT))
993                 return -EINVAL;
994         to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
995         if (kvm_is_error_hva(to_addr))
996                 return -EFAULT;
997         to_addr |= (to & (PAGE_SIZE - 1));
998
999         /* Perform copy */
1000         r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
1001                              len);
1002         if (r)
1003                 return -EFAULT;
1004         mark_page_dirty(kvm, to >> PAGE_SHIFT);
1005         return 0;
1006 }
1007
1008 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1009                                unsigned long dest, unsigned long src)
1010 {
1011         u64 pg_sz = SZ_4K;              /* 4K page size */
1012         u64 pg_mask = SZ_4K - 1;
1013         int ret;
1014
1015         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1016         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1017                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1018                 return H_PARAMETER;
1019
1020         /* dest (and src if copy_page flag set) must be page aligned */
1021         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1022                 return H_PARAMETER;
1023
1024         /* zero and/or copy the page as determined by the flags */
1025         if (flags & H_COPY_PAGE) {
1026                 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
1027                 if (ret < 0)
1028                         return H_PARAMETER;
1029         } else if (flags & H_ZERO_PAGE) {
1030                 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
1031                 if (ret < 0)
1032                         return H_PARAMETER;
1033         }
1034
1035         /* We can ignore the remaining flags */
1036
1037         return H_SUCCESS;
1038 }
1039
1040 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
1041 {
1042         struct kvmppc_vcore *vcore = target->arch.vcore;
1043
1044         /*
1045          * We expect to have been called by the real mode handler
1046          * (kvmppc_rm_h_confer()) which would have directly returned
1047          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
1048          * have useful work to do and should not confer) so we don't
1049          * recheck that here.
1050          *
1051          * In the case of the P9 single vcpu per vcore case, the real
1052          * mode handler is not called but no other threads are in the
1053          * source vcore.
1054          */
1055         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1056                 spin_lock(&vcore->lock);
1057                 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1058                     vcore->vcore_state != VCORE_INACTIVE &&
1059                     vcore->runner)
1060                         target = vcore->runner;
1061                 spin_unlock(&vcore->lock);
1062         }
1063
1064         return kvm_vcpu_yield_to(target);
1065 }
1066
1067 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1068 {
1069         int yield_count = 0;
1070         struct lppaca *lppaca;
1071
1072         spin_lock(&vcpu->arch.vpa_update_lock);
1073         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1074         if (lppaca)
1075                 yield_count = be32_to_cpu(lppaca->yield_count);
1076         spin_unlock(&vcpu->arch.vpa_update_lock);
1077         return yield_count;
1078 }
1079
1080 /*
1081  * H_RPT_INVALIDATE hcall handler for nested guests.
1082  *
1083  * Handles only nested process-scoped invalidation requests in L0.
1084  */
1085 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1086 {
1087         unsigned long type = kvmppc_get_gpr(vcpu, 6);
1088         unsigned long pid, pg_sizes, start, end;
1089
1090         /*
1091          * The partition-scoped invalidations aren't handled here in L0.
1092          */
1093         if (type & H_RPTI_TYPE_NESTED)
1094                 return RESUME_HOST;
1095
1096         pid = kvmppc_get_gpr(vcpu, 4);
1097         pg_sizes = kvmppc_get_gpr(vcpu, 7);
1098         start = kvmppc_get_gpr(vcpu, 8);
1099         end = kvmppc_get_gpr(vcpu, 9);
1100
1101         do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1102                                 type, pg_sizes, start, end);
1103
1104         kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1105         return RESUME_GUEST;
1106 }
1107
1108 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1109                                     unsigned long id, unsigned long target,
1110                                     unsigned long type, unsigned long pg_sizes,
1111                                     unsigned long start, unsigned long end)
1112 {
1113         if (!kvm_is_radix(vcpu->kvm))
1114                 return H_UNSUPPORTED;
1115
1116         if (end < start)
1117                 return H_P5;
1118
1119         /*
1120          * Partition-scoped invalidation for nested guests.
1121          */
1122         if (type & H_RPTI_TYPE_NESTED) {
1123                 if (!nesting_enabled(vcpu->kvm))
1124                         return H_FUNCTION;
1125
1126                 /* Support only cores as target */
1127                 if (target != H_RPTI_TARGET_CMMU)
1128                         return H_P2;
1129
1130                 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1131                                                start, end);
1132         }
1133
1134         /*
1135          * Process-scoped invalidation for L1 guests.
1136          */
1137         do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1138                                 type, pg_sizes, start, end);
1139         return H_SUCCESS;
1140 }
1141
1142 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1143 {
1144         struct kvm *kvm = vcpu->kvm;
1145         unsigned long req = kvmppc_get_gpr(vcpu, 3);
1146         unsigned long target, ret = H_SUCCESS;
1147         int yield_count;
1148         struct kvm_vcpu *tvcpu;
1149         int idx, rc;
1150
1151         if (req <= MAX_HCALL_OPCODE &&
1152             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1153                 return RESUME_HOST;
1154
1155         switch (req) {
1156         case H_REMOVE:
1157                 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1158                                         kvmppc_get_gpr(vcpu, 5),
1159                                         kvmppc_get_gpr(vcpu, 6));
1160                 if (ret == H_TOO_HARD)
1161                         return RESUME_HOST;
1162                 break;
1163         case H_ENTER:
1164                 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1165                                         kvmppc_get_gpr(vcpu, 5),
1166                                         kvmppc_get_gpr(vcpu, 6),
1167                                         kvmppc_get_gpr(vcpu, 7));
1168                 if (ret == H_TOO_HARD)
1169                         return RESUME_HOST;
1170                 break;
1171         case H_READ:
1172                 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1173                                         kvmppc_get_gpr(vcpu, 5));
1174                 if (ret == H_TOO_HARD)
1175                         return RESUME_HOST;
1176                 break;
1177         case H_CLEAR_MOD:
1178                 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1179                                         kvmppc_get_gpr(vcpu, 5));
1180                 if (ret == H_TOO_HARD)
1181                         return RESUME_HOST;
1182                 break;
1183         case H_CLEAR_REF:
1184                 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1185                                         kvmppc_get_gpr(vcpu, 5));
1186                 if (ret == H_TOO_HARD)
1187                         return RESUME_HOST;
1188                 break;
1189         case H_PROTECT:
1190                 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1191                                         kvmppc_get_gpr(vcpu, 5),
1192                                         kvmppc_get_gpr(vcpu, 6));
1193                 if (ret == H_TOO_HARD)
1194                         return RESUME_HOST;
1195                 break;
1196         case H_BULK_REMOVE:
1197                 ret = kvmppc_h_bulk_remove(vcpu);
1198                 if (ret == H_TOO_HARD)
1199                         return RESUME_HOST;
1200                 break;
1201
1202         case H_CEDE:
1203                 break;
1204         case H_PROD:
1205                 target = kvmppc_get_gpr(vcpu, 4);
1206                 tvcpu = kvmppc_find_vcpu(kvm, target);
1207                 if (!tvcpu) {
1208                         ret = H_PARAMETER;
1209                         break;
1210                 }
1211                 tvcpu->arch.prodded = 1;
1212                 smp_mb(); /* This orders prodded store vs ceded load */
1213                 if (tvcpu->arch.ceded)
1214                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1215                 break;
1216         case H_CONFER:
1217                 target = kvmppc_get_gpr(vcpu, 4);
1218                 if (target == -1)
1219                         break;
1220                 tvcpu = kvmppc_find_vcpu(kvm, target);
1221                 if (!tvcpu) {
1222                         ret = H_PARAMETER;
1223                         break;
1224                 }
1225                 yield_count = kvmppc_get_gpr(vcpu, 5);
1226                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
1227                         break;
1228                 kvm_arch_vcpu_yield_to(tvcpu);
1229                 break;
1230         case H_REGISTER_VPA:
1231                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1232                                         kvmppc_get_gpr(vcpu, 5),
1233                                         kvmppc_get_gpr(vcpu, 6));
1234                 break;
1235         case H_RTAS:
1236                 if (list_empty(&kvm->arch.rtas_tokens))
1237                         return RESUME_HOST;
1238
1239                 idx = srcu_read_lock(&kvm->srcu);
1240                 rc = kvmppc_rtas_hcall(vcpu);
1241                 srcu_read_unlock(&kvm->srcu, idx);
1242
1243                 if (rc == -ENOENT)
1244                         return RESUME_HOST;
1245                 else if (rc == 0)
1246                         break;
1247
1248                 /* Send the error out to userspace via KVM_RUN */
1249                 return rc;
1250         case H_LOGICAL_CI_LOAD:
1251                 ret = kvmppc_h_logical_ci_load(vcpu);
1252                 if (ret == H_TOO_HARD)
1253                         return RESUME_HOST;
1254                 break;
1255         case H_LOGICAL_CI_STORE:
1256                 ret = kvmppc_h_logical_ci_store(vcpu);
1257                 if (ret == H_TOO_HARD)
1258                         return RESUME_HOST;
1259                 break;
1260         case H_SET_MODE:
1261                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1262                                         kvmppc_get_gpr(vcpu, 5),
1263                                         kvmppc_get_gpr(vcpu, 6),
1264                                         kvmppc_get_gpr(vcpu, 7));
1265                 if (ret == H_TOO_HARD)
1266                         return RESUME_HOST;
1267                 break;
1268         case H_XIRR:
1269         case H_CPPR:
1270         case H_EOI:
1271         case H_IPI:
1272         case H_IPOLL:
1273         case H_XIRR_X:
1274                 if (kvmppc_xics_enabled(vcpu)) {
1275                         if (xics_on_xive()) {
1276                                 ret = H_NOT_AVAILABLE;
1277                                 return RESUME_GUEST;
1278                         }
1279                         ret = kvmppc_xics_hcall(vcpu, req);
1280                         break;
1281                 }
1282                 return RESUME_HOST;
1283         case H_SET_DABR:
1284                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1285                 break;
1286         case H_SET_XDABR:
1287                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1288                                                 kvmppc_get_gpr(vcpu, 5));
1289                 break;
1290 #ifdef CONFIG_SPAPR_TCE_IOMMU
1291         case H_GET_TCE:
1292                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1293                                                 kvmppc_get_gpr(vcpu, 5));
1294                 if (ret == H_TOO_HARD)
1295                         return RESUME_HOST;
1296                 break;
1297         case H_PUT_TCE:
1298                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1299                                                 kvmppc_get_gpr(vcpu, 5),
1300                                                 kvmppc_get_gpr(vcpu, 6));
1301                 if (ret == H_TOO_HARD)
1302                         return RESUME_HOST;
1303                 break;
1304         case H_PUT_TCE_INDIRECT:
1305                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1306                                                 kvmppc_get_gpr(vcpu, 5),
1307                                                 kvmppc_get_gpr(vcpu, 6),
1308                                                 kvmppc_get_gpr(vcpu, 7));
1309                 if (ret == H_TOO_HARD)
1310                         return RESUME_HOST;
1311                 break;
1312         case H_STUFF_TCE:
1313                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1314                                                 kvmppc_get_gpr(vcpu, 5),
1315                                                 kvmppc_get_gpr(vcpu, 6),
1316                                                 kvmppc_get_gpr(vcpu, 7));
1317                 if (ret == H_TOO_HARD)
1318                         return RESUME_HOST;
1319                 break;
1320 #endif
1321         case H_RANDOM: {
1322                 unsigned long rand;
1323
1324                 if (!arch_get_random_seed_longs(&rand, 1))
1325                         ret = H_HARDWARE;
1326                 kvmppc_set_gpr(vcpu, 4, rand);
1327                 break;
1328         }
1329         case H_RPT_INVALIDATE:
1330                 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1331                                               kvmppc_get_gpr(vcpu, 5),
1332                                               kvmppc_get_gpr(vcpu, 6),
1333                                               kvmppc_get_gpr(vcpu, 7),
1334                                               kvmppc_get_gpr(vcpu, 8),
1335                                               kvmppc_get_gpr(vcpu, 9));
1336                 break;
1337
1338         case H_SET_PARTITION_TABLE:
1339                 ret = H_FUNCTION;
1340                 if (nesting_enabled(kvm))
1341                         ret = kvmhv_set_partition_table(vcpu);
1342                 break;
1343         case H_ENTER_NESTED:
1344                 ret = H_FUNCTION;
1345                 if (!nesting_enabled(kvm))
1346                         break;
1347                 ret = kvmhv_enter_nested_guest(vcpu);
1348                 if (ret == H_INTERRUPT) {
1349                         kvmppc_set_gpr(vcpu, 3, 0);
1350                         vcpu->arch.hcall_needed = 0;
1351                         return -EINTR;
1352                 } else if (ret == H_TOO_HARD) {
1353                         kvmppc_set_gpr(vcpu, 3, 0);
1354                         vcpu->arch.hcall_needed = 0;
1355                         return RESUME_HOST;
1356                 }
1357                 break;
1358         case H_TLB_INVALIDATE:
1359                 ret = H_FUNCTION;
1360                 if (nesting_enabled(kvm))
1361                         ret = kvmhv_do_nested_tlbie(vcpu);
1362                 break;
1363         case H_COPY_TOFROM_GUEST:
1364                 ret = H_FUNCTION;
1365                 if (nesting_enabled(kvm))
1366                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1367                 break;
1368         case H_PAGE_INIT:
1369                 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1370                                          kvmppc_get_gpr(vcpu, 5),
1371                                          kvmppc_get_gpr(vcpu, 6));
1372                 break;
1373         case H_SVM_PAGE_IN:
1374                 ret = H_UNSUPPORTED;
1375                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1376                         ret = kvmppc_h_svm_page_in(kvm,
1377                                                    kvmppc_get_gpr(vcpu, 4),
1378                                                    kvmppc_get_gpr(vcpu, 5),
1379                                                    kvmppc_get_gpr(vcpu, 6));
1380                 break;
1381         case H_SVM_PAGE_OUT:
1382                 ret = H_UNSUPPORTED;
1383                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1384                         ret = kvmppc_h_svm_page_out(kvm,
1385                                                     kvmppc_get_gpr(vcpu, 4),
1386                                                     kvmppc_get_gpr(vcpu, 5),
1387                                                     kvmppc_get_gpr(vcpu, 6));
1388                 break;
1389         case H_SVM_INIT_START:
1390                 ret = H_UNSUPPORTED;
1391                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1392                         ret = kvmppc_h_svm_init_start(kvm);
1393                 break;
1394         case H_SVM_INIT_DONE:
1395                 ret = H_UNSUPPORTED;
1396                 if (kvmppc_get_srr1(vcpu) & MSR_S)
1397                         ret = kvmppc_h_svm_init_done(kvm);
1398                 break;
1399         case H_SVM_INIT_ABORT:
1400                 /*
1401                  * Even if that call is made by the Ultravisor, the SSR1 value
1402                  * is the guest context one, with the secure bit clear as it has
1403                  * not yet been secured. So we can't check it here.
1404                  * Instead the kvm->arch.secure_guest flag is checked inside
1405                  * kvmppc_h_svm_init_abort().
1406                  */
1407                 ret = kvmppc_h_svm_init_abort(kvm);
1408                 break;
1409
1410         default:
1411                 return RESUME_HOST;
1412         }
1413         WARN_ON_ONCE(ret == H_TOO_HARD);
1414         kvmppc_set_gpr(vcpu, 3, ret);
1415         vcpu->arch.hcall_needed = 0;
1416         return RESUME_GUEST;
1417 }
1418
1419 /*
1420  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1421  * handlers in book3s_hv_rmhandlers.S.
1422  *
1423  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1424  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1425  */
1426 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1427 {
1428         __kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1429         vcpu->arch.ceded = 1;
1430         smp_mb();
1431         if (vcpu->arch.prodded) {
1432                 vcpu->arch.prodded = 0;
1433                 smp_mb();
1434                 vcpu->arch.ceded = 0;
1435         }
1436 }
1437
1438 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1439 {
1440         switch (cmd) {
1441         case H_CEDE:
1442         case H_PROD:
1443         case H_CONFER:
1444         case H_REGISTER_VPA:
1445         case H_SET_MODE:
1446 #ifdef CONFIG_SPAPR_TCE_IOMMU
1447         case H_GET_TCE:
1448         case H_PUT_TCE:
1449         case H_PUT_TCE_INDIRECT:
1450         case H_STUFF_TCE:
1451 #endif
1452         case H_LOGICAL_CI_LOAD:
1453         case H_LOGICAL_CI_STORE:
1454 #ifdef CONFIG_KVM_XICS
1455         case H_XIRR:
1456         case H_CPPR:
1457         case H_EOI:
1458         case H_IPI:
1459         case H_IPOLL:
1460         case H_XIRR_X:
1461 #endif
1462         case H_PAGE_INIT:
1463         case H_RPT_INVALIDATE:
1464                 return 1;
1465         }
1466
1467         /* See if it's in the real-mode table */
1468         return kvmppc_hcall_impl_hv_realmode(cmd);
1469 }
1470
1471 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1472 {
1473         ppc_inst_t last_inst;
1474
1475         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1476                                         EMULATE_DONE) {
1477                 /*
1478                  * Fetch failed, so return to guest and
1479                  * try executing it again.
1480                  */
1481                 return RESUME_GUEST;
1482         }
1483
1484         if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1485                 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1486                 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1487                 return RESUME_HOST;
1488         } else {
1489                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1490                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1491                 return RESUME_GUEST;
1492         }
1493 }
1494
1495 static void do_nothing(void *x)
1496 {
1497 }
1498
1499 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1500 {
1501         int thr, cpu, pcpu, nthreads;
1502         struct kvm_vcpu *v;
1503         unsigned long dpdes;
1504
1505         nthreads = vcpu->kvm->arch.emul_smt_mode;
1506         dpdes = 0;
1507         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1508         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1509                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1510                 if (!v)
1511                         continue;
1512                 /*
1513                  * If the vcpu is currently running on a physical cpu thread,
1514                  * interrupt it in order to pull it out of the guest briefly,
1515                  * which will update its vcore->dpdes value.
1516                  */
1517                 pcpu = READ_ONCE(v->cpu);
1518                 if (pcpu >= 0)
1519                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1520                 if (kvmppc_doorbell_pending(v))
1521                         dpdes |= 1 << thr;
1522         }
1523         return dpdes;
1524 }
1525
1526 /*
1527  * On POWER9, emulate doorbell-related instructions in order to
1528  * give the guest the illusion of running on a multi-threaded core.
1529  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1530  * and mfspr DPDES.
1531  */
1532 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1533 {
1534         u32 inst, rb, thr;
1535         unsigned long arg;
1536         struct kvm *kvm = vcpu->kvm;
1537         struct kvm_vcpu *tvcpu;
1538         ppc_inst_t pinst;
1539
1540         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1541                 return RESUME_GUEST;
1542         inst = ppc_inst_val(pinst);
1543         if (get_op(inst) != 31)
1544                 return EMULATE_FAIL;
1545         rb = get_rb(inst);
1546         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1547         switch (get_xop(inst)) {
1548         case OP_31_XOP_MSGSNDP:
1549                 arg = kvmppc_get_gpr(vcpu, rb);
1550                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1551                         break;
1552                 arg &= 0x7f;
1553                 if (arg >= kvm->arch.emul_smt_mode)
1554                         break;
1555                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1556                 if (!tvcpu)
1557                         break;
1558                 if (!tvcpu->arch.doorbell_request) {
1559                         tvcpu->arch.doorbell_request = 1;
1560                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1561                 }
1562                 break;
1563         case OP_31_XOP_MSGCLRP:
1564                 arg = kvmppc_get_gpr(vcpu, rb);
1565                 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1566                         break;
1567                 vcpu->arch.vcore->dpdes = 0;
1568                 vcpu->arch.doorbell_request = 0;
1569                 break;
1570         case OP_31_XOP_MFSPR:
1571                 switch (get_sprn(inst)) {
1572                 case SPRN_TIR:
1573                         arg = thr;
1574                         break;
1575                 case SPRN_DPDES:
1576                         arg = kvmppc_read_dpdes(vcpu);
1577                         break;
1578                 default:
1579                         return EMULATE_FAIL;
1580                 }
1581                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1582                 break;
1583         default:
1584                 return EMULATE_FAIL;
1585         }
1586         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1587         return RESUME_GUEST;
1588 }
1589
1590 /*
1591  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1592  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1593  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1594  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1595  * allow the guest access to continue.
1596  */
1597 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1598 {
1599         if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1600                 return EMULATE_FAIL;
1601
1602         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1603
1604         return RESUME_GUEST;
1605 }
1606
1607 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1608 {
1609         if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1610                 return EMULATE_FAIL;
1611
1612         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1613
1614         return RESUME_GUEST;
1615 }
1616
1617 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1618 {
1619         if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1620                 return EMULATE_FAIL;
1621
1622         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1623
1624         return RESUME_GUEST;
1625 }
1626
1627 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1628                                  struct task_struct *tsk)
1629 {
1630         struct kvm_run *run = vcpu->run;
1631         int r = RESUME_HOST;
1632
1633         vcpu->stat.sum_exits++;
1634
1635         /*
1636          * This can happen if an interrupt occurs in the last stages
1637          * of guest entry or the first stages of guest exit (i.e. after
1638          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1639          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1640          * That can happen due to a bug, or due to a machine check
1641          * occurring at just the wrong time.
1642          */
1643         if (!kvmhv_is_nestedv2() && (__kvmppc_get_msr_hv(vcpu) & MSR_HV)) {
1644                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1645                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1646                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1647                         vcpu->arch.shregs.msr);
1648                 kvmppc_dump_regs(vcpu);
1649                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1650                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1651                 return RESUME_HOST;
1652         }
1653         run->exit_reason = KVM_EXIT_UNKNOWN;
1654         run->ready_for_interrupt_injection = 1;
1655         switch (vcpu->arch.trap) {
1656         /* We're good on these - the host merely wanted to get our attention */
1657         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1658                 WARN_ON_ONCE(1); /* Should never happen */
1659                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1660                 fallthrough;
1661         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1662                 vcpu->stat.dec_exits++;
1663                 r = RESUME_GUEST;
1664                 break;
1665         case BOOK3S_INTERRUPT_EXTERNAL:
1666         case BOOK3S_INTERRUPT_H_DOORBELL:
1667         case BOOK3S_INTERRUPT_H_VIRT:
1668                 vcpu->stat.ext_intr_exits++;
1669                 r = RESUME_GUEST;
1670                 break;
1671         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1672         case BOOK3S_INTERRUPT_HMI:
1673         case BOOK3S_INTERRUPT_PERFMON:
1674         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1675                 r = RESUME_GUEST;
1676                 break;
1677         case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1678                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1679                                               DEFAULT_RATELIMIT_BURST);
1680                 /*
1681                  * Print the MCE event to host console. Ratelimit so the guest
1682                  * can't flood the host log.
