1 // SPDX-License-Identifier: GPL-2.0
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
6 * Some additional features added by Christoph Niemann (ChN), March 1993
8 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <linux/consolemap.h>
29 #include <linux/init.h>
30 #include <linux/input.h>
31 #include <linux/jiffies.h>
32 #include <linux/kbd_diacr.h>
33 #include <linux/kbd_kern.h>
34 #include <linux/leds.h>
36 #include <linux/module.h>
37 #include <linux/nospec.h>
38 #include <linux/notifier.h>
39 #include <linux/reboot.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/signal.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/tty_flip.h>
46 #include <linux/tty.h>
47 #include <linux/uaccess.h>
48 #include <linux/vt_kern.h>
50 #include <asm/irq_regs.h>
53 * Exported functions/variables
56 #define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
58 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59 #include <asm/kbdleds.h>
61 static inline int kbd_defleds(void)
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
79 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 static k_handler_fn K_HANDLERS;
82 static k_handler_fn *k_handler[16] = { K_HANDLERS };
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91 typedef void (fn_handler_fn)(struct vc_data *vc);
92 static fn_handler_fn FN_HANDLERS;
93 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96 * Variables exported for vt_ioctl.c
99 struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
110 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 static struct kbd_struct *kbd = kbd_table;
113 /* maximum values each key_handler can handle */
114 static const unsigned char max_vals[] = {
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
127 [ KT_SLOCK ] = NR_LOCK - 1,
129 [ KT_BRL ] = NR_BRL - 1,
132 static const int NR_TYPES = ARRAY_SIZE(max_vals);
134 static void kbd_bh(struct tasklet_struct *unused);
135 static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
137 static struct input_handler kbd_handler;
138 static DEFINE_SPINLOCK(kbd_event_lock);
139 static DEFINE_SPINLOCK(led_lock);
140 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141 static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143 static bool dead_key_next;
145 /* Handles a number being assembled on the number pad */
146 static bool npadch_active;
147 static unsigned int npadch_value;
149 static unsigned int diacr;
150 static bool rep; /* flag telling character repeat */
152 static int shift_state = 0;
154 static unsigned int ledstate = -1U; /* undefined */
155 static unsigned char ledioctl;
156 static bool vt_switch;
159 * Notifier list for console keyboard events
161 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
163 int register_keyboard_notifier(struct notifier_block *nb)
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
167 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
169 int unregister_keyboard_notifier(struct notifier_block *nb)
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
173 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
185 struct getset_keycode_data {
186 struct input_keymap_entry ke;
190 static int getkeycode_helper(struct input_handle *handle, void *data)
192 struct getset_keycode_data *d = data;
194 d->error = input_get_keycode(handle->dev, &d->ke);
196 return d->error == 0; /* stop as soon as we successfully get one */
199 static int getkeycode(unsigned int scancode)
201 struct getset_keycode_data d = {
204 .len = sizeof(scancode),
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
214 return d.error ?: d.ke.keycode;
217 static int setkeycode_helper(struct input_handle *handle, void *data)
219 struct getset_keycode_data *d = data;
221 d->error = input_set_keycode(handle->dev, &d->ke);
223 return d->error == 0; /* stop as soon as we successfully set one */
226 static int setkeycode(unsigned int scancode, unsigned int keycode)
228 struct getset_keycode_data d = {
231 .len = sizeof(scancode),
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
249 static int kd_sound_helper(struct input_handle *handle, void *data)
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
267 static void kd_nosound(struct timer_list *unused)
269 static unsigned int zero;
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
274 static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
276 void kd_mksound(unsigned int hz, unsigned int ticks)
278 del_timer_sync(&kd_mksound_timer);
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
285 EXPORT_SYMBOL(kd_mksound);
288 * Setting the keyboard rate.
