1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Core registration and callback routines for MTD
7 * Copyright © 2006 Red Hat UK Limited
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
37 struct backing_dev_info *mtd_bdi;
39 #ifdef CONFIG_PM_SLEEP
41 static int mtd_cls_suspend(struct device *dev)
43 struct mtd_info *mtd = dev_get_drvdata(dev);
45 return mtd ? mtd_suspend(mtd) : 0;
48 static int mtd_cls_resume(struct device *dev)
50 struct mtd_info *mtd = dev_get_drvdata(dev);
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60 #define MTD_CLS_PM_OPS NULL
63 static struct class mtd_class = {
69 static DEFINE_IDR(mtd_idr);
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 struct mtd_info *__mtd_next_device(int i)
78 return idr_get_next(&mtd_idr, &i);
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 static LIST_HEAD(mtd_notifiers);
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
90 static void mtd_release(struct device *dev)
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
105 static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
108 struct mtd_info *mtd = dev_get_drvdata(dev);
133 case MTD_MLCNANDFLASH:
140 return sysfs_emit(buf, "%s\n", type);
142 MTD_DEVICE_ATTR_RO(type);
144 static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
147 struct mtd_info *mtd = dev_get_drvdata(dev);
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
151 MTD_DEVICE_ATTR_RO(flags);
153 static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
156 struct mtd_info *mtd = dev_get_drvdata(dev);
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
160 MTD_DEVICE_ATTR_RO(size);
162 static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
165 struct mtd_info *mtd = dev_get_drvdata(dev);
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
169 MTD_DEVICE_ATTR_RO(erasesize);
171 static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
174 struct mtd_info *mtd = dev_get_drvdata(dev);
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
178 MTD_DEVICE_ATTR_RO(writesize);
180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
186 return sysfs_emit(buf, "%u\n", subpagesize);
188 MTD_DEVICE_ATTR_RO(subpagesize);
190 static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
193 struct mtd_info *mtd = dev_get_drvdata(dev);
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
197 MTD_DEVICE_ATTR_RO(oobsize);
199 static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
202 struct mtd_info *mtd = dev_get_drvdata(dev);
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
206 MTD_DEVICE_ATTR_RO(oobavail);
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
211 struct mtd_info *mtd = dev_get_drvdata(dev);
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
215 MTD_DEVICE_ATTR_RO(numeraseregions);
217 static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
220 struct mtd_info *mtd = dev_get_drvdata(dev);
222 return sysfs_emit(buf, "%s\n", mtd->name);
224 MTD_DEVICE_ATTR_RO(name);
226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
229 struct mtd_info *mtd = dev_get_drvdata(dev);
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
233 MTD_DEVICE_ATTR_RO(ecc_strength);
235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
239 struct mtd_info *mtd = dev_get_drvdata(dev);
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
256 mtd->bitflip_threshold = bitflip_threshold;
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
264 struct mtd_info *mtd = dev_get_drvdata(dev);
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
299 MTD_DEVICE_ATTR_RO(bad_blocks);
301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
311 static struct attribute *mtd_attrs[] = {
313 &dev_attr_flags.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
331 ATTRIBUTE_GROUPS(mtd);
333 static const struct device_type mtd_devtype = {
335 .groups = mtd_groups,
336 .release = mtd_release,
339 static bool mtd_expert_analysis_mode;
341 #ifdef CONFIG_DEBUG_FS
342 bool mtd_check_expert_analysis_mode(void)
344 const char *mtd_expert_analysis_warning =
345 "Bad block checks have been entirely disabled.\n"
346 "This is only reserved for post-mortem forensics and debug purposes.\n"
347 "Never enable this mode if you do not know what you are doing!\n";
349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
354 static struct dentry *dfs_dir_mtd;
356 static void mtd_debugfs_populate(struct mtd_info *mtd)
358 struct device *dev = &mtd->dev;
360 if (IS_ERR_OR_NULL(dfs_dir_mtd))
363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
377 return NOMMU_MAP_COPY;
380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
386 struct mtd_info *mtd;
388 mtd = container_of(n, struct mtd_info, reboot_notifier);
395 * mtd_wunit_to_pairing_info - get pairing information of a wunit
396 * @mtd: pointer to new MTD device info structure
397 * @wunit: write unit we are interested in
398 * @info: returned pairing information
400 * Retrieve pairing information associated to the wunit.
401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402 * paired together, and where programming a page may influence the page it is
404 * The notion of page is replaced by the term wunit (write-unit) to stay
405 * consistent with the ->writesize field.
407 * The @wunit argument can be extracted from an absolute offset using
408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
411 * From the pairing info the MTD user can find all the wunits paired with
412 * @wunit using the following loop:
414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
416 * mtd_pairing_info_to_wunit(mtd, &info);
420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 struct mtd_pairing_info *info)
423 struct mtd_info *master = mtd_get_master(mtd);
424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
426 if (wunit < 0 || wunit >= npairs)
429 if (master->pairing && master->pairing->get_info)
430 return master->pairing->get_info(master, wunit, info);
437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
440 * mtd_pairing_info_to_wunit - get wunit from pairing information
441 * @mtd: pointer to new MTD device info structure
442 * @info: pairing information struct
444 * Returns a positive number representing the wunit associated to the info
445 * struct, or a negative error code.
447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
451 * It can also be used to only program the first page of each pair (i.e.
452 * page attached to group 0), which allows one to use an MLC NAND in
453 * software-emulated SLC mode:
456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457 * for (info.pair = 0; info.pair < npairs; info.pair++) {
458 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 const struct mtd_pairing_info *info)
466 struct mtd_info *master = mtd_get_master(mtd);
467 int ngroups = mtd_pairing_groups(master);
468 int npairs = mtd_wunit_per_eb(master) / ngroups;
470 if (!info || info->pair < 0 || info->pair >= npairs ||
471 info->group < 0 || info->group >= ngroups)
474 if (master->pairing && master->pairing->get_wunit)
475 return mtd->pairing->get_wunit(master, info);
479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
482 * mtd_pairing_groups - get the number of pairing groups
483 * @mtd: pointer to new MTD device info structure
485 * Returns the number of pairing groups.