1683                  */
1684                 if (__ratelimit(&rs))
1685                         machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1686
1687                 /*
1688                  * If the guest can do FWNMI, exit to userspace so it can
1689                  * deliver a FWNMI to the guest.
1690                  * Otherwise we synthesize a machine check for the guest
1691                  * so that it knows that the machine check occurred.
1692                  */
1693                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1694                         ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1695                                         (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1696                         kvmppc_core_queue_machine_check(vcpu, flags);
1697                         r = RESUME_GUEST;
1698                         break;
1699                 }
1700
1701                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1702                 run->exit_reason = KVM_EXIT_NMI;
1703                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1704                 /* Clear out the old NMI status from run->flags */
1705                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1706                 /* Now set the NMI status */
1707                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1708                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1709                 else
1710                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1711
1712                 r = RESUME_HOST;
1713                 break;
1714         }
1715         case BOOK3S_INTERRUPT_PROGRAM:
1716         {
1717                 ulong flags;
1718                 /*
1719                  * Normally program interrupts are delivered directly
1720                  * to the guest by the hardware, but we can get here
1721                  * as a result of a hypervisor emulation interrupt
1722                  * (e40) getting turned into a 700 by BML RTAS.
1723                  */
1724                 flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1725                         (kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1726                 kvmppc_core_queue_program(vcpu, flags);
1727                 r = RESUME_GUEST;
1728                 break;
1729         }
1730         case BOOK3S_INTERRUPT_SYSCALL:
1731         {
1732                 int i;
1733
1734                 if (!kvmhv_is_nestedv2() && unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1735                         /*
1736                          * Guest userspace executed sc 1. This can only be
1737                          * reached by the P9 path because the old path
1738                          * handles this case in realmode hcall handlers.
1739                          */
1740                         if (!kvmhv_vcpu_is_radix(vcpu)) {
1741                                 /*
1742                                  * A guest could be running PR KVM, so this
1743                                  * may be a PR KVM hcall. It must be reflected
1744                                  * to the guest kernel as a sc interrupt.
1745                                  */
1746                                 kvmppc_core_queue_syscall(vcpu);
1747                         } else {
1748                                 /*
1749                                  * Radix guests can not run PR KVM or nested HV
1750                                  * hash guests which might run PR KVM, so this
1751                                  * is always a privilege fault. Send a program
1752                                  * check to guest kernel.
1753                                  */
1754                                 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1755                         }
1756                         r = RESUME_GUEST;
1757                         break;
1758                 }
1759
1760                 /*
1761                  * hcall - gather args and set exit_reason. This will next be
1762                  * handled by kvmppc_pseries_do_hcall which may be able to deal
1763                  * with it and resume guest, or may punt to userspace.
1764                  */
1765                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1766                 for (i = 0; i < 9; ++i)
1767                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1768                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1769                 vcpu->arch.hcall_needed = 1;
1770                 r = RESUME_HOST;
1771                 break;
1772         }
1773         /*
1774          * We get these next two if the guest accesses a page which it thinks
1775          * it has mapped but which is not actually present, either because
1776          * it is for an emulated I/O device or because the corresonding
1777          * host page has been paged out.
1778          *
1779          * Any other HDSI/HISI interrupts have been handled already for P7/8
1780          * guests. For POWER9 hash guests not using rmhandlers, basic hash
1781          * fault handling is done here.
1782          */
1783         case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1784                 unsigned long vsid;
1785                 long err;
1786
1787                 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1788                     unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1789                         r = RESUME_GUEST; /* Just retry if it's the canary */
1790                         break;
1791                 }
1792
1793                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1794                         /*
1795                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1796                          * already attempted to handle this in rmhandlers. The
1797                          * hash fault handling below is v3 only (it uses ASDR
1798                          * via fault_gpa).
1799                          */
1800                         r = RESUME_PAGE_FAULT;
1801                         break;
1802                 }
1803
1804                 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1805                         kvmppc_core_queue_data_storage(vcpu,
1806                                 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1807                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1808                         r = RESUME_GUEST;
1809                         break;
1810                 }
1811
1812                 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1813                         vsid = vcpu->kvm->arch.vrma_slb_v;
1814                 else
1815                         vsid = vcpu->arch.fault_gpa;
1816
1817                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1818                                 vsid, vcpu->arch.fault_dsisr, true);
1819                 if (err == 0) {
1820                         r = RESUME_GUEST;
1821                 } else if (err == -1 || err == -2) {
1822                         r = RESUME_PAGE_FAULT;
1823                 } else {
1824                         kvmppc_core_queue_data_storage(vcpu,
1825                                 kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1826                                 vcpu->arch.fault_dar, err);
1827                         r = RESUME_GUEST;
1828                 }
1829                 break;
1830         }
1831         case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1832                 unsigned long vsid;
1833                 long err;
1834
1835                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1836                 vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1837                         DSISR_SRR1_MATCH_64S;
1838                 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1839                         /*
1840                          * Radix doesn't require anything, and pre-ISAv3.0 hash
1841                          * already attempted to handle this in rmhandlers. The
1842                          * hash fault handling below is v3 only (it uses ASDR
1843                          * via fault_gpa).
1844                          */
1845                         if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1846                                 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1847                         r = RESUME_PAGE_FAULT;
1848                         break;
1849                 }
1850
1851                 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1852                         kvmppc_core_queue_inst_storage(vcpu,
1853                                 vcpu->arch.fault_dsisr |
1854                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1855                         r = RESUME_GUEST;
1856                         break;
1857                 }
1858
1859                 if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1860                         vsid = vcpu->kvm->arch.vrma_slb_v;
1861                 else
1862                         vsid = vcpu->arch.fault_gpa;
1863
1864                 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1865                                 vsid, vcpu->arch.fault_dsisr, false);
1866                 if (err == 0) {
1867                         r = RESUME_GUEST;
1868                 } else if (err == -1) {
1869                         r = RESUME_PAGE_FAULT;
1870                 } else {
1871                         kvmppc_core_queue_inst_storage(vcpu,
1872                                 err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1873                         r = RESUME_GUEST;
1874                 }
1875                 break;
1876         }
1877
1878         /*
1879          * This occurs if the guest executes an illegal instruction.
1880          * If the guest debug is disabled, generate a program interrupt
1881          * to the guest. If guest debug is enabled, we need to check
1882          * whether the instruction is a software breakpoint instruction.
1883          * Accordingly return to Guest or Host.
1884          */
1885         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1886                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1887                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1888                                 swab32(vcpu->arch.emul_inst) :
1889                                 vcpu->arch.emul_inst;
1890                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1891                         r = kvmppc_emulate_debug_inst(vcpu);
1892                 } else {
1893                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1894                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1895                         r = RESUME_GUEST;
1896                 }
1897                 break;
1898
1899 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1900         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1901                 /*
1902                  * This occurs for various TM-related instructions that
1903                  * we need to emulate on POWER9 DD2.2.  We have already
1904                  * handled the cases where the guest was in real-suspend
1905                  * mode and was transitioning to transactional state.
1906                  */
1907                 r = kvmhv_p9_tm_emulation(vcpu);
1908                 if (r != -1)
1909                         break;
1910                 fallthrough; /* go to facility unavailable handler */
1911 #endif
1912
1913         /*
1914          * This occurs if the guest (kernel or userspace), does something that
1915          * is prohibited by HFSCR.
1916          * On POWER9, this could be a doorbell instruction that we need
1917          * to emulate.
1918          * Otherwise, we just generate a program interrupt to the guest.
1919          */
1920         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1921                 u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1922
1923                 r = EMULATE_FAIL;
1924                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1925                         if (cause == FSCR_MSGP_LG)
1926                                 r = kvmppc_emulate_doorbell_instr(vcpu);
1927                         if (cause == FSCR_PM_LG)
1928                                 r = kvmppc_pmu_unavailable(vcpu);
1929                         if (cause == FSCR_EBB_LG)
1930                                 r = kvmppc_ebb_unavailable(vcpu);
1931                         if (cause == FSCR_TM_LG)
1932                                 r = kvmppc_tm_unavailable(vcpu);
1933                 }
1934                 if (r == EMULATE_FAIL) {
1935                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1936                                 (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1937                         r = RESUME_GUEST;
1938                 }
1939                 break;
1940         }
1941
1942         case BOOK3S_INTERRUPT_HV_RM_HARD:
1943                 r = RESUME_PASSTHROUGH;
1944                 break;
1945         default:
1946                 kvmppc_dump_regs(vcpu);
1947                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1948                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1949                         __kvmppc_get_msr_hv(vcpu));
1950                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1951                 r = RESUME_HOST;
1952                 break;
1953         }
1954
1955         return r;
1956 }
1957
1958 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1959 {
1960         int r;
1961         int srcu_idx;
1962
1963         vcpu->stat.sum_exits++;
1964
1965         /*
1966          * This can happen if an interrupt occurs in the last stages
1967          * of guest entry or the first stages of guest exit (i.e. after
1968          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1969          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1970          * That can happen due to a bug, or due to a machine check
1971          * occurring at just the wrong time.
1972          */
1973         if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1974                 pr_emerg("KVM trap in HV mode while nested!\n");
1975                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1976                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1977                          __kvmppc_get_msr_hv(vcpu));
1978                 kvmppc_dump_regs(vcpu);
1979                 return RESUME_HOST;
1980         }
1981         switch (vcpu->arch.trap) {
1982         /* We're good on these - the host merely wanted to get our attention */
1983         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1984                 vcpu->stat.dec_exits++;
1985                 r = RESUME_GUEST;
1986                 break;
1987         case BOOK3S_INTERRUPT_EXTERNAL:
1988                 vcpu->stat.ext_intr_exits++;
1989                 r = RESUME_HOST;
1990                 break;
1991         case BOOK3S_INTERRUPT_H_DOORBELL:
1992         case BOOK3S_INTERRUPT_H_VIRT:
1993                 vcpu->stat.ext_intr_exits++;
1994                 r = RESUME_GUEST;
1995                 break;
1996         /* These need to go to the nested HV */
1997         case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1998                 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1999                 vcpu->stat.dec_exits++;
2000                 r = RESUME_HOST;
2001                 break;
2002         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
2003         case BOOK3S_INTERRUPT_HMI:
2004         case BOOK3S_INTERRUPT_PERFMON:
2005         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2006                 r = RESUME_GUEST;
2007                 break;
2008         case BOOK3S_INTERRUPT_MACHINE_CHECK:
2009         {
2010                 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
2011                                               DEFAULT_RATELIMIT_BURST);
2012                 /* Pass the machine check to the L1 guest */
2013                 r = RESUME_HOST;
2014                 /* Print the MCE event to host console. */
2015                 if (__ratelimit(&rs))
2016                         machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
2017                 break;
2018         }
2019         /*
2020          * We get these next two if the guest accesses a page which it thinks
2021          * it has mapped but which is not actually present, either because
2022          * it is for an emulated I/O device or because the corresonding
2023          * host page has been paged out.
2024          */
2025         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
2026                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2027                 r = kvmhv_nested_page_fault(vcpu);
2028                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2029                 break;
2030         case BOOK3S_INTERRUPT_H_INST_STORAGE:
2031                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
2032                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
2033                                          DSISR_SRR1_MATCH_64S;
2034                 if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
2035                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
2036                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2037                 r = kvmhv_nested_page_fault(vcpu);
2038                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2039                 break;
2040
2041 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2042         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
2043                 /*
2044                  * This occurs for various TM-related instructions that
2045                  * we need to emulate on POWER9 DD2.2.  We have already
2046                  * handled the cases where the guest was in real-suspend
2047                  * mode and was transitioning to transactional state.
2048                  */
2049                 r = kvmhv_p9_tm_emulation(vcpu);
2050                 if (r != -1)
2051                         break;
2052                 fallthrough; /* go to facility unavailable handler */
2053 #endif
2054
2055         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2056                 u64 cause = vcpu->arch.hfscr >> 56;
2057
2058                 /*
2059                  * Only pass HFU interrupts to the L1 if the facility is
2060                  * permitted but disabled by the L1's HFSCR, otherwise
2061                  * the interrupt does not make sense to the L1 so turn
2062                  * it into a HEAI.
2063                  */
2064                 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2065                                 (vcpu->arch.nested_hfscr & (1UL << cause))) {
2066                         ppc_inst_t pinst;
2067                         vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2068
2069                         /*
2070                          * If the fetch failed, return to guest and
2071                          * try executing it again.
2072                          */
2073                         r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2074                         vcpu->arch.emul_inst = ppc_inst_val(pinst);
2075                         if (r != EMULATE_DONE)
2076                                 r = RESUME_GUEST;
2077                         else
2078                                 r = RESUME_HOST;
2079                 } else {
2080                         r = RESUME_HOST;
2081                 }
2082
2083                 break;
2084         }
2085
2086         case BOOK3S_INTERRUPT_HV_RM_HARD:
2087                 vcpu->arch.trap = 0;
2088                 r = RESUME_GUEST;
2089                 if (!xics_on_xive())
2090                         kvmppc_xics_rm_complete(vcpu, 0);
2091                 break;
2092         case BOOK3S_INTERRUPT_SYSCALL:
2093         {
2094                 unsigned long req = kvmppc_get_gpr(vcpu, 3);
2095
2096                 /*
2097                  * The H_RPT_INVALIDATE hcalls issued by nested
2098                  * guests for process-scoped invalidations when
2099                  * GTSE=0, are handled here in L0.
2100                  */
2101                 if (req == H_RPT_INVALIDATE) {
2102                         r = kvmppc_nested_h_rpt_invalidate(vcpu);
2103                         break;
2104                 }
2105
2106                 r = RESUME_HOST;
2107                 break;
2108         }
2109         default:
2110                 r = RESUME_HOST;
2111                 break;
2112         }
2113
2114         return r;
2115 }
2116
2117 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2118                                             struct kvm_sregs *sregs)
2119 {
2120         int i;
2121
2122         memset(sregs, 0, sizeof(struct kvm_sregs));
2123         sregs->pvr = vcpu->arch.pvr;
2124         for (i = 0; i < vcpu->arch.slb_max; i++) {
2125                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2126                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2127         }
2128
2129         return 0;
2130 }
2131
2132 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2133                                             struct kvm_sregs *sregs)
2134 {
2135         int i, j;
2136
2137         /* Only accept the same PVR as the host's, since we can't spoof it */
2138         if (sregs->pvr != vcpu->arch.pvr)
2139                 return -EINVAL;
2140
2141         j = 0;
2142         for (i = 0; i < vcpu->arch.slb_nr; i++) {
2143                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2144                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2145                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2146                         ++j;
2147                 }
2148         }
2149         vcpu->arch.slb_max = j;
2150
2151         return 0;
2152 }
2153
2154 /*
2155  * Enforce limits on guest LPCR values based on hardware availability,
2156  * guest configuration, and possibly hypervisor support and security
2157  * concerns.
2158  */
2159 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2160 {
2161         /* LPCR_TC only applies to HPT guests */
2162         if (kvm_is_radix(kvm))
2163                 lpcr &= ~LPCR_TC;
2164
2165         /* On POWER8 and above, userspace can modify AIL */
2166         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2167                 lpcr &= ~LPCR_AIL;
2168         if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2169                 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2170         /*
2171          * On some POWER9s we force AIL off for radix guests to prevent
2172          * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2173          * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2174          * be cached, which the host TLB management does not expect.
2175          */
2176         if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2177                 lpcr &= ~LPCR_AIL;
2178
2179         /*
2180          * On POWER9, allow userspace to enable large decrementer for the
2181          * guest, whether or not the host has it enabled.
2182          */
2183         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2184                 lpcr &= ~LPCR_LD;
2185
2186         return lpcr;
2187 }
2188
2189 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2190 {
2191         if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2192                 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2193                           lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2194         }
2195 }
2196
2197 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2198                 bool preserve_top32)
2199 {
2200         struct kvm *kvm = vcpu->kvm;
2201         struct kvmppc_vcore *vc = vcpu->arch.vcore;
2202         u64 mask;
2203
2204         spin_lock(&vc->lock);
2205
2206         /*
2207          * Userspace can only modify
2208          * DPFD (default prefetch depth), ILE (interrupt little-endian),
2209          * TC (translation control), AIL (alternate interrupt location),
2210          * LD (large decrementer).
2211          * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2212          */
2213         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2214
2215         /* Broken 32-bit version of LPCR must not clear top bits */
2216         if (preserve_top32)
2217                 mask &= 0xFFFFFFFF;
2218
2219         new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2220                         (vc->lpcr & ~mask) | (new_lpcr & mask));
2221
2222         /*
2223          * If ILE (interrupt little-endian) has changed, update the
2224          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2225          */
2226         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2227                 struct kvm_vcpu *vcpu;
2228                 unsigned long i;
2229
2230                 kvm_for_each_vcpu(i, vcpu, kvm) {
2231                         if (vcpu->arch.vcore != vc)
2232                                 continue;
2233                         if (new_lpcr & LPCR_ILE)
2234                                 vcpu->arch.intr_msr |= MSR_LE;
2235                         else
2236                                 vcpu->arch.intr_msr &= ~MSR_LE;
2237                 }
2238         }
2239
2240         vc->lpcr = new_lpcr;
2241         kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
2242
2243         spin_unlock(&vc->lock);
2244 }
2245
2246 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2247                                  union kvmppc_one_reg *val)
2248 {
2249         int r = 0;
2250         long int i;
2251
2252         switch (id) {
2253         case KVM_REG_PPC_DEBUG_INST:
2254                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2255                 break;
2256         case KVM_REG_PPC_HIOR:
2257                 *val = get_reg_val(id, 0);
2258                 break;
2259         case KVM_REG_PPC_DABR:
2260                 *val = get_reg_val(id, vcpu->arch.dabr);
2261                 break;
2262         case KVM_REG_PPC_DABRX:
2263                 *val = get_reg_val(id, vcpu->arch.dabrx);
2264                 break;
2265         case KVM_REG_PPC_DSCR:
2266                 *val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2267                 break;
2268         case KVM_REG_PPC_PURR:
2269                 *val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2270                 break;
2271         case KVM_REG_PPC_SPURR:
2272                 *val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2273                 break;
2274         case KVM_REG_PPC_AMR:
2275                 *val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2276                 break;
2277         case KVM_REG_PPC_UAMOR:
2278                 *val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2279                 break;
2280         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2281                 i = id - KVM_REG_PPC_MMCR0;
2282                 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2283                 break;
2284         case KVM_REG_PPC_MMCR2:
2285                 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2286                 break;
2287         case KVM_REG_PPC_MMCRA:
2288                 *val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2289                 break;
2290         case KVM_REG_PPC_MMCRS:
2291                 *val = get_reg_val(id, vcpu->arch.mmcrs);
2292                 break;
2293         case KVM_REG_PPC_MMCR3:
2294                 *val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2295                 break;
2296         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2297                 i = id - KVM_REG_PPC_PMC1;
2298                 *val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2299                 break;
2300         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2301                 i = id - KVM_REG_PPC_SPMC1;
2302                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
2303                 break;
2304         case KVM_REG_PPC_SIAR:
2305                 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2306                 break;
2307         case KVM_REG_PPC_SDAR:
2308                 *val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2309                 break;
2310         case KVM_REG_PPC_SIER:
2311                 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2312                 break;
2313         case KVM_REG_PPC_SIER2:
2314                 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2315                 break;
2316         case KVM_REG_PPC_SIER3:
2317                 *val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2318                 break;
2319         case KVM_REG_PPC_IAMR:
2320                 *val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2321                 break;
2322         case KVM_REG_PPC_PSPB:
2323                 *val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2324                 break;
2325         case KVM_REG_PPC_DPDES:
2326                 /*
2327                  * On POWER9, where we are emulating msgsndp etc.,
2328                  * we return 1 bit for each vcpu, which can come from
2329                  * either vcore->dpdes or doorbell_request.
2330                  * On POWER8, doorbell_request is 0.
