]> Git Repo - linux.git/blob - arch/arm/kernel/perf_event_v6.c
Merge patch series "riscv: Extension parsing fixes"
[linux.git] / arch / arm / kernel / perf_event_v6.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ARMv6 Performance counter handling code.
4  *
5  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
6  *
7  * ARMv6 has 2 configurable performance counters and a single cycle counter.
8  * They all share a single reset bit but can be written to zero so we can use
9  * that for a reset.
10  *
11  * The counters can't be individually enabled or disabled so when we remove
12  * one event and replace it with another we could get spurious counts from the
13  * wrong event. However, we can take advantage of the fact that the
14  * performance counters can export events to the event bus, and the event bus
15  * itself can be monitored. This requires that we *don't* export the events to
16  * the event bus. The procedure for disabling a configurable counter is:
17  *      - change the counter to count the ETMEXTOUT[0] signal (0x20). This
18  *        effectively stops the counter from counting.
19  *      - disable the counter's interrupt generation (each counter has it's
20  *        own interrupt enable bit).
21  * Once stopped, the counter value can be written as 0 to reset.
22  *
23  * To enable a counter:
24  *      - enable the counter's interrupt generation.
25  *      - set the new event type.
26  *
27  * Note: the dedicated cycle counter only counts cycles and can't be
28  * enabled/disabled independently of the others. When we want to disable the
29  * cycle counter, we have to just disable the interrupt reporting and start
30  * ignoring that counter. When re-enabling, we have to reset the value and
31  * enable the interrupt.
32  */
33
34 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
35
36 #include <asm/cputype.h>
37 #include <asm/irq_regs.h>
38
39 #include <linux/of.h>
40 #include <linux/perf/arm_pmu.h>
41 #include <linux/platform_device.h>
42
43 enum armv6_perf_types {
44         ARMV6_PERFCTR_ICACHE_MISS           = 0x0,
45         ARMV6_PERFCTR_IBUF_STALL            = 0x1,
46         ARMV6_PERFCTR_DDEP_STALL            = 0x2,
47         ARMV6_PERFCTR_ITLB_MISS             = 0x3,
48         ARMV6_PERFCTR_DTLB_MISS             = 0x4,
49         ARMV6_PERFCTR_BR_EXEC               = 0x5,
50         ARMV6_PERFCTR_BR_MISPREDICT         = 0x6,
51         ARMV6_PERFCTR_INSTR_EXEC            = 0x7,
52         ARMV6_PERFCTR_DCACHE_HIT            = 0x9,
53         ARMV6_PERFCTR_DCACHE_ACCESS         = 0xA,
54         ARMV6_PERFCTR_DCACHE_MISS           = 0xB,
55         ARMV6_PERFCTR_DCACHE_WBACK          = 0xC,
56         ARMV6_PERFCTR_SW_PC_CHANGE          = 0xD,
57         ARMV6_PERFCTR_MAIN_TLB_MISS         = 0xF,
58         ARMV6_PERFCTR_EXPL_D_ACCESS         = 0x10,
59         ARMV6_PERFCTR_LSU_FULL_STALL        = 0x11,
60         ARMV6_PERFCTR_WBUF_DRAINED          = 0x12,
61         ARMV6_PERFCTR_CPU_CYCLES            = 0xFF,
62         ARMV6_PERFCTR_NOP                   = 0x20,
63 };
64
65 enum armv6_counters {
66         ARMV6_CYCLE_COUNTER = 0,
67         ARMV6_COUNTER0,
68         ARMV6_COUNTER1,
69 };
70
71 /*
72  * The hardware events that we support. We do support cache operations but
73  * we have harvard caches and no way to combine instruction and data
74  * accesses/misses in hardware.
75  */
76 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
77         PERF_MAP_ALL_UNSUPPORTED,
78         [PERF_COUNT_HW_CPU_CYCLES]              = ARMV6_PERFCTR_CPU_CYCLES,
79         [PERF_COUNT_HW_INSTRUCTIONS]            = ARMV6_PERFCTR_INSTR_EXEC,
80         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = ARMV6_PERFCTR_BR_EXEC,
81         [PERF_COUNT_HW_BRANCH_MISSES]           = ARMV6_PERFCTR_BR_MISPREDICT,
82         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6_PERFCTR_IBUF_STALL,
83         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = ARMV6_PERFCTR_LSU_FULL_STALL,
84 };
85
86 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
87                                           [PERF_COUNT_HW_CACHE_OP_MAX]
88                                           [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
89         PERF_CACHE_MAP_ALL_UNSUPPORTED,
90
91         /*
92          * The performance counters don't differentiate between read and write
93          * accesses/misses so this isn't strictly correct, but it's the best we
94          * can do. Writes and reads get combined.