487 * This number is usually equal to the number of bits exposed by a single
488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489 * to iterate over all pages of a given pair.
491 int mtd_pairing_groups(struct mtd_info *mtd)
493 struct mtd_info *master = mtd_get_master(mtd);
495 if (!master->pairing || !master->pairing->ngroups)
498 return master->pairing->ngroups;
500 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 void *val, size_t bytes)
505 struct mtd_info *mtd = priv;
509 err = mtd_read(mtd, offset, bytes, &retlen, val);
510 if (err && err != -EUCLEAN)
513 return retlen == bytes ? 0 : -EIO;
516 static int mtd_nvmem_add(struct mtd_info *mtd)
518 struct device_node *node = mtd_get_of_node(mtd);
519 struct nvmem_config config = {};
522 config.dev = &mtd->dev;
523 config.name = dev_name(&mtd->dev);
524 config.owner = THIS_MODULE;
525 config.reg_read = mtd_nvmem_reg_read;
526 config.size = mtd->size;
527 config.word_size = 1;
529 config.read_only = true;
530 config.root_only = true;
531 config.ignore_wp = true;
532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
535 mtd->nvmem = nvmem_register(&config);
536 if (IS_ERR(mtd->nvmem)) {
537 /* Just ignore if there is no NVMEM support in the kernel */
538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
541 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
542 return PTR_ERR(mtd->nvmem);
549 static void mtd_check_of_node(struct mtd_info *mtd)
551 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 const char *pname, *prefix = "partition-";
553 int plen, mtd_name_len, offset, prefix_len;
554 struct mtd_info *parent;
557 /* Check if MTD already has a device node */
558 if (dev_of_node(&mtd->dev))
561 /* Check if a partitions node exist */
562 if (!mtd_is_partition(mtd))
564 parent = mtd->parent;
565 parent_dn = dev_of_node(&parent->dev);
569 partitions = of_get_child_by_name(parent_dn, "partitions");
573 prefix_len = strlen(prefix);
574 mtd_name_len = strlen(mtd->name);
576 /* Search if a partition is defined with the same name */
577 for_each_child_of_node(partitions, mtd_dn) {
580 /* Skip partition with no/wrong prefix */
581 if (!of_node_name_prefix(mtd_dn, "partition-"))
584 /* Label have priority. Check that first */
585 if (of_property_read_string(mtd_dn, "label", &pname)) {
586 of_property_read_string(mtd_dn, "name", &pname);
590 plen = strlen(pname) - offset;
591 if (plen == mtd_name_len &&
592 !strncmp(mtd->name, pname + offset, plen)) {
599 goto exit_partitions;
601 /* Set of_node only for nvmem */
602 if (of_device_is_compatible(mtd_dn, "nvmem-cells"))
603 mtd_set_of_node(mtd, mtd_dn);
606 of_node_put(partitions);
608 of_node_put(parent_dn);
612 * add_mtd_device - register an MTD device
613 * @mtd: pointer to new MTD device info structure
615 * Add a device to the list of MTD devices present in the system, and
616 * notify each currently active MTD 'user' of its arrival. Returns
617 * zero on success or non-zero on failure.
620 int add_mtd_device(struct mtd_info *mtd)
622 struct device_node *np = mtd_get_of_node(mtd);
623 struct mtd_info *master = mtd_get_master(mtd);
624 struct mtd_notifier *not;
628 * May occur, for instance, on buggy drivers which call
629 * mtd_device_parse_register() multiple times on the same master MTD,
630 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
632 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
635 BUG_ON(mtd->writesize == 0);
638 * MTD drivers should implement ->_{write,read}() or
639 * ->_{write,read}_oob(), but not both.
641 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
642 (mtd->_read && mtd->_read_oob)))
645 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
646 !(mtd->flags & MTD_NO_ERASE)))
650 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
651 * master is an MLC NAND and has a proper pairing scheme defined.
652 * We also reject masters that implement ->_writev() for now, because
653 * NAND controller drivers don't implement this hook, and adding the
654 * SLC -> MLC address/length conversion to this path is useless if we
657 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
658 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
659 !master->pairing || master->_writev))
662 mutex_lock(&mtd_table_mutex);
666 ofidx = of_alias_get_id(np, "mtd");
668 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
670 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
679 /* default value if not set by driver */
680 if (mtd->bitflip_threshold == 0)
681 mtd->bitflip_threshold = mtd->ecc_strength;
683 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
684 int ngroups = mtd_pairing_groups(master);
686 mtd->erasesize /= ngroups;
687 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
691 if (is_power_of_2(mtd->erasesize))
692 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
694 mtd->erasesize_shift = 0;
696 if (is_power_of_2(mtd->writesize))
697 mtd->writesize_shift = ffs(mtd->writesize) - 1;
699 mtd->writesize_shift = 0;
701 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
702 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
704 /* Some chips always power up locked. Unlock them now */
705 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
706 error = mtd_unlock(mtd, 0, mtd->size);
707 if (error && error != -EOPNOTSUPP)
709 "%s: unlock failed, writes may not work\n",
711 /* Ignore unlock failures? */
715 /* Caller should have set dev.parent to match the
716 * physical device, if appropriate.