291 static int kbd_rate_helper(struct input_handle *handle, void *data)
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
296 if (test_bit(EV_REP, dev->evbit)) {
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
312 int kbd_rate(struct kbd_repeat *rpt)
314 struct kbd_repeat data[2] = { *rpt };
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
325 static void put_queue(struct vc_data *vc, int ch)
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
331 static void puts_queue(struct vc_data *vc, const char *cp)
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
337 static void applkey(struct vc_data *vc, int key, char mode)
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
341 buf[1] = (mode ? 'O' : '[');
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
352 static void to_utf8(struct vc_data *vc, uint c)
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
379 /* FIXME: review locking for vt.c callers */
380 static void set_leds(void)
382 tasklet_schedule(&keyboard_tasklet);
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
392 static void do_compute_shiftstate(void)
394 unsigned int k, sym, val;
397 memset(shift_down, 0, sizeof(shift_down));
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
405 if (val == KVAL(K_CAPSSHIFT))
409 shift_state |= BIT(val);
413 /* We still have to export this method to vt.c */
414 void vt_set_leds_compute_shiftstate(void)
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
438 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
440 unsigned int d = diacr;
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
457 if (kbd->kbdmode == VC_UNICODE)
460 int c = conv_uni_to_8bit(d);
469 * Special function handlers
471 static void fn_enter(struct vc_data *vc)
474 if (kbd->kbdmode == VC_UNICODE)
477 int c = conv_uni_to_8bit(diacr);
485 if (vc_kbd_mode(kbd, VC_CRLF))
489 static void fn_caps_toggle(struct vc_data *vc)
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
497 static void fn_caps_on(struct vc_data *vc)
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
505 static void fn_show_ptregs(struct vc_data *vc)
507 struct pt_regs *regs = get_irq_regs();
513 static void fn_hold(struct vc_data *vc)
515 struct tty_struct *tty = vc->port.tty;
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
525 if (tty->flow.stopped)
531 static void fn_num(struct vc_data *vc)
533 if (vc_kbd_mode(kbd, VC_APPLIC))
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
545 static void fn_bare_num(struct vc_data *vc)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
551 static void fn_lastcons(struct vc_data *vc)
553 /* switch to the last used console, ChN */
554 set_console(last_console);
557 static void fn_dec_console(struct vc_data *vc)
559 int i, cur = fg_console;
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
565 for (i = cur - 1; i != cur; i--) {
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
574 static void fn_inc_console(struct vc_data *vc)
576 int i, cur = fg_console;
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
585 if (vc_cons_allocated(i))
591 static void fn_send_intr(struct vc_data *vc)
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
597 static void fn_scroll_forw(struct vc_data *vc)
602 static void fn_scroll_back(struct vc_data *vc)
607 static void fn_show_mem(struct vc_data *vc)
612 static void fn_show_state(struct vc_data *vc)
617 static void fn_boot_it(struct vc_data *vc)
622 static void fn_compose(struct vc_data *vc)
624 dead_key_next = true;
627 static void fn_spawn_con(struct vc_data *vc)
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
635 spin_unlock(&vt_spawn_con.lock);
638 static void fn_SAK(struct vc_data *vc)
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
644 static void fn_null(struct vc_data *vc)
646 do_compute_shiftstate();
650 * Special key handlers
652 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
656 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
660 if (value >= ARRAY_SIZE(fn_handler))
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
670 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
672 pr_err("k_lowercase was called - impossible\n");
675 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
678 return; /* no action, if this is a key release */
681 value = handle_diacr(vc, value);
684 dead_key_next = false;
688 if (kbd->kbdmode == VC_UNICODE)
691 int c = conv_uni_to_8bit(value);
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
702 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
707 diacr = (diacr ? handle_diacr(vc, value) : value);
710 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
715 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
717 k_deadunicode(vc, value, up_flag);
721 * Obsolete - for backwards compatibility only
723 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
755 k_deadunicode(vc, ret_diacr[value], up_flag);
758 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
766 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
780 pr_err("k_fn called with value=%d\n", value);
783 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
785 static const char cur_chars[] = "BDCA";
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
793 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
799 return; /* no action, if this is a key release */
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
812 k_fn(vc, KVAL(K_REMOVE), 0);
815 k_fn(vc, KVAL(K_INSERT), 0);
818 k_fn(vc, KVAL(K_SELECT), 0);
821 k_cur(vc, KVAL(K_DOWN), 0);
824 k_fn(vc, KVAL(K_PGDN), 0);
827 k_cur(vc, KVAL(K_LEFT), 0);
830 k_cur(vc, KVAL(K_RIGHT), 0);
833 k_fn(vc, KVAL(K_FIND), 0);
836 k_cur(vc, KVAL(K_UP), 0);
839 k_fn(vc, KVAL(K_PGUP), 0);
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
852 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
854 int old_state = shift_state;
860 * a CapsShift key acts like Shift but undoes CapsLock
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