2331                  */
2332                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2333                         *val = get_reg_val(id, vcpu->arch.doorbell_request);
2334                 else
2335                         *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2336                 break;
2337         case KVM_REG_PPC_VTB:
2338                 *val = get_reg_val(id, kvmppc_get_vtb(vcpu));
2339                 break;
2340         case KVM_REG_PPC_DAWR:
2341                 *val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2342                 break;
2343         case KVM_REG_PPC_DAWRX:
2344                 *val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2345                 break;
2346         case KVM_REG_PPC_DAWR1:
2347                 *val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2348                 break;
2349         case KVM_REG_PPC_DAWRX1:
2350                 *val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2351                 break;
2352         case KVM_REG_PPC_CIABR:
2353                 *val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2354                 break;
2355         case KVM_REG_PPC_CSIGR:
2356                 *val = get_reg_val(id, vcpu->arch.csigr);
2357                 break;
2358         case KVM_REG_PPC_TACR:
2359                 *val = get_reg_val(id, vcpu->arch.tacr);
2360                 break;
2361         case KVM_REG_PPC_TCSCR:
2362                 *val = get_reg_val(id, vcpu->arch.tcscr);
2363                 break;
2364         case KVM_REG_PPC_PID:
2365                 *val = get_reg_val(id, kvmppc_get_pid(vcpu));
2366                 break;
2367         case KVM_REG_PPC_ACOP:
2368                 *val = get_reg_val(id, vcpu->arch.acop);
2369                 break;
2370         case KVM_REG_PPC_WORT:
2371                 *val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2372                 break;
2373         case KVM_REG_PPC_TIDR:
2374                 *val = get_reg_val(id, vcpu->arch.tid);
2375                 break;
2376         case KVM_REG_PPC_PSSCR:
2377                 *val = get_reg_val(id, vcpu->arch.psscr);
2378                 break;
2379         case KVM_REG_PPC_VPA_ADDR:
2380                 spin_lock(&vcpu->arch.vpa_update_lock);
2381                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2382                 spin_unlock(&vcpu->arch.vpa_update_lock);
2383                 break;
2384         case KVM_REG_PPC_VPA_SLB:
2385                 spin_lock(&vcpu->arch.vpa_update_lock);
2386                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2387                 val->vpaval.length = vcpu->arch.slb_shadow.len;
2388                 spin_unlock(&vcpu->arch.vpa_update_lock);
2389                 break;
2390         case KVM_REG_PPC_VPA_DTL:
2391                 spin_lock(&vcpu->arch.vpa_update_lock);
2392                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2393                 val->vpaval.length = vcpu->arch.dtl.len;
2394                 spin_unlock(&vcpu->arch.vpa_update_lock);
2395                 break;
2396         case KVM_REG_PPC_TB_OFFSET:
2397                 *val = get_reg_val(id, kvmppc_get_tb_offset(vcpu));
2398                 break;
2399         case KVM_REG_PPC_LPCR:
2400         case KVM_REG_PPC_LPCR_64:
2401                 *val = get_reg_val(id, kvmppc_get_lpcr(vcpu));
2402                 break;
2403         case KVM_REG_PPC_PPR:
2404                 *val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2405                 break;
2406 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2407         case KVM_REG_PPC_TFHAR:
2408                 *val = get_reg_val(id, vcpu->arch.tfhar);
2409                 break;
2410         case KVM_REG_PPC_TFIAR:
2411                 *val = get_reg_val(id, vcpu->arch.tfiar);
2412                 break;
2413         case KVM_REG_PPC_TEXASR:
2414                 *val = get_reg_val(id, vcpu->arch.texasr);
2415                 break;
2416         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2417                 i = id - KVM_REG_PPC_TM_GPR0;
2418                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2419                 break;
2420         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2421         {
2422                 int j;
2423                 i = id - KVM_REG_PPC_TM_VSR0;
2424                 if (i < 32)
2425                         for (j = 0; j < TS_FPRWIDTH; j++)
2426                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2427                 else {
2428                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2429                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
2430                         else
2431                                 r = -ENXIO;
2432                 }
2433                 break;
2434         }
2435         case KVM_REG_PPC_TM_CR:
2436                 *val = get_reg_val(id, vcpu->arch.cr_tm);
2437                 break;
2438         case KVM_REG_PPC_TM_XER:
2439                 *val = get_reg_val(id, vcpu->arch.xer_tm);
2440                 break;
2441         case KVM_REG_PPC_TM_LR:
2442                 *val = get_reg_val(id, vcpu->arch.lr_tm);
2443                 break;
2444         case KVM_REG_PPC_TM_CTR:
2445                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
2446                 break;
2447         case KVM_REG_PPC_TM_FPSCR:
2448                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2449                 break;
2450         case KVM_REG_PPC_TM_AMR:
2451                 *val = get_reg_val(id, vcpu->arch.amr_tm);
2452                 break;
2453         case KVM_REG_PPC_TM_PPR:
2454                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
2455                 break;
2456         case KVM_REG_PPC_TM_VRSAVE:
2457                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
2458                 break;
2459         case KVM_REG_PPC_TM_VSCR:
2460                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2461                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2462                 else
2463                         r = -ENXIO;
2464                 break;
2465         case KVM_REG_PPC_TM_DSCR:
2466                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
2467                 break;
2468         case KVM_REG_PPC_TM_TAR:
2469                 *val = get_reg_val(id, vcpu->arch.tar_tm);
2470                 break;
2471 #endif
2472         case KVM_REG_PPC_ARCH_COMPAT:
2473                 *val = get_reg_val(id, kvmppc_get_arch_compat(vcpu));
2474                 break;
2475         case KVM_REG_PPC_DEC_EXPIRY:
2476                 *val = get_reg_val(id, kvmppc_get_dec_expires(vcpu));
2477                 break;
2478         case KVM_REG_PPC_ONLINE:
2479                 *val = get_reg_val(id, vcpu->arch.online);
2480                 break;
2481         case KVM_REG_PPC_PTCR:
2482                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2483                 break;
2484         case KVM_REG_PPC_FSCR:
2485                 *val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2486                 break;
2487         default:
2488                 r = -EINVAL;
2489                 break;
2490         }
2491
2492         return r;
2493 }
2494
2495 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2496                                  union kvmppc_one_reg *val)
2497 {
2498         int r = 0;
2499         long int i;
2500         unsigned long addr, len;
2501
2502         switch (id) {
2503         case KVM_REG_PPC_HIOR:
2504                 /* Only allow this to be set to zero */
2505                 if (set_reg_val(id, *val))
2506                         r = -EINVAL;
2507                 break;
2508         case KVM_REG_PPC_DABR:
2509                 vcpu->arch.dabr = set_reg_val(id, *val);
2510                 break;
2511         case KVM_REG_PPC_DABRX:
2512                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2513                 break;
2514         case KVM_REG_PPC_DSCR:
2515                 kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2516                 break;
2517         case KVM_REG_PPC_PURR:
2518                 kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2519                 break;
2520         case KVM_REG_PPC_SPURR:
2521                 kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2522                 break;
2523         case KVM_REG_PPC_AMR:
2524                 kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2525                 break;
2526         case KVM_REG_PPC_UAMOR:
2527                 kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2528                 break;
2529         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2530                 i = id - KVM_REG_PPC_MMCR0;
2531                 kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2532                 break;
2533         case KVM_REG_PPC_MMCR2:
2534                 kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2535                 break;
2536         case KVM_REG_PPC_MMCRA:
2537                 kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2538                 break;
2539         case KVM_REG_PPC_MMCRS:
2540                 vcpu->arch.mmcrs = set_reg_val(id, *val);
2541                 break;
2542         case KVM_REG_PPC_MMCR3:
2543                 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
2544                 break;
2545         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2546                 i = id - KVM_REG_PPC_PMC1;
2547                 kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2548                 break;
2549         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2550                 i = id - KVM_REG_PPC_SPMC1;
2551                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
2552                 break;
2553         case KVM_REG_PPC_SIAR:
2554                 kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2555                 break;
2556         case KVM_REG_PPC_SDAR:
2557                 kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2558                 break;
2559         case KVM_REG_PPC_SIER:
2560                 kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2561                 break;
2562         case KVM_REG_PPC_SIER2:
2563                 kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2564                 break;
2565         case KVM_REG_PPC_SIER3:
2566                 kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2567                 break;
2568         case KVM_REG_PPC_IAMR:
2569                 kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2570                 break;
2571         case KVM_REG_PPC_PSPB:
2572                 kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2573                 break;
2574         case KVM_REG_PPC_DPDES:
2575                 if (cpu_has_feature(CPU_FTR_ARCH_300))
2576                         vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2577                 else
2578                         vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2579                 break;
2580         case KVM_REG_PPC_VTB:
2581                 kvmppc_set_vtb(vcpu, set_reg_val(id, *val));
2582                 break;
2583         case KVM_REG_PPC_DAWR:
2584                 kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2585                 break;
2586         case KVM_REG_PPC_DAWRX:
2587                 kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2588                 break;
2589         case KVM_REG_PPC_DAWR1:
2590                 kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2591                 break;
2592         case KVM_REG_PPC_DAWRX1:
2593                 kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2594                 break;
2595         case KVM_REG_PPC_CIABR:
2596                 kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2597                 /* Don't allow setting breakpoints in hypervisor code */
2598                 if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2599                         kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2600                 break;
2601         case KVM_REG_PPC_CSIGR:
2602                 vcpu->arch.csigr = set_reg_val(id, *val);
2603                 break;
2604         case KVM_REG_PPC_TACR:
2605                 vcpu->arch.tacr = set_reg_val(id, *val);
2606                 break;
2607         case KVM_REG_PPC_TCSCR:
2608                 vcpu->arch.tcscr = set_reg_val(id, *val);
2609                 break;
2610         case KVM_REG_PPC_PID:
2611                 kvmppc_set_pid(vcpu, set_reg_val(id, *val));
2612                 break;
2613         case KVM_REG_PPC_ACOP:
2614                 vcpu->arch.acop = set_reg_val(id, *val);
2615                 break;
2616         case KVM_REG_PPC_WORT:
2617                 kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2618                 break;
2619         case KVM_REG_PPC_TIDR:
2620                 vcpu->arch.tid = set_reg_val(id, *val);
2621                 break;
2622         case KVM_REG_PPC_PSSCR:
2623                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2624                 break;
2625         case KVM_REG_PPC_VPA_ADDR:
2626                 addr = set_reg_val(id, *val);
2627                 r = -EINVAL;
2628                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2629                               vcpu->arch.dtl.next_gpa))
2630                         break;
2631                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2632                 break;
2633         case KVM_REG_PPC_VPA_SLB:
2634                 addr = val->vpaval.addr;
2635                 len = val->vpaval.length;
2636                 r = -EINVAL;
2637                 if (addr && !vcpu->arch.vpa.next_gpa)
2638                         break;
2639                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2640                 break;
2641         case KVM_REG_PPC_VPA_DTL:
2642                 addr = val->vpaval.addr;
2643                 len = val->vpaval.length;
2644                 r = -EINVAL;
2645                 if (addr && (len < sizeof(struct dtl_entry) ||
2646                              !vcpu->arch.vpa.next_gpa))
2647                         break;
2648                 len -= len % sizeof(struct dtl_entry);
2649                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2650                 break;
2651         case KVM_REG_PPC_TB_OFFSET:
2652         {
2653                 /* round up to multiple of 2^24 */
2654                 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2655
2656                 /*
2657                  * Now that we know the timebase offset, update the
2658                  * decrementer expiry with a guest timebase value. If
2659                  * the userspace does not set DEC_EXPIRY, this ensures
2660                  * a migrated vcpu at least starts with an expired
2661                  * decrementer, which is better than a large one that
2662                  * causes a hang.
2663                  */
2664                 kvmppc_set_tb_offset(vcpu, tb_offset);
2665                 if (!kvmppc_get_dec_expires(vcpu) && tb_offset)
2666                         kvmppc_set_dec_expires(vcpu, get_tb() + tb_offset);
2667
2668                 kvmppc_set_tb_offset(vcpu, tb_offset);
2669                 break;
2670         }
2671         case KVM_REG_PPC_LPCR:
2672                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2673                 break;
2674         case KVM_REG_PPC_LPCR_64:
2675                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2676                 break;
2677         case KVM_REG_PPC_PPR:
2678                 kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2679                 break;
2680 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2681         case KVM_REG_PPC_TFHAR:
2682                 vcpu->arch.tfhar = set_reg_val(id, *val);
2683                 break;
2684         case KVM_REG_PPC_TFIAR:
2685                 vcpu->arch.tfiar = set_reg_val(id, *val);
2686                 break;
2687         case KVM_REG_PPC_TEXASR:
2688                 vcpu->arch.texasr = set_reg_val(id, *val);
2689                 break;
2690         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2691                 i = id - KVM_REG_PPC_TM_GPR0;
2692                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2693                 break;
2694         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2695         {
2696                 int j;
2697                 i = id - KVM_REG_PPC_TM_VSR0;
2698                 if (i < 32)
2699                         for (j = 0; j < TS_FPRWIDTH; j++)
2700                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2701                 else
2702                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2703                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2704                         else
2705                                 r = -ENXIO;
2706                 break;
2707         }
2708         case KVM_REG_PPC_TM_CR:
2709                 vcpu->arch.cr_tm = set_reg_val(id, *val);
2710                 break;
2711         case KVM_REG_PPC_TM_XER:
2712                 vcpu->arch.xer_tm = set_reg_val(id, *val);
2713                 break;
2714         case KVM_REG_PPC_TM_LR:
2715                 vcpu->arch.lr_tm = set_reg_val(id, *val);
2716                 break;
2717         case KVM_REG_PPC_TM_CTR:
2718                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2719                 break;
2720         case KVM_REG_PPC_TM_FPSCR:
2721                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2722                 break;
2723         case KVM_REG_PPC_TM_AMR:
2724                 vcpu->arch.amr_tm = set_reg_val(id, *val);
2725                 break;
2726         case KVM_REG_PPC_TM_PPR:
2727                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2728                 break;
2729         case KVM_REG_PPC_TM_VRSAVE:
2730                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2731                 break;
2732         case KVM_REG_PPC_TM_VSCR:
2733                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2734                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2735                 else
2736                         r = - ENXIO;
2737                 break;
2738         case KVM_REG_PPC_TM_DSCR:
2739                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2740                 break;
2741         case KVM_REG_PPC_TM_TAR:
2742                 vcpu->arch.tar_tm = set_reg_val(id, *val);
2743                 break;
2744 #endif
2745         case KVM_REG_PPC_ARCH_COMPAT:
2746                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2747                 break;
2748         case KVM_REG_PPC_DEC_EXPIRY:
2749                 kvmppc_set_dec_expires(vcpu, set_reg_val(id, *val));
2750                 break;
2751         case KVM_REG_PPC_ONLINE:
2752                 i = set_reg_val(id, *val);
2753                 if (i && !vcpu->arch.online)
2754                         atomic_inc(&vcpu->arch.vcore->online_count);
2755                 else if (!i && vcpu->arch.online)
2756                         atomic_dec(&vcpu->arch.vcore->online_count);
2757                 vcpu->arch.online = i;
2758                 break;
2759         case KVM_REG_PPC_PTCR:
2760                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2761                 break;
2762         case KVM_REG_PPC_FSCR:
2763                 kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2764                 break;
2765         default:
2766                 r = -EINVAL;
2767                 break;
2768         }
2769
2770         return r;
2771 }
2772
2773 /*
2774  * On POWER9, threads are independent and can be in different partitions.
2775  * Therefore we consider each thread to be a subcore.
2776  * There is a restriction that all threads have to be in the same
2777  * MMU mode (radix or HPT), unfortunately, but since we only support
2778  * HPT guests on a HPT host so far, that isn't an impediment yet.
2779  */
2780 static int threads_per_vcore(struct kvm *kvm)
2781 {
2782         if (cpu_has_feature(CPU_FTR_ARCH_300))
2783                 return 1;
2784         return threads_per_subcore;
2785 }
2786
2787 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2788 {
2789         struct kvmppc_vcore *vcore;
2790
2791         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2792
2793         if (vcore == NULL)
2794                 return NULL;
2795
2796         spin_lock_init(&vcore->lock);
2797         spin_lock_init(&vcore->stoltb_lock);
2798         rcuwait_init(&vcore->wait);
2799         vcore->preempt_tb = TB_NIL;
2800         vcore->lpcr = kvm->arch.lpcr;
2801         vcore->first_vcpuid = id;
2802         vcore->kvm = kvm;
2803         INIT_LIST_HEAD(&vcore->preempt_list);
2804
2805         return vcore;
2806 }
2807
2808 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2809 static struct debugfs_timings_element {
2810         const char *name;
2811         size_t offset;
2812 } timings[] = {
2813 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2814         {"vcpu_entry",  offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2815         {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
2816         {"in_guest",    offsetof(struct kvm_vcpu, arch.in_guest)},
2817         {"guest_exit",  offsetof(struct kvm_vcpu, arch.guest_exit)},
2818         {"vcpu_exit",   offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2819         {"hypercall",   offsetof(struct kvm_vcpu, arch.hcall)},
2820         {"page_fault",  offsetof(struct kvm_vcpu, arch.pg_fault)},
2821 #else
2822         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2823         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2824         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2825         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2826         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2827 #endif
2828 };
2829
2830 #define N_TIMINGS       (ARRAY_SIZE(timings))
2831
2832 struct debugfs_timings_state {
2833         struct kvm_vcpu *vcpu;
2834         unsigned int    buflen;
2835         char            buf[N_TIMINGS * 100];
2836 };
2837
2838 static int debugfs_timings_open(struct inode *inode, struct file *file)
2839 {
2840         struct kvm_vcpu *vcpu = inode->i_private;
2841         struct debugfs_timings_state *p;
2842
2843         p = kzalloc(sizeof(*p), GFP_KERNEL);
2844         if (!p)
2845                 return -ENOMEM;
2846
2847         kvm_get_kvm(vcpu->kvm);
2848         p->vcpu = vcpu;
2849         file->private_data = p;
2850
2851         return nonseekable_open(inode, file);
2852 }
2853
2854 static int debugfs_timings_release(struct inode *inode, struct file *file)
2855 {
2856         struct debugfs_timings_state *p = file->private_data;
2857
2858         kvm_put_kvm(p->vcpu->kvm);
2859         kfree(p);
2860         return 0;
2861 }
2862
2863 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2864                                     size_t len, loff_t *ppos)
2865 {
2866         struct debugfs_timings_state *p = file->private_data;
2867         struct kvm_vcpu *vcpu = p->vcpu;
2868         char *s, *buf_end;
2869         struct kvmhv_tb_accumulator tb;
2870         u64 count;
2871         loff_t pos;
2872         ssize_t n;
2873         int i, loops;
2874         bool ok;
2875
2876         if (!p->buflen) {
2877                 s = p->buf;
2878                 buf_end = s + sizeof(p->buf);
2879                 for (i = 0; i < N_TIMINGS; ++i) {
2880                         struct kvmhv_tb_accumulator *acc;
2881
2882                         acc = (struct kvmhv_tb_accumulator *)
2883                                 ((unsigned long)vcpu + timings[i].offset);
2884                         ok = false;
2885                         for (loops = 0; loops < 1000; ++loops) {
2886                                 count = acc->seqcount;
2887                                 if (!(count & 1)) {
2888                                         smp_rmb();
2889                                         tb = *acc;
2890                                         smp_rmb();
2891                                         if (count == acc->seqcount) {
2892                                                 ok = true;
2893                                                 break;
2894                                         }
2895                                 }
2896                                 udelay(1);
2897                         }
2898                         if (!ok)
2899                                 snprintf(s, buf_end - s, "%s: stuck\n",
2900                                         timings[i].name);
2901                         else
2902                                 snprintf(s, buf_end - s,
2903                                         "%s: %llu %llu %llu %llu\n",
2904                                         timings[i].name, count / 2,
2905                                         tb_to_ns(tb.tb_total),
2906                                         tb_to_ns(tb.tb_min),
2907                                         tb_to_ns(tb.tb_max));
2908                         s += strlen(s);
2909                 }
2910                 p->buflen = s - p->buf;
2911         }
2912
2913         pos = *ppos;
2914         if (pos >= p->buflen)
2915                 return 0;
2916         if (len > p->buflen - pos)
2917                 len = p->buflen - pos;
2918         n = copy_to_user(buf, p->buf + pos, len);
2919         if (n) {
2920                 if (n == len)
2921                         return -EFAULT;
2922                 len -= n;
2923         }
2924         *ppos = pos + len;
2925         return len;
2926 }
2927
2928 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2929                                      size_t len, loff_t *ppos)
2930 {
2931         return -EACCES;
2932 }
2933
2934 static const struct file_operations debugfs_timings_ops = {
2935         .owner   = THIS_MODULE,
2936         .open    = debugfs_timings_open,
2937         .release = debugfs_timings_release,
2938         .read    = debugfs_timings_read,
2939         .write   = debugfs_timings_write,
2940         .llseek  = generic_file_llseek,
2941 };
2942
2943 /* Create a debugfs directory for the vcpu */
2944 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2945 {
2946         if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2947                 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2948                                     &debugfs_timings_ops);
2949         return 0;
2950 }
2951
2952 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2953 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2954 {
2955         return 0;
2956 }
2957 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2958
2959 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2960 {
2961         int err;
2962         int core;
2963         struct kvmppc_vcore *vcore;
2964         struct kvm *kvm;
2965         unsigned int id;
2966
2967         kvm = vcpu->kvm;
2968         id = vcpu->vcpu_id;
2969
2970         vcpu->arch.shared = &vcpu->arch.shregs;
2971 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2972         /*
2973          * The shared struct is never shared on HV,
2974          * so we can always use host endianness
2975          */
2976 #ifdef __BIG_ENDIAN__
2977         vcpu->arch.shared_big_endian = true;
2978 #else
2979         vcpu->arch.shared_big_endian = false;
2980 #endif
2981 #endif
2982
2983         if (kvmhv_is_nestedv2()) {
2984                 err = kvmhv_nestedv2_vcpu_create(vcpu, &vcpu->arch.nestedv2_io);
2985                 if (err < 0)
2986                         return err;
2987         }
2988
2989         kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2990         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2991                 kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2992                 kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2993         }
2994
2995         kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2996         /* default to host PVR, since we can't spoof it */
2997         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2998         spin_lock_init(&vcpu->arch.vpa_update_lock);
2999         spin_lock_init(&vcpu->arch.tbacct_lock);
3000         vcpu->arch.busy_preempt = TB_NIL;
3001         __kvmppc_set_msr_hv(vcpu, MSR_ME);
3002         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
3003
3004         /*
3005          * Set the default HFSCR for the guest from the host value.
3006          * This value is only used on POWER9 and later.
3007          * On >= POWER9, we want to virtualize the doorbell facility, so we
3008          * don't set the HFSCR_MSGP bit, and that causes those instructions
3009          * to trap and then we emulate them.
3010          */
3011         kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
3012                             HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
3013
3014         /* On POWER10 and later, allow prefixed instructions */
3015         if (cpu_has_feature(CPU_FTR_ARCH_31))
3016                 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
3017
3018         if (cpu_has_feature(CPU_FTR_HVMODE)) {
3019                 kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
3020
3021 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3022                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3023                         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
3024 #endif
3025         }
3026         if (cpu_has_feature(CPU_FTR_TM_COMP))
3027                 vcpu->arch.hfscr |= HFSCR_TM;
3028
3029         vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
3030
3031         /*
3032          * PM, EBB, TM are demand-faulted so start with it clear.
3033          */
3034         kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
3035
3036         kvmppc_mmu_book3s_hv_init(vcpu);
3037
3038         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3039
3040         init_waitqueue_head(&vcpu->arch.cpu_run);
3041
3042         mutex_lock(&kvm->lock);
3043         vcore = NULL;
3044         err = -EINVAL;
3045         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3046                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
3047                         pr_devel("KVM: VCPU ID too high\n");
3048                         core = KVM_MAX_VCORES;
3049                 } else {
3050                         BUG_ON(kvm->arch.smt_mode != 1);
3051                         core = kvmppc_pack_vcpu_id(kvm, id);
3052                 }
3053         } else {
3054                 core = id / kvm->arch.smt_mode;
3055         }
3056         if (core < KVM_MAX_VCORES) {
3057                 vcore = kvm->arch.vcores[core];
3058                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
3059                         pr_devel("KVM: collision on id %u", id);
3060                         vcore = NULL;
3061                 } else if (!vcore) {
3062                         /*
3063                          * Take mmu_setup_lock for mutual exclusion
3064                          * with kvmppc_update_lpcr().