718 mtd->dev.type = &mtd_devtype;
719 mtd->dev.class = &mtd_class;
720 mtd->dev.devt = MTD_DEVT(i);
721 dev_set_name(&mtd->dev, "mtd%d", i);
722 dev_set_drvdata(&mtd->dev, mtd);
723 mtd_check_of_node(mtd);
724 of_node_get(mtd_get_of_node(mtd));
725 error = device_register(&mtd->dev);
729 /* Add the nvmem provider */
730 error = mtd_nvmem_add(mtd);
734 mtd_debugfs_populate(mtd);
736 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
739 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
740 /* No need to get a refcount on the module containing
741 the notifier, since we hold the mtd_table_mutex */
742 list_for_each_entry(not, &mtd_notifiers, list)
745 mutex_unlock(&mtd_table_mutex);
746 /* We _know_ we aren't being removed, because
747 our caller is still holding us here. So none
748 of this try_ nonsense, and no bitching about it
750 __module_get(THIS_MODULE);
754 device_unregister(&mtd->dev);
756 of_node_put(mtd_get_of_node(mtd));
757 idr_remove(&mtd_idr, i);
759 mutex_unlock(&mtd_table_mutex);
764 * del_mtd_device - unregister an MTD device
765 * @mtd: pointer to MTD device info structure
767 * Remove a device from the list of MTD devices present in the system,
768 * and notify each currently active MTD 'user' of its departure.
769 * Returns zero on success or 1 on failure, which currently will happen
770 * if the requested device does not appear to be present in the list.
773 int del_mtd_device(struct mtd_info *mtd)
776 struct mtd_notifier *not;
778 mutex_lock(&mtd_table_mutex);
780 if (idr_find(&mtd_idr, mtd->index) != mtd) {
785 /* No need to get a refcount on the module containing
786 the notifier, since we hold the mtd_table_mutex */
787 list_for_each_entry(not, &mtd_notifiers, list)
791 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
792 mtd->index, mtd->name, mtd->usecount);
795 debugfs_remove_recursive(mtd->dbg.dfs_dir);
797 /* Try to remove the NVMEM provider */
798 nvmem_unregister(mtd->nvmem);
800 device_unregister(&mtd->dev);
802 /* Clear dev so mtd can be safely re-registered later if desired */
803 memset(&mtd->dev, 0, sizeof(mtd->dev));
805 idr_remove(&mtd_idr, mtd->index);
806 of_node_put(mtd_get_of_node(mtd));
808 module_put(THIS_MODULE);
813 mutex_unlock(&mtd_table_mutex);
818 * Set a few defaults based on the parent devices, if not provided by the
821 static void mtd_set_dev_defaults(struct mtd_info *mtd)
823 if (mtd->dev.parent) {
824 if (!mtd->owner && mtd->dev.parent->driver)
825 mtd->owner = mtd->dev.parent->driver->owner;
827 mtd->name = dev_name(mtd->dev.parent);
829 pr_debug("mtd device won't show a device symlink in sysfs\n");
832 INIT_LIST_HEAD(&mtd->partitions);
833 mutex_init(&mtd->master.partitions_lock);
834 mutex_init(&mtd->master.chrdev_lock);
837 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
839 struct otp_info *info;
845 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
850 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
852 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
856 for (i = 0; i < retlen / sizeof(*info); i++)
857 size += info[i].length;
865 /* ENODATA means there is no OTP region. */
866 return ret == -ENODATA ? 0 : ret;
869 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
870 const char *compatible,
872 nvmem_reg_read_t reg_read)
874 struct nvmem_device *nvmem = NULL;
875 struct nvmem_config config = {};
876 struct device_node *np;
878 /* DT binding is optional */
879 np = of_get_compatible_child(mtd->dev.of_node, compatible);
881 /* OTP nvmem will be registered on the physical device */
882 config.dev = mtd->dev.parent;
883 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
884 config.id = NVMEM_DEVID_NONE;
885 config.owner = THIS_MODULE;
886 config.type = NVMEM_TYPE_OTP;
887 config.root_only = true;
888 config.ignore_wp = true;
889 config.reg_read = reg_read;
894 nvmem = nvmem_register(&config);
895 /* Just ignore if there is no NVMEM support in the kernel */
896 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
905 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
906 void *val, size_t bytes)
908 struct mtd_info *mtd = priv;
912 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
916 return retlen == bytes ? 0 : -EIO;
919 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
920 void *val, size_t bytes)
922 struct mtd_info *mtd = priv;
926 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
930 return retlen == bytes ? 0 : -EIO;
933 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
935 struct nvmem_device *nvmem;
939 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
940 size = mtd_otp_size(mtd, true);
945 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
946 mtd_nvmem_user_otp_reg_read);
948 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
949 return PTR_ERR(nvmem);
951 mtd->otp_user_nvmem = nvmem;
955 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
956 size = mtd_otp_size(mtd, false);
963 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
964 mtd_nvmem_fact_otp_reg_read);
966 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
967 err = PTR_ERR(nvmem);
970 mtd->otp_factory_nvmem = nvmem;
977 nvmem_unregister(mtd->otp_user_nvmem);
982 * mtd_device_parse_register - parse partitions and register an MTD device.
984 * @mtd: the MTD device to register
985 * @types: the list of MTD partition probes to try, see
986 * 'parse_mtd_partitions()' for more information
987 * @parser_data: MTD partition parser-specific data
988 * @parts: fallback partition information to register, if parsing fails;
989 * only valid if %nr_parts > %0
990 * @nr_parts: the number of partitions in parts, if zero then the full
991 * MTD device is registered if no partition info is found
993 * This function aggregates MTD partitions parsing (done by
994 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
995 * basically follows the most common pattern found in many MTD drivers:
997 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
999 * * Then It tries to probe partitions on MTD device @mtd using parsers
1000 * specified in @types (if @types is %NULL, then the default list of parsers
1001 * is used, see 'parse_mtd_partitions()' for more information). If none are
1002 * found this functions tries to fallback to information specified in
1004 * * If no partitions were found this function just registers the MTD device
1007 * Returns zero in case of success and a negative error code in case of failure.