873 if (shift_down[value])
878 if (shift_down[value])
879 shift_state |= BIT(value);
881 shift_state &= ~BIT(value);
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
893 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
902 put_queue(vc, value | BIT(7));
905 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
913 /* decimal input of code, while Alt depressed */
916 /* hexadecimal input of code, while AltGr depressed */
921 if (!npadch_active) {
923 npadch_active = true;
926 npadch_value = npadch_value * base + value;
929 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
934 chg_vc_kbd_lock(kbd, value);
937 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
939 k_shift(vc, value, up_flag);
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
947 chg_vc_kbd_slock(kbd, value);
951 /* by default, 300ms interval for combination release */
952 static unsigned brl_timeout = 300;
953 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954 module_param(brl_timeout, uint, 0644);
956 static unsigned brl_nbchords = 1;
957 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958 module_param(brl_nbchords, uint, 0644);
960 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
962 static unsigned long chords;
963 static unsigned committed;
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
968 committed |= pattern;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
978 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
983 if (kbd->kbdmode != VC_UNICODE) {
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
990 k_unicode(vc, BRL_UC_ROW, up_flag);
998 pressed |= BIT(value - 1);
1000 committing = pressed;
1001 } else if (brl_timeout) {
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1015 k_brlcommit(vc, committing, 0);
1018 pressed &= ~BIT(value - 1);
1022 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1024 struct kbd_led_trigger {
1025 struct led_trigger trigger;
1029 static int kbd_led_trigger_activate(struct led_classdev *cdev)
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_trigger_event(&trigger->trigger,
1037 ledstate & trigger->mask ?
1038 LED_FULL : LED_OFF);
1039 tasklet_enable(&keyboard_tasklet);
1044 #define KBD_LED_TRIGGER(_led_bit, _name) { \
1047 .activate = kbd_led_trigger_activate, \
1049 .mask = BIT(_led_bit), \
1052 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1053 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1055 static struct kbd_led_trigger kbd_led_triggers[] = {
1056 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1058 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1059 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1061 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1068 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1071 static void kbd_propagate_led_state(unsigned int old_state,
1072 unsigned int new_state)
1074 struct kbd_led_trigger *trigger;
1075 unsigned int changed = old_state ^ new_state;
1078 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079 trigger = &kbd_led_triggers[i];
1081 if (changed & trigger->mask)
1082 led_trigger_event(&trigger->trigger,
1083 new_state & trigger->mask ?
1084 LED_FULL : LED_OFF);
1088 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1090 unsigned int led_state = *(unsigned int *)data;
1092 if (test_bit(EV_LED, handle->dev->evbit))
1093 kbd_propagate_led_state(~led_state, led_state);
1098 static void kbd_init_leds(void)
1103 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1106 pr_err("error %d while registering trigger %s\n",
1107 error, kbd_led_triggers[i].trigger.name);
1113 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1115 unsigned int leds = *(unsigned int *)data;
1117 if (test_bit(EV_LED, handle->dev->evbit)) {
1118 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1120 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1121 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1127 static void kbd_propagate_led_state(unsigned int old_state,
1128 unsigned int new_state)
1130 input_handler_for_each_handle(&kbd_handler, &new_state,
1131 kbd_update_leds_helper);
1134 static void kbd_init_leds(void)
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1145 static unsigned char getledstate(void)
1147 return ledstate & 0xff;
1150 void setledstate(struct kbd_struct *kb, unsigned int led)
1152 unsigned long flags;
1153 spin_lock_irqsave(&led_lock, flags);
1156 kb->ledmode = LED_SHOW_IOCTL;
1158 kb->ledmode = LED_SHOW_FLAGS;
1161 spin_unlock_irqrestore(&led_lock, flags);
1164 static inline unsigned char getleds(void)
1166 struct kbd_struct *kb = kbd_table + fg_console;
1168 if (kb->ledmode == LED_SHOW_IOCTL)
1171 return kb->ledflagstate;
1175 * vt_get_leds - helper for braille console
1176 * @console: console to read
1177 * @flag: flag we want to check
1179 * Check the status of a keyboard led flag and report it back
1181 int vt_get_leds(unsigned int console, int flag)
1183 struct kbd_struct *kb = &kbd_table[console];
1185 unsigned long flags;
1187 spin_lock_irqsave(&led_lock, flags);
1188 ret = vc_kbd_led(kb, flag);
1189 spin_unlock_irqrestore(&led_lock, flags);
1193 EXPORT_SYMBOL_GPL(vt_get_leds);
1196 * vt_set_led_state - set LED state of a console
1197 * @console: console to set
1200 * Set the LEDs on a console. This is a wrapper for the VT layer
1201 * so that we can keep kbd knowledge internal
1203 void vt_set_led_state(unsigned int console, int leds)
1205 struct kbd_struct *kb = &kbd_table[console];
1206 setledstate(kb, leds);
1210 * vt_kbd_con_start - Keyboard side of console start
1213 * Handle console start. This is a wrapper for the VT layer
1214 * so that we can keep kbd knowledge internal
1216 * FIXME: We eventually need to hold the kbd lock here to protect
1217 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 * and start_tty under the kbd_event_lock, while normal tty paths
1219 * don't hold the lock. We probably need to split out an LED lock
1220 * but not during an -rc release!