3065                          */
3066                         err = -ENOMEM;
3067                         vcore = kvmppc_vcore_create(kvm,
3068                                         id & ~(kvm->arch.smt_mode - 1));
3069                         mutex_lock(&kvm->arch.mmu_setup_lock);
3070                         kvm->arch.vcores[core] = vcore;
3071                         kvm->arch.online_vcores++;
3072                         mutex_unlock(&kvm->arch.mmu_setup_lock);
3073                 }
3074         }
3075         mutex_unlock(&kvm->lock);
3076
3077         if (!vcore)
3078                 return err;
3079
3080         spin_lock(&vcore->lock);
3081         ++vcore->num_threads;
3082         spin_unlock(&vcore->lock);
3083         vcpu->arch.vcore = vcore;
3084         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3085         vcpu->arch.thread_cpu = -1;
3086         vcpu->arch.prev_cpu = -1;
3087
3088         vcpu->arch.cpu_type = KVM_CPU_3S_64;
3089         kvmppc_sanity_check(vcpu);
3090
3091         return 0;
3092 }
3093
3094 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3095                               unsigned long flags)
3096 {
3097         int err;
3098         int esmt = 0;
3099
3100         if (flags)
3101                 return -EINVAL;
3102         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3103                 return -EINVAL;
3104         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3105                 /*
3106                  * On POWER8 (or POWER7), the threading mode is "strict",
3107                  * so we pack smt_mode vcpus per vcore.
3108                  */
3109                 if (smt_mode > threads_per_subcore)
3110                         return -EINVAL;
3111         } else {
3112                 /*
3113                  * On POWER9, the threading mode is "loose",
3114                  * so each vcpu gets its own vcore.
3115                  */
3116                 esmt = smt_mode;
3117                 smt_mode = 1;
3118         }
3119         mutex_lock(&kvm->lock);
3120         err = -EBUSY;
3121         if (!kvm->arch.online_vcores) {
3122                 kvm->arch.smt_mode = smt_mode;
3123                 kvm->arch.emul_smt_mode = esmt;
3124                 err = 0;
3125         }
3126         mutex_unlock(&kvm->lock);
3127
3128         return err;
3129 }
3130
3131 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3132 {
3133         if (vpa->pinned_addr)
3134                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3135                                         vpa->dirty);
3136 }
3137
3138 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3139 {
3140         spin_lock(&vcpu->arch.vpa_update_lock);
3141         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3142         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3143         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3144         spin_unlock(&vcpu->arch.vpa_update_lock);
3145         if (kvmhv_is_nestedv2())
3146                 kvmhv_nestedv2_vcpu_free(vcpu, &vcpu->arch.nestedv2_io);
3147 }
3148
3149 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3150 {
3151         /* Indicate we want to get back into the guest */
3152         return 1;
3153 }
3154
3155 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3156 {
3157         unsigned long dec_nsec, now;
3158
3159         now = get_tb();
3160         if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3161                 /* decrementer has already gone negative */
3162                 kvmppc_core_queue_dec(vcpu);
3163                 kvmppc_core_prepare_to_enter(vcpu);
3164                 return;
3165         }
3166         dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3167         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3168         vcpu->arch.timer_running = 1;
3169 }
3170
3171 extern int __kvmppc_vcore_entry(void);
3172
3173 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3174                                    struct kvm_vcpu *vcpu, u64 tb)
3175 {
3176         u64 now;
3177
3178         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3179                 return;
3180         spin_lock_irq(&vcpu->arch.tbacct_lock);
3181         now = tb;
3182         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3183                 vcpu->arch.stolen_logged;
3184         vcpu->arch.busy_preempt = now;
3185         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3186         spin_unlock_irq(&vcpu->arch.tbacct_lock);
3187         --vc->n_runnable;
3188         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3189 }
3190
3191 static int kvmppc_grab_hwthread(int cpu)
3192 {
3193         struct paca_struct *tpaca;
3194         long timeout = 10000;
3195
3196         tpaca = paca_ptrs[cpu];
3197
3198         /* Ensure the thread won't go into the kernel if it wakes */
3199         tpaca->kvm_hstate.kvm_vcpu = NULL;
3200         tpaca->kvm_hstate.kvm_vcore = NULL;
3201         tpaca->kvm_hstate.napping = 0;
3202         smp_wmb();
3203         tpaca->kvm_hstate.hwthread_req = 1;
3204
3205         /*
3206          * If the thread is already executing in the kernel (e.g. handling
3207          * a stray interrupt), wait for it to get back to nap mode.
3208          * The smp_mb() is to ensure that our setting of hwthread_req
3209          * is visible before we look at hwthread_state, so if this
3210          * races with the code at system_reset_pSeries and the thread
3211          * misses our setting of hwthread_req, we are sure to see its
3212          * setting of hwthread_state, and vice versa.
3213          */
3214         smp_mb();
3215         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3216                 if (--timeout <= 0) {
3217                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
3218                         return -EBUSY;
3219                 }
3220                 udelay(1);
3221         }
3222         return 0;
3223 }
3224
3225 static void kvmppc_release_hwthread(int cpu)
3226 {
3227         struct paca_struct *tpaca;
3228
3229         tpaca = paca_ptrs[cpu];
3230         tpaca->kvm_hstate.hwthread_req = 0;
3231         tpaca->kvm_hstate.kvm_vcpu = NULL;
3232         tpaca->kvm_hstate.kvm_vcore = NULL;
3233         tpaca->kvm_hstate.kvm_split_mode = NULL;
3234 }
3235
3236 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3237
3238 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3239 {
3240         struct kvm_nested_guest *nested = vcpu->arch.nested;
3241         cpumask_t *need_tlb_flush;
3242         int i;
3243
3244         if (nested)
3245                 need_tlb_flush = &nested->need_tlb_flush;
3246         else
3247                 need_tlb_flush = &kvm->arch.need_tlb_flush;
3248
3249         cpu = cpu_first_tlb_thread_sibling(cpu);
3250         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3251                                         i += cpu_tlb_thread_sibling_step())
3252                 cpumask_set_cpu(i, need_tlb_flush);
3253
3254         /*
3255          * Make sure setting of bit in need_tlb_flush precedes testing of
3256          * cpu_in_guest. The matching barrier on the other side is hwsync
3257          * when switching to guest MMU mode, which happens between
3258          * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3259          * being tested.
3260          */
3261         smp_mb();
3262
3263         for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3264                                         i += cpu_tlb_thread_sibling_step()) {
3265                 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3266
3267                 if (running == kvm)
3268                         smp_call_function_single(i, do_nothing, NULL, 1);
3269         }
3270 }
3271
3272 static void do_migrate_away_vcpu(void *arg)
3273 {
3274         struct kvm_vcpu *vcpu = arg;
3275         struct kvm *kvm = vcpu->kvm;
3276
3277         /*
3278          * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3279          * ptesync sequence on the old CPU before migrating to a new one, in
3280          * case we interrupted the guest between a tlbie ; eieio ;
3281          * tlbsync; ptesync sequence.
3282          *
3283          * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3284          */
3285         if (kvm->arch.lpcr & LPCR_GTSE)
3286                 asm volatile("eieio; tlbsync; ptesync");
3287         else
3288                 asm volatile("ptesync");
3289 }
3290
3291 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3292 {
3293         struct kvm_nested_guest *nested = vcpu->arch.nested;
3294         struct kvm *kvm = vcpu->kvm;
3295         int prev_cpu;
3296
3297         if (!cpu_has_feature(CPU_FTR_HVMODE))
3298                 return;
3299
3300         if (nested)
3301                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3302         else
3303                 prev_cpu = vcpu->arch.prev_cpu;
3304
3305         /*
3306          * With radix, the guest can do TLB invalidations itself,
3307          * and it could choose to use the local form (tlbiel) if
3308          * it is invalidating a translation that has only ever been
3309          * used on one vcpu.  However, that doesn't mean it has
3310          * only ever been used on one physical cpu, since vcpus
3311          * can move around between pcpus.  To cope with this, when
3312          * a vcpu moves from one pcpu to another, we need to tell
3313          * any vcpus running on the same core as this vcpu previously
3314          * ran to flush the TLB.
3315          */
3316         if (prev_cpu != pcpu) {
3317                 if (prev_cpu >= 0) {
3318                         if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3319                             cpu_first_tlb_thread_sibling(pcpu))
3320                                 radix_flush_cpu(kvm, prev_cpu, vcpu);
3321
3322                         smp_call_function_single(prev_cpu,
3323                                         do_migrate_away_vcpu, vcpu, 1);
3324                 }
3325                 if (nested)
3326                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3327                 else
3328                         vcpu->arch.prev_cpu = pcpu;
3329         }
3330 }
3331
3332 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3333 {
3334         int cpu;
3335         struct paca_struct *tpaca;
3336
3337         cpu = vc->pcpu;
3338         if (vcpu) {
3339                 if (vcpu->arch.timer_running) {
3340                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3341                         vcpu->arch.timer_running = 0;
3342                 }
3343                 cpu += vcpu->arch.ptid;
3344                 vcpu->cpu = vc->pcpu;
3345                 vcpu->arch.thread_cpu = cpu;
3346         }
3347         tpaca = paca_ptrs[cpu];
3348         tpaca->kvm_hstate.kvm_vcpu = vcpu;
3349         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3350         tpaca->kvm_hstate.fake_suspend = 0;
3351         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3352         smp_wmb();
3353         tpaca->kvm_hstate.kvm_vcore = vc;
3354         if (cpu != smp_processor_id())
3355                 kvmppc_ipi_thread(cpu);
3356 }
3357
3358 static void kvmppc_wait_for_nap(int n_threads)
3359 {
3360         int cpu = smp_processor_id();
3361         int i, loops;
3362
3363         if (n_threads <= 1)
3364                 return;
3365         for (loops = 0; loops < 1000000; ++loops) {
3366                 /*
3367                  * Check if all threads are finished.
3368                  * We set the vcore pointer when starting a thread
3369                  * and the thread clears it when finished, so we look
3370                  * for any threads that still have a non-NULL vcore ptr.
3371                  */
3372                 for (i = 1; i < n_threads; ++i)
3373                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3374                                 break;
3375                 if (i == n_threads) {
3376                         HMT_medium();
3377                         return;
3378                 }
3379                 HMT_low();
3380         }
3381         HMT_medium();
3382         for (i = 1; i < n_threads; ++i)
3383                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3384                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3385 }
3386
3387 /*
3388  * Check that we are on thread 0 and that any other threads in
3389  * this core are off-line.  Then grab the threads so they can't
3390  * enter the kernel.
3391  */
3392 static int on_primary_thread(void)
3393 {
3394         int cpu = smp_processor_id();
3395         int thr;
3396
3397         /* Are we on a primary subcore? */
3398         if (cpu_thread_in_subcore(cpu))
3399                 return 0;
3400
3401         thr = 0;
3402         while (++thr < threads_per_subcore)
3403                 if (cpu_online(cpu + thr))
3404                         return 0;
3405
3406         /* Grab all hw threads so they can't go into the kernel */
3407         for (thr = 1; thr < threads_per_subcore; ++thr) {
3408                 if (kvmppc_grab_hwthread(cpu + thr)) {
3409                         /* Couldn't grab one; let the others go */
3410                         do {
3411                                 kvmppc_release_hwthread(cpu + thr);
3412                         } while (--thr > 0);
3413                         return 0;
3414                 }
3415         }
3416         return 1;
3417 }
3418
3419 /*
3420  * A list of virtual cores for each physical CPU.
3421  * These are vcores that could run but their runner VCPU tasks are
3422  * (or may be) preempted.
3423  */
3424 struct preempted_vcore_list {
3425         struct list_head        list;
3426         spinlock_t              lock;
3427 };
3428
3429 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3430
3431 static void init_vcore_lists(void)
3432 {
3433         int cpu;
3434
3435         for_each_possible_cpu(cpu) {
3436                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3437                 spin_lock_init(&lp->lock);
3438                 INIT_LIST_HEAD(&lp->list);
3439         }
3440 }
3441
3442 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3443 {
3444         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3445
3446         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3447
3448         vc->vcore_state = VCORE_PREEMPT;
3449         vc->pcpu = smp_processor_id();
3450         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3451                 spin_lock(&lp->lock);
3452                 list_add_tail(&vc->preempt_list, &lp->list);
3453                 spin_unlock(&lp->lock);
3454         }
3455
3456         /* Start accumulating stolen time */
3457         kvmppc_core_start_stolen(vc, mftb());
3458 }
3459
3460 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3461 {
3462         struct preempted_vcore_list *lp;
3463
3464         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3465
3466         kvmppc_core_end_stolen(vc, mftb());
3467         if (!list_empty(&vc->preempt_list)) {
3468                 lp = &per_cpu(preempted_vcores, vc->pcpu);
3469                 spin_lock(&lp->lock);
3470                 list_del_init(&vc->preempt_list);
3471                 spin_unlock(&lp->lock);
3472         }
3473         vc->vcore_state = VCORE_INACTIVE;
3474 }
3475
3476 /*
3477  * This stores information about the virtual cores currently
3478  * assigned to a physical core.
3479  */
3480 struct core_info {
3481         int             n_subcores;
3482         int             max_subcore_threads;
3483         int             total_threads;
3484         int             subcore_threads[MAX_SUBCORES];
3485         struct kvmppc_vcore *vc[MAX_SUBCORES];
3486 };
3487
3488 /*
3489  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3490  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3491  */
3492 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3493
3494 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3495 {
3496         memset(cip, 0, sizeof(*cip));
3497         cip->n_subcores = 1;
3498         cip->max_subcore_threads = vc->num_threads;
3499         cip->total_threads = vc->num_threads;
3500         cip->subcore_threads[0] = vc->num_threads;
3501         cip->vc[0] = vc;
3502 }
3503
3504 static bool subcore_config_ok(int n_subcores, int n_threads)
3505 {
3506         /*
3507          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3508          * split-core mode, with one thread per subcore.
3509          */
3510         if (cpu_has_feature(CPU_FTR_ARCH_300))
3511                 return n_subcores <= 4 && n_threads == 1;
3512
3513         /* On POWER8, can only dynamically split if unsplit to begin with */
3514         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3515                 return false;
3516         if (n_subcores > MAX_SUBCORES)
3517                 return false;
3518         if (n_subcores > 1) {
3519                 if (!(dynamic_mt_modes & 2))
3520                         n_subcores = 4;
3521                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3522                         return false;
3523         }
3524
3525         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3526 }
3527
3528 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3529 {
3530         vc->entry_exit_map = 0;
3531         vc->in_guest = 0;
3532         vc->napping_threads = 0;
3533         vc->conferring_threads = 0;
3534         vc->tb_offset_applied = 0;
3535 }
3536
3537 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3538 {
3539         int n_threads = vc->num_threads;
3540         int sub;
3541
3542         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3543                 return false;
3544
3545         /* In one_vm_per_core mode, require all vcores to be from the same vm */
3546         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3547                 return false;
3548
3549         if (n_threads < cip->max_subcore_threads)
3550                 n_threads = cip->max_subcore_threads;
3551         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3552                 return false;
3553         cip->max_subcore_threads = n_threads;
3554
3555         sub = cip->n_subcores;
3556         ++cip->n_subcores;
3557         cip->total_threads += vc->num_threads;
3558         cip->subcore_threads[sub] = vc->num_threads;
3559         cip->vc[sub] = vc;
3560         init_vcore_to_run(vc);
3561         list_del_init(&vc->preempt_list);
3562
3563         return true;
3564 }
3565
3566 /*
3567  * Work out whether it is possible to piggyback the execution of
3568  * vcore *pvc onto the execution of the other vcores described in *cip.
3569  */
3570 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3571                           int target_threads)
3572 {
3573         if (cip->total_threads + pvc->num_threads > target_threads)
3574                 return false;
3575
3576         return can_dynamic_split(pvc, cip);
3577 }
3578
3579 static void prepare_threads(struct kvmppc_vcore *vc)
3580 {
3581         int i;
3582         struct kvm_vcpu *vcpu;
3583
3584         for_each_runnable_thread(i, vcpu, vc) {
3585                 if (signal_pending(vcpu->arch.run_task))
3586                         vcpu->arch.ret = -EINTR;
3587                 else if (vcpu->arch.vpa.update_pending ||
3588                          vcpu->arch.slb_shadow.update_pending ||
3589                          vcpu->arch.dtl.update_pending)
3590                         vcpu->arch.ret = RESUME_GUEST;
3591                 else
3592                         continue;
3593                 kvmppc_remove_runnable(vc, vcpu, mftb());
3594                 wake_up(&vcpu->arch.cpu_run);
3595         }
3596 }
3597
3598 static void collect_piggybacks(struct core_info *cip, int target_threads)
3599 {
3600         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3601         struct kvmppc_vcore *pvc, *vcnext;
3602
3603         spin_lock(&lp->lock);
3604         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3605                 if (!spin_trylock(&pvc->lock))
3606                         continue;
3607                 prepare_threads(pvc);
3608                 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3609                         list_del_init(&pvc->preempt_list);
3610                         if (pvc->runner == NULL) {
3611                                 pvc->vcore_state = VCORE_INACTIVE;
3612                                 kvmppc_core_end_stolen(pvc, mftb());
3613                         }
3614                         spin_unlock(&pvc->lock);
3615                         continue;
3616                 }
3617                 if (!can_piggyback(pvc, cip, target_threads)) {
3618                         spin_unlock(&pvc->lock);
3619                         continue;
3620                 }
3621                 kvmppc_core_end_stolen(pvc, mftb());
3622                 pvc->vcore_state = VCORE_PIGGYBACK;
3623                 if (cip->total_threads >= target_threads)
3624                         break;
3625         }
3626         spin_unlock(&lp->lock);
3627 }
3628
3629 static bool recheck_signals_and_mmu(struct core_info *cip)
3630 {
3631         int sub, i;
3632         struct kvm_vcpu *vcpu;
3633         struct kvmppc_vcore *vc;
3634
3635         for (sub = 0; sub < cip->n_subcores; ++sub) {
3636                 vc = cip->vc[sub];
3637                 if (!vc->kvm->arch.mmu_ready)
3638                         return true;
3639                 for_each_runnable_thread(i, vcpu, vc)
3640                         if (signal_pending(vcpu->arch.run_task))
3641                                 return true;
3642         }
3643         return false;
3644 }
3645
3646 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3647 {
3648         int still_running = 0, i;
3649         u64 now;
3650         long ret;
3651         struct kvm_vcpu *vcpu;
3652
3653         spin_lock(&vc->lock);
3654         now = get_tb();
3655         for_each_runnable_thread(i, vcpu, vc) {
3656                 /*
3657                  * It's safe to unlock the vcore in the loop here, because
3658                  * for_each_runnable_thread() is safe against removal of
3659                  * the vcpu, and the vcore state is VCORE_EXITING here,
3660                  * so any vcpus becoming runnable will have their arch.trap
3661                  * set to zero and can't actually run in the guest.
3662                  */
3663                 spin_unlock(&vc->lock);
3664                 /* cancel pending dec exception if dec is positive */
3665                 if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3666                     kvmppc_core_pending_dec(vcpu))
3667                         kvmppc_core_dequeue_dec(vcpu);
3668
3669                 trace_kvm_guest_exit(vcpu);
3670
3671                 ret = RESUME_GUEST;
3672                 if (vcpu->arch.trap)
3673                         ret = kvmppc_handle_exit_hv(vcpu,
3674                                                     vcpu->arch.run_task);
3675
3676                 vcpu->arch.ret = ret;
3677                 vcpu->arch.trap = 0;
3678
3679                 spin_lock(&vc->lock);
3680                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3681                         if (vcpu->arch.pending_exceptions)
3682                                 kvmppc_core_prepare_to_enter(vcpu);
3683                         if (vcpu->arch.ceded)
3684                                 kvmppc_set_timer(vcpu);
3685                         else
3686                                 ++still_running;
3687                 } else {
3688                         kvmppc_remove_runnable(vc, vcpu, mftb());
3689                         wake_up(&vcpu->arch.cpu_run);
3690                 }
3691         }
3692         if (!is_master) {
3693                 if (still_running > 0) {
3694                         kvmppc_vcore_preempt(vc);
3695                 } else if (vc->runner) {
3696                         vc->vcore_state = VCORE_PREEMPT;
3697                         kvmppc_core_start_stolen(vc, mftb());
3698                 } else {
3699                         vc->vcore_state = VCORE_INACTIVE;
3700                 }
3701                 if (vc->n_runnable > 0 && vc->runner == NULL) {
3702                         /* make sure there's a candidate runner awake */
3703                         i = -1;
3704                         vcpu = next_runnable_thread(vc, &i);
3705                         wake_up(&vcpu->arch.cpu_run);
3706                 }
3707         }
3708         spin_unlock(&vc->lock);
3709 }
3710
3711 /*
3712  * Clear core from the list of active host cores as we are about to
3713  * enter the guest. Only do this if it is the primary thread of the
3714  * core (not if a subcore) that is entering the guest.
3715  */
3716 static inline int kvmppc_clear_host_core(unsigned int cpu)
3717 {
3718         int core;
3719
3720         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3721                 return 0;
3722         /*
3723          * Memory barrier can be omitted here as we will do a smp_wmb()
3724          * later in kvmppc_start_thread and we need ensure that state is
3725          * visible to other CPUs only after we enter guest.
3726          */
3727         core = cpu >> threads_shift;
3728         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3729         return 0;
3730 }
3731
3732 /*
3733  * Advertise this core as an active host core since we exited the guest
3734  * Only need to do this if it is the primary thread of the core that is
3735  * exiting.
3736  */
3737 static inline int kvmppc_set_host_core(unsigned int cpu)
3738 {
3739         int core;
3740
3741         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3742                 return 0;
3743
3744         /*
3745          * Memory barrier can be omitted here because we do a spin_unlock
3746          * immediately after this which provides the memory barrier.
3747          */
3748         core = cpu >> threads_shift;
3749         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3750         return 0;
3751 }
3752
3753 static void set_irq_happened(int trap)
3754 {
3755         switch (trap) {
3756         case BOOK3S_INTERRUPT_EXTERNAL:
3757                 local_paca->irq_happened |= PACA_IRQ_EE;
3758                 break;
3759         case BOOK3S_INTERRUPT_H_DOORBELL:
3760                 local_paca->irq_happened |= PACA_IRQ_DBELL;
3761                 break;
3762         case BOOK3S_INTERRUPT_HMI:
3763                 local_paca->irq_happened |= PACA_IRQ_HMI;
3764                 break;
3765         case BOOK3S_INTERRUPT_SYSTEM_RESET:
3766                 replay_system_reset();
3767                 break;
3768         }
3769 }
3770
3771 /*
3772  * Run a set of guest threads on a physical core.