1009 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1010 struct mtd_part_parser_data *parser_data,
1011 const struct mtd_partition *parts,
1016 mtd_set_dev_defaults(mtd);
1018 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1019 ret = add_mtd_device(mtd);
1024 /* Prefer parsed partitions over driver-provided fallback */
1025 ret = parse_mtd_partitions(mtd, types, parser_data);
1026 if (ret == -EPROBE_DEFER)
1032 ret = add_mtd_partitions(mtd, parts, nr_parts);
1033 else if (!device_is_registered(&mtd->dev))
1034 ret = add_mtd_device(mtd);
1042 * FIXME: some drivers unfortunately call this function more than once.
1043 * So we have to check if we've already assigned the reboot notifier.
1045 * Generally, we can make multiple calls work for most cases, but it
1046 * does cause problems with parse_mtd_partitions() above (e.g.,
1047 * cmdlineparts will register partitions more than once).
1049 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1050 "MTD already registered\n");
1051 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1052 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1053 register_reboot_notifier(&mtd->reboot_notifier);
1056 ret = mtd_otp_nvmem_add(mtd);
1059 if (ret && device_is_registered(&mtd->dev))
1060 del_mtd_device(mtd);
1064 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1067 * mtd_device_unregister - unregister an existing MTD device.
1069 * @master: the MTD device to unregister. This will unregister both the master
1070 * and any partitions if registered.
1072 int mtd_device_unregister(struct mtd_info *master)
1076 if (master->_reboot) {
1077 unregister_reboot_notifier(&master->reboot_notifier);
1078 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1081 nvmem_unregister(master->otp_user_nvmem);
1082 nvmem_unregister(master->otp_factory_nvmem);
1084 err = del_mtd_partitions(master);
1088 if (!device_is_registered(&master->dev))
1091 return del_mtd_device(master);
1093 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1096 * register_mtd_user - register a 'user' of MTD devices.
1097 * @new: pointer to notifier info structure
1099 * Registers a pair of callbacks function to be called upon addition
1100 * or removal of MTD devices. Causes the 'add' callback to be immediately
1101 * invoked for each MTD device currently present in the system.
1103 void register_mtd_user (struct mtd_notifier *new)
1105 struct mtd_info *mtd;
1107 mutex_lock(&mtd_table_mutex);
1109 list_add(&new->list, &mtd_notifiers);
1111 __module_get(THIS_MODULE);
1113 mtd_for_each_device(mtd)
1116 mutex_unlock(&mtd_table_mutex);
1118 EXPORT_SYMBOL_GPL(register_mtd_user);
1121 * unregister_mtd_user - unregister a 'user' of MTD devices.
1122 * @old: pointer to notifier info structure
1124 * Removes a callback function pair from the list of 'users' to be
1125 * notified upon addition or removal of MTD devices. Causes the
1126 * 'remove' callback to be immediately invoked for each MTD device
1127 * currently present in the system.
1129 int unregister_mtd_user (struct mtd_notifier *old)
1131 struct mtd_info *mtd;
1133 mutex_lock(&mtd_table_mutex);
1135 module_put(THIS_MODULE);
1137 mtd_for_each_device(mtd)
1140 list_del(&old->list);
1141 mutex_unlock(&mtd_table_mutex);
1144 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1147 * get_mtd_device - obtain a validated handle for an MTD device
1148 * @mtd: last known address of the required MTD device
1149 * @num: internal device number of the required MTD device
1151 * Given a number and NULL address, return the num'th entry in the device
1152 * table, if any. Given an address and num == -1, search the device table
1153 * for a device with that address and return if it's still present. Given
1154 * both, return the num'th driver only if its address matches. Return
1155 * error code if not.
1157 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1159 struct mtd_info *ret = NULL, *other;
1162 mutex_lock(&mtd_table_mutex);
1165 mtd_for_each_device(other) {
1171 } else if (num >= 0) {
1172 ret = idr_find(&mtd_idr, num);
1173 if (mtd && mtd != ret)
1182 err = __get_mtd_device(ret);
1186 mutex_unlock(&mtd_table_mutex);
1189 EXPORT_SYMBOL_GPL(get_mtd_device);
1192 int __get_mtd_device(struct mtd_info *mtd)
1194 struct mtd_info *master = mtd_get_master(mtd);
1197 if (!try_module_get(master->owner))
1200 if (master->_get_device) {
1201 err = master->_get_device(mtd);
1204 module_put(master->owner);
1211 while (mtd->parent) {
1218 EXPORT_SYMBOL_GPL(__get_mtd_device);
1221 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1223 * @name: MTD device name to open
1225 * This function returns MTD device description structure in case of
1226 * success and an error code in case of failure.
1228 struct mtd_info *get_mtd_device_nm(const char *name)
1231 struct mtd_info *mtd = NULL, *other;
1233 mutex_lock(&mtd_table_mutex);
1235 mtd_for_each_device(other) {
1236 if (!strcmp(name, other->name)) {
1245 err = __get_mtd_device(mtd);
1249 mutex_unlock(&mtd_table_mutex);
1253 mutex_unlock(&mtd_table_mutex);
1254 return ERR_PTR(err);
1256 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1258 void put_mtd_device(struct mtd_info *mtd)
1260 mutex_lock(&mtd_table_mutex);
1261 __put_mtd_device(mtd);
1262 mutex_unlock(&mtd_table_mutex);
1265 EXPORT_SYMBOL_GPL(put_mtd_device);
1267 void __put_mtd_device(struct mtd_info *mtd)
1269 struct mtd_info *master = mtd_get_master(mtd);
1271 while (mtd->parent) {
1273 BUG_ON(mtd->usecount < 0);
1279 if (master->_put_device)
1280 master->_put_device(master);
1282 module_put(master->owner);
1284 EXPORT_SYMBOL_GPL(__put_mtd_device);
1287 * Erase is an synchronous operation. Device drivers are epected to return a
1288 * negative error code if the operation failed and update instr->fail_addr
1289 * to point the portion that was not properly erased.