1222 void vt_kbd_con_start(unsigned int console)
1224 struct kbd_struct *kb = &kbd_table[console];
1225 unsigned long flags;
1226 spin_lock_irqsave(&led_lock, flags);
1227 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1229 spin_unlock_irqrestore(&led_lock, flags);
1233 * vt_kbd_con_stop - Keyboard side of console stop
1236 * Handle console stop. This is a wrapper for the VT layer
1237 * so that we can keep kbd knowledge internal
1239 void vt_kbd_con_stop(unsigned int console)
1241 struct kbd_struct *kb = &kbd_table[console];
1242 unsigned long flags;
1243 spin_lock_irqsave(&led_lock, flags);
1244 set_vc_kbd_led(kb, VC_SCROLLOCK);
1246 spin_unlock_irqrestore(&led_lock, flags);
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1255 static void kbd_bh(struct tasklet_struct *unused)
1258 unsigned long flags;
1260 spin_lock_irqsave(&led_lock, flags);
1262 leds |= (unsigned int)kbd->lockstate << 8;
1263 spin_unlock_irqrestore(&led_lock, flags);
1270 if (leds != ledstate) {
1271 kbd_propagate_led_state(ledstate, leds);
1276 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1277 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1281 static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1283 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1286 return dev->id.bustype == BUS_I8042 &&
1287 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1290 static const unsigned short x86_keycodes[256] =
1291 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1292 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1308 static int sparc_l1_a_state;
1309 extern void sun_do_break(void);
1312 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313 unsigned char up_flag)
1320 put_queue(vc, 0xe1);
1321 put_queue(vc, 0x1d | up_flag);
1322 put_queue(vc, 0x45 | up_flag);
1327 put_queue(vc, 0xf2);
1332 put_queue(vc, 0xf1);
1337 * Real AT keyboards (that's what we're trying
1338 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339 * pressing PrtSc/SysRq alone, but simply 0x54
1340 * when pressing Alt+PrtSc/SysRq.
1342 if (test_bit(KEY_LEFTALT, key_down) ||
1343 test_bit(KEY_RIGHTALT, key_down)) {
1344 put_queue(vc, 0x54 | up_flag);
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x2a | up_flag);
1348 put_queue(vc, 0xe0);
1349 put_queue(vc, 0x37 | up_flag);
1357 code = x86_keycodes[keycode];
1362 put_queue(vc, 0xe0);
1363 put_queue(vc, (code & 0x7f) | up_flag);
1373 static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1378 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1383 put_queue(vc, keycode | up_flag);
1388 static void kbd_rawcode(unsigned char data)
1390 struct vc_data *vc = vc_cons[fg_console].d;
1392 kbd = &kbd_table[vc->vc_num];
1393 if (kbd->kbdmode == VC_RAW)
1394 put_queue(vc, data);
1397 static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1399 struct vc_data *vc = vc_cons[fg_console].d;
1400 unsigned short keysym, *key_map;
1403 struct tty_struct *tty;
1405 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1410 if (tty && (!tty->driver_data)) {
1411 /* No driver data? Strange. Okay we fix it then. */
1412 tty->driver_data = vc;
1415 kbd = &kbd_table[vc->vc_num];
1418 if (keycode == KEY_STOP)
1419 sparc_l1_a_state = down;
1424 raw_mode = (kbd->kbdmode == VC_RAW);
1425 if (raw_mode && !hw_raw)
1426 if (emulate_raw(vc, keycode, !down << 7))
1427 if (keycode < BTN_MISC && printk_ratelimit())
1428 pr_warn("can't emulate rawmode for keycode %d\n",
1432 if (keycode == KEY_A && sparc_l1_a_state) {
1433 sparc_l1_a_state = false;
1438 if (kbd->kbdmode == VC_MEDIUMRAW) {
1440 * This is extended medium raw mode, with keys above 127
1441 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443 * interfere with anything else. The two bytes after 0 will
1444 * always have the up flag set not to interfere with older
1445 * applications. This allows for 16384 different keycodes,
1446 * which should be enough.