3773  * Called with vc->lock held.
3774  */
3775 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3776 {
3777         struct kvm_vcpu *vcpu;
3778         int i;
3779         int srcu_idx;
3780         struct core_info core_info;
3781         struct kvmppc_vcore *pvc;
3782         struct kvm_split_mode split_info, *sip;
3783         int split, subcore_size, active;
3784         int sub;
3785         bool thr0_done;
3786         unsigned long cmd_bit, stat_bit;
3787         int pcpu, thr;
3788         int target_threads;
3789         int controlled_threads;
3790         int trap;
3791         bool is_power8;
3792
3793         if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3794                 return;
3795
3796         /*
3797          * Remove from the list any threads that have a signal pending
3798          * or need a VPA update done
3799          */
3800         prepare_threads(vc);
3801
3802         /* if the runner is no longer runnable, let the caller pick a new one */
3803         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3804                 return;
3805
3806         /*
3807          * Initialize *vc.
3808          */
3809         init_vcore_to_run(vc);
3810         vc->preempt_tb = TB_NIL;
3811
3812         /*
3813          * Number of threads that we will be controlling: the same as
3814          * the number of threads per subcore, except on POWER9,
3815          * where it's 1 because the threads are (mostly) independent.
3816          */
3817         controlled_threads = threads_per_vcore(vc->kvm);
3818
3819         /*
3820          * Make sure we are running on primary threads, and that secondary
3821          * threads are offline.  Also check if the number of threads in this
3822          * guest are greater than the current system threads per guest.
3823          */
3824         if ((controlled_threads > 1) &&
3825             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3826                 for_each_runnable_thread(i, vcpu, vc) {
3827                         vcpu->arch.ret = -EBUSY;
3828                         kvmppc_remove_runnable(vc, vcpu, mftb());
3829                         wake_up(&vcpu->arch.cpu_run);
3830                 }
3831                 goto out;
3832         }
3833
3834         /*
3835          * See if we could run any other vcores on the physical core
3836          * along with this one.
3837          */
3838         init_core_info(&core_info, vc);
3839         pcpu = smp_processor_id();
3840         target_threads = controlled_threads;
3841         if (target_smt_mode && target_smt_mode < target_threads)
3842                 target_threads = target_smt_mode;
3843         if (vc->num_threads < target_threads)
3844                 collect_piggybacks(&core_info, target_threads);
3845
3846         /*
3847          * Hard-disable interrupts, and check resched flag and signals.
3848          * If we need to reschedule or deliver a signal, clean up
3849          * and return without going into the guest(s).
3850          * If the mmu_ready flag has been cleared, don't go into the
3851          * guest because that means a HPT resize operation is in progress.
3852          */
3853         local_irq_disable();
3854         hard_irq_disable();
3855         if (lazy_irq_pending() || need_resched() ||
3856             recheck_signals_and_mmu(&core_info)) {
3857                 local_irq_enable();
3858                 vc->vcore_state = VCORE_INACTIVE;
3859                 /* Unlock all except the primary vcore */
3860                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3861                         pvc = core_info.vc[sub];
3862                         /* Put back on to the preempted vcores list */
3863                         kvmppc_vcore_preempt(pvc);
3864                         spin_unlock(&pvc->lock);
3865                 }
3866                 for (i = 0; i < controlled_threads; ++i)
3867                         kvmppc_release_hwthread(pcpu + i);
3868                 return;
3869         }
3870
3871         kvmppc_clear_host_core(pcpu);
3872
3873         /* Decide on micro-threading (split-core) mode */
3874         subcore_size = threads_per_subcore;
3875         cmd_bit = stat_bit = 0;
3876         split = core_info.n_subcores;
3877         sip = NULL;
3878         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3879
3880         if (split > 1) {
3881                 sip = &split_info;
3882                 memset(&split_info, 0, sizeof(split_info));
3883                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3884                         split_info.vc[sub] = core_info.vc[sub];
3885
3886                 if (is_power8) {
3887                         if (split == 2 && (dynamic_mt_modes & 2)) {
3888                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3889                                 stat_bit = HID0_POWER8_2LPARMODE;
3890                         } else {
3891                                 split = 4;
3892                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3893                                 stat_bit = HID0_POWER8_4LPARMODE;
3894                         }
3895                         subcore_size = MAX_SMT_THREADS / split;
3896                         split_info.rpr = mfspr(SPRN_RPR);
3897                         split_info.pmmar = mfspr(SPRN_PMMAR);
3898                         split_info.ldbar = mfspr(SPRN_LDBAR);
3899                         split_info.subcore_size = subcore_size;
3900                 } else {
3901                         split_info.subcore_size = 1;
3902                 }
3903
3904                 /* order writes to split_info before kvm_split_mode pointer */
3905                 smp_wmb();
3906         }
3907
3908         for (thr = 0; thr < controlled_threads; ++thr) {
3909                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3910
3911                 paca->kvm_hstate.napping = 0;
3912                 paca->kvm_hstate.kvm_split_mode = sip;
3913         }
3914
3915         /* Initiate micro-threading (split-core) on POWER8 if required */
3916         if (cmd_bit) {
3917                 unsigned long hid0 = mfspr(SPRN_HID0);
3918
3919                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3920                 mb();
3921                 mtspr(SPRN_HID0, hid0);
3922                 isync();
3923                 for (;;) {
3924                         hid0 = mfspr(SPRN_HID0);
3925                         if (hid0 & stat_bit)
3926                                 break;
3927                         cpu_relax();
3928                 }
3929         }
3930
3931         /*
3932          * On POWER8, set RWMR register.
3933          * Since it only affects PURR and SPURR, it doesn't affect
3934          * the host, so we don't save/restore the host value.
3935          */
3936         if (is_power8) {
3937                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3938                 int n_online = atomic_read(&vc->online_count);
3939
3940                 /*
3941                  * Use the 8-thread value if we're doing split-core
3942                  * or if the vcore's online count looks bogus.
3943                  */
3944                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3945                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3946                         rwmr_val = p8_rwmr_values[n_online];
3947                 mtspr(SPRN_RWMR, rwmr_val);
3948         }
3949
3950         /* Start all the threads */
3951         active = 0;
3952         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3953                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3954                 thr0_done = false;
3955                 active |= 1 << thr;
3956                 pvc = core_info.vc[sub];
3957                 pvc->pcpu = pcpu + thr;
3958                 for_each_runnable_thread(i, vcpu, pvc) {
3959                         /*
3960                          * XXX: is kvmppc_start_thread called too late here?
3961                          * It updates vcpu->cpu and vcpu->arch.thread_cpu
3962                          * which are used by kvmppc_fast_vcpu_kick_hv(), but
3963                          * kick is called after new exceptions become available
3964                          * and exceptions are checked earlier than here, by
3965                          * kvmppc_core_prepare_to_enter.
3966                          */
3967                         kvmppc_start_thread(vcpu, pvc);
3968                         kvmppc_update_vpa_dispatch(vcpu, pvc);
3969                         trace_kvm_guest_enter(vcpu);
3970                         if (!vcpu->arch.ptid)
3971                                 thr0_done = true;
3972                         active |= 1 << (thr + vcpu->arch.ptid);
3973                 }
3974                 /*
3975                  * We need to start the first thread of each subcore
3976                  * even if it doesn't have a vcpu.
3977                  */
3978                 if (!thr0_done)
3979                         kvmppc_start_thread(NULL, pvc);
3980         }
3981
3982         /*
3983          * Ensure that split_info.do_nap is set after setting
3984          * the vcore pointer in the PACA of the secondaries.
3985          */
3986         smp_mb();
3987
3988         /*
3989          * When doing micro-threading, poke the inactive threads as well.
3990          * This gets them to the nap instruction after kvm_do_nap,
3991          * which reduces the time taken to unsplit later.
3992          */
3993         if (cmd_bit) {
3994                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3995                 for (thr = 1; thr < threads_per_subcore; ++thr)
3996                         if (!(active & (1 << thr)))
3997                                 kvmppc_ipi_thread(pcpu + thr);
3998         }
3999
4000         vc->vcore_state = VCORE_RUNNING;
4001         preempt_disable();
4002
4003         trace_kvmppc_run_core(vc, 0);
4004
4005         for (sub = 0; sub < core_info.n_subcores; ++sub)
4006                 spin_unlock(&core_info.vc[sub]->lock);
4007
4008         guest_timing_enter_irqoff();
4009
4010         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
4011
4012         guest_state_enter_irqoff();
4013         this_cpu_disable_ftrace();
4014
4015         trap = __kvmppc_vcore_entry();
4016
4017         this_cpu_enable_ftrace();
4018         guest_state_exit_irqoff();
4019
4020         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
4021
4022         set_irq_happened(trap);
4023
4024         spin_lock(&vc->lock);
4025         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
4026         vc->vcore_state = VCORE_EXITING;
4027
4028         /* wait for secondary threads to finish writing their state to memory */
4029         kvmppc_wait_for_nap(controlled_threads);
4030
4031         /* Return to whole-core mode if we split the core earlier */
4032         if (cmd_bit) {
4033                 unsigned long hid0 = mfspr(SPRN_HID0);
4034                 unsigned long loops = 0;
4035
4036                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
4037                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
4038                 mb();
4039                 mtspr(SPRN_HID0, hid0);
4040                 isync();
4041                 for (;;) {
4042                         hid0 = mfspr(SPRN_HID0);
4043                         if (!(hid0 & stat_bit))
4044                                 break;
4045                         cpu_relax();
4046                         ++loops;
4047                 }
4048                 split_info.do_nap = 0;
4049         }
4050
4051         kvmppc_set_host_core(pcpu);
4052
4053         if (!vtime_accounting_enabled_this_cpu()) {
4054                 local_irq_enable();
4055                 /*
4056                  * Service IRQs here before guest_timing_exit_irqoff() so any
4057                  * ticks that occurred while running the guest are accounted to
4058                  * the guest. If vtime accounting is enabled, accounting uses
4059                  * TB rather than ticks, so it can be done without enabling
4060                  * interrupts here, which has the problem that it accounts
4061                  * interrupt processing overhead to the host.
4062                  */
4063                 local_irq_disable();
4064         }
4065         guest_timing_exit_irqoff();
4066
4067         local_irq_enable();
4068
4069         /* Let secondaries go back to the offline loop */
4070         for (i = 0; i < controlled_threads; ++i) {
4071                 kvmppc_release_hwthread(pcpu + i);
4072                 if (sip && sip->napped[i])
4073                         kvmppc_ipi_thread(pcpu + i);
4074         }
4075
4076         spin_unlock(&vc->lock);
4077
4078         /* make sure updates to secondary vcpu structs are visible now */
4079         smp_mb();
4080
4081         preempt_enable();
4082
4083         for (sub = 0; sub < core_info.n_subcores; ++sub) {
4084                 pvc = core_info.vc[sub];
4085                 post_guest_process(pvc, pvc == vc);
4086         }
4087
4088         spin_lock(&vc->lock);
4089
4090  out:
4091         vc->vcore_state = VCORE_INACTIVE;
4092         trace_kvmppc_run_core(vc, 1);
4093 }
4094
4095 static inline bool hcall_is_xics(unsigned long req)
4096 {
4097         return req == H_EOI || req == H_CPPR || req == H_IPI ||
4098                 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4099 }
4100
4101 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4102 {
4103         struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4104         if (lp) {
4105                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4106                 lp->yield_count = cpu_to_be32(yield_count);
4107                 vcpu->arch.vpa.dirty = 1;
4108         }
4109 }
4110
4111 static int kvmhv_vcpu_entry_nestedv2(struct kvm_vcpu *vcpu, u64 time_limit,
4112                                      unsigned long lpcr, u64 *tb)
4113 {
4114         struct kvmhv_nestedv2_io *io;
4115         unsigned long msr, i;
4116         int trap;
4117         long rc;
4118
4119         io = &vcpu->arch.nestedv2_io;
4120
4121         msr = mfmsr();
4122         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4123         if (lazy_irq_pending())
4124                 return 0;
4125
4126         rc = kvmhv_nestedv2_flush_vcpu(vcpu, time_limit);
4127         if (rc < 0)
4128                 return -EINVAL;
4129
4130         kvmppc_gse_put_u64(io->vcpu_run_input, KVMPPC_GSID_LPCR, lpcr);
4131
4132         accumulate_time(vcpu, &vcpu->arch.in_guest);
4133         rc = plpar_guest_run_vcpu(0, vcpu->kvm->arch.lpid, vcpu->vcpu_id,
4134                                   &trap, &i);
4135
4136         if (rc != H_SUCCESS) {
4137                 pr_err("KVM Guest Run VCPU hcall failed\n");
4138                 if (rc == H_INVALID_ELEMENT_ID)
4139                         pr_err("KVM: Guest Run VCPU invalid element id at %ld\n", i);
4140                 else if (rc == H_INVALID_ELEMENT_SIZE)
4141                         pr_err("KVM: Guest Run VCPU invalid element size at %ld\n", i);
4142                 else if (rc == H_INVALID_ELEMENT_VALUE)
4143                         pr_err("KVM: Guest Run VCPU invalid element value at %ld\n", i);
4144                 return -EINVAL;
4145         }
4146         accumulate_time(vcpu, &vcpu->arch.guest_exit);
4147
4148         *tb = mftb();
4149         kvmppc_gsm_reset(io->vcpu_message);
4150         kvmppc_gsm_reset(io->vcore_message);
4151         kvmppc_gsbm_zero(&io->valids);
4152
4153         rc = kvmhv_nestedv2_parse_output(vcpu);
4154         if (rc < 0)
4155                 return -EINVAL;
4156
4157         timer_rearm_host_dec(*tb);
4158
4159         return trap;
4160 }
4161
4162 /* call our hypervisor to load up HV regs and go */
4163 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4164 {
4165         unsigned long host_psscr;
4166         unsigned long msr;
4167         struct hv_guest_state hvregs;
4168         struct p9_host_os_sprs host_os_sprs;
4169         s64 dec;
4170         int trap;
4171
4172         msr = mfmsr();
4173
4174         save_p9_host_os_sprs(&host_os_sprs);
4175
4176         /*
4177          * We need to save and restore the guest visible part of the
4178          * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4179          * doesn't do this for us. Note only required if pseries since
4180          * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4181          */
4182         host_psscr = mfspr(SPRN_PSSCR_PR);
4183
4184         kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4185         if (lazy_irq_pending())
4186                 return 0;
4187
4188         if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4189                 msr = mfmsr(); /* TM restore can update msr */
4190
4191         if (vcpu->arch.psscr != host_psscr)
4192                 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4193
4194         kvmhv_save_hv_regs(vcpu, &hvregs);
4195         hvregs.lpcr = lpcr;
4196         hvregs.amor = ~0;
4197         vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4198         hvregs.version = HV_GUEST_STATE_VERSION;
4199         if (vcpu->arch.nested) {
4200                 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4201                 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4202         } else {
4203                 hvregs.lpid = vcpu->kvm->arch.lpid;
4204                 hvregs.vcpu_token = vcpu->vcpu_id;
4205         }
4206         hvregs.hdec_expiry = time_limit;
4207
4208         /*
4209          * When setting DEC, we must always deal with irq_work_raise
4210          * via NMI vs setting DEC. The problem occurs right as we
4211          * switch into guest mode if a NMI hits and sets pending work
4212          * and sets DEC, then that will apply to the guest and not
4213          * bring us back to the host.
4214          *
4215          * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4216          * for example) and set HDEC to 1? That wouldn't solve the
4217          * nested hv case which needs to abort the hcall or zero the
4218          * time limit.
4219          *
4220          * XXX: Another day's problem.
4221          */
4222         mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4223
4224         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4225         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4226         switch_pmu_to_guest(vcpu, &host_os_sprs);
4227         accumulate_time(vcpu, &vcpu->arch.in_guest);
4228         trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4229                                   __pa(&vcpu->arch.regs));
4230         accumulate_time(vcpu, &vcpu->arch.guest_exit);
4231         kvmhv_restore_hv_return_state(vcpu, &hvregs);
4232         switch_pmu_to_host(vcpu, &host_os_sprs);
4233         vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4234         vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4235         vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4236         vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4237
4238         store_vcpu_state(vcpu);
4239
4240         dec = mfspr(SPRN_DEC);
4241         if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4242                 dec = (s32) dec;
4243         *tb = mftb();
4244         vcpu->arch.dec_expires = dec + (*tb + kvmppc_get_tb_offset(vcpu));
4245
4246         timer_rearm_host_dec(*tb);
4247
4248         restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4249         if (vcpu->arch.psscr != host_psscr)
4250                 mtspr(SPRN_PSSCR_PR, host_psscr);
4251
4252         return trap;
4253 }
4254
4255 /*
4256  * Guest entry for POWER9 and later CPUs.
4257  */
4258 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4259                          unsigned long lpcr, u64 *tb)
4260 {
4261         struct kvm *kvm = vcpu->kvm;
4262         struct kvm_nested_guest *nested = vcpu->arch.nested;
4263         u64 next_timer;
4264         int trap;
4265
4266         next_timer = timer_get_next_tb();
4267         if (*tb >= next_timer)
4268                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
4269         if (next_timer < time_limit)
4270                 time_limit = next_timer;
4271         else if (*tb >= time_limit) /* nested time limit */
4272                 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4273
4274         vcpu->arch.ceded = 0;
4275
4276         vcpu_vpa_increment_dispatch(vcpu);
4277
4278         if (kvmhv_on_pseries()) {
4279                 if (kvmhv_is_nestedv1())
4280                         trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4281                 else
4282                         trap = kvmhv_vcpu_entry_nestedv2(vcpu, time_limit, lpcr, tb);
4283
4284                 /* H_CEDE has to be handled now, not later */
4285                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4286                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4287                         kvmppc_cede(vcpu);
4288                         kvmppc_set_gpr(vcpu, 3, 0);
4289                         trap = 0;
4290                 }
4291
4292         } else if (nested) {
4293                 __this_cpu_write(cpu_in_guest, kvm);
4294                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4295                 __this_cpu_write(cpu_in_guest, NULL);
4296
4297         } else {
4298                 kvmppc_xive_push_vcpu(vcpu);
4299
4300                 __this_cpu_write(cpu_in_guest, kvm);
4301                 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4302                 __this_cpu_write(cpu_in_guest, NULL);
4303
4304                 if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4305                     !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4306                         unsigned long req = kvmppc_get_gpr(vcpu, 3);
4307
4308                         /*
4309                          * XIVE rearm and XICS hcalls must be handled
4310                          * before xive context is pulled (is this
4311                          * true?)
4312                          */
4313                         if (req == H_CEDE) {
4314                                 /* H_CEDE has to be handled now */
4315                                 kvmppc_cede(vcpu);
4316                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4317                                         /*
4318                                          * Pending escalation so abort
4319                                          * the cede.
4320                                          */
4321                                         vcpu->arch.ceded = 0;
4322                                 }
4323                                 kvmppc_set_gpr(vcpu, 3, 0);
4324                                 trap = 0;
4325
4326                         } else if (req == H_ENTER_NESTED) {
4327                                 /*
4328                                  * L2 should not run with the L1
4329                                  * context so rearm and pull it.
4330                                  */
4331                                 if (!kvmppc_xive_rearm_escalation(vcpu)) {
4332                                         /*
4333                                          * Pending escalation so abort
4334                                          * H_ENTER_NESTED.
4335                                          */
4336                                         kvmppc_set_gpr(vcpu, 3, 0);
4337                                         trap = 0;
4338                                 }
4339
4340                         } else if (hcall_is_xics(req)) {
4341                                 int ret;
4342
4343                                 ret = kvmppc_xive_xics_hcall(vcpu, req);
4344                                 if (ret != H_TOO_HARD) {
4345                                         kvmppc_set_gpr(vcpu, 3, ret);
4346                                         trap = 0;
4347                                 }
4348                         }
4349                 }
4350                 kvmppc_xive_pull_vcpu(vcpu);
4351
4352                 if (kvm_is_radix(kvm))
4353                         vcpu->arch.slb_max = 0;
4354         }
4355
4356         vcpu_vpa_increment_dispatch(vcpu);
4357
4358         return trap;
4359 }
4360
4361 /*
4362  * Wait for some other vcpu thread to execute us, and
4363  * wake us up when we need to handle something in the host.
4364  */
4365 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4366                                  struct kvm_vcpu *vcpu, int wait_state)
4367 {
4368         DEFINE_WAIT(wait);
4369
4370         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4371         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4372                 spin_unlock(&vc->lock);
4373                 schedule();
4374                 spin_lock(&vc->lock);
4375         }
4376         finish_wait(&vcpu->arch.cpu_run, &wait);
4377 }
4378
4379 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4380 {
4381         if (!halt_poll_ns_grow)
4382                 return;
4383
4384         vc->halt_poll_ns *= halt_poll_ns_grow;
4385         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4386                 vc->halt_poll_ns = halt_poll_ns_grow_start;
4387 }
4388
4389 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4390 {
4391         if (halt_poll_ns_shrink == 0)
4392                 vc->halt_poll_ns = 0;
4393         else
4394                 vc->halt_poll_ns /= halt_poll_ns_shrink;
4395 }
4396
4397 #ifdef CONFIG_KVM_XICS
4398 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4399 {
4400         if (!xics_on_xive())
4401                 return false;
4402         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4403                 vcpu->arch.xive_saved_state.cppr;
4404 }
4405 #else
4406 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4407 {
4408         return false;
4409 }
4410 #endif /* CONFIG_KVM_XICS */
4411
4412 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4413 {
4414         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4415             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4416                 return true;
4417
4418         return false;
4419 }
4420
4421 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4422 {
4423         if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4424                 return true;
4425         return false;
4426 }
4427
4428 /*
4429  * Check to see if any of the runnable vcpus on the vcore have pending
4430  * exceptions or are no longer ceded
4431  */
4432 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4433 {
4434         struct kvm_vcpu *vcpu;
4435         int i;
4436
4437         for_each_runnable_thread(i, vcpu, vc) {
4438                 if (kvmppc_vcpu_check_block(vcpu))
4439                         return 1;
4440         }
4441
4442         return 0;
4443 }
4444
4445 /*
4446  * All the vcpus in this vcore are idle, so wait for a decrementer
4447  * or external interrupt to one of the vcpus.  vc->lock is held.
