1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1996 Linus Torvalds
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
29 #include <asm/cacheflush.h>
31 #include <asm/pgalloc.h>
35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
41 pgd = pgd_offset(mm, addr);
42 if (pgd_none_or_clear_bad(pgd))
45 p4d = p4d_offset(pgd, addr);
46 if (p4d_none_or_clear_bad(p4d))
49 pud = pud_offset(p4d, addr);
50 if (pud_none_or_clear_bad(pud))
56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
61 pud = get_old_pud(mm, addr);
65 pmd = pmd_offset(pud, addr);
72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
78 pgd = pgd_offset(mm, addr);
79 p4d = p4d_alloc(mm, pgd, addr);
83 return pud_alloc(mm, p4d, addr);
86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
92 pud = alloc_new_pud(mm, vma, addr);
96 pmd = pmd_alloc(mm, pud, addr);
100 VM_BUG_ON(pmd_trans_huge(*pmd));
105 static void take_rmap_locks(struct vm_area_struct *vma)
108 i_mmap_lock_write(vma->vm_file->f_mapping);
110 anon_vma_lock_write(vma->anon_vma);
113 static void drop_rmap_locks(struct vm_area_struct *vma)
116 anon_vma_unlock_write(vma->anon_vma);
118 i_mmap_unlock_write(vma->vm_file->f_mapping);
121 static pte_t move_soft_dirty_pte(pte_t pte)
124 * Set soft dirty bit so we can notice
125 * in userspace the ptes were moved.
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 if (pte_present(pte))
129 pte = pte_mksoft_dirty(pte);
130 else if (is_swap_pte(pte))
131 pte = pte_swp_mksoft_dirty(pte);
136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
137 unsigned long old_addr, unsigned long old_end,
138 struct vm_area_struct *new_vma, pmd_t *new_pmd,
139 unsigned long new_addr, bool need_rmap_locks)
141 struct mm_struct *mm = vma->vm_mm;
142 pte_t *old_pte, *new_pte, pte;
143 spinlock_t *old_ptl, *new_ptl;
144 bool force_flush = false;
145 unsigned long len = old_end - old_addr;
149 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
150 * locks to ensure that rmap will always observe either the old or the
151 * new ptes. This is the easiest way to avoid races with
152 * truncate_pagecache(), page migration, etc...
154 * When need_rmap_locks is false, we use other ways to avoid
157 * - During exec() shift_arg_pages(), we use a specially tagged vma
158 * which rmap call sites look for using vma_is_temporary_stack().
160 * - During mremap(), new_vma is often known to be placed after vma
161 * in rmap traversal order. This ensures rmap will always observe
162 * either the old pte, or the new pte, or both (the page table locks
163 * serialize access to individual ptes, but only rmap traversal
164 * order guarantees that we won't miss both the old and new ptes).
167 take_rmap_locks(vma);
170 * We don't have to worry about the ordering of src and dst
171 * pte locks because exclusive mmap_lock prevents deadlock.
173 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
178 new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
180 pte_unmap_unlock(old_pte, old_ptl);
184 if (new_ptl != old_ptl)
185 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
186 flush_tlb_batched_pending(vma->vm_mm);
187 arch_enter_lazy_mmu_mode();
189 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
190 new_pte++, new_addr += PAGE_SIZE) {
191 if (pte_none(ptep_get(old_pte)))
194 pte = ptep_get_and_clear(mm, old_addr, old_pte);
196 * If we are remapping a valid PTE, make sure
197 * to flush TLB before we drop the PTL for the
200 * NOTE! Both old and new PTL matter: the old one
201 * for racing with folio_mkclean(), the new one to
202 * make sure the physical page stays valid until
203 * the TLB entry for the old mapping has been
206 if (pte_present(pte))
208 pte = move_pte(pte, old_addr, new_addr);
209 pte = move_soft_dirty_pte(pte);
210 set_pte_at(mm, new_addr, new_pte, pte);
213 arch_leave_lazy_mmu_mode();
215 flush_tlb_range(vma, old_end - len, old_end);
216 if (new_ptl != old_ptl)
217 spin_unlock(new_ptl);
218 pte_unmap(new_pte - 1);
219 pte_unmap_unlock(old_pte - 1, old_ptl);
222 drop_rmap_locks(vma);
226 #ifndef arch_supports_page_table_move
227 #define arch_supports_page_table_move arch_supports_page_table_move
228 static inline bool arch_supports_page_table_move(void)
230 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
231 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
235 #ifdef CONFIG_HAVE_MOVE_PMD
236 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
237 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
239 spinlock_t *old_ptl, *new_ptl;
240 struct mm_struct *mm = vma->vm_mm;
244 if (!arch_supports_page_table_move())
247 * The destination pmd shouldn't be established, free_pgtables()
248 * should have released it.