1291 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1293 struct mtd_info *master = mtd_get_master(mtd);
1294 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1295 struct erase_info adjinstr;
1298 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1301 if (!mtd->erasesize || !master->_erase)
1304 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1306 if (!(mtd->flags & MTD_WRITEABLE))
1312 ledtrig_mtd_activity();
1314 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1315 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1317 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1318 master->erasesize) -
1322 adjinstr.addr += mst_ofs;
1324 ret = master->_erase(master, &adjinstr);
1326 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1327 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1328 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1329 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1331 instr->fail_addr *= mtd->erasesize;
1337 EXPORT_SYMBOL_GPL(mtd_erase);
1340 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1342 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1343 void **virt, resource_size_t *phys)
1345 struct mtd_info *master = mtd_get_master(mtd);
1351 if (!master->_point)
1353 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1358 from = mtd_get_master_ofs(mtd, from);
1359 return master->_point(master, from, len, retlen, virt, phys);
1361 EXPORT_SYMBOL_GPL(mtd_point);
1363 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1364 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1366 struct mtd_info *master = mtd_get_master(mtd);
1368 if (!master->_unpoint)
1370 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1374 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1376 EXPORT_SYMBOL_GPL(mtd_unpoint);
1379 * Allow NOMMU mmap() to directly map the device (if not NULL)
1380 * - return the address to which the offset maps
1381 * - return -ENOSYS to indicate refusal to do the mapping
1383 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1384 unsigned long offset, unsigned long flags)
1390 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1393 if (retlen != len) {
1394 mtd_unpoint(mtd, offset, retlen);
1397 return (unsigned long)virt;
1399 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1401 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1402 const struct mtd_ecc_stats *old_stats)
1404 struct mtd_ecc_stats diff;
1409 diff = master->ecc_stats;
1410 diff.failed -= old_stats->failed;
1411 diff.corrected -= old_stats->corrected;
1413 while (mtd->parent) {
1414 mtd->ecc_stats.failed += diff.failed;
1415 mtd->ecc_stats.corrected += diff.corrected;
1420 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1423 struct mtd_oob_ops ops = {
1429 ret = mtd_read_oob(mtd, from, &ops);
1430 *retlen = ops.retlen;
1434 EXPORT_SYMBOL_GPL(mtd_read);
1436 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1439 struct mtd_oob_ops ops = {
1441 .datbuf = (u8 *)buf,
1445 ret = mtd_write_oob(mtd, to, &ops);
1446 *retlen = ops.retlen;
1450 EXPORT_SYMBOL_GPL(mtd_write);
1453 * In blackbox flight recorder like scenarios we want to make successful writes
1454 * in interrupt context. panic_write() is only intended to be called when its
1455 * known the kernel is about to panic and we need the write to succeed. Since
1456 * the kernel is not going to be running for much longer, this function can
1457 * break locks and delay to ensure the write succeeds (but not sleep).
1459 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1462 struct mtd_info *master = mtd_get_master(mtd);
1465 if (!master->_panic_write)
1467 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1469 if (!(mtd->flags & MTD_WRITEABLE))
1473 if (!master->oops_panic_write)
1474 master->oops_panic_write = true;
1476 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1479 EXPORT_SYMBOL_GPL(mtd_panic_write);
1481 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1482 struct mtd_oob_ops *ops)
1485 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1486 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1495 if (offs < 0 || offs + ops->len > mtd->size)
1501 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1504 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1505 mtd_div_by_ws(offs, mtd)) *
1506 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1507 if (ops->ooblen > maxooblen)
1514 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1515 struct mtd_oob_ops *ops)
1517 struct mtd_info *master = mtd_get_master(mtd);
1520 from = mtd_get_master_ofs(mtd, from);
1521 if (master->_read_oob)
1522 ret = master->_read_oob(master, from, ops);
1524 ret = master->_read(master, from, ops->len, &ops->retlen,
1530 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1531 struct mtd_oob_ops *ops)
1533 struct mtd_info *master = mtd_get_master(mtd);
1536 to = mtd_get_master_ofs(mtd, to);
1537 if (master->_write_oob)
1538 ret = master->_write_oob(master, to, ops);
1540 ret = master->_write(master, to, ops->len, &ops->retlen,
1546 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1547 struct mtd_oob_ops *ops)
1549 struct mtd_info *master = mtd_get_master(mtd);
1550 int ngroups = mtd_pairing_groups(master);
1551 int npairs = mtd_wunit_per_eb(master) / ngroups;
1552 struct mtd_oob_ops adjops = *ops;
1553 unsigned int wunit, oobavail;
1554 struct mtd_pairing_info info;
1555 int max_bitflips = 0;
1559 ebofs = mtd_mod_by_eb(start, mtd);
1560 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1562 info.pair = mtd_div_by_ws(ebofs, mtd);
1563 pageofs = mtd_mod_by_ws(ebofs, mtd);
1564 oobavail = mtd_oobavail(mtd, ops);
1566 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1569 if (info.pair >= npairs) {
1571 base += master->erasesize;
1574 wunit = mtd_pairing_info_to_wunit(master, &info);
1575 pos = mtd_wunit_to_offset(mtd, base, wunit);
1577 adjops.len = ops->len - ops->retlen;
1578 if (adjops.len > mtd->writesize - pageofs)
1579 adjops.len = mtd->writesize - pageofs;
1581 adjops.ooblen = ops->ooblen - ops->oobretlen;
1582 if (adjops.ooblen > oobavail - adjops.ooboffs)
1583 adjops.ooblen = oobavail - adjops.ooboffs;
1586 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1588 max_bitflips = max(max_bitflips, ret);
1590 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1596 max_bitflips = max(max_bitflips, ret);