4448  */
4449 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4450 {
4451         ktime_t cur, start_poll, start_wait;
4452         int do_sleep = 1;
4453         u64 block_ns;
4454
4455         WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4456
4457         /* Poll for pending exceptions and ceded state */
4458         cur = start_poll = ktime_get();
4459         if (vc->halt_poll_ns) {
4460                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4461                 ++vc->runner->stat.generic.halt_attempted_poll;
4462
4463                 vc->vcore_state = VCORE_POLLING;
4464                 spin_unlock(&vc->lock);
4465
4466                 do {
4467                         if (kvmppc_vcore_check_block(vc)) {
4468                                 do_sleep = 0;
4469                                 break;
4470                         }
4471                         cur = ktime_get();
4472                 } while (kvm_vcpu_can_poll(cur, stop));
4473
4474                 spin_lock(&vc->lock);
4475                 vc->vcore_state = VCORE_INACTIVE;
4476
4477                 if (!do_sleep) {
4478                         ++vc->runner->stat.generic.halt_successful_poll;
4479                         goto out;
4480                 }
4481         }
4482
4483         prepare_to_rcuwait(&vc->wait);
4484         set_current_state(TASK_INTERRUPTIBLE);
4485         if (kvmppc_vcore_check_block(vc)) {
4486                 finish_rcuwait(&vc->wait);
4487                 do_sleep = 0;
4488                 /* If we polled, count this as a successful poll */
4489                 if (vc->halt_poll_ns)
4490                         ++vc->runner->stat.generic.halt_successful_poll;
4491                 goto out;
4492         }
4493
4494         start_wait = ktime_get();
4495
4496         vc->vcore_state = VCORE_SLEEPING;
4497         trace_kvmppc_vcore_blocked(vc->runner, 0);
4498         spin_unlock(&vc->lock);
4499         schedule();
4500         finish_rcuwait(&vc->wait);
4501         spin_lock(&vc->lock);
4502         vc->vcore_state = VCORE_INACTIVE;
4503         trace_kvmppc_vcore_blocked(vc->runner, 1);
4504         ++vc->runner->stat.halt_successful_wait;
4505
4506         cur = ktime_get();
4507
4508 out:
4509         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4510
4511         /* Attribute wait time */
4512         if (do_sleep) {
4513                 vc->runner->stat.generic.halt_wait_ns +=
4514                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
4515                 KVM_STATS_LOG_HIST_UPDATE(
4516                                 vc->runner->stat.generic.halt_wait_hist,
4517                                 ktime_to_ns(cur) - ktime_to_ns(start_wait));
4518                 /* Attribute failed poll time */
4519                 if (vc->halt_poll_ns) {
4520                         vc->runner->stat.generic.halt_poll_fail_ns +=
4521                                 ktime_to_ns(start_wait) -
4522                                 ktime_to_ns(start_poll);
4523                         KVM_STATS_LOG_HIST_UPDATE(
4524                                 vc->runner->stat.generic.halt_poll_fail_hist,
4525                                 ktime_to_ns(start_wait) -
4526                                 ktime_to_ns(start_poll));
4527                 }
4528         } else {
4529                 /* Attribute successful poll time */
4530                 if (vc->halt_poll_ns) {
4531                         vc->runner->stat.generic.halt_poll_success_ns +=
4532                                 ktime_to_ns(cur) -
4533                                 ktime_to_ns(start_poll);
4534                         KVM_STATS_LOG_HIST_UPDATE(
4535                                 vc->runner->stat.generic.halt_poll_success_hist,
4536                                 ktime_to_ns(cur) - ktime_to_ns(start_poll));
4537                 }
4538         }
4539
4540         /* Adjust poll time */
4541         if (halt_poll_ns) {
4542                 if (block_ns <= vc->halt_poll_ns)
4543                         ;
4544                 /* We slept and blocked for longer than the max halt time */
4545                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4546                         shrink_halt_poll_ns(vc);
4547                 /* We slept and our poll time is too small */
4548                 else if (vc->halt_poll_ns < halt_poll_ns &&
4549                                 block_ns < halt_poll_ns)
4550                         grow_halt_poll_ns(vc);
4551                 if (vc->halt_poll_ns > halt_poll_ns)
4552                         vc->halt_poll_ns = halt_poll_ns;
4553         } else
4554                 vc->halt_poll_ns = 0;
4555
4556         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4557 }
4558
4559 /*
4560  * This never fails for a radix guest, as none of the operations it does
4561  * for a radix guest can fail or have a way to report failure.
4562  */
4563 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4564 {
4565         int r = 0;
4566         struct kvm *kvm = vcpu->kvm;
4567
4568         mutex_lock(&kvm->arch.mmu_setup_lock);
4569         if (!kvm->arch.mmu_ready) {
4570                 if (!kvm_is_radix(kvm))
4571                         r = kvmppc_hv_setup_htab_rma(vcpu);
4572                 if (!r) {
4573                         if (cpu_has_feature(CPU_FTR_ARCH_300))
4574                                 kvmppc_setup_partition_table(kvm);
4575                         kvm->arch.mmu_ready = 1;
4576                 }
4577         }
4578         mutex_unlock(&kvm->arch.mmu_setup_lock);
4579         return r;
4580 }
4581
4582 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4583 {
4584         struct kvm_run *run = vcpu->run;
4585         int n_ceded, i, r;
4586         struct kvmppc_vcore *vc;
4587         struct kvm_vcpu *v;
4588
4589         trace_kvmppc_run_vcpu_enter(vcpu);
4590
4591         run->exit_reason = 0;
4592         vcpu->arch.ret = RESUME_GUEST;
4593         vcpu->arch.trap = 0;
4594         kvmppc_update_vpas(vcpu);
4595
4596         /*
4597          * Synchronize with other threads in this virtual core
4598          */
4599         vc = vcpu->arch.vcore;
4600         spin_lock(&vc->lock);
4601         vcpu->arch.ceded = 0;
4602         vcpu->arch.run_task = current;
4603         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4604         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4605         vcpu->arch.busy_preempt = TB_NIL;
4606         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4607         ++vc->n_runnable;
4608
4609         /*
4610          * This happens the first time this is called for a vcpu.
4611          * If the vcore is already running, we may be able to start
4612          * this thread straight away and have it join in.
4613          */
4614         if (!signal_pending(current)) {
4615                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4616                      vc->vcore_state == VCORE_RUNNING) &&
4617                            !VCORE_IS_EXITING(vc)) {
4618                         kvmppc_update_vpa_dispatch(vcpu, vc);
4619                         kvmppc_start_thread(vcpu, vc);
4620                         trace_kvm_guest_enter(vcpu);
4621                 } else if (vc->vcore_state == VCORE_SLEEPING) {
4622                         rcuwait_wake_up(&vc->wait);
4623                 }
4624
4625         }
4626
4627         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4628                !signal_pending(current)) {
4629                 /* See if the MMU is ready to go */
4630                 if (!vcpu->kvm->arch.mmu_ready) {
4631                         spin_unlock(&vc->lock);
4632                         r = kvmhv_setup_mmu(vcpu);
4633                         spin_lock(&vc->lock);
4634                         if (r) {
4635                                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4636                                 run->fail_entry.
4637                                         hardware_entry_failure_reason = 0;
4638                                 vcpu->arch.ret = r;
4639                                 break;
4640                         }
4641                 }
4642
4643                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4644                         kvmppc_vcore_end_preempt(vc);
4645
4646                 if (vc->vcore_state != VCORE_INACTIVE) {
4647                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4648                         continue;
4649                 }
4650                 for_each_runnable_thread(i, v, vc) {
4651                         kvmppc_core_prepare_to_enter(v);
4652                         if (signal_pending(v->arch.run_task)) {
4653                                 kvmppc_remove_runnable(vc, v, mftb());
4654                                 v->stat.signal_exits++;
4655                                 v->run->exit_reason = KVM_EXIT_INTR;
4656                                 v->arch.ret = -EINTR;
4657                                 wake_up(&v->arch.cpu_run);
4658                         }
4659                 }
4660                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4661                         break;
4662                 n_ceded = 0;
4663                 for_each_runnable_thread(i, v, vc) {
4664                         if (!kvmppc_vcpu_woken(v))
4665                                 n_ceded += v->arch.ceded;
4666                         else
4667                                 v->arch.ceded = 0;
4668                 }
4669                 vc->runner = vcpu;
4670                 if (n_ceded == vc->n_runnable) {
4671                         kvmppc_vcore_blocked(vc);
4672                 } else if (need_resched()) {
4673                         kvmppc_vcore_preempt(vc);
4674                         /* Let something else run */
4675                         cond_resched_lock(&vc->lock);
4676                         if (vc->vcore_state == VCORE_PREEMPT)
4677                                 kvmppc_vcore_end_preempt(vc);
4678                 } else {
4679                         kvmppc_run_core(vc);
4680                 }
4681                 vc->runner = NULL;
4682         }
4683
4684         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4685                (vc->vcore_state == VCORE_RUNNING ||
4686                 vc->vcore_state == VCORE_EXITING ||
4687                 vc->vcore_state == VCORE_PIGGYBACK))
4688                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4689
4690         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4691                 kvmppc_vcore_end_preempt(vc);
4692
4693         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4694                 kvmppc_remove_runnable(vc, vcpu, mftb());
4695                 vcpu->stat.signal_exits++;
4696                 run->exit_reason = KVM_EXIT_INTR;
4697                 vcpu->arch.ret = -EINTR;
4698         }
4699
4700         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4701                 /* Wake up some vcpu to run the core */
4702                 i = -1;
4703                 v = next_runnable_thread(vc, &i);
4704                 wake_up(&v->arch.cpu_run);
4705         }
4706
4707         trace_kvmppc_run_vcpu_exit(vcpu);
4708         spin_unlock(&vc->lock);
4709         return vcpu->arch.ret;
4710 }
4711
4712 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4713                           unsigned long lpcr)
4714 {
4715         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4716         struct kvm_run *run = vcpu->run;
4717         int trap, r, pcpu;
4718         int srcu_idx;
4719         struct kvmppc_vcore *vc;
4720         struct kvm *kvm = vcpu->kvm;
4721         struct kvm_nested_guest *nested = vcpu->arch.nested;
4722         unsigned long flags;
4723         u64 tb;
4724
4725         trace_kvmppc_run_vcpu_enter(vcpu);
4726
4727         run->exit_reason = 0;
4728         vcpu->arch.ret = RESUME_GUEST;
4729         vcpu->arch.trap = 0;
4730
4731         vc = vcpu->arch.vcore;
4732         vcpu->arch.ceded = 0;
4733         vcpu->arch.run_task = current;
4734         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4735
4736         /* See if the MMU is ready to go */
4737         if (unlikely(!kvm->arch.mmu_ready)) {
4738                 r = kvmhv_setup_mmu(vcpu);
4739                 if (r) {
4740                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4741                         run->fail_entry.hardware_entry_failure_reason = 0;
4742                         vcpu->arch.ret = r;
4743                         return r;
4744                 }
4745         }
4746
4747         if (need_resched())
4748                 cond_resched();
4749
4750         kvmppc_update_vpas(vcpu);
4751
4752         preempt_disable();
4753         pcpu = smp_processor_id();
4754         if (kvm_is_radix(kvm))
4755                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4756
4757         /* flags save not required, but irq_pmu has no disable/enable API */
4758         powerpc_local_irq_pmu_save(flags);
4759
4760         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4761
4762         if (signal_pending(current))
4763                 goto sigpend;
4764         if (need_resched() || !kvm->arch.mmu_ready)
4765                 goto out;
4766
4767         vcpu->cpu = pcpu;
4768         vcpu->arch.thread_cpu = pcpu;
4769         vc->pcpu = pcpu;
4770         local_paca->kvm_hstate.kvm_vcpu = vcpu;
4771         local_paca->kvm_hstate.ptid = 0;
4772         local_paca->kvm_hstate.fake_suspend = 0;
4773
4774         /*
4775          * Orders set cpu/thread_cpu vs testing for pending interrupts and
4776          * doorbells below. The other side is when these fields are set vs
4777          * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4778          * kick a vCPU to notice the pending interrupt.
4779          */
4780         smp_mb();
4781
4782         if (!nested) {
4783                 kvmppc_core_prepare_to_enter(vcpu);
4784                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4785                              &vcpu->arch.pending_exceptions) ||
4786                     xive_interrupt_pending(vcpu)) {
4787                         /*
4788                          * For nested HV, don't synthesize but always pass MER,
4789                          * the L0 will be able to optimise that more
4790                          * effectively than manipulating registers directly.
4791                          */
4792                         if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
4793                                 kvmppc_inject_interrupt_hv(vcpu,
4794                                                            BOOK3S_INTERRUPT_EXTERNAL, 0);
4795                         else
4796                                 lpcr |= LPCR_MER;
4797                 }
4798         } else if (vcpu->arch.pending_exceptions ||
4799                    vcpu->arch.doorbell_request ||
4800                    xive_interrupt_pending(vcpu)) {
4801                 vcpu->arch.ret = RESUME_HOST;
4802                 goto out;
4803         }
4804
4805         if (vcpu->arch.timer_running) {
4806                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4807                 vcpu->arch.timer_running = 0;
4808         }
4809
4810         tb = mftb();
4811
4812         kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + kvmppc_get_tb_offset(vcpu));
4813
4814         trace_kvm_guest_enter(vcpu);
4815
4816         guest_timing_enter_irqoff();
4817
4818         srcu_idx = srcu_read_lock(&kvm->srcu);
4819
4820         guest_state_enter_irqoff();
4821         this_cpu_disable_ftrace();
4822
4823         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4824         vcpu->arch.trap = trap;
4825
4826         this_cpu_enable_ftrace();
4827         guest_state_exit_irqoff();
4828
4829         srcu_read_unlock(&kvm->srcu, srcu_idx);
4830
4831         set_irq_happened(trap);
4832
4833         vcpu->cpu = -1;
4834         vcpu->arch.thread_cpu = -1;
4835         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4836
4837         if (!vtime_accounting_enabled_this_cpu()) {
4838                 powerpc_local_irq_pmu_restore(flags);
4839                 /*
4840                  * Service IRQs here before guest_timing_exit_irqoff() so any
4841                  * ticks that occurred while running the guest are accounted to
4842                  * the guest. If vtime accounting is enabled, accounting uses
4843                  * TB rather than ticks, so it can be done without enabling
4844                  * interrupts here, which has the problem that it accounts
4845                  * interrupt processing overhead to the host.
4846                  */
4847                 powerpc_local_irq_pmu_save(flags);
4848         }
4849         guest_timing_exit_irqoff();
4850
4851         powerpc_local_irq_pmu_restore(flags);
4852
4853         preempt_enable();
4854
4855         /*
4856          * cancel pending decrementer exception if DEC is now positive, or if
4857          * entering a nested guest in which case the decrementer is now owned
4858          * by L2 and the L1 decrementer is provided in hdec_expires
4859          */
4860         if (kvmppc_core_pending_dec(vcpu) &&
4861                         ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4862                          (trap == BOOK3S_INTERRUPT_SYSCALL &&
4863                           kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4864                 kvmppc_core_dequeue_dec(vcpu);
4865
4866         trace_kvm_guest_exit(vcpu);
4867         r = RESUME_GUEST;
4868         if (trap) {
4869                 if (!nested)
4870                         r = kvmppc_handle_exit_hv(vcpu, current);
4871                 else
4872                         r = kvmppc_handle_nested_exit(vcpu);
4873         }
4874         vcpu->arch.ret = r;
4875
4876         if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4877                 kvmppc_set_timer(vcpu);
4878
4879                 prepare_to_rcuwait(wait);
4880                 for (;;) {
4881                         set_current_state(TASK_INTERRUPTIBLE);
4882                         if (signal_pending(current)) {
4883                                 vcpu->stat.signal_exits++;
4884                                 run->exit_reason = KVM_EXIT_INTR;
4885                                 vcpu->arch.ret = -EINTR;
4886                                 break;
4887                         }
4888
4889                         if (kvmppc_vcpu_check_block(vcpu))
4890                                 break;
4891
4892                         trace_kvmppc_vcore_blocked(vcpu, 0);
4893                         schedule();
4894                         trace_kvmppc_vcore_blocked(vcpu, 1);
4895                 }
4896                 finish_rcuwait(wait);
4897         }
4898         vcpu->arch.ceded = 0;
4899
4900  done:
4901         trace_kvmppc_run_vcpu_exit(vcpu);
4902
4903         return vcpu->arch.ret;
4904
4905  sigpend:
4906         vcpu->stat.signal_exits++;
4907         run->exit_reason = KVM_EXIT_INTR;
4908         vcpu->arch.ret = -EINTR;
4909  out:
4910         vcpu->cpu = -1;
4911         vcpu->arch.thread_cpu = -1;
4912         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4913         powerpc_local_irq_pmu_restore(flags);
4914         preempt_enable();
4915         goto done;
4916 }
4917
4918 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4919 {
4920         struct kvm_run *run = vcpu->run;
4921         int r;
4922         int srcu_idx;
4923         struct kvm *kvm;
4924         unsigned long msr;
4925
4926         start_timing(vcpu, &vcpu->arch.vcpu_entry);
4927
4928         if (!vcpu->arch.sane) {
4929                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4930                 return -EINVAL;
4931         }
4932
4933         /* No need to go into the guest when all we'll do is come back out */
4934         if (signal_pending(current)) {
4935                 run->exit_reason = KVM_EXIT_INTR;
4936                 return -EINTR;
4937         }
4938
4939 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4940         /*
4941          * Don't allow entry with a suspended transaction, because
4942          * the guest entry/exit code will lose it.
4943          */
4944         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4945             (current->thread.regs->msr & MSR_TM)) {
4946                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4947                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4948                         run->fail_entry.hardware_entry_failure_reason = 0;
4949                         return -EINVAL;
4950                 }
4951         }
4952 #endif
4953
4954         /*
4955          * Force online to 1 for the sake of old userspace which doesn't
4956          * set it.
4957          */
4958         if (!vcpu->arch.online) {
4959                 atomic_inc(&vcpu->arch.vcore->online_count);
4960                 vcpu->arch.online = 1;
4961         }
4962
4963         kvmppc_core_prepare_to_enter(vcpu);
4964
4965         kvm = vcpu->kvm;
4966         atomic_inc(&kvm->arch.vcpus_running);
4967         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4968         smp_mb();
4969
4970         msr = 0;
4971         if (IS_ENABLED(CONFIG_PPC_FPU))
4972                 msr |= MSR_FP;
4973         if (cpu_has_feature(CPU_FTR_ALTIVEC))
4974                 msr |= MSR_VEC;
4975         if (cpu_has_feature(CPU_FTR_VSX))
4976                 msr |= MSR_VSX;
4977         if ((cpu_has_feature(CPU_FTR_TM) ||
4978             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4979                         (kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4980                 msr |= MSR_TM;
4981         msr = msr_check_and_set(msr);
4982
4983         kvmppc_save_user_regs();
4984
4985         kvmppc_save_current_sprs();
4986
4987         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4988                 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4989         vcpu->arch.pgdir = kvm->mm->pgd;
4990         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4991
4992         do {
4993                 accumulate_time(vcpu, &vcpu->arch.guest_entry);
4994                 if (cpu_has_feature(CPU_FTR_ARCH_300))
4995                         r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4996                                                   vcpu->arch.vcore->lpcr);
4997                 else
4998                         r = kvmppc_run_vcpu(vcpu);
4999
5000                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
5001                         accumulate_time(vcpu, &vcpu->arch.hcall);
5002
5003                         if (!kvmhv_is_nestedv2() && WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
5004                                 /*
5005                                  * These should have been caught reflected
5006                                  * into the guest by now. Final sanity check:
5007                                  * don't allow userspace to execute hcalls in
5008                                  * the hypervisor.
5009                                  */
5010                                 r = RESUME_GUEST;
5011                                 continue;
5012                         }
5013                         trace_kvm_hcall_enter(vcpu);
5014                         r = kvmppc_pseries_do_hcall(vcpu);
5015                         trace_kvm_hcall_exit(vcpu, r);
5016                         kvmppc_core_prepare_to_enter(vcpu);
5017                 } else if (r == RESUME_PAGE_FAULT) {
5018                         accumulate_time(vcpu, &vcpu->arch.pg_fault);
5019                         srcu_idx = srcu_read_lock(&kvm->srcu);
5020                         r = kvmppc_book3s_hv_page_fault(vcpu,
5021                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
5022                         srcu_read_unlock(&kvm->srcu, srcu_idx);
5023                 } else if (r == RESUME_PASSTHROUGH) {
5024                         if (WARN_ON(xics_on_xive()))
5025                                 r = H_SUCCESS;
5026                         else
5027                                 r = kvmppc_xics_rm_complete(vcpu, 0);
5028                 }
5029         } while (is_kvmppc_resume_guest(r));
5030         accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
5031
5032         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
5033         atomic_dec(&kvm->arch.vcpus_running);
5034
5035         srr_regs_clobbered();
5036
5037         end_timing(vcpu);
5038
5039         return r;
5040 }
5041
5042 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
5043                                      int shift, int sllp)
5044 {
5045         (*sps)->page_shift = shift;
5046         (*sps)->slb_enc = sllp;
5047         (*sps)->enc[0].page_shift = shift;
5048         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
5049         /*
5050          * Add 16MB MPSS support (may get filtered out by userspace)
5051          */
5052         if (shift != 24) {
5053                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
5054                 if (penc != -1) {
5055                         (*sps)->enc[1].page_shift = 24;
5056                         (*sps)->enc[1].pte_enc = penc;
5057                 }
5058         }
5059         (*sps)++;
5060 }
5061
5062 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
5063                                          struct kvm_ppc_smmu_info *info)
5064 {
5065         struct kvm_ppc_one_seg_page_size *sps;
5066
5067         /*
5068          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
5069          * POWER7 doesn't support keys for instruction accesses,
5070          * POWER8 and POWER9 do.
5071          */
5072         info->data_keys = 32;
5073         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
5074
5075         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
5076         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
5077         info->slb_size = 32;
5078
5079         /* We only support these sizes for now, and no muti-size segments */
5080         sps = &info->sps[0];
5081         kvmppc_add_seg_page_size(&sps, 12, 0);
5082         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
5083         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
5084
5085         /* If running as a nested hypervisor, we don't support HPT guests */
5086         if (kvmhv_on_pseries())
5087                 info->flags |= KVM_PPC_NO_HASH;
5088
5089         return 0;
5090 }
5091
5092 /*
5093  * Get (and clear) the dirty memory log for a memory slot.