250 * However, there's a case during execve() where we use mremap
251 * to move the initial stack, and in that case the target area
252 * may overlap the source area (always moving down).
254 * If everything is PMD-aligned, that works fine, as moving
255 * each pmd down will clear the source pmd. But if we first
256 * have a few 4kB-only pages that get moved down, and then
257 * hit the "now the rest is PMD-aligned, let's do everything
258 * one pmd at a time", we will still have the old (now empty
259 * of any 4kB pages, but still there) PMD in the page table
262 * Warn on it once - because we really should try to figure
263 * out how to do this better - but then say "I won't move
266 * One alternative might be to just unmap the target pmd at
267 * this point, and verify that it really is empty. We'll see.
269 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
273 * We don't have to worry about the ordering of src and dst
274 * ptlocks because exclusive mmap_lock prevents deadlock.
276 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
277 new_ptl = pmd_lockptr(mm, new_pmd);
278 if (new_ptl != old_ptl)
279 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
283 /* Racing with collapse? */
284 if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
290 VM_BUG_ON(!pmd_none(*new_pmd));
292 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
293 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
295 if (new_ptl != old_ptl)
296 spin_unlock(new_ptl);
297 spin_unlock(old_ptl);
302 static inline bool move_normal_pmd(struct vm_area_struct *vma,
303 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
310 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
311 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
312 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
314 spinlock_t *old_ptl, *new_ptl;
315 struct mm_struct *mm = vma->vm_mm;
318 if (!arch_supports_page_table_move())
321 * The destination pud shouldn't be established, free_pgtables()
322 * should have released it.
324 if (WARN_ON_ONCE(!pud_none(*new_pud)))
328 * We don't have to worry about the ordering of src and dst
329 * ptlocks because exclusive mmap_lock prevents deadlock.
331 old_ptl = pud_lock(vma->vm_mm, old_pud);
332 new_ptl = pud_lockptr(mm, new_pud);
333 if (new_ptl != old_ptl)
334 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
340 VM_BUG_ON(!pud_none(*new_pud));
342 pud_populate(mm, new_pud, pud_pgtable(pud));
343 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
344 if (new_ptl != old_ptl)
345 spin_unlock(new_ptl);
346 spin_unlock(old_ptl);
351 static inline bool move_normal_pud(struct vm_area_struct *vma,
352 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
359 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
360 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
361 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
363 spinlock_t *old_ptl, *new_ptl;
364 struct mm_struct *mm = vma->vm_mm;
368 * The destination pud shouldn't be established, free_pgtables()
369 * should have released it.
371 if (WARN_ON_ONCE(!pud_none(*new_pud)))
375 * We don't have to worry about the ordering of src and dst
376 * ptlocks because exclusive mmap_lock prevents deadlock.
378 old_ptl = pud_lock(vma->vm_mm, old_pud);
379 new_ptl = pud_lockptr(mm, new_pud);
380 if (new_ptl != old_ptl)
381 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
387 VM_BUG_ON(!pud_none(*new_pud));
389 /* Set the new pud */
390 /* mark soft_ditry when we add pud level soft dirty support */
391 set_pud_at(mm, new_addr, new_pud, pud);
392 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
393 if (new_ptl != old_ptl)
394 spin_unlock(new_ptl);
395 spin_unlock(old_ptl);
400 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
401 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
417 * Returns an extent of the corresponding size for the pgt_entry specified if
418 * valid. Else returns a smaller extent bounded by the end of the source and
419 * destination pgt_entry.
421 static __always_inline unsigned long get_extent(enum pgt_entry entry,
422 unsigned long old_addr, unsigned long old_end,
423 unsigned long new_addr)
425 unsigned long next, extent, mask, size;
443 next = (old_addr + size) & mask;
444 /* even if next overflowed, extent below will be ok */
445 extent = next - old_addr;
446 if (extent > old_end - old_addr)
447 extent = old_end - old_addr;
448 next = (new_addr + size) & mask;
449 if (extent > next - new_addr)
450 extent = next - new_addr;
455 * Attempts to speedup the move by moving entry at the level corresponding to
456 * pgt_entry. Returns true if the move was successful, else false.