1448 if (keycode < 128) {
1449 put_queue(vc, keycode | (!down << 7));
1451 put_queue(vc, !down << 7);
1452 put_queue(vc, (keycode >> 7) | BIT(7));
1453 put_queue(vc, keycode | BIT(7));
1458 assign_bit(keycode, key_down, down);
1461 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1464 * Don't repeat a key if the input buffers are not empty and the
1465 * characters get aren't echoed locally. This makes key repeat
1466 * usable with slow applications and under heavy loads.
1471 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472 param.ledstate = kbd->ledflagstate;
1473 key_map = key_maps[shift_final];
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYCODE, ¶m);
1477 if (rc == NOTIFY_STOP || !key_map) {
1478 atomic_notifier_call_chain(&keyboard_notifier_list,
1479 KBD_UNBOUND_KEYCODE, ¶m);
1480 do_compute_shiftstate();
1481 kbd->slockstate = 0;
1485 if (keycode < NR_KEYS)
1486 keysym = key_map[keycode];
1487 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1492 type = KTYP(keysym);
1495 param.value = keysym;
1496 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497 KBD_UNICODE, ¶m);
1498 if (rc != NOTIFY_STOP)
1499 if (down && !raw_mode)
1500 k_unicode(vc, keysym, !down);
1506 if (type == KT_LETTER) {
1508 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1511 keysym = key_map[keycode];
1515 param.value = keysym;
1516 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517 KBD_KEYSYM, ¶m);
1518 if (rc == NOTIFY_STOP)
1521 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1524 (*k_handler[type])(vc, keysym & 0xff, !down);
1526 param.ledstate = kbd->ledflagstate;
1527 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1529 if (type != KT_SLOCK)
1530 kbd->slockstate = 0;
1533 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534 unsigned int event_code, int value)
1536 /* We are called with interrupts disabled, just take the lock */
1537 spin_lock(&kbd_event_lock);
1539 if (event_type == EV_MSC && event_code == MSC_RAW &&
1540 kbd_is_hw_raw(handle->dev))
1542 if (event_type == EV_KEY && event_code <= KEY_MAX)
1543 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1545 spin_unlock(&kbd_event_lock);
1547 tasklet_schedule(&keyboard_tasklet);
1548 do_poke_blanked_console = 1;
1549 schedule_console_callback();
1552 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1554 if (test_bit(EV_SND, dev->evbit))
1557 if (test_bit(EV_KEY, dev->evbit)) {
1558 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1561 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1575 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576 const struct input_device_id *id)
1578 struct input_handle *handle;
1581 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1586 handle->handler = handler;
1587 handle->name = "kbd";
1589 error = input_register_handle(handle);
1591 goto err_free_handle;
1593 error = input_open_device(handle);
1595 goto err_unregister_handle;
1599 err_unregister_handle:
1600 input_unregister_handle(handle);
1606 static void kbd_disconnect(struct input_handle *handle)
1608 input_close_device(handle);
1609 input_unregister_handle(handle);
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1617 static void kbd_start(struct input_handle *handle)
1619 tasklet_disable(&keyboard_tasklet);
1621 if (ledstate != -1U)
1622 kbd_update_leds_helper(handle, &ledstate);
1624 tasklet_enable(&keyboard_tasklet);
1627 static const struct input_device_id kbd_ids[] = {
1629 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630 .evbit = { BIT_MASK(EV_KEY) },
1634 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635 .evbit = { BIT_MASK(EV_SND) },
1638 { }, /* Terminating entry */
1641 MODULE_DEVICE_TABLE(input, kbd_ids);
1643 static struct input_handler kbd_handler = {
1646 .connect = kbd_connect,
1647 .disconnect = kbd_disconnect,
1650 .id_table = kbd_ids,
1653 int __init kbd_init(void)
1658 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659 kbd_table[i].ledflagstate = kbd_defleds();