5094  */
5095 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
5096                                          struct kvm_dirty_log *log)
5097 {
5098         struct kvm_memslots *slots;
5099         struct kvm_memory_slot *memslot;
5100         int r;
5101         unsigned long n, i;
5102         unsigned long *buf, *p;
5103         struct kvm_vcpu *vcpu;
5104
5105         mutex_lock(&kvm->slots_lock);
5106
5107         r = -EINVAL;
5108         if (log->slot >= KVM_USER_MEM_SLOTS)
5109                 goto out;
5110
5111         slots = kvm_memslots(kvm);
5112         memslot = id_to_memslot(slots, log->slot);
5113         r = -ENOENT;
5114         if (!memslot || !memslot->dirty_bitmap)
5115                 goto out;
5116
5117         /*
5118          * Use second half of bitmap area because both HPT and radix
5119          * accumulate bits in the first half.
5120          */
5121         n = kvm_dirty_bitmap_bytes(memslot);
5122         buf = memslot->dirty_bitmap + n / sizeof(long);
5123         memset(buf, 0, n);
5124
5125         if (kvm_is_radix(kvm))
5126                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5127         else
5128                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5129         if (r)
5130                 goto out;
5131
5132         /*
5133          * We accumulate dirty bits in the first half of the
5134          * memslot's dirty_bitmap area, for when pages are paged
5135          * out or modified by the host directly.  Pick up these
5136          * bits and add them to the map.
5137          */
5138         p = memslot->dirty_bitmap;
5139         for (i = 0; i < n / sizeof(long); ++i)
5140                 buf[i] |= xchg(&p[i], 0);
5141
5142         /* Harvest dirty bits from VPA and DTL updates */
5143         /* Note: we never modify the SLB shadow buffer areas */
5144         kvm_for_each_vcpu(i, vcpu, kvm) {
5145                 spin_lock(&vcpu->arch.vpa_update_lock);
5146                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5147                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5148                 spin_unlock(&vcpu->arch.vpa_update_lock);
5149         }
5150
5151         r = -EFAULT;
5152         if (copy_to_user(log->dirty_bitmap, buf, n))
5153                 goto out;
5154
5155         r = 0;
5156 out:
5157         mutex_unlock(&kvm->slots_lock);
5158         return r;
5159 }
5160
5161 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5162 {
5163         vfree(slot->arch.rmap);
5164         slot->arch.rmap = NULL;
5165 }
5166
5167 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5168                                 const struct kvm_memory_slot *old,
5169                                 struct kvm_memory_slot *new,
5170                                 enum kvm_mr_change change)
5171 {
5172         if (change == KVM_MR_CREATE) {
5173                 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5174
5175                 if ((size >> PAGE_SHIFT) > totalram_pages())
5176                         return -ENOMEM;
5177
5178                 new->arch.rmap = vzalloc(size);
5179                 if (!new->arch.rmap)
5180                         return -ENOMEM;
5181         } else if (change != KVM_MR_DELETE) {
5182                 new->arch.rmap = old->arch.rmap;
5183         }
5184
5185         return 0;
5186 }
5187
5188 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5189                                 struct kvm_memory_slot *old,
5190                                 const struct kvm_memory_slot *new,
5191                                 enum kvm_mr_change change)
5192 {
5193         /*
5194          * If we are creating or modifying a memslot, it might make
5195          * some address that was previously cached as emulated
5196          * MMIO be no longer emulated MMIO, so invalidate
5197          * all the caches of emulated MMIO translations.
5198          */
5199         if (change != KVM_MR_DELETE)
5200                 atomic64_inc(&kvm->arch.mmio_update);
5201
5202         /*
5203          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5204          * have already called kvm_arch_flush_shadow_memslot() to
5205          * flush shadow mappings.  For KVM_MR_CREATE we have no
5206          * previous mappings.  So the only case to handle is
5207          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5208          * has been changed.
5209          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5210          * to get rid of any THP PTEs in the partition-scoped page tables
5211          * so we can track dirtiness at the page level; we flush when
5212          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5213          * using THP PTEs.
5214          */
5215         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5216             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5217                 kvmppc_radix_flush_memslot(kvm, old);
5218         /*
5219          * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5220          */
5221         if (!kvm->arch.secure_guest)
5222                 return;
5223
5224         switch (change) {
5225         case KVM_MR_CREATE:
5226                 /*
5227                  * @TODO kvmppc_uvmem_memslot_create() can fail and
5228                  * return error. Fix this.
5229                  */
5230                 kvmppc_uvmem_memslot_create(kvm, new);
5231                 break;
5232         case KVM_MR_DELETE:
5233                 kvmppc_uvmem_memslot_delete(kvm, old);
5234                 break;
5235         default:
5236                 /* TODO: Handle KVM_MR_MOVE */
5237                 break;
5238         }
5239 }
5240
5241 /*
5242  * Update LPCR values in kvm->arch and in vcores.
5243  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5244  * of kvm->arch.lpcr update).
5245  */
5246 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5247 {
5248         long int i;
5249         u32 cores_done = 0;
5250
5251         if ((kvm->arch.lpcr & mask) == lpcr)
5252                 return;
5253
5254         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5255
5256         for (i = 0; i < KVM_MAX_VCORES; ++i) {
5257                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5258                 if (!vc)
5259                         continue;
5260
5261                 spin_lock(&vc->lock);
5262                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5263                 verify_lpcr(kvm, vc->lpcr);
5264                 spin_unlock(&vc->lock);
5265                 if (++cores_done >= kvm->arch.online_vcores)
5266                         break;
5267         }
5268
5269         if (kvmhv_is_nestedv2()) {
5270                 struct kvm_vcpu *vcpu;
5271
5272                 kvm_for_each_vcpu(i, vcpu, kvm) {
5273                         kvmhv_nestedv2_mark_dirty(vcpu, KVMPPC_GSID_LPCR);
5274                 }
5275         }
5276 }
5277
5278 void kvmppc_setup_partition_table(struct kvm *kvm)
5279 {
5280         unsigned long dw0, dw1;
5281
5282         if (!kvm_is_radix(kvm)) {
5283                 /* PS field - page size for VRMA */
5284                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5285                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5286                 /* HTABSIZE and HTABORG fields */
5287                 dw0 |= kvm->arch.sdr1;
5288
5289                 /* Second dword as set by userspace */
5290                 dw1 = kvm->arch.process_table;
5291         } else {
5292                 dw0 = PATB_HR | radix__get_tree_size() |
5293                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5294                 dw1 = PATB_GR | kvm->arch.process_table;
5295         }
5296         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5297 }
5298
5299 /*
5300  * Set up HPT (hashed page table) and RMA (real-mode area).
5301  * Must be called with kvm->arch.mmu_setup_lock held.
5302  */
5303 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5304 {
5305         int err = 0;
5306         struct kvm *kvm = vcpu->kvm;
5307         unsigned long hva;
5308         struct kvm_memory_slot *memslot;
5309         struct vm_area_struct *vma;
5310         unsigned long lpcr = 0, senc;
5311         unsigned long psize, porder;
5312         int srcu_idx;
5313
5314         /* Allocate hashed page table (if not done already) and reset it */
5315         if (!kvm->arch.hpt.virt) {
5316                 int order = KVM_DEFAULT_HPT_ORDER;
5317                 struct kvm_hpt_info info;
5318
5319                 err = kvmppc_allocate_hpt(&info, order);
5320                 /* If we get here, it means userspace didn't specify a
5321                  * size explicitly.  So, try successively smaller
5322                  * sizes if the default failed. */
5323                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5324                         err  = kvmppc_allocate_hpt(&info, order);
5325
5326                 if (err < 0) {
5327                         pr_err("KVM: Couldn't alloc HPT\n");
5328                         goto out;
5329                 }
5330
5331                 kvmppc_set_hpt(kvm, &info);
5332         }
5333
5334         /* Look up the memslot for guest physical address 0 */
5335         srcu_idx = srcu_read_lock(&kvm->srcu);
5336         memslot = gfn_to_memslot(kvm, 0);
5337
5338         /* We must have some memory at 0 by now */
5339         err = -EINVAL;
5340         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5341                 goto out_srcu;
5342
5343         /* Look up the VMA for the start of this memory slot */
5344         hva = memslot->userspace_addr;
5345         mmap_read_lock(kvm->mm);
5346         vma = vma_lookup(kvm->mm, hva);
5347         if (!vma || (vma->vm_flags & VM_IO))
5348                 goto up_out;
5349
5350         psize = vma_kernel_pagesize(vma);
5351
5352         mmap_read_unlock(kvm->mm);
5353
5354         /* We can handle 4k, 64k or 16M pages in the VRMA */
5355         if (psize >= 0x1000000)
5356                 psize = 0x1000000;
5357         else if (psize >= 0x10000)
5358                 psize = 0x10000;
5359         else
5360                 psize = 0x1000;
5361         porder = __ilog2(psize);
5362
5363         senc = slb_pgsize_encoding(psize);
5364         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5365                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5366         /* Create HPTEs in the hash page table for the VRMA */
5367         kvmppc_map_vrma(vcpu, memslot, porder);
5368
5369         /* Update VRMASD field in the LPCR */
5370         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5371                 /* the -4 is to account for senc values starting at 0x10 */
5372                 lpcr = senc << (LPCR_VRMASD_SH - 4);
5373                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5374         }
5375
5376         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5377         smp_wmb();
5378         err = 0;
5379  out_srcu:
5380         srcu_read_unlock(&kvm->srcu, srcu_idx);
5381  out:
5382         return err;
5383
5384  up_out:
5385         mmap_read_unlock(kvm->mm);
5386         goto out_srcu;
5387 }
5388
5389 /*
5390  * Must be called with kvm->arch.mmu_setup_lock held and
5391  * mmu_ready = 0 and no vcpus running.
5392  */
5393 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5394 {
5395         unsigned long lpcr, lpcr_mask;
5396
5397         if (nesting_enabled(kvm))
5398                 kvmhv_release_all_nested(kvm);
5399         kvmppc_rmap_reset(kvm);
5400         kvm->arch.process_table = 0;
5401         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5402         spin_lock(&kvm->mmu_lock);
5403         kvm->arch.radix = 0;
5404         spin_unlock(&kvm->mmu_lock);
5405         kvmppc_free_radix(kvm);
5406
5407         lpcr = LPCR_VPM1;
5408         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5409         if (cpu_has_feature(CPU_FTR_ARCH_31))
5410                 lpcr_mask |= LPCR_HAIL;
5411         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5412
5413         return 0;
5414 }
5415
5416 /*
5417  * Must be called with kvm->arch.mmu_setup_lock held and
5418  * mmu_ready = 0 and no vcpus running.
5419  */
5420 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5421 {
5422         unsigned long lpcr, lpcr_mask;
5423         int err;
5424
5425         err = kvmppc_init_vm_radix(kvm);
5426         if (err)
5427                 return err;
5428         kvmppc_rmap_reset(kvm);
5429         /* Mutual exclusion with kvm_unmap_gfn_range etc. */
5430         spin_lock(&kvm->mmu_lock);
5431         kvm->arch.radix = 1;
5432         spin_unlock(&kvm->mmu_lock);
5433         kvmppc_free_hpt(&kvm->arch.hpt);
5434
5435         lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5436         lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5437         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5438                 lpcr_mask |= LPCR_HAIL;
5439                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5440                                 (kvm->arch.host_lpcr & LPCR_HAIL))
5441                         lpcr |= LPCR_HAIL;
5442         }
5443         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5444
5445         return 0;
5446 }
5447
5448 #ifdef CONFIG_KVM_XICS
5449 /*
5450  * Allocate a per-core structure for managing state about which cores are
5451  * running in the host versus the guest and for exchanging data between
5452  * real mode KVM and CPU running in the host.
5453  * This is only done for the first VM.
5454  * The allocated structure stays even if all VMs have stopped.
5455  * It is only freed when the kvm-hv module is unloaded.
5456  * It's OK for this routine to fail, we just don't support host
5457  * core operations like redirecting H_IPI wakeups.
5458  */
5459 void kvmppc_alloc_host_rm_ops(void)
5460 {
5461         struct kvmppc_host_rm_ops *ops;
5462         unsigned long l_ops;
5463         int cpu, core;
5464         int size;
5465
5466         if (cpu_has_feature(CPU_FTR_ARCH_300))
5467                 return;
5468
5469         /* Not the first time here ? */
5470         if (kvmppc_host_rm_ops_hv != NULL)
5471                 return;
5472
5473         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5474         if (!ops)
5475                 return;
5476
5477         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5478         ops->rm_core = kzalloc(size, GFP_KERNEL);
5479
5480         if (!ops->rm_core) {
5481                 kfree(ops);
5482                 return;
5483         }
5484
5485         cpus_read_lock();
5486
5487         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5488                 if (!cpu_online(cpu))
5489                         continue;
5490
5491                 core = cpu >> threads_shift;
5492                 ops->rm_core[core].rm_state.in_host = 1;
5493         }
5494
5495         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5496
5497         /*
5498          * Make the contents of the kvmppc_host_rm_ops structure visible
5499          * to other CPUs before we assign it to the global variable.
5500          * Do an atomic assignment (no locks used here), but if someone
5501          * beats us to it, just free our copy and return.
5502          */
5503         smp_wmb();
5504         l_ops = (unsigned long) ops;
5505
5506         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5507                 cpus_read_unlock();
5508                 kfree(ops->rm_core);
5509                 kfree(ops);
5510                 return;
5511         }
5512
5513         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5514                                              "ppc/kvm_book3s:prepare",
5515                                              kvmppc_set_host_core,
5516                                              kvmppc_clear_host_core);
5517         cpus_read_unlock();
5518 }
5519
5520 void kvmppc_free_host_rm_ops(void)
5521 {
5522         if (kvmppc_host_rm_ops_hv) {
5523                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5524                 kfree(kvmppc_host_rm_ops_hv->rm_core);
5525                 kfree(kvmppc_host_rm_ops_hv);
5526                 kvmppc_host_rm_ops_hv = NULL;
5527         }
5528 }
5529 #endif
5530
5531 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5532 {
5533         unsigned long lpcr, lpid;
5534         int ret;
5535
5536         mutex_init(&kvm->arch.uvmem_lock);
5537         INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5538         mutex_init(&kvm->arch.mmu_setup_lock);
5539
5540         /* Allocate the guest's logical partition ID */
5541
5542         if (!kvmhv_is_nestedv2()) {
5543                 lpid = kvmppc_alloc_lpid();
5544                 if ((long)lpid < 0)
5545                         return -ENOMEM;
5546                 kvm->arch.lpid = lpid;
5547         }
5548
5549         kvmppc_alloc_host_rm_ops();
5550
5551         kvmhv_vm_nested_init(kvm);
5552
5553         if (kvmhv_is_nestedv2()) {
5554                 long rc;
5555                 unsigned long guest_id;
5556
5557                 rc = plpar_guest_create(0, &guest_id);
5558
5559                 if (rc != H_SUCCESS)
5560                         pr_err("KVM: Create Guest hcall failed, rc=%ld\n", rc);
5561
5562                 switch (rc) {
5563                 case H_PARAMETER:
5564                 case H_FUNCTION:
5565                 case H_STATE:
5566                         return -EINVAL;
5567                 case H_NOT_ENOUGH_RESOURCES:
5568                 case H_ABORTED:
5569                         return -ENOMEM;
5570                 case H_AUTHORITY:
5571                         return -EPERM;
5572                 case H_NOT_AVAILABLE:
5573                         return -EBUSY;
5574                 }
5575                 kvm->arch.lpid = guest_id;
5576         }
5577
5578
5579         /*
5580          * Since we don't flush the TLB when tearing down a VM,
5581          * and this lpid might have previously been used,
5582          * make sure we flush on each core before running the new VM.
5583          * On POWER9, the tlbie in mmu_partition_table_set_entry()
5584          * does this flush for us.
5585          */
5586         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5587                 cpumask_setall(&kvm->arch.need_tlb_flush);
5588
5589         /* Start out with the default set of hcalls enabled */
5590         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5591                sizeof(kvm->arch.enabled_hcalls));
5592
5593         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5594                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5595
5596         /* Init LPCR for virtual RMA mode */
5597         if (cpu_has_feature(CPU_FTR_HVMODE)) {
5598                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
5599                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5600                 lpcr &= LPCR_PECE | LPCR_LPES;
5601         } else {
5602                 /*
5603                  * The L2 LPES mode will be set by the L0 according to whether
5604                  * or not it needs to take external interrupts in HV mode.
5605                  */
5606                 lpcr = 0;
5607         }
5608         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5609                 LPCR_VPM0 | LPCR_VPM1;
5610         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5611                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
5612         /* On POWER8 turn on online bit to enable PURR/SPURR */
5613         if (cpu_has_feature(CPU_FTR_ARCH_207S))
5614                 lpcr |= LPCR_ONL;
5615         /*
5616          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5617          * Set HVICE bit to enable hypervisor virtualization interrupts.
5618          * Set HEIC to prevent OS interrupts to go to hypervisor (should
5619          * be unnecessary but better safe than sorry in case we re-enable
5620          * EE in HV mode with this LPCR still set)
5621          */
5622         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5623                 lpcr &= ~LPCR_VPM0;
5624                 lpcr |= LPCR_HVICE | LPCR_HEIC;
5625
5626                 /*
5627                  * If xive is enabled, we route 0x500 interrupts directly
5628                  * to the guest.
5629                  */
5630                 if (xics_on_xive())
5631                         lpcr |= LPCR_LPES;
5632         }
5633
5634         /*
5635          * If the host uses radix, the guest starts out as radix.
5636          */
5637         if (radix_enabled()) {
5638                 kvm->arch.radix = 1;
5639                 kvm->arch.mmu_ready = 1;
5640                 lpcr &= ~LPCR_VPM1;
5641                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5642                 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5643                     cpu_has_feature(CPU_FTR_ARCH_31) &&
5644                     (kvm->arch.host_lpcr & LPCR_HAIL))
5645                         lpcr |= LPCR_HAIL;
5646                 ret = kvmppc_init_vm_radix(kvm);
5647                 if (ret) {
5648                         if (kvmhv_is_nestedv2())
5649                                 plpar_guest_delete(0, kvm->arch.lpid);
5650                         else
5651                                 kvmppc_free_lpid(kvm->arch.lpid);
5652                         return ret;
5653                 }
5654                 kvmppc_setup_partition_table(kvm);
5655         }
5656
5657         verify_lpcr(kvm, lpcr);
5658         kvm->arch.lpcr = lpcr;
5659
5660         /* Initialization for future HPT resizes */
5661         kvm->arch.resize_hpt = NULL;
5662
5663         /*
5664          * Work out how many sets the TLB has, for the use of
5665          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5666          */
5667         if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5668                 /*
5669                  * P10 will flush all the congruence class with a single tlbiel
5670                  */
5671                 kvm->arch.tlb_sets = 1;
5672         } else if (radix_enabled())
5673                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
5674         else if (cpu_has_feature(CPU_FTR_ARCH_300))
5675                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
5676         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5677                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
5678         else
5679                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
5680
5681         /*
5682          * Track that we now have a HV mode VM active. This blocks secondary
5683          * CPU threads from coming online.
5684          */
5685         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5686                 kvm_hv_vm_activated();
5687
5688         /*
5689          * Initialize smt_mode depending on processor.
5690          * POWER8 and earlier have to use "strict" threading, where
5691          * all vCPUs in a vcore have to run on the same (sub)core,
5692          * whereas on POWER9 the threads can each run a different
5693          * guest.
5694          */
5695         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5696                 kvm->arch.smt_mode = threads_per_subcore;
5697         else
5698                 kvm->arch.smt_mode = 1;
5699         kvm->arch.emul_smt_mode = 1;
5700
5701         return 0;
5702 }
5703
5704 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5705 {
5706         kvmppc_mmu_debugfs_init(kvm);
5707         if (radix_enabled())
5708                 kvmhv_radix_debugfs_init(kvm);
5709         return 0;
5710 }
5711
5712 static void kvmppc_free_vcores(struct kvm *kvm)
5713 {
5714         long int i;
5715
5716         for (i = 0; i < KVM_MAX_VCORES; ++i)
5717                 kfree(kvm->arch.vcores[i]);
5718         kvm->arch.online_vcores = 0;
5719 }
5720
5721 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5722 {
5723         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5724                 kvm_hv_vm_deactivated();
5725
5726         kvmppc_free_vcores(kvm);
5727
5728
5729         if (kvm_is_radix(kvm))
5730                 kvmppc_free_radix(kvm);
5731         else
5732                 kvmppc_free_hpt(&kvm->arch.hpt);
5733
5734         /* Perform global invalidation and return lpid to the pool */
5735         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5736                 if (nesting_enabled(kvm))
5737                         kvmhv_release_all_nested(kvm);
5738                 kvm->arch.process_table = 0;
5739                 if (kvm->arch.secure_guest)
5740                         uv_svm_terminate(kvm->arch.lpid);
5741                 if (!kvmhv_is_nestedv2())
5742                         kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5743         }
5744
5745         if (kvmhv_is_nestedv2()) {
5746                 kvmhv_flush_lpid(kvm->arch.lpid);
5747                 plpar_guest_delete(0, kvm->arch.lpid);
5748         } else {
5749                 kvmppc_free_lpid(kvm->arch.lpid);
5750         }
5751
5752         kvmppc_free_pimap(kvm);
5753 }
5754
5755 /* We don't need to emulate any privileged instructions or dcbz */
5756 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5757                                      unsigned int inst, int *advance)
5758 {
5759         return EMULATE_FAIL;
5760 }
5761
5762 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5763                                         ulong spr_val)
5764 {
5765         return EMULATE_FAIL;
5766 }
5767
5768 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5769                                         ulong *spr_val)
5770 {
5771         return EMULATE_FAIL;
5772 }
5773
5774 static int kvmppc_core_check_processor_compat_hv(void)
5775 {
5776         if (cpu_has_feature(CPU_FTR_HVMODE) &&
5777             cpu_has_feature(CPU_FTR_ARCH_206))
5778                 return 0;
5779
5780         /* POWER9 in radix mode is capable of being a nested hypervisor. */
5781         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5782                 return 0;
5783
5784         return -EIO;
5785 }
5786
5787 #ifdef CONFIG_KVM_XICS
5788
5789 void kvmppc_free_pimap(struct kvm *kvm)
5790 {
5791         kfree(kvm->arch.pimap);
5792 }
5793
5794 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5795 {
5796         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5797 }
5798
5799 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5800 {
5801         struct irq_desc *desc;
5802         struct kvmppc_irq_map *irq_map;
5803         struct kvmppc_passthru_irqmap *pimap;
5804         struct irq_chip *chip;
5805         int i, rc = 0;
5806         struct irq_data *host_data;
5807
5808         if (!kvm_irq_bypass)
5809                 return 1;
5810
5811         desc = irq_to_desc(host_irq);
5812         if (!desc)
5813                 return -EIO;
5814
5815         mutex_lock(&kvm->lock);
5816
5817         pimap = kvm->arch.pimap;
5818         if (pimap == NULL) {
5819                 /* First call, allocate structure to hold IRQ map */
5820                 pimap = kvmppc_alloc_pimap();
5821                 if (pimap == NULL) {
5822                         mutex_unlock(&kvm->lock);
5823                         return -ENOMEM;
5824                 }
5825                 kvm->arch.pimap = pimap;
5826         }
5827
5828         /*
5829          * For now, we only support interrupts for which the EOI operation
5830          * is an OPAL call followed by a write to XIRR, since that's
5831          * what our real-mode EOI code does, or a XIVE interrupt
5832          */
5833         chip = irq_data_get_irq_chip(&desc->irq_data);
5834         if (!chip || !is_pnv_opal_msi(chip)) {
5835                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5836                         host_irq, guest_gsi);
5837                 mutex_unlock(&kvm->lock);
5838                 return -ENOENT;
5839         }
5840
5841         /*
5842          * See if we already have an entry for this guest IRQ number.