458 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
459 unsigned long old_addr, unsigned long new_addr,
460 void *old_entry, void *new_entry, bool need_rmap_locks)
464 /* See comment in move_ptes() */
466 take_rmap_locks(vma);
470 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
474 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
478 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
479 move_huge_pmd(vma, old_addr, new_addr, old_entry,
483 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
484 move_huge_pud(vma, old_addr, new_addr, old_entry,
494 drop_rmap_locks(vma);
500 * A helper to check if aligning down is OK. The aligned address should fall
501 * on *no mapping*. For the stack moving down, that's a special move within
502 * the VMA that is created to span the source and destination of the move,
503 * so we make an exception for it.
505 static bool can_align_down(struct vm_area_struct *vma, unsigned long addr_to_align,
506 unsigned long mask, bool for_stack)
508 unsigned long addr_masked = addr_to_align & mask;
511 * If @addr_to_align of either source or destination is not the beginning
512 * of the corresponding VMA, we can't align down or we will destroy part
513 * of the current mapping.
515 if (!for_stack && vma->vm_start != addr_to_align)
518 /* In the stack case we explicitly permit in-VMA alignment. */
519 if (for_stack && addr_masked >= vma->vm_start)
523 * Make sure the realignment doesn't cause the address to fall on an
526 return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
529 /* Opportunistically realign to specified boundary for faster copy. */
530 static void try_realign_addr(unsigned long *old_addr, struct vm_area_struct *old_vma,
531 unsigned long *new_addr, struct vm_area_struct *new_vma,
532 unsigned long mask, bool for_stack)
534 /* Skip if the addresses are already aligned. */
535 if ((*old_addr & ~mask) == 0)
538 /* Only realign if the new and old addresses are mutually aligned. */
539 if ((*old_addr & ~mask) != (*new_addr & ~mask))
542 /* Ensure realignment doesn't cause overlap with existing mappings. */
543 if (!can_align_down(old_vma, *old_addr, mask, for_stack) ||
544 !can_align_down(new_vma, *new_addr, mask, for_stack))
547 *old_addr = *old_addr & mask;
548 *new_addr = *new_addr & mask;
551 unsigned long move_page_tables(struct vm_area_struct *vma,
552 unsigned long old_addr, struct vm_area_struct *new_vma,
553 unsigned long new_addr, unsigned long len,
554 bool need_rmap_locks, bool for_stack)
556 unsigned long extent, old_end;
557 struct mmu_notifier_range range;
558 pmd_t *old_pmd, *new_pmd;
559 pud_t *old_pud, *new_pud;
564 old_end = old_addr + len;
566 if (is_vm_hugetlb_page(vma))
567 return move_hugetlb_page_tables(vma, new_vma, old_addr,
571 * If possible, realign addresses to PMD boundary for faster copy.
572 * Only realign if the mremap copying hits a PMD boundary.
574 if (len >= PMD_SIZE - (old_addr & ~PMD_MASK))
575 try_realign_addr(&old_addr, vma, &new_addr, new_vma, PMD_MASK,
578 flush_cache_range(vma, old_addr, old_end);
579 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
581 mmu_notifier_invalidate_range_start(&range);
583 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
586 * If extent is PUD-sized try to speed up the move by moving at the
587 * PUD level if possible.
589 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
591 old_pud = get_old_pud(vma->vm_mm, old_addr);
594 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
597 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
598 if (extent == HPAGE_PUD_SIZE) {
599 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
600 old_pud, new_pud, need_rmap_locks);
601 /* We ignore and continue on error? */
604 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
606 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
607 old_pud, new_pud, true))
611 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
612 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
615 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
619 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
620 pmd_devmap(*old_pmd)) {
621 if (extent == HPAGE_PMD_SIZE &&
622 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
623 old_pmd, new_pmd, need_rmap_locks))
625 split_huge_pmd(vma, old_pmd, old_addr);
626 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
627 extent == PMD_SIZE) {
629 * If the extent is PMD-sized, try to speed the move by
630 * moving at the PMD level if possible.
632 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
633 old_pmd, new_pmd, true))
636 if (pmd_none(*old_pmd))
638 if (pte_alloc(new_vma->vm_mm, new_pmd))
640 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
641 new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
645 mmu_notifier_invalidate_range_end(&range);
648 * Prevent negative return values when {old,new}_addr was realigned
649 * but we broke out of the above loop for the first PMD itself.