95          */
96         [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]  = ARMV6_PERFCTR_DCACHE_ACCESS,
97         [C(L1D)][C(OP_READ)][C(RESULT_MISS)]    = ARMV6_PERFCTR_DCACHE_MISS,
98         [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
99         [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]   = ARMV6_PERFCTR_DCACHE_MISS,
100
101         [C(L1I)][C(OP_READ)][C(RESULT_MISS)]    = ARMV6_PERFCTR_ICACHE_MISS,
102
103         /*
104          * The ARM performance counters can count micro DTLB misses, micro ITLB
105          * misses and main TLB misses. There isn't an event for TLB misses, so
106          * use the micro misses here and if users want the main TLB misses they
107          * can use a raw counter.
108          */
109         [C(DTLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV6_PERFCTR_DTLB_MISS,
110         [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV6_PERFCTR_DTLB_MISS,
111
112         [C(ITLB)][C(OP_READ)][C(RESULT_MISS)]   = ARMV6_PERFCTR_ITLB_MISS,
113         [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)]  = ARMV6_PERFCTR_ITLB_MISS,
114 };
115
116 static inline unsigned long
117 armv6_pmcr_read(void)
118 {
119         u32 val;
120         asm volatile("mrc   p15, 0, %0, c15, c12, 0" : "=r"(val));
121         return val;
122 }
123
124 static inline void
125 armv6_pmcr_write(unsigned long val)
126 {
127         asm volatile("mcr   p15, 0, %0, c15, c12, 0" : : "r"(val));
128 }
129
130 #define ARMV6_PMCR_ENABLE               (1 << 0)
131 #define ARMV6_PMCR_CTR01_RESET          (1 << 1)
132 #define ARMV6_PMCR_CCOUNT_RESET         (1 << 2)
133 #define ARMV6_PMCR_CCOUNT_DIV           (1 << 3)
134 #define ARMV6_PMCR_COUNT0_IEN           (1 << 4)
135 #define ARMV6_PMCR_COUNT1_IEN           (1 << 5)
136 #define ARMV6_PMCR_CCOUNT_IEN           (1 << 6)
137 #define ARMV6_PMCR_COUNT0_OVERFLOW      (1 << 8)
138 #define ARMV6_PMCR_COUNT1_OVERFLOW      (1 << 9)
139 #define ARMV6_PMCR_CCOUNT_OVERFLOW      (1 << 10)
140 #define ARMV6_PMCR_EVT_COUNT0_SHIFT     20
141 #define ARMV6_PMCR_EVT_COUNT0_MASK      (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
142 #define ARMV6_PMCR_EVT_COUNT1_SHIFT     12
143 #define ARMV6_PMCR_EVT_COUNT1_MASK      (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
144
145 #define ARMV6_PMCR_OVERFLOWED_MASK \
146         (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
147          ARMV6_PMCR_CCOUNT_OVERFLOW)
148
149 static inline int
150 armv6_pmcr_has_overflowed(unsigned long pmcr)
151 {
152         return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
153 }
154
155 static inline int
156 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
157                                   enum armv6_counters counter)
158 {
159         int ret = 0;
160
161         if (ARMV6_CYCLE_COUNTER == counter)
162                 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
163         else if (ARMV6_COUNTER0 == counter)
164                 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
165         else if (ARMV6_COUNTER1 == counter)
166                 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
167         else
168                 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
169
170         return ret;
171 }
172
173 static inline u64 armv6pmu_read_counter(struct perf_event *event)
174 {
175         struct hw_perf_event *hwc = &event->hw;
176         int counter = hwc->idx;
177         unsigned long value = 0;
178
179         if (ARMV6_CYCLE_COUNTER == counter)
180                 asm volatile("mrc   p15, 0, %0, c15, c12, 1" : "=r"(value));
181         else if (ARMV6_COUNTER0 == counter)
182                 asm volatile("mrc   p15, 0, %0, c15, c12, 2" : "=r"(value));
183         else if (ARMV6_COUNTER1 == counter)
184                 asm volatile("mrc   p15, 0, %0, c15, c12, 3" : "=r"(value));
185         else
186                 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
187
188         return value;
189 }
190
191 static inline void armv6pmu_write_counter(struct perf_event *event, u64 value)
192 {
193         struct hw_perf_event *hwc = &event->hw;
194         int counter = hwc->idx;
195
196         if (ARMV6_CYCLE_COUNTER == counter)
197                 asm volatile("mcr   p15, 0, %0, c15, c12, 1" : : "r"(value));
198         else if (ARMV6_COUNTER0 == counter)
199                 asm volatile("mcr   p15, 0, %0, c15, c12, 2" : : "r"(value));
200         else if (ARMV6_COUNTER1 == counter)
201                 asm volatile("mcr   p15, 0, %0, c15, c12, 3" : : "r"(value));