1597 ops->retlen += adjops.retlen;
1598 ops->oobretlen += adjops.oobretlen;
1599 adjops.datbuf += adjops.retlen;
1600 adjops.oobbuf += adjops.oobretlen;
1606 return max_bitflips;
1609 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1611 struct mtd_info *master = mtd_get_master(mtd);
1612 struct mtd_ecc_stats old_stats = master->ecc_stats;
1615 ops->retlen = ops->oobretlen = 0;
1617 ret_code = mtd_check_oob_ops(mtd, from, ops);
1621 ledtrig_mtd_activity();
1623 /* Check the validity of a potential fallback on mtd->_read */
1624 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1627 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1628 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1630 ret_code = mtd_read_oob_std(mtd, from, ops);
1632 mtd_update_ecc_stats(mtd, master, &old_stats);
1635 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1636 * similar to mtd->_read(), returning a non-negative integer
1637 * representing max bitflips. In other cases, mtd->_read_oob() may
1638 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1640 if (unlikely(ret_code < 0))
1642 if (mtd->ecc_strength == 0)
1643 return 0; /* device lacks ecc */
1644 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1646 EXPORT_SYMBOL_GPL(mtd_read_oob);
1648 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1649 struct mtd_oob_ops *ops)
1651 struct mtd_info *master = mtd_get_master(mtd);
1654 ops->retlen = ops->oobretlen = 0;
1656 if (!(mtd->flags & MTD_WRITEABLE))
1659 ret = mtd_check_oob_ops(mtd, to, ops);
1663 ledtrig_mtd_activity();
1665 /* Check the validity of a potential fallback on mtd->_write */
1666 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1669 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1670 return mtd_io_emulated_slc(mtd, to, false, ops);
1672 return mtd_write_oob_std(mtd, to, ops);
1674 EXPORT_SYMBOL_GPL(mtd_write_oob);
1677 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1678 * @mtd: MTD device structure
1679 * @section: ECC section. Depending on the layout you may have all the ECC
1680 * bytes stored in a single contiguous section, or one section
1681 * per ECC chunk (and sometime several sections for a single ECC
1683 * @oobecc: OOB region struct filled with the appropriate ECC position
1686 * This function returns ECC section information in the OOB area. If you want
1687 * to get all the ECC bytes information, then you should call
1688 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1690 * Returns zero on success, a negative error code otherwise.
1692 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1693 struct mtd_oob_region *oobecc)
1695 struct mtd_info *master = mtd_get_master(mtd);
1697 memset(oobecc, 0, sizeof(*oobecc));
1699 if (!master || section < 0)
1702 if (!master->ooblayout || !master->ooblayout->ecc)
1705 return master->ooblayout->ecc(master, section, oobecc);
1707 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1710 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1712 * @mtd: MTD device structure
1713 * @section: Free section you are interested in. Depending on the layout
1714 * you may have all the free bytes stored in a single contiguous
1715 * section, or one section per ECC chunk plus an extra section
1716 * for the remaining bytes (or other funky layout).
1717 * @oobfree: OOB region struct filled with the appropriate free position
1720 * This function returns free bytes position in the OOB area. If you want
1721 * to get all the free bytes information, then you should call
1722 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1724 * Returns zero on success, a negative error code otherwise.
1726 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1727 struct mtd_oob_region *oobfree)
1729 struct mtd_info *master = mtd_get_master(mtd);
1731 memset(oobfree, 0, sizeof(*oobfree));
1733 if (!master || section < 0)
1736 if (!master->ooblayout || !master->ooblayout->free)
1739 return master->ooblayout->free(master, section, oobfree);
1741 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1744 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1745 * @mtd: mtd info structure
1746 * @byte: the byte we are searching for
1747 * @sectionp: pointer where the section id will be stored
1748 * @oobregion: used to retrieve the ECC position
1749 * @iter: iterator function. Should be either mtd_ooblayout_free or
1750 * mtd_ooblayout_ecc depending on the region type you're searching for
1752 * This function returns the section id and oobregion information of a
1753 * specific byte. For example, say you want to know where the 4th ECC byte is
1754 * stored, you'll use:
1756 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1758 * Returns zero on success, a negative error code otherwise.
1760 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1761 int *sectionp, struct mtd_oob_region *oobregion,
1762 int (*iter)(struct mtd_info *,
1764 struct mtd_oob_region *oobregion))
1766 int pos = 0, ret, section = 0;
1768 memset(oobregion, 0, sizeof(*oobregion));
1771 ret = iter(mtd, section, oobregion);
1775 if (pos + oobregion->length > byte)
1778 pos += oobregion->length;
1783 * Adjust region info to make it start at the beginning at the
1786 oobregion->offset += byte - pos;
1787 oobregion->length -= byte - pos;
1788 *sectionp = section;
1794 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1796 * @mtd: mtd info structure
1797 * @eccbyte: the byte we are searching for
1798 * @section: pointer where the section id will be stored
1799 * @oobregion: OOB region information
1801 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1804 * Returns zero on success, a negative error code otherwise.
1806 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1808 struct mtd_oob_region *oobregion)
1810 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1813 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1816 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1817 * @mtd: mtd info structure
1818 * @buf: destination buffer to store OOB bytes
1819 * @oobbuf: OOB buffer
1820 * @start: first byte to retrieve
1821 * @nbytes: number of bytes to retrieve
1822 * @iter: section iterator
1824 * Extract bytes attached to a specific category (ECC or free)
1825 * from the OOB buffer and copy them into buf.
1827 * Returns zero on success, a negative error code otherwise.