651 if (old_addr < old_end - len)
654 return len + old_addr - old_end; /* how much done */
657 static unsigned long move_vma(struct vm_area_struct *vma,
658 unsigned long old_addr, unsigned long old_len,
659 unsigned long new_len, unsigned long new_addr,
660 bool *locked, unsigned long flags,
661 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
663 long to_account = new_len - old_len;
664 struct mm_struct *mm = vma->vm_mm;
665 struct vm_area_struct *new_vma;
666 unsigned long vm_flags = vma->vm_flags;
667 unsigned long new_pgoff;
668 unsigned long moved_len;
669 unsigned long account_start = 0;
670 unsigned long account_end = 0;
671 unsigned long hiwater_vm;
673 bool need_rmap_locks;
674 struct vma_iterator vmi;
677 * We'd prefer to avoid failure later on in do_munmap:
678 * which may split one vma into three before unmapping.
680 if (mm->map_count >= sysctl_max_map_count - 3)
683 if (unlikely(flags & MREMAP_DONTUNMAP))
684 to_account = new_len;
686 if (vma->vm_ops && vma->vm_ops->may_split) {
687 if (vma->vm_start != old_addr)
688 err = vma->vm_ops->may_split(vma, old_addr);
689 if (!err && vma->vm_end != old_addr + old_len)
690 err = vma->vm_ops->may_split(vma, old_addr + old_len);
696 * Advise KSM to break any KSM pages in the area to be moved:
697 * it would be confusing if they were to turn up at the new
698 * location, where they happen to coincide with different KSM
699 * pages recently unmapped. But leave vma->vm_flags as it was,
700 * so KSM can come around to merge on vma and new_vma afterwards.
702 err = ksm_madvise(vma, old_addr, old_addr + old_len,
703 MADV_UNMERGEABLE, &vm_flags);
707 if (vm_flags & VM_ACCOUNT) {
708 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
712 vma_start_write(vma);
713 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
714 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
717 if (vm_flags & VM_ACCOUNT)
718 vm_unacct_memory(to_account >> PAGE_SHIFT);
722 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
723 need_rmap_locks, false);
724 if (moved_len < old_len) {
726 } else if (vma->vm_ops && vma->vm_ops->mremap) {
727 err = vma->vm_ops->mremap(new_vma);
732 * On error, move entries back from new area to old,
733 * which will succeed since page tables still there,
734 * and then proceed to unmap new area instead of old.
736 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
743 mremap_userfaultfd_prep(new_vma, uf);
746 if (is_vm_hugetlb_page(vma)) {
747 clear_vma_resv_huge_pages(vma);
750 /* Conceal VM_ACCOUNT so old reservation is not undone */
751 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
752 vm_flags_clear(vma, VM_ACCOUNT);
753 if (vma->vm_start < old_addr)
754 account_start = vma->vm_start;
755 if (vma->vm_end > old_addr + old_len)
756 account_end = vma->vm_end;
760 * If we failed to move page tables we still do total_vm increment
761 * since do_munmap() will decrement it by old_len == new_len.
763 * Since total_vm is about to be raised artificially high for a
764 * moment, we need to restore high watermark afterwards: if stats
765 * are taken meanwhile, total_vm and hiwater_vm appear too high.
766 * If this were a serious issue, we'd add a flag to do_munmap().
768 hiwater_vm = mm->hiwater_vm;
769 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
771 /* Tell pfnmap has moved from this vma */
772 if (unlikely(vma->vm_flags & VM_PFNMAP))
773 untrack_pfn_clear(vma);
775 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
776 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
777 vm_flags_clear(vma, VM_LOCKED_MASK);
780 * anon_vma links of the old vma is no longer needed after its page
781 * table has been moved.