1660 kbd_table[i].default_ledflagstate = kbd_defleds();
1661 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662 kbd_table[i].lockstate = KBD_DEFLOCK;
1663 kbd_table[i].slockstate = 0;
1664 kbd_table[i].modeflags = KBD_DEFMODE;
1665 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1670 error = input_register_handler(&kbd_handler);
1674 tasklet_enable(&keyboard_tasklet);
1675 tasklet_schedule(&keyboard_tasklet);
1680 /* Ioctl support code */
1683 * vt_do_diacrit - diacritical table updates
1684 * @cmd: ioctl request
1685 * @udp: pointer to user data for ioctl
1686 * @perm: permissions check computed by caller
1688 * Update the diacritical tables atomically and safely. Lock them
1689 * against simultaneous keypresses
1691 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1693 unsigned long flags;
1700 struct kbdiacrs __user *a = udp;
1701 struct kbdiacr *dia;
1704 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1709 /* Lock the diacriticals table, make a copy and then
1710 copy it after we unlock */
1711 spin_lock_irqsave(&kbd_event_lock, flags);
1713 asize = accent_table_size;
1714 for (i = 0; i < asize; i++) {
1715 dia[i].diacr = conv_uni_to_8bit(
1716 accent_table[i].diacr);
1717 dia[i].base = conv_uni_to_8bit(
1718 accent_table[i].base);
1719 dia[i].result = conv_uni_to_8bit(
1720 accent_table[i].result);
1722 spin_unlock_irqrestore(&kbd_event_lock, flags);
1724 if (put_user(asize, &a->kb_cnt))
1726 else if (copy_to_user(a->kbdiacr, dia,
1727 asize * sizeof(struct kbdiacr)))
1734 struct kbdiacrsuc __user *a = udp;
1737 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1742 /* Lock the diacriticals table, make a copy and then
1743 copy it after we unlock */
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1746 asize = accent_table_size;
1747 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1749 spin_unlock_irqrestore(&kbd_event_lock, flags);
1751 if (put_user(asize, &a->kb_cnt))
1753 else if (copy_to_user(a->kbdiacruc, buf,
1754 asize*sizeof(struct kbdiacruc)))
1762 struct kbdiacrs __user *a = udp;
1763 struct kbdiacr *dia = NULL;
1769 if (get_user(ct, &a->kb_cnt))
1771 if (ct >= MAX_DIACR)
1776 dia = memdup_user(a->kbdiacr,
1777 sizeof(struct kbdiacr) * ct);
1779 return PTR_ERR(dia);
1783 spin_lock_irqsave(&kbd_event_lock, flags);
1784 accent_table_size = ct;
1785 for (i = 0; i < ct; i++) {
1786 accent_table[i].diacr =
1787 conv_8bit_to_uni(dia[i].diacr);
1788 accent_table[i].base =
1789 conv_8bit_to_uni(dia[i].base);
1790 accent_table[i].result =
1791 conv_8bit_to_uni(dia[i].result);
1793 spin_unlock_irqrestore(&kbd_event_lock, flags);
1800 struct kbdiacrsuc __user *a = udp;
1807 if (get_user(ct, &a->kb_cnt))
1810 if (ct >= MAX_DIACR)
1814 buf = memdup_user(a->kbdiacruc,
1815 ct * sizeof(struct kbdiacruc));
1817 return PTR_ERR(buf);
1819 spin_lock_irqsave(&kbd_event_lock, flags);
1821 memcpy(accent_table, buf,
1822 ct * sizeof(struct kbdiacruc));
1823 accent_table_size = ct;
1824 spin_unlock_irqrestore(&kbd_event_lock, flags);
1833 * vt_do_kdskbmode - set keyboard mode ioctl
1834 * @console: the console to use
1835 * @arg: the requested mode
1837 * Update the keyboard mode bits while holding the correct locks.
1838 * Return 0 for success or an error code.
1840 int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1842 struct kbd_struct *kb = &kbd_table[console];
1844 unsigned long flags;
1846 spin_lock_irqsave(&kbd_event_lock, flags);
1849 kb->kbdmode = VC_RAW;
1852 kb->kbdmode = VC_MEDIUMRAW;
1855 kb->kbdmode = VC_XLATE;
1856 do_compute_shiftstate();
1859 kb->kbdmode = VC_UNICODE;
1860 do_compute_shiftstate();
1863 kb->kbdmode = VC_OFF;
1868 spin_unlock_irqrestore(&kbd_event_lock, flags);
1873 * vt_do_kdskbmeta - set keyboard meta state
1874 * @console: the console to use
1875 * @arg: the requested meta state
1877 * Update the keyboard meta bits while holding the correct locks.
1878 * Return 0 for success or an error code.