1829 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1830 const u8 *oobbuf, int start, int nbytes,
1831 int (*iter)(struct mtd_info *,
1833 struct mtd_oob_region *oobregion))
1835 struct mtd_oob_region oobregion;
1838 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1844 cnt = min_t(int, nbytes, oobregion.length);
1845 memcpy(buf, oobbuf + oobregion.offset, cnt);
1852 ret = iter(mtd, ++section, &oobregion);
1859 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1860 * @mtd: mtd info structure
1861 * @buf: source buffer to get OOB bytes from
1862 * @oobbuf: OOB buffer
1863 * @start: first OOB byte to set
1864 * @nbytes: number of OOB bytes to set
1865 * @iter: section iterator
1867 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1868 * is selected by passing the appropriate iterator.
1870 * Returns zero on success, a negative error code otherwise.
1872 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1873 u8 *oobbuf, int start, int nbytes,
1874 int (*iter)(struct mtd_info *,
1876 struct mtd_oob_region *oobregion))
1878 struct mtd_oob_region oobregion;
1881 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1887 cnt = min_t(int, nbytes, oobregion.length);
1888 memcpy(oobbuf + oobregion.offset, buf, cnt);
1895 ret = iter(mtd, ++section, &oobregion);
1902 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1903 * @mtd: mtd info structure
1904 * @iter: category iterator
1906 * Count the number of bytes in a given category.
1908 * Returns a positive value on success, a negative error code otherwise.
1910 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1911 int (*iter)(struct mtd_info *,
1913 struct mtd_oob_region *oobregion))
1915 struct mtd_oob_region oobregion;
1916 int section = 0, ret, nbytes = 0;
1919 ret = iter(mtd, section++, &oobregion);
1926 nbytes += oobregion.length;
1933 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1934 * @mtd: mtd info structure
1935 * @eccbuf: destination buffer to store ECC bytes
1936 * @oobbuf: OOB buffer
1937 * @start: first ECC byte to retrieve
1938 * @nbytes: number of ECC bytes to retrieve
1940 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1942 * Returns zero on success, a negative error code otherwise.
1944 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1945 const u8 *oobbuf, int start, int nbytes)
1947 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1950 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1953 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1954 * @mtd: mtd info structure
1955 * @eccbuf: source buffer to get ECC bytes from
1956 * @oobbuf: OOB buffer
1957 * @start: first ECC byte to set
1958 * @nbytes: number of ECC bytes to set
1960 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1962 * Returns zero on success, a negative error code otherwise.
1964 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1965 u8 *oobbuf, int start, int nbytes)
1967 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1970 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1973 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1974 * @mtd: mtd info structure
1975 * @databuf: destination buffer to store ECC bytes
1976 * @oobbuf: OOB buffer
1977 * @start: first ECC byte to retrieve
1978 * @nbytes: number of ECC bytes to retrieve
1980 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1982 * Returns zero on success, a negative error code otherwise.
1984 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1985 const u8 *oobbuf, int start, int nbytes)
1987 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1988 mtd_ooblayout_free);
1990 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1993 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1994 * @mtd: mtd info structure
1995 * @databuf: source buffer to get data bytes from
1996 * @oobbuf: OOB buffer
1997 * @start: first ECC byte to set
1998 * @nbytes: number of ECC bytes to set
2000 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2002 * Returns zero on success, a negative error code otherwise.
2004 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2005 u8 *oobbuf, int start, int nbytes)
2007 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2008 mtd_ooblayout_free);
2010 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2013 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2014 * @mtd: mtd info structure
2016 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2018 * Returns zero on success, a negative error code otherwise.
2020 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2022 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2024 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2027 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2028 * @mtd: mtd info structure
2030 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2032 * Returns zero on success, a negative error code otherwise.
2034 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2036 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2038 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2041 * Method to access the protection register area, present in some flash
2042 * devices. The user data is one time programmable but the factory data is read
2045 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2046 struct otp_info *buf)
2048 struct mtd_info *master = mtd_get_master(mtd);
2050 if (!master->_get_fact_prot_info)
2054 return master->_get_fact_prot_info(master, len, retlen, buf);
2056 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2058 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2059 size_t *retlen, u_char *buf)
2061 struct mtd_info *master = mtd_get_master(mtd);
2064 if (!master->_read_fact_prot_reg)
2068 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2070 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2072 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2073 struct otp_info *buf)
2075 struct mtd_info *master = mtd_get_master(mtd);
2077 if (!master->_get_user_prot_info)
2081 return master->_get_user_prot_info(master, len, retlen, buf);
2083 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2085 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2086 size_t *retlen, u_char *buf)
2088 struct mtd_info *master = mtd_get_master(mtd);
2091 if (!master->_read_user_prot_reg)
2095 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2097 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2099 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2100 size_t *retlen, const u_char *buf)
2102 struct mtd_info *master = mtd_get_master(mtd);
2106 if (!master->_write_user_prot_reg)
2110 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2115 * If no data could be written at all, we are out of memory and
2116 * must return -ENOSPC.