783 if (new_vma != vma && vma->vm_start == old_addr &&
784 vma->vm_end == (old_addr + old_len))
785 unlink_anon_vmas(vma);
787 /* Because we won't unmap we don't need to touch locked_vm */
791 vma_iter_init(&vmi, mm, old_addr);
792 if (do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false) < 0) {
793 /* OOM: unable to split vma, just get accounts right */
794 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
795 vm_acct_memory(old_len >> PAGE_SHIFT);
796 account_start = account_end = 0;
799 if (vm_flags & VM_LOCKED) {
800 mm->locked_vm += new_len >> PAGE_SHIFT;
804 mm->hiwater_vm = hiwater_vm;
806 /* Restore VM_ACCOUNT if one or two pieces of vma left */
808 vma = vma_prev(&vmi);
809 vm_flags_set(vma, VM_ACCOUNT);
813 vma = vma_next(&vmi);
814 vm_flags_set(vma, VM_ACCOUNT);
820 static struct vm_area_struct *vma_to_resize(unsigned long addr,
821 unsigned long old_len, unsigned long new_len, unsigned long flags)
823 struct mm_struct *mm = current->mm;
824 struct vm_area_struct *vma;
827 vma = vma_lookup(mm, addr);
829 return ERR_PTR(-EFAULT);
832 * !old_len is a special case where an attempt is made to 'duplicate'
833 * a mapping. This makes no sense for private mappings as it will
834 * instead create a fresh/new mapping unrelated to the original. This
835 * is contrary to the basic idea of mremap which creates new mappings
836 * based on the original. There are no known use cases for this
837 * behavior. As a result, fail such attempts.
839 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
840 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
841 return ERR_PTR(-EINVAL);
844 if ((flags & MREMAP_DONTUNMAP) &&
845 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
846 return ERR_PTR(-EINVAL);
848 /* We can't remap across vm area boundaries */
849 if (old_len > vma->vm_end - addr)
850 return ERR_PTR(-EFAULT);
852 if (new_len == old_len)
855 /* Need to be careful about a growing mapping */
856 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
857 pgoff += vma->vm_pgoff;
858 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
859 return ERR_PTR(-EINVAL);
861 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
862 return ERR_PTR(-EFAULT);
864 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
865 return ERR_PTR(-EAGAIN);
867 if (!may_expand_vm(mm, vma->vm_flags,
868 (new_len - old_len) >> PAGE_SHIFT))
869 return ERR_PTR(-ENOMEM);
874 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
875 unsigned long new_addr, unsigned long new_len, bool *locked,
876 unsigned long flags, struct vm_userfaultfd_ctx *uf,
877 struct list_head *uf_unmap_early,
878 struct list_head *uf_unmap)
880 struct mm_struct *mm = current->mm;
881 struct vm_area_struct *vma;
882 unsigned long ret = -EINVAL;
883 unsigned long map_flags = 0;
885 if (offset_in_page(new_addr))
888 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
891 /* Ensure the old/new locations do not overlap */
892 if (addr + old_len > new_addr && new_addr + new_len > addr)
896 * move_vma() need us to stay 4 maps below the threshold, otherwise
897 * it will bail out at the very beginning.
898 * That is a problem if we have already unmaped the regions here
899 * (new_addr, and old_addr), because userspace will not know the
900 * state of the vma's after it gets -ENOMEM.
901 * So, to avoid such scenario we can pre-compute if the whole
902 * operation has high chances to success map-wise.
903 * Worst-scenario case is when both vma's (new_addr and old_addr) get
904 * split in 3 before unmapping it.
905 * That means 2 more maps (1 for each) to the ones we already hold.
906 * Check whether current map count plus 2 still leads us to 4 maps below
907 * the threshold, otherwise return -ENOMEM here to be more safe.
909 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
912 if (flags & MREMAP_FIXED) {
915 * VMA is moved to dst address, and munmap dst first.
916 * do_munmap will check if dst is sealed.
918 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
923 if (old_len > new_len) {
924 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
930 vma = vma_to_resize(addr, old_len, new_len, flags);
936 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
937 if (flags & MREMAP_DONTUNMAP &&
938 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
943 if (flags & MREMAP_FIXED)
944 map_flags |= MAP_FIXED;
946 if (vma->vm_flags & VM_MAYSHARE)
947 map_flags |= MAP_SHARED;
949 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
950 ((addr - vma->vm_start) >> PAGE_SHIFT),
952 if (IS_ERR_VALUE(ret))
955 /* We got a new mapping */
956 if (!(flags & MREMAP_FIXED))
959 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
966 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
968 unsigned long end = vma->vm_end + delta;
970 if (end < vma->vm_end) /* overflow */
972 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
974 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
975 0, MAP_FIXED) & ~PAGE_MASK)
981 * Expand (or shrink) an existing mapping, potentially moving it at the
982 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
984 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
985 * This option implies MREMAP_MAYMOVE.