1880 int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1882 struct kbd_struct *kb = &kbd_table[console];
1884 unsigned long flags;
1886 spin_lock_irqsave(&kbd_event_lock, flags);
1889 clr_vc_kbd_mode(kb, VC_META);
1892 set_vc_kbd_mode(kb, VC_META);
1897 spin_unlock_irqrestore(&kbd_event_lock, flags);
1901 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1904 struct kbkeycode tmp;
1907 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1911 kc = getkeycode(tmp.scancode);
1913 kc = put_user(kc, &user_kbkc->keycode);
1918 kc = setkeycode(tmp.scancode, tmp.keycode);
1924 static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1927 unsigned short *key_map, val;
1928 unsigned long flags;
1930 /* Ensure another thread doesn't free it under us */
1931 spin_lock_irqsave(&kbd_event_lock, flags);
1932 key_map = key_maps[map];
1934 val = U(key_map[idx]);
1935 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1938 val = idx ? K_HOLE : K_NOSUCHMAP;
1939 spin_unlock_irqrestore(&kbd_event_lock, flags);
1944 static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1945 unsigned char map, unsigned short val)
1947 unsigned long flags;
1948 unsigned short *key_map, *new_map, oldval;
1950 if (!idx && val == K_NOSUCHMAP) {
1951 spin_lock_irqsave(&kbd_event_lock, flags);
1952 /* deallocate map */
1953 key_map = key_maps[map];
1954 if (map && key_map) {
1955 key_maps[map] = NULL;
1956 if (key_map[0] == U(K_ALLOCATED)) {
1961 spin_unlock_irqrestore(&kbd_event_lock, flags);
1966 if (KTYP(val) < NR_TYPES) {
1967 if (KVAL(val) > max_vals[KTYP(val)])
1969 } else if (kbdmode != VC_UNICODE)
1972 /* ++Geert: non-PC keyboards may generate keycode zero */
1973 #if !defined(__mc68000__) && !defined(__powerpc__)
1974 /* assignment to entry 0 only tests validity of args */
1979 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1983 spin_lock_irqsave(&kbd_event_lock, flags);
1984 key_map = key_maps[map];
1985 if (key_map == NULL) {
1988 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1989 !capable(CAP_SYS_RESOURCE)) {
1990 spin_unlock_irqrestore(&kbd_event_lock, flags);
1994 key_maps[map] = new_map;
1996 key_map[0] = U(K_ALLOCATED);
1997 for (j = 1; j < NR_KEYS; j++)
1998 key_map[j] = U(K_HOLE);
2003 oldval = U(key_map[idx]);
2008 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2009 spin_unlock_irqrestore(&kbd_event_lock, flags);
2013 key_map[idx] = U(val);
2014 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2015 do_compute_shiftstate();
2017 spin_unlock_irqrestore(&kbd_event_lock, flags);
2022 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2023 unsigned int console)
2025 struct kbd_struct *kb = &kbd_table[console];
2028 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2033 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2035 &user_kbe->kb_value);
2037 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2039 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2045 static char *vt_kdskbsent(char *kbs, unsigned char cur)
2047 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2048 char *cur_f = func_table[cur];
2050 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2055 func_table[cur] = kbs;
2057 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2060 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2062 unsigned char kb_func;
2063 unsigned long flags;
2067 if (get_user(kb_func, &user_kdgkb->kb_func))
2070 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2074 /* size should have been a struct member */
2075 ssize_t len = sizeof(user_kdgkb->kb_string);
2077 kbs = kmalloc(len, GFP_KERNEL);
2081 spin_lock_irqsave(&func_buf_lock, flags);
2082 len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2083 spin_unlock_irqrestore(&func_buf_lock, flags);
2085 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2091 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2094 kbs = strndup_user(user_kdgkb->kb_string,
2095 sizeof(user_kdgkb->kb_string));
2097 return PTR_ERR(kbs);
2099 spin_lock_irqsave(&func_buf_lock, flags);
2100 kbs = vt_kdskbsent(kbs, kb_func);
2101 spin_unlock_irqrestore(&func_buf_lock, flags);
2112 int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2114 struct kbd_struct *kb = &kbd_table[console];