2118 return (*retlen) ? 0 : -ENOSPC;
2120 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2122 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2124 struct mtd_info *master = mtd_get_master(mtd);
2126 if (!master->_lock_user_prot_reg)
2130 return master->_lock_user_prot_reg(master, from, len);
2132 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2134 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2136 struct mtd_info *master = mtd_get_master(mtd);
2138 if (!master->_erase_user_prot_reg)
2142 return master->_erase_user_prot_reg(master, from, len);
2144 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2146 /* Chip-supported device locking */
2147 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2149 struct mtd_info *master = mtd_get_master(mtd);
2153 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2158 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2159 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2160 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2163 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2165 EXPORT_SYMBOL_GPL(mtd_lock);
2167 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2169 struct mtd_info *master = mtd_get_master(mtd);
2171 if (!master->_unlock)
2173 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2178 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2179 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2180 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2183 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2185 EXPORT_SYMBOL_GPL(mtd_unlock);
2187 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2189 struct mtd_info *master = mtd_get_master(mtd);
2191 if (!master->_is_locked)
2193 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2198 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2199 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2200 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2203 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2205 EXPORT_SYMBOL_GPL(mtd_is_locked);
2207 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2209 struct mtd_info *master = mtd_get_master(mtd);
2211 if (ofs < 0 || ofs >= mtd->size)
2213 if (!master->_block_isreserved)
2216 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2217 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2219 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2221 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2223 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2225 struct mtd_info *master = mtd_get_master(mtd);
2227 if (ofs < 0 || ofs >= mtd->size)
2229 if (!master->_block_isbad)
2232 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2233 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2235 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2237 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2239 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2241 struct mtd_info *master = mtd_get_master(mtd);
2244 if (!master->_block_markbad)
2246 if (ofs < 0 || ofs >= mtd->size)
2248 if (!(mtd->flags & MTD_WRITEABLE))
2251 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2252 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2254 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2258 while (mtd->parent) {
2259 mtd->ecc_stats.badblocks++;
2265 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2268 * default_mtd_writev - the default writev method
2269 * @mtd: mtd device description object pointer
2270 * @vecs: the vectors to write
2271 * @count: count of vectors in @vecs
2272 * @to: the MTD device offset to write to
2273 * @retlen: on exit contains the count of bytes written to the MTD device.
2275 * This function returns zero in case of success and a negative error code in
2278 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2279 unsigned long count, loff_t to, size_t *retlen)
2282 size_t totlen = 0, thislen;
2285 for (i = 0; i < count; i++) {
2286 if (!vecs[i].iov_len)
2288 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2291 if (ret || thislen != vecs[i].iov_len)
2293 to += vecs[i].iov_len;
2300 * mtd_writev - the vector-based MTD write method
2301 * @mtd: mtd device description object pointer
2302 * @vecs: the vectors to write
2303 * @count: count of vectors in @vecs
2304 * @to: the MTD device offset to write to
2305 * @retlen: on exit contains the count of bytes written to the MTD device.
2307 * This function returns zero in case of success and a negative error code in
2310 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2311 unsigned long count, loff_t to, size_t *retlen)
2313 struct mtd_info *master = mtd_get_master(mtd);
2316 if (!(mtd->flags & MTD_WRITEABLE))
2319 if (!master->_writev)
2320 return default_mtd_writev(mtd, vecs, count, to, retlen);
2322 return master->_writev(master, vecs, count,
2323 mtd_get_master_ofs(mtd, to), retlen);
2325 EXPORT_SYMBOL_GPL(mtd_writev);
2328 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2329 * @mtd: mtd device description object pointer
2330 * @size: a pointer to the ideal or maximum size of the allocation, points
2331 * to the actual allocation size on success.
2333 * This routine attempts to allocate a contiguous kernel buffer up to
2334 * the specified size, backing off the size of the request exponentially
2335 * until the request succeeds or until the allocation size falls below
2336 * the system page size. This attempts to make sure it does not adversely
2337 * impact system performance, so when allocating more than one page, we
2338 * ask the memory allocator to avoid re-trying, swapping, writing back
2339 * or performing I/O.
2341 * Note, this function also makes sure that the allocated buffer is aligned to
2342 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2344 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2345 * to handle smaller (i.e. degraded) buffer allocations under low- or
2346 * fragmented-memory situations where such reduced allocations, from a
2347 * requested ideal, are allowed.
2349 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2351 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2353 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2354 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2357 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2359 while (*size > min_alloc) {
2360 kbuf = kmalloc(*size, flags);
2365 *size = ALIGN(*size, mtd->writesize);
2369 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2370 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2372 return kmalloc(*size, GFP_KERNEL);
2374 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2376 #ifdef CONFIG_PROC_FS
2378 /*====================================================================*/
2379 /* Support for /proc/mtd */
2381 static int mtd_proc_show(struct seq_file *m, void *v)
2383 struct mtd_info *mtd;
2385 seq_puts(m, "dev: size erasesize name\n");
2386 mutex_lock(&mtd_table_mutex);
2387 mtd_for_each_device(mtd) {
2388 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2389 mtd->index, (unsigned long long)mtd->size,
2390 mtd->erasesize, mtd->name);
2392 mutex_unlock(&mtd_table_mutex);
2395 #endif /* CONFIG_PROC_FS */
2397 /*====================================================================*/
2400 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2402 struct backing_dev_info *bdi;
2405 bdi = bdi_alloc(NUMA_NO_NODE);
2407 return ERR_PTR(-ENOMEM);
2412 * We put '-0' suffix to the name to get the same name format as we
2413 * used to get. Since this is called only once, we get a unique name.
2415 ret = bdi_register(bdi, "%.28s-0", name);
2419 return ret ? ERR_PTR(ret) : bdi;
2422 static struct proc_dir_entry *proc_mtd;
2424 static int __init init_mtd(void)
2428 ret = class_register(&mtd_class);
2432 mtd_bdi = mtd_bdi_init("mtd");
2433 if (IS_ERR(mtd_bdi)) {
2434 ret = PTR_ERR(mtd_bdi);
2438 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2440 ret = init_mtdchar();
2444 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2445 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2446 &mtd_expert_analysis_mode);
2452 remove_proc_entry("mtd", NULL);
2455 class_unregister(&mtd_class);
2457 pr_err("Error registering mtd class or bdi: %d\n", ret);
2461 static void __exit cleanup_mtd(void)
2463 debugfs_remove_recursive(dfs_dir_mtd);
2466 remove_proc_entry("mtd", NULL);
2467 class_unregister(&mtd_class);
2468 bdi_unregister(mtd_bdi);
2470 idr_destroy(&mtd_idr);
2473 module_init(init_mtd);
2474 module_exit(cleanup_mtd);
2476 MODULE_LICENSE("GPL");
2478 MODULE_DESCRIPTION("Core MTD registration and access routines");