987 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
988 unsigned long, new_len, unsigned long, flags,
989 unsigned long, new_addr)
991 struct mm_struct *mm = current->mm;
992 struct vm_area_struct *vma;
993 unsigned long ret = -EINVAL;
995 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
996 LIST_HEAD(uf_unmap_early);
1000 * There is a deliberate asymmetry here: we strip the pointer tag
1001 * from the old address but leave the new address alone. This is
1002 * for consistency with mmap(), where we prevent the creation of
1003 * aliasing mappings in userspace by leaving the tag bits of the
1004 * mapping address intact. A non-zero tag will cause the subsequent
1005 * range checks to reject the address as invalid.
1007 * See Documentation/arch/arm64/tagged-address-abi.rst for more
1010 addr = untagged_addr(addr);
1012 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
1015 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
1019 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1022 if (flags & MREMAP_DONTUNMAP &&
1023 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
1027 if (offset_in_page(addr))
1030 old_len = PAGE_ALIGN(old_len);
1031 new_len = PAGE_ALIGN(new_len);
1034 * We allow a zero old-len as a special case
1035 * for DOS-emu "duplicate shm area" thing. But
1036 * a zero new-len is nonsensical.
1041 if (mmap_write_lock_killable(current->mm))
1043 vma = vma_lookup(mm, addr);
1049 /* Don't allow remapping vmas when they have already been sealed */
1050 if (!can_modify_vma(vma)) {
1055 if (is_vm_hugetlb_page(vma)) {
1056 struct hstate *h __maybe_unused = hstate_vma(vma);
1058 old_len = ALIGN(old_len, huge_page_size(h));
1059 new_len = ALIGN(new_len, huge_page_size(h));
1061 /* addrs must be huge page aligned */
1062 if (addr & ~huge_page_mask(h))
1064 if (new_addr & ~huge_page_mask(h))
1068 * Don't allow remap expansion, because the underlying hugetlb
1069 * reservation is not yet capable to handle split reservation.
1071 if (new_len > old_len)
1075 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
1076 ret = mremap_to(addr, old_len, new_addr, new_len,
1077 &locked, flags, &uf, &uf_unmap_early,
1083 * Always allow a shrinking remap: that just unmaps
1084 * the unnecessary pages..
1085 * do_vmi_munmap does all the needed commit accounting, and
1086 * unlocks the mmap_lock if so directed.
1088 if (old_len >= new_len) {
1089 VMA_ITERATOR(vmi, mm, addr + new_len);
1091 if (old_len == new_len) {
1096 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1106 * Ok, we need to grow..
1108 vma = vma_to_resize(addr, old_len, new_len, flags);
1114 /* old_len exactly to the end of the area..
1116 if (old_len == vma->vm_end - addr) {
1117 unsigned long delta = new_len - old_len;
1119 /* can we just expand the current mapping? */
1120 if (vma_expandable(vma, delta)) {
1121 long pages = delta >> PAGE_SHIFT;
1122 VMA_ITERATOR(vmi, mm, vma->vm_end);
1125 if (vma->vm_flags & VM_ACCOUNT) {
1126 if (security_vm_enough_memory_mm(mm, pages)) {
1134 * Function vma_merge_extend() is called on the
1135 * extension we are adding to the already existing vma,
1136 * vma_merge_extend() will merge this extension with the
1137 * already existing vma (expand operation itself) and
1138 * possibly also with the next vma if it becomes
1139 * adjacent to the expanded vma and otherwise
1142 vma = vma_merge_extend(&vmi, vma, delta);
1144 vm_unacct_memory(charged);
1149 vm_stat_account(mm, vma->vm_flags, pages);
1150 if (vma->vm_flags & VM_LOCKED) {
1151 mm->locked_vm += pages;
1161 * We weren't able to just expand or shrink the area,
1162 * we need to create a new one and move it..
1165 if (flags & MREMAP_MAYMOVE) {
1166 unsigned long map_flags = 0;
1167 if (vma->vm_flags & VM_MAYSHARE)
1168 map_flags |= MAP_SHARED;
1170 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1172 ((addr - vma->vm_start) >> PAGE_SHIFT),
1174 if (IS_ERR_VALUE(new_addr)) {
1179 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1180 &locked, flags, &uf, &uf_unmap);
1183 if (offset_in_page(ret))
1185 mmap_write_unlock(current->mm);
1186 if (locked && new_len > old_len)
1187 mm_populate(new_addr + old_len, new_len - old_len);
1189 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1190 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1191 userfaultfd_unmap_complete(mm, &uf_unmap);