2115 unsigned long flags;
2116 unsigned char ucval;
2119 /* the ioctls below read/set the flags usually shown in the leds */
2120 /* don't use them - they will go away without warning */
2122 spin_lock_irqsave(&kbd_event_lock, flags);
2123 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2124 spin_unlock_irqrestore(&kbd_event_lock, flags);
2125 return put_user(ucval, (char __user *)arg);
2132 spin_lock_irqsave(&led_lock, flags);
2133 kb->ledflagstate = (arg & 7);
2134 kb->default_ledflagstate = ((arg >> 4) & 7);
2136 spin_unlock_irqrestore(&led_lock, flags);
2139 /* the ioctls below only set the lights, not the functions */
2140 /* for those, see KDGKBLED and KDSKBLED above */
2142 ucval = getledstate();
2143 return put_user(ucval, (char __user *)arg);
2148 setledstate(kb, arg);
2151 return -ENOIOCTLCMD;
2154 int vt_do_kdgkbmode(unsigned int console)
2156 struct kbd_struct *kb = &kbd_table[console];
2157 /* This is a spot read so needs no locking */
2158 switch (kb->kbdmode) {
2173 * vt_do_kdgkbmeta - report meta status
2174 * @console: console to report
2176 * Report the meta flag status of this console
2178 int vt_do_kdgkbmeta(unsigned int console)
2180 struct kbd_struct *kb = &kbd_table[console];
2181 /* Again a spot read so no locking */
2182 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2186 * vt_reset_unicode - reset the unicode status
2187 * @console: console being reset
2189 * Restore the unicode console state to its default
2191 void vt_reset_unicode(unsigned int console)
2193 unsigned long flags;
2195 spin_lock_irqsave(&kbd_event_lock, flags);
2196 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2197 spin_unlock_irqrestore(&kbd_event_lock, flags);
2201 * vt_get_shift_state - shift bit state
2203 * Report the shift bits from the keyboard state. We have to export
2204 * this to support some oddities in the vt layer.
2206 int vt_get_shift_state(void)
2208 /* Don't lock as this is a transient report */
2213 * vt_reset_keyboard - reset keyboard state
2214 * @console: console to reset
2216 * Reset the keyboard bits for a console as part of a general console
2219 void vt_reset_keyboard(unsigned int console)
2221 struct kbd_struct *kb = &kbd_table[console];
2222 unsigned long flags;
2224 spin_lock_irqsave(&kbd_event_lock, flags);
2225 set_vc_kbd_mode(kb, VC_REPEAT);
2226 clr_vc_kbd_mode(kb, VC_CKMODE);
2227 clr_vc_kbd_mode(kb, VC_APPLIC);
2228 clr_vc_kbd_mode(kb, VC_CRLF);
2231 spin_lock(&led_lock);
2232 kb->ledmode = LED_SHOW_FLAGS;
2233 kb->ledflagstate = kb->default_ledflagstate;
2234 spin_unlock(&led_lock);
2235 /* do not do set_leds here because this causes an endless tasklet loop
2236 when the keyboard hasn't been initialized yet */
2237 spin_unlock_irqrestore(&kbd_event_lock, flags);
2241 * vt_get_kbd_mode_bit - read keyboard status bits
2242 * @console: console to read from
2243 * @bit: mode bit to read
2245 * Report back a vt mode bit. We do this without locking so the
2246 * caller must be sure that there are no synchronization needs
2249 int vt_get_kbd_mode_bit(unsigned int console, int bit)
2251 struct kbd_struct *kb = &kbd_table[console];
2252 return vc_kbd_mode(kb, bit);
2256 * vt_set_kbd_mode_bit - read keyboard status bits
2257 * @console: console to read from
2258 * @bit: mode bit to read
2260 * Set a vt mode bit. We do this without locking so the
2261 * caller must be sure that there are no synchronization needs
2264 void vt_set_kbd_mode_bit(unsigned int console, int bit)
2266 struct kbd_struct *kb = &kbd_table[console];
2267 unsigned long flags;
2269 spin_lock_irqsave(&kbd_event_lock, flags);
2270 set_vc_kbd_mode(kb, bit);
2271 spin_unlock_irqrestore(&kbd_event_lock, flags);
2275 * vt_clr_kbd_mode_bit - read keyboard status bits
2276 * @console: console to read from
2277 * @bit: mode bit to read
2279 * Report back a vt mode bit. We do this without locking so the
2280 * caller must be sure that there are no synchronization needs
2283 void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2285 struct kbd_struct *kb = &kbd_table[console];
2286 unsigned long flags;
2288 spin_lock_irqsave(&kbd_event_lock, flags);
2289 clr_vc_kbd_mode(kb, bit);
2290 spin_unlock_irqrestore(&kbd_event_lock, flags);