5843          * If it's mapped to a hardware IRQ number, that's an error,
5844          * otherwise re-use this entry.
5845          */
5846         for (i = 0; i < pimap->n_mapped; i++) {
5847                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5848                         if (pimap->mapped[i].r_hwirq) {
5849                                 mutex_unlock(&kvm->lock);
5850                                 return -EINVAL;
5851                         }
5852                         break;
5853                 }
5854         }
5855
5856         if (i == KVMPPC_PIRQ_MAPPED) {
5857                 mutex_unlock(&kvm->lock);
5858                 return -EAGAIN;         /* table is full */
5859         }
5860
5861         irq_map = &pimap->mapped[i];
5862
5863         irq_map->v_hwirq = guest_gsi;
5864         irq_map->desc = desc;
5865
5866         /*
5867          * Order the above two stores before the next to serialize with
5868          * the KVM real mode handler.
5869          */
5870         smp_wmb();
5871
5872         /*
5873          * The 'host_irq' number is mapped in the PCI-MSI domain but
5874          * the underlying calls, which will EOI the interrupt in real
5875          * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5876          */
5877         host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5878         irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5879
5880         if (i == pimap->n_mapped)
5881                 pimap->n_mapped++;
5882
5883         if (xics_on_xive())
5884                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5885         else
5886                 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5887         if (rc)
5888                 irq_map->r_hwirq = 0;
5889
5890         mutex_unlock(&kvm->lock);
5891
5892         return 0;
5893 }
5894
5895 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5896 {
5897         struct irq_desc *desc;
5898         struct kvmppc_passthru_irqmap *pimap;
5899         int i, rc = 0;
5900
5901         if (!kvm_irq_bypass)
5902                 return 0;
5903
5904         desc = irq_to_desc(host_irq);
5905         if (!desc)
5906                 return -EIO;
5907
5908         mutex_lock(&kvm->lock);
5909         if (!kvm->arch.pimap)
5910                 goto unlock;
5911
5912         pimap = kvm->arch.pimap;
5913
5914         for (i = 0; i < pimap->n_mapped; i++) {
5915                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5916                         break;
5917         }
5918
5919         if (i == pimap->n_mapped) {
5920                 mutex_unlock(&kvm->lock);
5921                 return -ENODEV;
5922         }
5923
5924         if (xics_on_xive())
5925                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5926         else
5927                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5928
5929         /* invalidate the entry (what to do on error from the above ?) */
5930         pimap->mapped[i].r_hwirq = 0;
5931
5932         /*
5933          * We don't free this structure even when the count goes to
5934          * zero. The structure is freed when we destroy the VM.
5935          */
5936  unlock:
5937         mutex_unlock(&kvm->lock);
5938         return rc;
5939 }
5940
5941 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5942                                              struct irq_bypass_producer *prod)
5943 {
5944         int ret = 0;
5945         struct kvm_kernel_irqfd *irqfd =
5946                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5947
5948         irqfd->producer = prod;
5949
5950         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5951         if (ret)
5952                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5953                         prod->irq, irqfd->gsi, ret);
5954
5955         return ret;
5956 }
5957
5958 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5959                                               struct irq_bypass_producer *prod)
5960 {
5961         int ret;
5962         struct kvm_kernel_irqfd *irqfd =
5963                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5964
5965         irqfd->producer = NULL;
5966
5967         /*
5968          * When producer of consumer is unregistered, we change back to
5969          * default external interrupt handling mode - KVM real mode
5970          * will switch back to host.
5971          */
5972         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5973         if (ret)
5974                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5975                         prod->irq, irqfd->gsi, ret);
5976 }
5977 #endif
5978
5979 static int kvm_arch_vm_ioctl_hv(struct file *filp,
5980                                 unsigned int ioctl, unsigned long arg)
5981 {
5982         struct kvm *kvm __maybe_unused = filp->private_data;
5983         void __user *argp = (void __user *)arg;
5984         int r;
5985
5986         switch (ioctl) {
5987
5988         case KVM_PPC_ALLOCATE_HTAB: {
5989                 u32 htab_order;
5990
5991                 /* If we're a nested hypervisor, we currently only support radix */
5992                 if (kvmhv_on_pseries()) {
5993                         r = -EOPNOTSUPP;
5994                         break;
5995                 }
5996
5997                 r = -EFAULT;
5998                 if (get_user(htab_order, (u32 __user *)argp))
5999                         break;
6000                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
6001                 if (r)
6002                         break;
6003                 r = 0;
6004                 break;
6005         }
6006
6007         case KVM_PPC_GET_HTAB_FD: {
6008                 struct kvm_get_htab_fd ghf;
6009
6010                 r = -EFAULT;
6011                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
6012                         break;
6013                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
6014                 break;
6015         }
6016
6017         case KVM_PPC_RESIZE_HPT_PREPARE: {
6018                 struct kvm_ppc_resize_hpt rhpt;
6019
6020                 r = -EFAULT;
6021                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6022                         break;
6023
6024                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
6025                 break;
6026         }
6027
6028         case KVM_PPC_RESIZE_HPT_COMMIT: {
6029                 struct kvm_ppc_resize_hpt rhpt;
6030
6031                 r = -EFAULT;
6032                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
6033                         break;
6034
6035                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
6036                 break;
6037         }
6038
6039         default:
6040                 r = -ENOTTY;
6041         }
6042
6043         return r;
6044 }
6045
6046 /*
6047  * List of hcall numbers to enable by default.
6048  * For compatibility with old userspace, we enable by default
6049  * all hcalls that were implemented before the hcall-enabling
6050  * facility was added.  Note this list should not include H_RTAS.
6051  */
6052 static unsigned int default_hcall_list[] = {
6053         H_REMOVE,
6054         H_ENTER,
6055         H_READ,
6056         H_PROTECT,
6057         H_BULK_REMOVE,
6058 #ifdef CONFIG_SPAPR_TCE_IOMMU
6059         H_GET_TCE,
6060         H_PUT_TCE,
6061 #endif
6062         H_SET_DABR,
6063         H_SET_XDABR,
6064         H_CEDE,
6065         H_PROD,
6066         H_CONFER,
6067         H_REGISTER_VPA,
6068 #ifdef CONFIG_KVM_XICS
6069         H_EOI,
6070         H_CPPR,
6071         H_IPI,
6072         H_IPOLL,
6073         H_XIRR,
6074         H_XIRR_X,
6075 #endif
6076         0
6077 };
6078
6079 static void init_default_hcalls(void)
6080 {
6081         int i;
6082         unsigned int hcall;
6083
6084         for (i = 0; default_hcall_list[i]; ++i) {
6085                 hcall = default_hcall_list[i];
6086                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
6087                 __set_bit(hcall / 4, default_enabled_hcalls);
6088         }
6089 }
6090
6091 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
6092 {
6093         unsigned long lpcr;
6094         int radix;
6095         int err;
6096
6097         /* If not on a POWER9, reject it */
6098         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6099                 return -ENODEV;
6100
6101         /* If any unknown flags set, reject it */
6102         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
6103                 return -EINVAL;
6104
6105         /* GR (guest radix) bit in process_table field must match */
6106         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
6107         if (!!(cfg->process_table & PATB_GR) != radix)
6108                 return -EINVAL;
6109
6110         /* Process table size field must be reasonable, i.e. <= 24 */
6111         if ((cfg->process_table & PRTS_MASK) > 24)
6112                 return -EINVAL;
6113
6114         /* We can change a guest to/from radix now, if the host is radix */
6115         if (radix && !radix_enabled())
6116                 return -EINVAL;
6117
6118         /* If we're a nested hypervisor, we currently only support radix */
6119         if (kvmhv_on_pseries() && !radix)
6120                 return -EINVAL;
6121
6122         mutex_lock(&kvm->arch.mmu_setup_lock);
6123         if (radix != kvm_is_radix(kvm)) {
6124                 if (kvm->arch.mmu_ready) {
6125                         kvm->arch.mmu_ready = 0;
6126                         /* order mmu_ready vs. vcpus_running */
6127                         smp_mb();
6128                         if (atomic_read(&kvm->arch.vcpus_running)) {
6129                                 kvm->arch.mmu_ready = 1;
6130                                 err = -EBUSY;
6131                                 goto out_unlock;
6132                         }
6133                 }
6134                 if (radix)
6135                         err = kvmppc_switch_mmu_to_radix(kvm);
6136                 else
6137                         err = kvmppc_switch_mmu_to_hpt(kvm);
6138                 if (err)
6139                         goto out_unlock;
6140         }
6141
6142         kvm->arch.process_table = cfg->process_table;
6143         kvmppc_setup_partition_table(kvm);
6144
6145         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
6146         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
6147         err = 0;
6148
6149  out_unlock:
6150         mutex_unlock(&kvm->arch.mmu_setup_lock);
6151         return err;
6152 }
6153
6154 static int kvmhv_enable_nested(struct kvm *kvm)
6155 {
6156         if (!nested)
6157                 return -EPERM;
6158         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6159                 return -ENODEV;
6160         if (!radix_enabled())
6161                 return -ENODEV;
6162         if (kvmhv_is_nestedv2())
6163                 return -ENODEV;
6164
6165         /* kvm == NULL means the caller is testing if the capability exists */
6166         if (kvm)
6167                 kvm->arch.nested_enable = true;
6168         return 0;
6169 }
6170
6171 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6172                                  int size)
6173 {
6174         int rc = -EINVAL;
6175
6176         if (kvmhv_vcpu_is_radix(vcpu)) {
6177                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6178
6179                 if (rc > 0)
6180                         rc = -EINVAL;
6181         }
6182
6183         /* For now quadrants are the only way to access nested guest memory */
6184         if (rc && vcpu->arch.nested)
6185                 rc = -EAGAIN;
6186
6187         return rc;
6188 }
6189
6190 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6191                                 int size)
6192 {
6193         int rc = -EINVAL;
6194
6195         if (kvmhv_vcpu_is_radix(vcpu)) {
6196                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6197
6198                 if (rc > 0)
6199                         rc = -EINVAL;
6200         }
6201
6202         /* For now quadrants are the only way to access nested guest memory */
6203         if (rc && vcpu->arch.nested)
6204                 rc = -EAGAIN;
6205
6206         return rc;
6207 }
6208
6209 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6210 {
6211         unpin_vpa(kvm, vpa);
6212         vpa->gpa = 0;
6213         vpa->pinned_addr = NULL;
6214         vpa->dirty = false;
6215         vpa->update_pending = 0;
6216 }
6217
6218 /*
6219  * Enable a guest to become a secure VM, or test whether
6220  * that could be enabled.
6221  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6222  * tested (kvm == NULL) or enabled (kvm != NULL).
6223  */
6224 static int kvmhv_enable_svm(struct kvm *kvm)
6225 {
6226         if (!kvmppc_uvmem_available())
6227                 return -EINVAL;
6228         if (kvm)
6229                 kvm->arch.svm_enabled = 1;
6230         return 0;
6231 }
6232
6233 /*
6234  *  IOCTL handler to turn off secure mode of guest
6235  *
6236  * - Release all device pages
6237  * - Issue ucall to terminate the guest on the UV side
6238  * - Unpin the VPA pages.
6239  * - Reinit the partition scoped page tables
6240  */
6241 static int kvmhv_svm_off(struct kvm *kvm)
6242 {
6243         struct kvm_vcpu *vcpu;
6244         int mmu_was_ready;
6245         int srcu_idx;
6246         int ret = 0;
6247         unsigned long i;
6248
6249         if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6250                 return ret;
6251
6252         mutex_lock(&kvm->arch.mmu_setup_lock);
6253         mmu_was_ready = kvm->arch.mmu_ready;
6254         if (kvm->arch.mmu_ready) {
6255                 kvm->arch.mmu_ready = 0;
6256                 /* order mmu_ready vs. vcpus_running */
6257                 smp_mb();
6258                 if (atomic_read(&kvm->arch.vcpus_running)) {
6259                         kvm->arch.mmu_ready = 1;
6260                         ret = -EBUSY;
6261                         goto out;
6262                 }
6263         }
6264
6265         srcu_idx = srcu_read_lock(&kvm->srcu);
6266         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6267                 struct kvm_memory_slot *memslot;
6268                 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6269                 int bkt;
6270
6271                 if (!slots)
6272                         continue;
6273
6274                 kvm_for_each_memslot(memslot, bkt, slots) {
6275                         kvmppc_uvmem_drop_pages(memslot, kvm, true);
6276                         uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6277                 }
6278         }
6279         srcu_read_unlock(&kvm->srcu, srcu_idx);
6280
6281         ret = uv_svm_terminate(kvm->arch.lpid);
6282         if (ret != U_SUCCESS) {
6283                 ret = -EINVAL;
6284                 goto out;
6285         }
6286
6287         /*
6288          * When secure guest is reset, all the guest pages are sent
6289          * to UV via UV_PAGE_IN before the non-boot vcpus get a
6290          * chance to run and unpin their VPA pages. Unpinning of all
6291          * VPA pages is done here explicitly so that VPA pages
6292          * can be migrated to the secure side.
6293          *
6294          * This is required to for the secure SMP guest to reboot
6295          * correctly.
6296          */
6297         kvm_for_each_vcpu(i, vcpu, kvm) {
6298                 spin_lock(&vcpu->arch.vpa_update_lock);
6299                 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6300                 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6301                 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6302                 spin_unlock(&vcpu->arch.vpa_update_lock);
6303         }
6304
6305         kvmppc_setup_partition_table(kvm);
6306         kvm->arch.secure_guest = 0;
6307         kvm->arch.mmu_ready = mmu_was_ready;
6308 out:
6309         mutex_unlock(&kvm->arch.mmu_setup_lock);
6310         return ret;
6311 }
6312
6313 static int kvmhv_enable_dawr1(struct kvm *kvm)
6314 {
6315         if (!cpu_has_feature(CPU_FTR_DAWR1))
6316                 return -ENODEV;
6317
6318         /* kvm == NULL means the caller is testing if the capability exists */
6319         if (kvm)
6320                 kvm->arch.dawr1_enabled = true;
6321         return 0;
6322 }
6323
6324 static bool kvmppc_hash_v3_possible(void)
6325 {
6326         if (!cpu_has_feature(CPU_FTR_ARCH_300))
6327                 return false;
6328
6329         if (!cpu_has_feature(CPU_FTR_HVMODE))
6330                 return false;
6331
6332         /*
6333          * POWER9 chips before version 2.02 can't have some threads in
6334          * HPT mode and some in radix mode on the same core.
6335          */
6336         if (radix_enabled()) {
6337                 unsigned int pvr = mfspr(SPRN_PVR);
6338                 if ((pvr >> 16) == PVR_POWER9 &&
6339                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6340                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6341                         return false;
6342         }
6343
6344         return true;
6345 }
6346
6347 static struct kvmppc_ops kvm_ops_hv = {
6348         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6349         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6350         .get_one_reg = kvmppc_get_one_reg_hv,
6351         .set_one_reg = kvmppc_set_one_reg_hv,
6352         .vcpu_load   = kvmppc_core_vcpu_load_hv,
6353         .vcpu_put    = kvmppc_core_vcpu_put_hv,
6354         .inject_interrupt = kvmppc_inject_interrupt_hv,
6355         .set_msr     = kvmppc_set_msr_hv,
6356         .vcpu_run    = kvmppc_vcpu_run_hv,
6357         .vcpu_create = kvmppc_core_vcpu_create_hv,
6358         .vcpu_free   = kvmppc_core_vcpu_free_hv,
6359         .check_requests = kvmppc_core_check_requests_hv,
6360         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6361         .flush_memslot  = kvmppc_core_flush_memslot_hv,
6362         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6363         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6364         .unmap_gfn_range = kvm_unmap_gfn_range_hv,
6365         .age_gfn = kvm_age_gfn_hv,
6366         .test_age_gfn = kvm_test_age_gfn_hv,
6367         .free_memslot = kvmppc_core_free_memslot_hv,
6368         .init_vm =  kvmppc_core_init_vm_hv,
6369         .destroy_vm = kvmppc_core_destroy_vm_hv,
6370         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6371         .emulate_op = kvmppc_core_emulate_op_hv,
6372         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6373         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6374         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6375         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6376         .hcall_implemented = kvmppc_hcall_impl_hv,
6377 #ifdef CONFIG_KVM_XICS
6378         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6379         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6380 #endif
6381         .configure_mmu = kvmhv_configure_mmu,
6382         .get_rmmu_info = kvmhv_get_rmmu_info,
6383         .set_smt_mode = kvmhv_set_smt_mode,
6384         .enable_nested = kvmhv_enable_nested,
6385         .load_from_eaddr = kvmhv_load_from_eaddr,
6386         .store_to_eaddr = kvmhv_store_to_eaddr,
6387         .enable_svm = kvmhv_enable_svm,
6388         .svm_off = kvmhv_svm_off,
6389         .enable_dawr1 = kvmhv_enable_dawr1,
6390         .hash_v3_possible = kvmppc_hash_v3_possible,
6391         .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6392         .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6393 };
6394
6395 static int kvm_init_subcore_bitmap(void)
6396 {
6397         int i, j;
6398         int nr_cores = cpu_nr_cores();
6399         struct sibling_subcore_state *sibling_subcore_state;
6400
6401         for (i = 0; i < nr_cores; i++) {
6402                 int first_cpu = i * threads_per_core;
6403                 int node = cpu_to_node(first_cpu);
6404
6405                 /* Ignore if it is already allocated. */
6406                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
6407                         continue;
6408
6409                 sibling_subcore_state =
6410                         kzalloc_node(sizeof(struct sibling_subcore_state),
6411                                                         GFP_KERNEL, node);
6412                 if (!sibling_subcore_state)
6413                         return -ENOMEM;
6414
6415
6416                 for (j = 0; j < threads_per_core; j++) {
6417                         int cpu = first_cpu + j;
6418
6419                         paca_ptrs[cpu]->sibling_subcore_state =
6420                                                 sibling_subcore_state;
6421                 }
6422         }
6423         return 0;
6424 }
6425
6426 static int kvmppc_radix_possible(void)
6427 {
6428         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6429 }
6430
6431 static int kvmppc_book3s_init_hv(void)
6432 {
6433         int r;
6434
6435         if (!tlbie_capable) {
6436                 pr_err("KVM-HV: Host does not support TLBIE\n");
6437                 return -ENODEV;
6438         }
6439
6440         /*
6441          * FIXME!! Do we need to check on all cpus ?
6442          */
6443         r = kvmppc_core_check_processor_compat_hv();
6444         if (r < 0)
6445                 return -ENODEV;
6446
6447         r = kvmhv_nested_init();
6448         if (r)
6449                 return r;
6450
6451         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6452                 r = kvm_init_subcore_bitmap();
6453                 if (r)
6454                         goto err;
6455         }
6456
6457         /*
6458          * We need a way of accessing the XICS interrupt controller,
6459          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6460          * indirectly, via OPAL.
6461          */
6462 #ifdef CONFIG_SMP
6463         if (!xics_on_xive() && !kvmhv_on_pseries() &&
6464             !local_paca->kvm_hstate.xics_phys) {
6465                 struct device_node *np;
6466
6467                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6468                 if (!np) {
6469                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6470                         r = -ENODEV;
6471                         goto err;
6472                 }
6473                 /* presence of intc confirmed - node can be dropped again */
6474                 of_node_put(np);
6475         }
6476 #endif
6477
6478         init_default_hcalls();
6479
6480         init_vcore_lists();
6481
6482         r = kvmppc_mmu_hv_init();
6483         if (r)
6484                 goto err;
6485
6486         if (kvmppc_radix_possible()) {
6487                 r = kvmppc_radix_init();
6488                 if (r)
6489                         goto err;
6490         }
6491
6492         r = kvmppc_uvmem_init();
6493         if (r < 0) {
6494                 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6495                 return r;
6496         }
6497
6498         kvm_ops_hv.owner = THIS_MODULE;
6499         kvmppc_hv_ops = &kvm_ops_hv;
6500
6501         return 0;
6502
6503 err:
6504         kvmhv_nested_exit();
6505         kvmppc_radix_exit();
6506
6507         return r;
6508 }
6509
6510 static void kvmppc_book3s_exit_hv(void)
6511 {
6512         kvmppc_uvmem_free();
6513         kvmppc_free_host_rm_ops();
6514         if (kvmppc_radix_possible())
6515                 kvmppc_radix_exit();
6516         kvmppc_hv_ops = NULL;
6517         kvmhv_nested_exit();
6518 }
6519
6520 module_init(kvmppc_book3s_init_hv);
6521 module_exit(kvmppc_book3s_exit_hv);
6522 MODULE_LICENSE("GPL");
6523 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6524 MODULE_ALIAS("devname:kvm");
This page took 0.43346 seconds and 4 git commands to generate.