202         else
203                 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
204 }
205
206 static void armv6pmu_enable_event(struct perf_event *event)
207 {
208         unsigned long val, mask, evt;
209         struct hw_perf_event *hwc = &event->hw;
210         int idx = hwc->idx;
211
212         if (ARMV6_CYCLE_COUNTER == idx) {
213                 mask    = 0;
214                 evt     = ARMV6_PMCR_CCOUNT_IEN;
215         } else if (ARMV6_COUNTER0 == idx) {
216                 mask    = ARMV6_PMCR_EVT_COUNT0_MASK;
217                 evt     = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
218                           ARMV6_PMCR_COUNT0_IEN;
219         } else if (ARMV6_COUNTER1 == idx) {
220                 mask    = ARMV6_PMCR_EVT_COUNT1_MASK;
221                 evt     = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
222                           ARMV6_PMCR_COUNT1_IEN;
223         } else {
224                 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
225                 return;
226         }
227
228         /*
229          * Mask out the current event and set the counter to count the event
230          * that we're interested in.
231          */
232         val = armv6_pmcr_read();
233         val &= ~mask;
234         val |= evt;
235         armv6_pmcr_write(val);
236 }
237
238 static irqreturn_t
239 armv6pmu_handle_irq(struct arm_pmu *cpu_pmu)
240 {
241         unsigned long pmcr = armv6_pmcr_read();
242         struct perf_sample_data data;
243         struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
244         struct pt_regs *regs;
245         int idx;
246
247         if (!armv6_pmcr_has_overflowed(pmcr))
248                 return IRQ_NONE;
249
250         regs = get_irq_regs();
251
252         /*
253          * The interrupts are cleared by writing the overflow flags back to
254          * the control register. All of the other bits don't have any effect
255          * if they are rewritten, so write the whole value back.
256          */
257         armv6_pmcr_write(pmcr);
258
259         for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
260                 struct perf_event *event = cpuc->events[idx];
261                 struct hw_perf_event *hwc;
262
263                 /* Ignore if we don't have an event. */
264                 if (!event)
265                         continue;
266
267                 /*
268                  * We have a single interrupt for all counters. Check that
269                  * each counter has overflowed before we process it.
270                  */
271                 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
272                         continue;
273
274                 hwc = &event->hw;
275                 armpmu_event_update(event);
276                 perf_sample_data_init(&data, 0, hwc->last_period);
277                 if (!armpmu_event_set_period(event))
278                         continue;
279
280                 if (perf_event_overflow(event, &data, regs))
281                         cpu_pmu->disable(event);
282         }
283
284         /*
285          * Handle the pending perf events.
286          *
287          * Note: this call *must* be run with interrupts disabled. For
288          * platforms that can have the PMU interrupts raised as an NMI, this
289          * will not work.
290          */
291         irq_work_run();
292
293         return IRQ_HANDLED;
294 }
295
296 static void armv6pmu_start(struct arm_pmu *cpu_pmu)
297 {
298         unsigned long val;
299
300         val = armv6_pmcr_read();
301         val |= ARMV6_PMCR_ENABLE;
302         armv6_pmcr_write(val);
303 }
304
305 static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
306 {
307         unsigned long val;
308
309         val = armv6_pmcr_read();
310         val &= ~ARMV6_PMCR_ENABLE;
311         armv6_pmcr_write(val);
312 }
313
314 static int
315 armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
316                                 struct perf_event *event)
317 {
318         struct hw_perf_event *hwc = &event->hw;
319         /* Always place a cycle counter into the cycle counter. */
320         if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
321                 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
322                         return -EAGAIN;
323
324                 return ARMV6_CYCLE_COUNTER;
325         } else {
326                 /*
327                  * For anything other than a cycle counter, try and use
328                  * counter0 and counter1.
329                  */
330                 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
331                         return ARMV6_COUNTER1;
332
333                 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
334                         return ARMV6_COUNTER0;
335
336                 /* The counters are all in use. */
337                 return -EAGAIN;
338         }
339 }
340
341 static void armv6pmu_clear_event_idx(struct pmu_hw_events *cpuc,
342                                      struct perf_event *event)
343 {
344         clear_bit(event->hw.idx, cpuc->used_mask);
345 }
346
347 static void armv6pmu_disable_event(struct perf_event *event)
348 {
349         unsigned long val, mask, evt;
350         struct hw_perf_event *hwc = &event->hw;
351         int idx = hwc->idx;
352
353         if (ARMV6_CYCLE_COUNTER == idx) {
354                 mask    = ARMV6_PMCR_CCOUNT_IEN;
355                 evt     = 0;
356         } else if (ARMV6_COUNTER0 == idx) {
357                 mask    = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
358                 evt     = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
359         } else if (ARMV6_COUNTER1 == idx) {
360                 mask    = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
361                 evt     = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
362         } else {
363                 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
364                 return;
365         }
366
367         /*
368          * Mask out the current event and set the counter to count the number
369          * of ETM bus signal assertion cycles. The external reporting should
370          * be disabled and so this should never increment.
371          */
372         val = armv6_pmcr_read();
373         val &= ~mask;
374         val |= evt;
375         armv6_pmcr_write(val);
376 }
377
378 static int armv6_map_event(struct perf_event *event)
379 {
380         return armpmu_map_event(event, &armv6_perf_map,
381                                 &armv6_perf_cache_map, 0xFF);
382 }
383
384 static void armv6pmu_init(struct arm_pmu *cpu_pmu)
385 {
386         cpu_pmu->handle_irq     = armv6pmu_handle_irq;
387         cpu_pmu->enable         = armv6pmu_enable_event;
388         cpu_pmu->disable        = armv6pmu_disable_event;
389         cpu_pmu->read_counter   = armv6pmu_read_counter;
390         cpu_pmu->write_counter  = armv6pmu_write_counter;
391         cpu_pmu->get_event_idx  = armv6pmu_get_event_idx;
392         cpu_pmu->clear_event_idx = armv6pmu_clear_event_idx;
393         cpu_pmu->start          = armv6pmu_start;
394         cpu_pmu->stop           = armv6pmu_stop;
395         cpu_pmu->map_event      = armv6_map_event;
396         cpu_pmu->num_events     = 3;
397 }
398
399 static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
400 {
401         armv6pmu_init(cpu_pmu);
402         cpu_pmu->name           = "armv6_1136";
403         return 0;
404 }
405
406 static int armv6_1156_pmu_init(struct arm_pmu *cpu_pmu)
407 {
408         armv6pmu_init(cpu_pmu);
409         cpu_pmu->name           = "armv6_1156";
410         return 0;
411 }
412
413 static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
414 {
415         armv6pmu_init(cpu_pmu);
416         cpu_pmu->name           = "armv6_1176";
417         return 0;
418 }
419
420 static const struct of_device_id armv6_pmu_of_device_ids[] = {
421         {.compatible = "arm,arm1176-pmu",       .data = armv6_1176_pmu_init},
422         {.compatible = "arm,arm1136-pmu",       .data = armv6_1136_pmu_init},
423         { /* sentinel value */ }
424 };
425
426 static const struct pmu_probe_info armv6_pmu_probe_table[] = {
427         ARM_PMU_PROBE(ARM_CPU_PART_ARM1136, armv6_1136_pmu_init),
428         ARM_PMU_PROBE(ARM_CPU_PART_ARM1156, armv6_1156_pmu_init),
429         ARM_PMU_PROBE(ARM_CPU_PART_ARM1176, armv6_1176_pmu_init),
430         { /* sentinel value */ }
431 };
432
433 static int armv6_pmu_device_probe(struct platform_device *pdev)
434 {
435         return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids,
436                                     armv6_pmu_probe_table);
437 }
438
439 static struct platform_driver armv6_pmu_driver = {
440         .driver         = {
441                 .name   = "armv6-pmu",
442                 .of_match_table = armv6_pmu_of_device_ids,
443         },
444         .probe          = armv6_pmu_device_probe,
445 };
446
447 builtin_platform_driver(armv6_pmu_driver);
448 #endif  /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */
This page took 0.05799 seconds and 4 git commands to generate.